
Are Citation Metrics a Good Thing?

Abstract

Citation metrics are statistical measures of scientific outputs that draw on citation
indexes. They purport to capture the impact of scientific articles and the journals in which
they appear. As evaluative tools, citation metrics are mostly used in the natural sciences,
but they are also acquiring an important role in the humanities, thereby affecting the
development of research programs and institutions. While the strengths and weaknesses
of citation metrics are extensively debated in a variety of fields, they have only recently
started attracting attention in the philosophy of science. This paper takes a further step
in this direction and presents an analysis of citation metrics from the perspective of a
Kuhnian model for the development of science. To do that, it starts with an overview of
citation metrics both at the general level and at the level of specific metrics, such as Impact
Factor, h-index, and field-specific indicators. After that, it engages with Gillies’ argument
against the use of citation metrics for scientific research. According to Gillies (2008),
citation metrics tend to over-protect normal science at the expenses of revolutionary
science. This paper shows that, under certain conditions, citation metrics can in fact
arbitrarily hinder the development of normal science and, in light of this, it cautions
against using them for evaluative purposes.



1 Introduction

Publication metrics have become a dominant “currency” in science. Such metrics provide

measures of research outputs by drawing upon citation analysis (Andersen 2019, van Raan

2019). They purport to capture the impact of scientific articles and the outlets in which they

appear, viz. (peer-reviewed) journals. In the natural sciences especially, it is common to

use them in assessing research, thereby guiding the development of research programs and

the opportunities available to scholars and institutions. Besides the natural sciences, citation

metrics are also acquiring an increasingly important role in the arts and humanities.

In recent years, however, there have been numerous calls to move away from citation met-

rics in favor of more exhaustive criteria (Hicks et al. 2015), although proposals to abandon

such models have led to criticisms (Poot and Mulder 2021). In light of the current discussion,

and given the stakes that are involved, it is plausible that citation metrics will at most be com-

bined with qualitative criteria, rather than be replaced by them. Among the reasons to retain

them, scientists raise concerns that if evaluation metrics were erased from specific contexts,

such as particular institutions or even countries, those contexts would be at a disadvantage—

for instance in university rankings or in competing for international grants—relative to those

that have clear, albeit imperfect, measures of performance.

In this paper, I will weigh some of the main arguments for and against the adoption of

quantitative indicators in the evaluation of scientific research. To structure the discussion,

I shall divide the main arguments into the theoretical and the practical, placing particular

focus on Donald Gillies’s analysis of research assessment (2008).

One of the main arguments against the use of citation metrics, which is supported by

Gillies, is that they provide a too quick assessment of scientific work, the proper evaluation

of which actually requires more time. As an example, some metrics—for instance the Impact

Factor—looks at a journals’ citation patterns in the two- or five-year periods following an

article’s publication. However, the time it takes for a scientific community to recognize a

discovery rarely corresponds to such a timeframe. As Gillies points out, had the evaluative

system that we know today been in place historically, then scholars such as Wittgenstein and

Frege, to name but two, would not have received proper academic support.

Gillies draws upon Thomas Kuhn’s work on the development of science to argue that
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a metrics-based evaluative system tends to over-protect normal science at the expense of

revolutionary science. This is because the latter typically does not receive due credit from a

particular scientific community (including in terms of citation metrics) until a new paradigm

emerges. To Gillies’s mind, the current system is highly exposed to the risk of overlooking

“pink diamonds”—authors such as Wittgenstein or Frege—in favor of the status quo.

The discussion above reveals genuine limitations of the use of metrics as a reliable evalu-

ative tool of scientific work. On the other hand, one of the strongest arguments in favor of

their adoption is that, since we need an evaluative system, citation metrics offer just that.

There is increased pressure from policymakers to provide evidence of scientific performance.

This evidence is then used to justify public expenditure, to strengthen the accountability of

scientists, and even—it is argued—to bolster trust in science (van Raan 2019). The main idea

is that, while metrics are far from ideal, most of their biases can be corrected through more

refined measures. By contrast, choices that are left to individual assessors are more subjective

and prone to partiality.

In this paper, I will start by going back to the historical roots of citation analysis with the

aim of shedding light on some of its main original aims and the conditions that necessitated

its development (Sec. 2). I will show that citation analysis introduced a new criterion to

the organization and retrieval of scientific literature, one based on the references that are

contained in the literature. I will claim that this criterion provides a grounding for the use of

citation metrics both for evaluative purposes and as a tool to navigate the literature (Sec. 2).

Secondly, I will give an overview of some of the most common citation metrics, focusing

on their properties and limitations as evaluative tools (Sec. 3). Finally (in Sec. 4), I will

consider Gillies’s argument about the risk of overlooking “pink diamonds”. I will claim that,

if we endorse Kuhn’s analysis on the progress of science—as it is laid out in The Essential

Tension (1959)—the risk of thwarting revolutionary science should not be the principal cause

for concern that is raised by the metrics system. Rather, the risk of hindering the genuine

development normal science is what is at stake. Therefore, I will focus on the conditions under

which the system of metrics can support normal science and consider whether such conditions

have so far been met. In light of this analysis, I recommend caution in using the metrics as

evaluative tools and propose that they be combined with other evaluative methods.

A more general conclusion is that, regardless of the whether the system based on evaluative
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metrics is endorsed, these indicators deeply affect the opportunities available to research

programs and their scholars. Thus far, they have played only a minor role in the humanities

in comparison to the natural sciences, but they have already become relevant and it is likely

that they will become even more so in the foreseeable future. Even only indirectly, these

metrics are already relevant in the humanities. To give an example, university rankings

measure research and teaching performance partly on the basis of quantitative indicators and,

while controversial, have become influential in attracting students and researchers, and in the

allocation of funding. Therefore, so long as the metrics remain in place, it is in the interest of

scientists to be aware of them and understand how they function, as well as recognizing their

strengths and weaknesses.

2 The roots of citation analysis

The aim of this section is to retrace the roots and original purposes of citation analysis. Cita-

tion metrics are often presented as an evaluative tool that has been introduced to determine

the allocation of resources in an increasingly competitive scientific market. In this section, I

will argue that one aspect that is typically not as well reported is that citation metrics were

also advanced as a tool to help scientists navigate a rapidly developing mass of literature.

Once it becomes clear that these two applications of citation metrics are two sides of the

same coin, it is easy to see, firstly, that the use of citation metrics as assessment tools is

grounded in the use that scientists make of citations in their own work; and, secondly, that

certain objections apply to both sides.

To start with, citation analysis is a quantitative method for the examination of various

features of citations of publications—for instance, their number, patterns, and graphs. The

dataset on which citation analysis is based is a citation index, that is, a bibliographic index

that lists publications and, for each one, all the publications included in the index that refer

to that publication.

The founding father of citation analysis is widely considered to be Eugene Garfield (1925–

2017). Garfield compiled the Science Citation Index (SCI), now known as the Web of Science,

at the end of the fifties. Before him, one of the first indexes of academic literature was provided

for the field of chemistry by Paul and Edward Gross (1927) who compiled it manually. They
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took one of the most representative journals in chemistry in their time, The Journal of the

American Chemical Society ; they noted all the journals that were cited by articles published

in that journal over a certain period of time, and then ranked them according to the number

of times they were cited.

Aided by computers, Garfield’s citation index included most of the science and technology

journals of his time. Garfield’s method was thus different than the one used by Gross and

Gross: he did not consider only the citations from articles published in a particular represen-

tative journal (“top-down"), but rather the citations that all the journals in the index received

from each other (“bottom-up”). The figures mounted up immediately: in 1933, the Gross and

Gross’ chemistry index included 247 different journals, while, in 1971, the SCI collected 2,200

science and technology journals. As of today, the Web of Science Core Collection contains

around 21,000 peer reviewed-journals.

Garfield’s index played a crucial role in opening up an entirely new body of statistical work

on scientific production. It was instrumental in the establishment of research programs such

as scientometrics and bibliometrics, which have been extremely prolific since. Scientometrics

aims at measuring the growth and development of science via mathematical models and

statistical analysis, while bibliometrics focuses in particular on statistical measures of articles,

journals, books, and so forth. Over time, both fields have achieved a variety of results: to

give some examples, they have developed citation metrics based on increasingly advanced

statistical techniques; they have created bibliometrics indicators such as bibliographic coupling

(Kessler 1963), co-citation analysis (Small 1973), and co-word analysis (Callon et al. 1983);

and they have assisted the automatic indexing of search databases and, more recently, online

search engines in information science (Polonioli 2020).

At the very outset, the statistical approach to scientific production provided, among other

things, the first quantified measure of the exponential growth of science, in terms of pub-

lications rate and number of scientists. The increase in scientific production raised crucial

questions about how such an expansion should be handled. Such issues concerned both poli-

cymakers, who were tasked with establishing criteria to determine budget allocation (Csiszar

2020); and scientists themselves, who faced the problem of processing a growing amount of lit-

erature in a limited amount of time. As we shall see below, citation analysis could apparently

serve both aims.
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As regards policy assessment, the statistical approach to scientific production showed that

a recurrent characteristic is that it is not uniformly distributed. This feature was then taken

as evidence to ground some of the early policies based on citation metrics. It was observed, for

instance, that most scientific output typically comes from a small group of scientists (Lotka

1926); that citations are driven by a small number of papers (de Solla Price 1963); and that

the relevant literature is scattered between a few crucial publications (de Solla Price 1963).

As an example of how these factors were used for policy, citation ranking was proposed as a

criterion to decide which periodicals to include in academic libraries operating under budget

constraints (Gross and Gross 1933). For instance, when assessing the collection of journals

owned by a library, it might be decided to acquire new periodicals that have attracted many

citations and, vice versa, to exclude journals of lesser impact.

Besides policy assessment, however, authors were concerned with the impact of scientific

growth on scientists themselves, as they had to process an ever-growing amount of prior work

and keep up with a rapid inflow of new publications. In the words of Margolis (1967): “As a

result of the recent expansion of scientific literature, more time and effort are being devoted

to the selection of what is to be read than to the actual reading” (p.1213, italics added). He

continued: “New information is accumulating faster that it can be sorted out. [. . . ] A new

scale of values based on citations is by no means infallible, or, in many cases, even fair, but

at least it provides an alternative to the existing one [quantity of publications], which is at

the root of the crisis." (p. 1219).

With respect to this point, citation analysis offered a new way of organizing and retrieving

scientific literature. Previous classification systems were based on criteria such as alphabetical

order and subject classification, which were less and less manageable as the mass of publica-

tions increased (Svenonius 2000). Citation indexes introduced a new kind of academic library,

one which arranges and returns the literature on the basis of citations. At the center of this

shift, is the crucial role given to references, which become the core of a signaling system that

scientists can use to navigate the literature.

A concrete example of a new feature of citation indexes is known as forward-citation

searching. Search engines like Google Scholar typically show a “cited by” link under each

entry, which displays a list of all the papers that cite that paper. This feature opens up new

possible search strategies. Before citation indexes, scientists typically sought new literature
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by moving from one source to the references that that source contained. In other words, their

searches could only proceed backwards. With citation analysis, authors could for the first time

expand their literature searches beyond the references found directly in a text, by looking at

the publications that cited that text after its publication. Thus, rather than proceeding only

backwards, that is, moving from a paper to its prior sources, scholars could now move forwards

in the literature and check if a paper was a solid reference or if it was already outdated by

more recent scientific work (Garfield 1955).

Yet another role that Garfield envisioned for the citation index was that of an “association

of ideas” index (Garfield 1955). He believed that the index would give scientists a way to follow

the dissemination of a piece of work in the literature by providing a map of the scientific

landscape based on the citation network of the papers in circulation (Biagioli 2018). This

point is similar but not identical to the application of citation analysis that I have illustrated

above. The main difference is that the latter refers to maps of citation networks that can be

used, for instance, to observe the development or the communication structure of a research

program, while the former concerns the role of citation indexes as what I refer to as a literature

selection device.

To sum up, citation analysis flourished at a time when science was advancing at a faster

pace than ever before. During this period, new statistical methods became available to collect

data on scientific production and analyze them quantitatively. On the one hand, policymakers

adopted citation metrics to make the assessment of scientific work faster and ensured it was

based on clear and shareable criteria. These days, citation metrics are mostly associated with

this evaluative purpose, which is also the aspect that most often flies “under the radar”, for

political reasons.

On the other hand, the expansion of scientific production required efficient and systematic

tools to process an increasing volume of literature. In this respect, citation analysis offered a

new method with which search and select the relevant research.

In either case—whether it is used by scientists or by policymakers—citation analysis tracks

the use of publications in the literature. One of the arguments in favour of using citation

metrics to assess scientists, is precisely that the metrics reflect what scientists consider to be

relevant and worth citing. However, whether usage licenses quality assessment is a question

at the center of the entire debate between the supporters and the critics of evaluative citation
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metrics.

To shade light on this, the next section critically analyses citation metrics as evaluative

tools both at a general level and at the level of a number of standard indicators. The survey

begins with Impact Factor (IF) and then considers some of the alternatives that have been

developed specifically to compensate for some of the IF’s shortcomings, namely h-index,

journal influence weight indicators, and field-specific indicators (e.g., FWCI).

3 An overview of citation metrics

Citation metrics are statistical measures that combine citation data with other variables,

for instance citations over periods of time or citations over quantity of publications. The

rankings published on the basis of these criteria—for individual scientists, articles, journals,

departments, all the way up to entire universities—rest on the assumption that citations track

certain positive aspects of scientific production. In other words, that ranking of publications

reflects certain underlying merits.

The literature on the relation between metrics and quality is extensive (Andersen 2019,

Heesen 2017) and the issue is highly debated because it requires the establishment of criteria of

“good science” and raises questions on who should define them. That said, if citation metrics

are used for evaluative purposes, they should ideally capture values that we deem important

in science, such as the quality of scientific work.

With respect to the issue of quality, there are certain considerations that concern the

providers of citation metrics and their products. Firstly, at the time of writing, the leading

data analytic companies working on citation metrics are Clarivate and Elsevier (since 2004),

whose databases are respectively known as the Web of Science and Scopus. These products

are available as a subscription based service and typically can be consulted via a university

library account. The citation metrics that Clarivate and Elsevier develop draw on databases

that only include only peer-reviewed work. This fact is often used to claim that they merely

report scientists’ own judgments on the basis that those who cite are ultimately the scientists

themselves.

However, an argument that criticizes the previous point is that citation metrics interpret

citations as if they were a sign of distinction, even though scientists may cite for other reasons
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than that, including to criticize a piece of work. Nonetheless, it might be said that scientific

criticism is part of the advancement of science and that scientists build their work on what

they consider to be worth improving and criticizing. That said, it is not always the case

that highly cited contributions deserve praise: in fact, a work may receive attention as an

example of fraud or scientific misconduct and it would be misleading to reward it and its

authors, merely because it occupies a high position in citation rankings. This is to say,

the gap between citation metrics and quality to some extent remains open. The content of

scientific work must still be assessed on other grounds other than citation metrics, which at

most help to track the amount of use that is made of it.

This observation brings us back to the point of using the metrics to navigate the mass

of scientific literature. Scientists may use citation metrics to guide their literature searches

together with a variety of other criteria to select what to read. They will ultimately be unable

to judge a work only by the number of citations it has received, but in the end must judge

the quality of its content. Similarly, given the multiple types and reasons for including them

(scientists might cite for reasons of quality and/or usefulness, but also to raise criticisms, or

for social influence) quality assessments cannot be reduced to the metrics only.

Secondly, and related to the previous point, the main competitor of Clarivate and Elsevier

is Google Scholar, which has been available since 2004. Unlike the former, Google Scholar

provides freely available citation rankings. Typically, it is the first search engine that scientists

turn to to check their statistics, mainly because it is easy to access and read. However, it

is considered by some to be less reliable than Clarivate and Elsevier, in part because it

includes entries and references beyond peer-reviewed journals. Citations may also come from

sources like preprint archives, presentation slides, dissertations, and also blogs, tweets, and

web pages. This explains why citation counts on Google Scholar are typically higher than

those from Clarivate and Elsevier, which in some cases may indicate that a scholar’s work has

also been picked up by non-academic sources (Andersen 2019, Delgado López-Cózar, Orduña-

Malea, and Martín-Martín 2019).1 While attracting attention from the wider world might

be deemed positive, it is open to debate whether scientists should be assessed in terms of

the success of their work both within and outside the scientific community. There may be

disciplines or subfields whose content is so technical that it cannot be accessed by non-peers,

1. On the “democracy” of citation metrics from non-peer reviewed sources, see Heesen and Bright 2021
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and scientists working in them should not be at a disadvantage because of this.2

A further consideration about Google Scholar is that the algorithm that it uses to rank

papers is not publicly disclosed: we only know that documents are weighed in accordance

with a number of variables, which also include the quantity and recency of citations (Beel

and Gipp 2009). This raises the issue that if scientists cannot know how their publications

are ranked, the way they are subsequently evaluated is not transparent.

A final point about the providers is that some of the metrics I discuss below typically

come either from Clarivate (e.g., the IF), from Elsevier (e.g., the FWCI), or from them both

along with Google Scholar (h-index). When the same metric is compiled by more than one

provider, differences may be caused by the reliance on different datasets or by the methods

used to calculate the indicators. Awareness of such differences is important because when

such metrics determine the evaluation of a scientist’s work variations in the outcome may not

necessarily due to the work itself, but rather to the specifics of the index or the providers’s

way of calculating the metric.

With these clarifications in mind, I will now give a short description of some of the most

common citation metrics in the literature, in particular the Impact Factor (IF) and some of

its alternatives. For a more comprehensive analysis, see Moed (2019).

3.1 Specific Citation Metrics

The literature on the specific features of the metrics is not primarily concerned with what

citations exactly track. Rather, it starts from the assumption that citations track certain

properties of scientific work, whatever it may be, and then considers how to build a statistical

measure, for instance the Impact Factor, that captures that property and compares it against

other statistical measures, for instance the h-index.

• Impact Factor – The IF is the first metric that has been developed in the literature by

Garfield himself. It has given rise to an entire research stream on bibliometric indicators

and remains the gold standard of citation metrics, in spite of its limitations being widely

discussed. Garfield’s idea for the IF was to rank journals on the basis of the citations they

receive over citable items, i.e., over the number of articles that they published in a given

2. A further development in the direction, are the so-called altmetrics indicators, which track data concern-
ing scholarly objects from online social media platforms (Wouters, Zahedi and Costas 2019).
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period of time. Garfield knew that several factors besides merit influence whether a journal

will be cited, for instance the reputation of the authors or the controversiality of the topic

and that such factors are difficult to express quantitatively. However, he also noted that

the more articles a journal publishes in a given period of time, the higher the likelihood

of that journal being cited, other things being equal (Garfield 1972). In light of this, the

IF measures the number of citations that a journal receives in a certain year to papers

published in the previous two years, over the total number of articles that it published in

the previous two years.

One reason why Garfield picked two years as the timeframe for citations is that he observed

from his database that science and technology articles typically receive the majority of

their citations in the first two years after publication. To allow for some variation in time,

a five-year IF is now also available. However, determining the appropriate citation window

is far from trivial, for various reasons. On the one hand, the issue with shorter time spans

is that they tend to favor so-called “shooting star” publications over the “sleeping beauties”;

and also to favor disciplines that cite more quickly. On the other hand, the problem with

a longer time span is that it includes both newer and older articles; it aggregates those

whose citations may differ substantially for reasons of time rather than impact. There is

extensive work on the ageing of scientific literature which aims to identify the optimum

citation window and the years during which publications reach their citation peaks (see,

e.g, Moed et al. 1998). The debate is still open and shows that the definition of a time

period should be sensitive to different citation cultures.

The length of the citation window is in fact central to explaining why, for instance, the

humanities use citation metrics much less than the natural sciences. In the humanities, a

citation window of two or five years is often considered unable to capture significant citation

data. This is partly because contributions in the humanities are thought to remain “valid”

for a longer time than papers in the sciences. For instance, in philosophy it is standard to

cite papers that are older than just two or five years, without this implying that the research

is outdated. That said, whether or not an IF is available for journals in the humanities

ultimately depends on the index where a journal is listed. For instance, philosophy journals

that appear on the Science Citation Index or on the Social Science Citation Index (SSCI),
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such as some journals in the philosophy of science, do receive an IF. Conversely, journals

that belong to the Arts & Humanities Citation Index (AHCI) alone do not.3

Generally speaking, the IF is a journal indicator: it is not an article indicator or a scholar

indicator. As such, the IF, as has been repeatedly pointed out, should not be taken as a

proxy for the merit of an article: it only gives information about the journal in which an

article appears (Osterloh and Frey 2020). A certain article may have received many citations

and another none, yet they will have the same IF. This issue is particularly pressing in light

of the statistical properties of the data on which citation metrics are based. As mentioned

above, citation data is not uniformly distributed, but rather is highly skewed around certain

clusters, in other words a few papers are cited much more frequently than the majority. This

makes metrics based on simple statistical averages, such as the IF, rather unrepresentative

of the merit of an article.4 Similarly, it has been said that the IF should also not be taken

as a proxy for the merit of a scholar: this is because it may be the case that in the same

timeframe a scientist has one publication with a high IF and another scientist has ten with

a high IF, which is something that the IF would not convey.

• h-index – The so-called h-index, named after its creator Jorge Hirsch, is a citation met-

ric that couples productivity and citation record. A torrent of literature has followed its

publication (Hirsch 2005), and has praised, criticized, and contributed to its refinement

(see Schubert and Schubert 2019 for a review). In brief, if a scientist has a h-index of h,

that scientist has at most h publications that have been cited at least h times—and no

fewer times. The higher the h-index, the higher the number of publications which have all

received at least h citations.

The attractiveness of the h-index lies, among other things, in its simplicity. Even so, it is

not free of problems, only two of which I will mention here. First, the h-index tends to

increase with academic age and, therefore, favours senior over junior scholars. To correct

for this, a five-year h-index is now available, which considers only publications in that

timefame. A second problem is that if one scientist has, for example, one publication

3. Note also that different rankings than the IF exist for journals in the arts and the humanities, which
may be used by scholars that need to resort to rankings (see, on this, Polonioli 2016).

4. In this respect, Frey and Osterloh (2020) report that authors benefit from the high citations received by
a tiny minority of papers in a journal and suggest that this may be one of the reasons why scientists are in
favor of the metrics regardless of their inaccuracies.
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with a thousand citations and another scientist has one publication with one citation, both

would nevertheless have an h-index of one. This is because the h-index does not convey

information about the quantity of citations that a paper receives if that paper is outside

the set that the h-index encompasses. These two features provide some indications of what

makes the h-index problematic for the evaluation of individual scientists and of productivity

generally.

• Journal Influence Weight Indicators – A controversial feature of the IF is that it treats

all citations equally. In other words, what matters for the IF is the amount of citations

that a journal receives over published items, without further qualifications. However, it

has been argued that citations should not all be treated equally, since some sources are

of a better quality than others. In other words, citations from more prestigious sources

count more than citations from less prestigious ones. In light of this, new rankings, such

as the SCImago Journal Ranking (SJR, based on Scopus), the Eigenfactor and the Article

Influence Score (both based on Clarivate) weigh citations according to their prestige. But

an issue with these metrics is that there is no independent way of measuring a journal’s

prestige. Thus, in order to establish whether a source is prestigious, these metrics look

once again at citations. Those from the most cited journals count more than those from

less cited ones. In other words, these metrics use citations recursively: prestigious journals

are those that are highly cited by prestigious journals, which are those that are highly cited.

Besides the issue of prestige, most of the problems that apply to the IF as an evaluative

also tool apply to weighted indicators.

• Field-Specific Indicators – The IF order of magnitude varies considerably across fields.

For instance, in philosophy of science the highest IF in 2020 was around 4, in economics

15, in psychology 24, and in medicine 90. The variation is usually attributed to differences

in citation culture, time lag between publication and citations, and to the fact that not

all fields are equally covered by the indexes. Because of this variation, it is plain to see

that fields should not be compared on the basis of their IF alone—which is to say, without

taking the disciplinary context into account.

To better enable cross-field comparisons, field-normalized citation metrics normalize cita-

tions across scientific fields. To do this, they consider the citations that a certain journal

13



or publication receives in a specific time period over the citations that an average journal

or publication in that field receives in that time period. A value equal to 1 indicates that

the publication has been cited as often as might be expected from the literature, whereas a

higher value indicates that it has received more citations than average. Alternatively, it is

also possible to use percentiles and rank publications according to their standing—the top

1%, 10%, 25% and so on—in their field.

One of the most intricate aspects of this type of indicator is the operationalization of a field.

Fields play a crucial role in a citation metric, and yet, drawing a line between them is far

from straightforward. Some metrics rely on the classification of fields from the providers,

and both the Web of Science and Scopus have their own systems. In these cases, the

providers define fields on a top-down basis and link journals to such fields. The problem

is that even within one field—for example, economics—there are mainstream fields, such

as macroeconomics and microeconomics, and smaller fields, such as for instance economic

history or history of economic thought, whose IF cannot be expected to match. And even

within a mainstream field, such as macroeconomics, there are theoretical macroeconomics

and applied macroeconomics whose IF also do not match, and so on.

To better accommodate this issue, other metrics, such as the Field-Weighed Citation Index,

classify publications on the basis of their “similarity”, where similarity is identified by means

of shared citations and key terms. Once again, however, arriving at the right level of

similarity is not an easy task; references are an indirect indication of a topic, and one

of the crucial problems here is that papers often get classified in clusters that do not

adequately match their field. All in all, while establishing fields from the top-down entails

some arbitrary decisions, bottom-up classifications are to a certain extent also contestable.

Field-normalized citation indexes are one of the most recent developments in the literature

and are currently a subject of debate among bibliometricians (for an overview, see Waltman

and van Eck 2019).

As this section makes clear, there is no such thing as the perfect metric: each one has

certain limitations that are intrinsic to their very definition and mathematical properties. On

the one hand, it might be argued that when metrics are taken together, one will compensate

for some of another’s shortcomings. In other words, while one metric alone is typically a poor
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predictor, looking at a set of them may present a more complete, albeit imperfect, picture.

On the other hand, the fact that the set of available metrics is increasingly growing in number

and sophistication makes them less effective and more difficult to use. If tailor-made metrics

can be given for every individual case, they cease to be indicative of the target they aim to

meet, whether it is quality, impact or productivity.

More generally, some criticisms of citation metrics apply to them as a whole. One common

example of this is the Matthew effect, whereby authors tend to cite papers that have already

been cited (Strevens 2006). Other problems include self-citations, articles by numerous co-

authors, and the type of publication, with review papers, for instance, tending to attract

more citations than other types of articles. Gender and language can also skew results: male

authors are cited more often than female authors (Halevi 2019) and publications in English

more often than those in other languages. Some of these factors, however, can be corrected

for, for instance, by excluding self-citations, or by taking account of publication type, number

of co-authors, gender, and so on. That said, even the strongest advocates of citation metrics

are well aware of the limitations of these measures of scientific performance and suggest ways

that they can be used “responsibly” (see on this, the Leiden Manifesto by Hicks et al. 2015).

Nevertheless, one problem that remains unresolved across the range of metrics concerns

the proper classification of fields that was mentioned above. As we will see in the next section,

this can have serious repercussions for research programs that are evaluated alongside others

when they should instead be assessed in accordance with their own standards.

4 On Gillies’s analysis of research assessment

The previous sections examined citation metrics and a number of their limitations as assess-

ment tools. This section grounds the debate about citation metrics in recent literature from

the history and philosophy of science. It focuses in particular on Gillies’s book How Should

Research Be Organized? (2008), in which the author opens with the question of how a system

of research assessment should be set up so that it promotes good science and encourages

high-quality research.

Gillies borrows an example from statistics to show that, depending on the evaluative

method we choose, we may run into two kinds of error: false positives, should the system
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reward science that is in fact bad science; or false negatives, if the evaluative system fails to

recognize and reward good science.

Gillies reminds us of cases such as Wittgenstein or Frege, who are examples of false nega-

tives (or type II errors). Frege’s scholarship was largely rejected by his contemporaries, even

though it laid the groundwork for modern mathematical logic. Wittgenstein did not publish

during his 17 years at Cambridge, during which he collected material for his Philosophical

Investigations. Gillies also recalls that Semmelweis’s research on puerperal fever was not sup-

ported by his peers, even though once it was accepted, it reduced dramatically the main cause

of death of women in childbirth. Even Copernicus did not gain much acceptance from the

astronomers of his time. All of these, according to Gillies, are examples of “pink diamonds”,

which is to say precious pieces of research that would have been lost had science been funded

according to the criteria in place now.

Conversely, false positives (type I errors), occur when funding is given to flawed research

that will prove unproductive. Gillies believes that the current system is skewed towards

avoiding type I errors rather than type II errors.

To demonstrate this, Gillies refers to Kuhn’s work on the development of science. In The

Structure of Scientific Revolutions (1970), Kuhn famously distinguishes phases of so-called

normal science and phases of revolutionary science. In normal science, scientists work within

a paradigm that provides research questions and methods for problem-solving. Scientists

unfold the paradigm, answer the questions that it generates, and proceed systematically as

if they were solving puzzles. Phases of normal science are the typical state of science and

are usually long-lasting; however, at times they are interrupted by phases of revolutionary

science, in which a new paradigm emerges and replaces the previous phase.

During revolutionary science, scientists explore new research avenues; they challenge the

methods and the questions of the previous paradigm and propose possible alternatives. Phases

of revolutionary science are exceptional, but can lead to innovation and breakthroughs.

According to Gillies, the current evaluative system based on citation metrics, and—

relatedly, on peer review—tends to favour normal science and the status quo, and to discourage

revolutionary science or innovations.But is it indeed the case that the metrics protect normal

science and prevent revolutionary science? To answer these questions I consider Gillies’ ar-

gument in light of Kuhn’s phase-model of the development of science. My main claim is that
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if one considers the Kuhnian framework one of the most pressing problems with the current

metrics system is that it might undermine the development of normal science.

To illustrate, it is helpful to turn to Kuhn’s work The Essential Tension: Tradition and In-

novation in Scientific Research (1959). In this, Kuhn analyses the dynamics between tradition

and innovation in the development of science and discusses an apparent tension between these

two factors: scientists working within a tradition tend to follow their paradigm strictly and

disregard alternative explanations; and yet “the ultimate effect of this tradition-bound work

has invariably been to change the tradition” (p.234) (see, on this, also Andersen 2013). The

path to innovation is rooted in normal science, in other words, in the meticulous, painstaking

work within a paradigm: “New theories and, to an increasing extent, novel discoveries in the

mature sciences are not born de novo. On the contrary, they emerge from old theories and

within a matrix of old beliefs about the phenomena” (p.234).

The main idea is that by doing normal science, science advances and eventually runs into

an increasing set of problems—anomalies—that struggle to be solved within the paradigm

itself. The persistent attention and concentrated effort of scientists on the paradigm in which

they are working are key to acknowledging that the paradigm may not have the resources to

address such problems. But it is by pursuing normal science that we pave the way for the

advancement of science. Innovation is a natural step in the unfolding of normal science, and

what facilitates normal science will eventually lead to revolutionary science as well.

As I argued above, however, the previous situation occurs only as long as research programs

are considered in their own terms. In this regard, one harm that citation metrics might cause

is that of suppressing research programs that are developing according to the standards of

normal science. As argued in Sec. 3, this can happen if evaluation based on citation metrics

is carried out irrespective of the differences between research programs, that is, if the metrics

are not calibrated to the specificities of each field or subfields of inquiry. This goes back to the

need to set a benchmark for each individual research program. Given that certain research

programs, depending on their publication and citation culture, attract fewer citations than

others, a policy that insists on rewarding publications whose metrics fall above a certain

threshold risks ignoring research areas that do not reach that threshold. This clearly favors

mainstream work over research fields that carry out high-quality research within their domains.

Therefore, as long as we do not have an adequate solution to a fields’ operalization problem,
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there may be evaluative distortions due to classification issues.

According to Gillies, the emergence of new fields is typically discouraged by the metrics

system. Nonetheless, novel and revolutionary science—in a Kuhnian sense—does emerge,

provided that normal science develops to its full potential. Given that without normal science

there can be no revolutionary science, the problem of protecting normal science takes priority

over that of missing “pink diamonds”, that is, revolutions and innovations in science.

5 Conclusions

The question of how to design institutions for scientific research is crucial for various reasons.

Ideally, science-policy measures should provide an optimum framework for fulfilling scientific

aims: they should support high-quality research, encourage scientific breakthroughs, and

provide the conditions for scientists to excel. And yet, the question of whether they actually

do so has only recently started receiving attention in the philosophy of science literature (e.g.,

Douglas 2010, Heesen and Bright 2017, Lee 2021, Kitcher 2003, Polonioli 2019, Shaw 2021).

This paper takes a further step in that direction by focusing on citation metrics as a

science policy that is increasingly used within academia. It first considers the problem of

citation metrics at a general level, then at the level of certain concrete metrics, and finally

from the perspective of a Kuhnian model for the development of science.

I have argued that the uses of citation metrics for evaluative purposes and for the navi-

gating of the literature rest on similar ground, that is on the need to come to terms with the

accelerating growth of scientific production. In both cases, citation metrics work as heuristics

that provide some guidance for the task at hand. That said, I have shown that there are some

general problems with their application, and also some specific problems raised by individual

metrics. Finally, I have shown that one important limitation of citation metrics emerges from

the fact that we lack an adequate way to operationalize scientific fields. When looking at this

problem from the perspective of Kuhn’s philosophy of science, it emerges that if the metrics

are used indiscriminately across fields, they may interfere with the development of normal

science in some of these fields. Assuming that we do not wish to suppress promising research

programs, the analysis above would seem to invite caution when using evaluative systems

based on citation metrics alone.
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Clearly, one question that remains open is that of what alternative we are left with, since

the need for criteria with which to assess scientific work still remains. In this respect, one

of the most valuable features of citation metrics is that they offer intersubjective criteria of

evaluation. Indeed, when intersubjective criteria are lacking, room may be left for informal

and implicit standards, for conflict of interest and for negative biases. This makes scientists

vulnerable to the subjective opinions of the evaluators and highly dependent on their assess-

ments. That said, intersubjectivity need not be achieved only by means of actual citation

metrics. There is therefore no major reason that prevents the current system from being

improved; there is just important work to be done in that direction.

In this respect, this paper has attempted to reveal one way in which the philosophy of

science can significantly contribute to science policy analysis, by focusing on the role that

citation metrics play in science. The philosophy of science brings normative considerations

into the picture, and these are central to the task establishing evaluative criteria. For instance,

as this paper shows, the philosophy of science provides models that identify the conditions

for the advancement of science; it tells us that evaluative systems need to provide room for

flexibility, since promising results can sometimes turn out to be flawed, while the relevance of

others may only emerge in the future. All this testifies to the importance of philosophers of

science engaging in science policy debates, lest we run the risk of overlooking counteracting

factors in scientific inquiry.
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