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Abstract 
A common way of characterizing Boltzmann’s explanation of thermodynamics in term of 

statistical mechanics is with reference to three ingredients: the dynamics, the past hypothesis, and 

the statistical postulate. In this paper I focus on the statistical postulate, and I have three aims. 

First, I wish to argue that regarding the statistical postulate as a probability postulate may be too 

strong: a postulate about typicality would be enough. Second, I wish to show that there is no need 

to postulate anything, for the typicality postulate can be suitably derived from the dynamics. 

Finally, I discuss how the attempts to give preference to certain stochastic quantum theories (such 

as the spontaneous collapse theory) over deterministic alternatives on the basis that they do not 

need the statistical postulate fail.   

 

1. Introduction 
 

Boltzmann’s statistical mechanics provides an explanation of the macroscopic laws of 

thermodynamics, such as ‘entropy always increases’, in terms of the microscopic 

Newtonian laws. In his seminal book “Time and Chance” (2001) David Albert has made 

especially clear how this is done, and what problems this account faces. As a consequence, 

his book has been extremely influential in the discussions about the foundation and the 

philosophy of statistical mechanics (see also Loewer 2020).  Very briefly, the view is that 

Boltzmann’s derivation of the macroscopic laws only needs three ingredients:  

1. The Newtonian law of motion, 

2. The statistical postulate, 

3. The past hypothesis. 

Roughly put, (1) describes the dynamics of the microscopic components of the 

thermodynamics objects; (2) specifies the probability measure grounding the meaning of 

the probabilities arising from the statistical derivation of thermodynamic laws; and (3) 

guarantees that entropy will likely increase in the future but not in the past by postulating 

an initial low entropy state for the universe.  

In addition, Albert argues that a corresponding quantum statistical explanation 

based on a universal quantum theory (such as possibly the pilot-wave theory, the 

spontaneous localization theory, and Everettian mechanics) would look very similar to the 

                                                 
1 Forthcoming in V. Allori (ed.) “Statistical Mechanics and Scientific Explanation: Determinism, 

Indeterminism and Laws of Nature,” World Scientific (2020). 
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classical one. However, he maintains that in case of the spontaneous localization theory 

the ingredients would reduce to the following two: 

1. The stochastic law of motion, 

2. The past hypothesis. 

That is, contrarily to what happens in any deterministic framework, in the spontaneous 

localization schema there is no need for an additional statistical postulate. The reason is 

that the theory, being indeterministic, has probabilities already ‘built into’ it. Hence, 

statistical mechanical probabilities in the spontaneous localization framework are just the 

quantum probabilities. Because of this, Albert concludes, the spontaneous collapse theory 

should be preferred to the other alternative quantum theories.  

In this paper, I focus my attention on the statistical postulate, and I wish to make 

three points. First, I argue that the postulate need not be understood as a postulate about 

probability; second, I argue that it is not a postulate after all; and third that, given the first 

two points, there is no argument remaining to prefer the spontaneous localization theory 

over the deterministic alternatives. Here is how I plan to accomplish these tasks. After 

having reviewed this account of Boltzmann’s work in Section 2, I argue that the statistical 

postulate is not needed in two steps. In the first step, developed in Section 3, I assume for 

the sake of the argument that one indeed has a postulate. However, I argue that it is not 

necessarily a postulate about probabilities; rather, one can appeal to the weaker notion of 

typicality. Therefore one is led to discuss the notion of typicality (rather than probability) 

measure. In the second step, discussed in Section 4, I reconstruct and use (what I take to 

be) Sheldon Goldstein’s argument (2001, 2011) to show that the typicality measure is not 

postulated but can be suitably extracted from the dynamics under certain constraints, such 

as stationarity and generality, which are regarded ‘natural’.2  Moreover, as I elaborate in 

Section 5, I reconstruct the argument developed by Nino Zanghí (2005) to show that the 

difference between deterministic and indeterministic theories is not as substantial as one 

may think. Elaborating on the concepts introduced so far, one can provide a unifying 

account of the statistical mechanical explanation for both kinds of theories, which 

therefore rely on the same ingredients. As a consequence, one cannot conclude that one 

type of theory or the other will be better off in explaining the macroscopic laws from a 

microscopic dynamics, therefore diffusing the argument to prefer spontaneous localization 

theories to deterministic quantum theories.  

 

2. Boltzmann’s Approach to Statistical Mechanics 

 

The evolution of macroscopic objects is generally very complicated. Nonetheless, their 

behaviour is governed by simple and general physical laws such as the laws of 

thermodynamics. These laws are phenomenological: they merely describe regularities on 

the macroscopic level. A natural question is then whether they can be derived by a more 

fundamental theory. Suppose such a theory is Newtonian mechanics, according to which 

the world is described in terms of point-like particles moving according to Newton’s 
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 See also Dürr (2009), and Zanghí (2005). 
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second law of motion. If the theory is complete then every physical system is describable 

by it, and one could (at least in principle) reproduce the behaviour of macroscopic objects 

thought as composed of microscopic Newtonian particles. However, to do this one needs 

to solve Newton’s equation for macroscopic bodies, and there are at least two obvious 

problems. First, one would need to know exactly which forces act between the particles. 

Moreover, since macroscopic objects are composed by an incredibly large number of 

particles, it is practically impossible to compute their trajectories. Nonetheless, exploiting 

the fact that there are so many particles, one can use statistical methods to have enough 

information on macroscopic systems even under these conditions. The resulting theory is 

called statistical mechanics and it has been primarily developed by Ludwig Boltzmann 

and Josiah Willard Gibbs. In this paper I will focus on the work of Boltzmann, which is the 

basis of the model I aim to discuss.3  

There is another challenge to recover the laws of thermodynamics from the 

underlying microscopic dynamics. It is connected to the time-reversibility of Newtonian 

mechanics, which is in stark contrast with the irreversibility of the macroscopic laws. 

Arguably, to say that Newtonian mechanics is time reversible is to say that if we flip the 

sign of the time variable in Newton’s equation, the solutions of the new equation are still 

solutions of the original equation. That means that we cannot tell from the behaviour of an 

object whether it is moving forward or backward in time. Since we are assuming that 

macroscopic bodies are a collection of microscopic Newtonian particles, this time-

reversibility should be observed also at the macroscopic level.  However, this is 

empirically false: the macroscopic phenomena of our everyday experience are all time-

directed:  a perfume sprayed from the corner will spread out in the whole room. The 

opposite, namely the perfume getting back to the initial corner, spontaneously never 

happens. This macroscopic irreversibility is captured by the second law of 

thermodynamics, according to which a quantity called ‘entropy’ (or ‘thermodynamic 

entropy’) always increases. Hence, macroscopic phenomena always happen in the 

direction of increasing entropy. The reason why the perfume spreads in the room is that 

the state of spread-out perfume has a higher-entropy than the perfume-in-the-corner state. 

This is the explanation why this phenomenon – perfume spreading out – happens, while 

the opposite does not. The problem now is that if we want to derive thermodynamics from 

Newtonian mechanics then we need to derive macroscopic irreversibility from 

microscopic reversibility.  So, we need to get rid of the second solution in which the 

perfume comes back into the corner. But how? This is the challenge Boltzmann faced and 

that we will review in the next sections along the lines discussed in Albert (2001) and 

Loewer (2020).  

 

2.1  Microstates, Macrostates and Entropy  

 

Assuming Newtonian mechanics, the complete description at a time of any single particle 

is given by the pair (𝑟, 𝑣) of its position and velocity at that time. Therefore, the complete 

                                                 
3 For a comparison between the Boltzmaniann and Gibbsian approaches to statistical mechanics, see 

Goldstein et al. (2020), Wallace (2020), and Werndl and Frigg (2020) and references therein.   
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dynamical description at a fixed time 𝑡 of a body composed of 𝑁 particles is given by the 

so-called microstate 𝑋 = (𝑟1, … . 𝑟𝑁, 𝑣1, … . 𝑣𝑁), namely the set of the positions and velocities 

of all particles at time 𝑡. The set of all possible microstates constitutes phase space, which is 

in a sense the space of all possible ways the world can be.  Phase space can be partitioned 

into sets, called macrostates, to describe the state of a system of particles from a 

macroscopic point of view. This coarse-graining is done specifying some macroscopic 

thermodynamically relevant properties such as temperature, pressure and volume: each 

macrostate is such that all of its microstates have the same thermodynamic properties. 

Thus, macroscopic properties are functions on the microstate on phase space which vary 

very slowly on a microscopic scale, so that each macrostate has the same macroscopic 

property. 4 Therefore, there are different ways in which the same macrostate (with some 

given macroscopic properties) can ‘come from’ different microstates.5 In other words, 

then, a macrostate is the collection of all the possible ways the system can microscopically 

give rise to the macroscopic properties of the macrostate. In this sense, knowing the 

macrostate of a system does not tell us its actual microstate: all the microstates in a 

macrostate are macroscopically identical. And the bigger the macrostate is, the less 

information one has about the microscopic composition.  

Different macrostates in general are composed by a different number of microstates. 

One can define the size of a macrostate in phase space by (suitably) ‘counting’ how many 

microstates it is composed of. For a fixed energy, there is a particular macrostate which 

has the following empirical feature: bodies are ‘drawn to it’ during their motion, and when 

a body finally reaches it, it will not leave it afterwards (spontaneously, i.e. if nothing takes 

it away). For these reasons, this macrostate is called equilibrium state. For instance, two 

bodies at different temperatures put into contact will reach an equilibrium temperature, 

given by the mean of the initial temperatures of the two bodies, and afterwards the 

temperature will not change.6 This is connected with the second law of thermodynamics 
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 For instance, temperature is defined as the mean kinetic energy of the particles:  𝑇 = 𝑇(𝑋) =

1

𝐾𝐵
∑

1

2
𝑚𝑣𝑖

2𝑁
𝑖=1 , 

where 𝐾𝐵 = 1.38 × 10−23 𝑚2 𝑘𝑔 𝑠−1 𝐾−1 is the Boltzmann constant, which provides the macroscopic-

microscopic scaling (one can think that the number of particles in a macroscopic body should be at least of 

the order of Avogadro number, that is  𝑁~1023). 
5
 For example, a macrostate of a gas in a room with volume 𝑉 is composed of all the ways in which the 

molecules are arranged such that one finds a gas filling the room. The gas can be in macrostate 𝑋 =

(𝑟1, 𝑟2, … , 𝑣1, 𝑣2, … ). However, If we swap some positions, or change a little some of their velocities such that, 

say, the microstate is now 𝑋′ = (𝑟2, 𝑟4, … , 𝑟3, … , 𝑟1, … , 𝑣′1, 𝑣2, … ), one still get a gas filling the room of volume 

𝑉. That is, both are microstates in the same macrostate. Also, consider a generic system in microstate 

𝑋 = (𝑟1, 𝑟2, … , 𝑣1, 𝑣2, … ). Now swap the velocities of particle 1 and particle 2 such that the microstate is now 

𝑋′′ = (𝑟1, 𝑟2, … , 𝑣2, 𝑣1, … ).. This change makes no difference to the value of macroscopic properties such as 

temperature, hence both microstates belong to the same macrostate defined by temperature 𝑇. Therefore, a 

gas filling a room of volume 𝑉 and a generic macroscopic body at temperature 𝑇 , say, are each made of 

particles whose microstate (unknown to us) belongs to the macrostate characterized respectively by that that 

volume and that temperature value. 
6
 Likewise, consider a box divided in two regions separated by a wall, and a gas in one of the regions. When 

the separation wall is removed, the gas starts expanding, and in time it will occupy the whole container. This 

is the equilibrium state of the gas, since after having occupied the whole box the gas will not change 

anymore. 
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according to which entropy always increases, given that the (thermodynamic) entropy of 

equilibrium is maximal. From the point of view of statistical mechanics, we need to 

suitably define entropy and to define what the equilibrium state is, from a microscopic 

point of view. The equilibrium state is just a macrostate like any other. With one crucial 

difference: it contains incredibly many more microstates than the other macrostates. In 

fact, as we saw before, the number of microstates in a macrostate depends on how many 

ways there are to obtain the same macroscopic features. And there are so many more ways 

for the microstates to be distributed in order to correspond to, say, a uniform temperature 

macrostate than there are in order to correspond to a macrostate with non-uniform 

temperature.7 That means that the size of the equilibrium macrostate is larger than any 

other macrostate. One can therefore understand why microstates ‘tend’ to equilibrium and 

(almost) never leave it afterwards: a microstate, in its wandering through phase space, will 

sooner or later fall into such a big state, and afterwards it will stay there simply because 

there are so many ways for a microstate to be in equilibrium.8 

 Boltzmann defined the entropy of a given microstate as a measure of the volume of 

the phase space occupied by the macrostate in which the microstate is located. It can be 

shown that it is equivalent to the thermodynamic entropy, so Boltzmann was left to show 

that his entropy also increases in time. That is, he had to show that the volume in phase 

space of the macrostates a microstate will cross during its motion will increase in time. 

Indeed, we have just see that it does: microstates move from regions of phase space of 

smaller volume to ones of bigger volume, the biggest of which is the equilibrium state. 

Thus, entropy increases in the future. Notice however that, contrarily to the case of 

thermodynamic entropy, it is possible for Boltzmann entropy to decrease. In fact, there 

could be some microstates that behave ‘anti-thermodynamically’ in the sense that they 

accurately manage to avoid equilibrium and go into macrostates which are smaller than 

the one they are currently in. However, even if these microstates are possible, the fact that 

the volume of the equilibrium state is so big guarantees that such states are very few. That 

is, the microstates in a given macrostate that manage to avoid such a large state as 

equilibrium are very few. Thus, more cautiously, one can conclude that the 

overwhelmingly vast majority (rather than all of them) of microstates in a given 

macrostate will evolve toward a bigger macrostate, hence larger entropy, in the future.   

                                                 
7
 Perhaps this is best seen considering the example of the gas again: initially the gas is in a given macrostate, 

say 𝑀1, and later it is in equilibrium state  𝑀𝐸. When in  𝑀1, each microscopic particle could be anywhere in 

the first half of the box. That is, its microstate could be anything between  (𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  ) and (𝑥 + 𝐿, 𝑦 +

𝐿, 𝑧 + 𝐿, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧), where 𝐿 is such that 𝑉 = 𝐿3 is the volume of half of the box (assuming velocities do not 

change). Which means that the volume in phase space of each particle (namely the number of ways the 

particles can be) is, initially, 𝑉. At equilibrium, each particle will have double the volume to roam through, 

so that the volume in phase space for each particle is  2𝑉.  This is true for all particles, and therefore, 

assuming that there are 𝑁 particles in the gas, their volume in phase space is initially  𝑉𝑜𝑙 (𝑀1) = 𝑉𝑁 and at 

equilibrium is 𝑉𝑜𝑙(𝑀𝐸) = (2𝑉)𝑁. Accordingly, 
𝑉𝑜𝑙(𝑀𝐸)

𝑉𝑜𝑙(𝑀1)
=

(2𝑉)𝑁

𝑉𝑁 = 2𝑁 ≈ 21023
, assuming that 𝑁 is of the order of 

the Avogadro number. 
8
 The view I just described has been challenged by some commentators (see Frigg and Werndl 2012, Werndl 

2013, Werndl and Frigg 2015 ad references therein), who have argued that the approach to equilibrium is 

explained only if the dynamics play a crucial role. For more on this, see Section 3.4. 
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2.2 The Past Hypothesis  

 

Unfortunately, as soon as this strategy is understood, one also realizes that, because the 

underlying Newtonian dynamics is time-reversal invariant, not only the majority of 

microstates will go into a macrostate with higher entropy, but also most of them will come 

from a state of higher entropy as well. In fact, consider a half-melted ice cube on a kitchen 

table. The ice cube will likely fully melt, because the state corresponding to a fully melted 

ice cube has a higher entropy than the present one. However, where is the half-melted 

cube is most likely to come from?  If we forget our memories of the past (that half melted 

ice cubes usually come from the freezer), and we reason merely in terms of sizes of 

macrostates, we should immediately see that the present state is likely to come from a past 

macrostate of larger size. That is, the half-melted ice cube is most likely to come from a 

fully-melted ice cube. This is because the laws are invariant under time reversal. 

Therefore, for the vast majority of microstates, entropy increases both in the past and in 

the future, which is not empirically adequate, assuming we do not want to say that our 

memories are unreliable. In fact, empirically one needs to find that while the vast majority 

of microstates in a given macrostate (half-melted ice cube) will evolve into another 

macrostate with higher entropy (fully melted ice cube), only a very tiny minority of the 

microstates in the present macrostate (half-melted ice cube) comes from the initial 

macrostate (ice cubes in the freezer).   

One needs to break this symmetry between past and future, and there are various 

ways to do so. One which is considered among the most promising is the so-called past 

hypothesis, which postulates that the universe begun with a microstate of extremely low 

entropy. 9 I will not discuss the reasons why the past hypothesis is considered to be better 

than the other proposed solutions, since whether the past hypothesis is true or not does 

not affect my arguments in this paper. However, it should be clear that  if one postulates 

that the universe begun with an extremely low entropy, one effectively ‘cancels out’ the 

possibility of it moving toward an even lower entropy, guaranteeing that it is 

overwhelmingly likely for the microstate to go into a macrostate of higher entropy.10 

 

2.3 The Statistical Postulate 

 

Let us now consider the last element in Boltzmann’s account as presented by Albert and 

Loewer. As we have just seen, Boltzmann’s account of the second law, supplemented by 

the past hypothesis, does not tell us how all states will evolve. Rather, it will tell us how the 

vast majority of them will move, namely toward an increasing entropy.  However, if we 

want to have a theory which makes predictions and provides explanations, Albert and 

Loewer point out, we need to talk about probabilities, not about the number of 

                                                 
9
 Whether the past hypothesis is also able to account for our experience of time is discussed in Hemmo and 

Shenker (2020).  
10

 For a discussion of the past hypothesis and the proposals on how to eliminate it, see Lazarovici and 

Reichert (2020) and references therein.  



7 

 

microstates. In other words, we want to be able to say not only that the great majority of 

microstates goes toward a higher entropy state. We also want to be able to say that the 

probability of entropy increasing is high (or that entropy increase is likely). Similarly, one 

would not only want to say that there are very few ‘abnormal’ or exceptional (or anti-

thermodynamical) states for which entropy decreases. One would also like to say that it is 

unlikely that entropy decreases (or that the probability of entropy decreasing is low). In 

this way, one can say that Boltzmann’s account provides a probabilistic explanation of the 

second law of thermodynamics, even if the underlying theory is deterministic.  

To put things differently, one could have definite results (i.e. with probability 1) if 

one could solve exactly all the equations for all the particles. However, since one cannot do 

that for practical reasons, the results obtained are only probabilistic. Thus, the second law 

of thermodynamics is that (thermodynamic) entropy always increases, while the statistical 

mechanics version of the second law is that (Boltzmann) entropy almost always increases. 

This should be the same as saying that the probability of entropy increasing is extremely 

high. Here is where probabilities enter the picture. In this way one sees that a statistical 

mechanical explanation is characterized by providing the prediction not of what will 

certainly happen, but of what will probably happen. Nevertheless, as we just pointed out, 

in Boltzmann’s theory we do not find probabilities. Rather, there are statements about 

what the great majority of microstates will do. Hence, we want that something like: ‘for 

the great majority of situations entropy will increase,’ to be equivalent to: ‘entropy has 

high probability of increasing,’ or to ‘entropy almost always increases.’ One can move 

from one locution to the other if all the microstates are ‘equiprobable,’ in the sense that 

neither one of them is special in some way or other. That amounts to defining over phase 

space a ‘measure’ which does not privilege one microstate over another. A measure is, 

roughly put, a way of counting how many ways microscopic particles (i.e. microstates) can 

be arranged in order to give rise to the same macroscopic properties (i.e. macrostates).  

The statistical postulate amounts to the assertion that the measure to be used in 

making inferences about the past and the future (respectively explanations and 

predictions) is the uniform measure (over the suitable regions of phase space), also known 

as the Lebesgue-Liouville measure. According to Albert and Loewer, the choice of this 

measure has to be introduced as a postulate because, they argue, there is no acceptable 

justification for the choice of such measure. In fact, there could be an infinite number of 

measures: the uniform measure counts all states equally, but other measures might not. So 

why is the uniform measure special? The usual answer found in physics books is that the 

measure is a reflection of our state of ignorance with respect to the microstate the system is 

in. That is, the measure reflects the fact that an observer is uniformly ignorant of the true 

microstate the system is in: the observer will assign the same probability to each 

microstate because she does not know which microstate the system is in.  However, this 

cannot be right, Albert and Loewer argue, since one should not use epistemology to guide 

our metaphysics: the behavior of macroscopic bodies cannot possibly be a function of how 

ignorant we are about their composition. For one thing, the former is objective, the latter is 
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not.11 Thus, since no other justification is provided, the only option is to make this 

assumption a postulate.  

In the next section, I do not dispute that the uniform measure is postulated. I 

instead argue that this measure need not be a probability measure. That is, I argue that one 

does not need to invoke the notion of probability in order to explain the macroscopic 

appearances. Rather, the weaker notion of typicality is sufficient. If so, then the statistical 

postulate should be understood as a typicality postulate. I then argue in Section 4 that one 

does not even need to add a postulate after all, given that the notion of typicality which 

explains the macroscopic appearances can be suitably derived from the microscopic 

dynamics.  

 

3. How to Avoid Probability Talk: The Notion of Typicality 
 

Let’s discuss the statistical postulate more in detail. As we just saw in Section 2.3, the 

statistical postulate was introduced to bridge the gap between the talk in terms of number 

of microstates that we use when describing a system in terms of the microscopic 

dynamics, and the probability talk that we use when discussing in the predictions and 

explanations of macroscopic phenomena. For instance, when we see an ice cube in a glass 

of water we want to be able to predict that it is probable that the ice will melt in the next 

five minutes. Likewise, we want to be able to say that we can explain that an ice cube has 

melted in the last five minutes by saying that its probability of melting was high. Using 

statistical mechanics we have ‘merely’ shown respectively that we can predict that the vast 

majority of microstates corresponding to an ice cube now will evolve in the next five 

minutes into a macrostate with higher volume corresponding to a melted ice cube, and 

that we can explain why the vast majority of microstates corresponding to an ice cube five 

minutes ago has evolved into the macrostate corresponding to a melted ice cube now.  So, 

we need to connect the locution ‘the vast majority of microstates go toward an increasing 

entropy,’ which is given by Boltzmann’s account, with the locution ‘the probability of 

entropy increasing is high,’ otherwise we would not have explained the regularities. The 

translation-rule can be provided if we count the microstates equally, using a uniform 

probability measure, so that we can say that ‘vast majority’ means ‘high probability’ as just 

discussed. Then, the question arises as to why the uniform measure is the correct 

probability measure. As we have seen in the previous subsection, the usual ‘ignorance’ 

justification is not tenable because the microstate will move however it will, independently 

of whether we know anything about it or not. Thus, in absence of an alternative 

justification, Albert and Loewer think that this measure should be postulated.  

Notice that two claims are being made here:  

1) The statistical postulate is needed because probabilities are needed to 

explain/predict;  

2) The statistical postulate cannot be inferred from the theory but needs to be 

postulated. 
                                                 
11

 See also Hemmo and Shenker (2012) for additional comments on the (lack of) justification of the 

uniformity measure.  
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In this section and the next I argue that none of them is necessarily the case: one does not 

need probabilities in order to get a satisfactory scientific explanation of the macroscopic 

phenomena (current section); and even if one did, the probabilities could be grounded in 

something which is not postulated but derived from the theory using symmetry 

considerations (Section 4).  

 

3.1 The Typicality Measure  

 

To being with, let me reiterate that the current discussion is not an argument usually 

present in physics book, in which the uniform measure is justified on epistemic grounds.  

Moreover, in most physics books there is no mention of the statistical postulate in these 

terms. In the work of physicists, such as Jean Bricmont (1995, 2001, 2020), Detlef Dürr 

(2009), Sheldon Goldstein (2001, 2011), Joel Lebowitz (for a first example, see his 1981 

paper), and Nino Zanghí (2005), however the postulate and the probabilities appear only 

indirectly as mediated by another notion, namely the notion of typicality. What is the 

relation between typicality and probability? In this subsection, I discuss how why 

typicality, rather than probability, has a more fundamental role in the explanation of 

macroscopic laws. In the next subsection, I focus on the relations between the two 

concepts.  

To proceed, let us assume for now that the statistical postulate holds: the uniformity 

measure is postulated. However, I do not assume it is a probability measure.  As just 

mentioned, in the physics literature mentioned above, one finds that ‘the vast majority of 

microstates approach equilibrium,’ say, is translated into ‘the approach to equilibrium is 

typical’ rather than into ‘the approach to equilibrium is probable.’ The notion of 

‘typicality’ is notoriously controversial12 but I think it boils down to the following: a given 

behavior is typical for an object of a given type if and only if one can show that the vast 

majority of the systems, suitably similar to the original one, would display that behavior.13  

For instance, consider approach to equilibrium. This behavior is typical, in the sense that 

the vast majority of thermodynamic bodies display this behavior. Technically, as already 

seen, the notion of ‘vast majority’ is defined in terms of a measure , which allows 

‘counting’ (i.e. evaluating their number) the exceptions 𝐸 to a given behavior, fixed a given 

tolerance. ‘Great majority’ means therefore that the exceptions to the given behavior, given 

a tolerance, are few when counted using the measure . This is equivalent to say that the 

size of the set of exceptions, as counted by , is small. That is, the set of 

thermodynamically exceptional states (the ones for which entropy does not increase and 

thus they do not go to equilibrium) is small. One could be tempted to think that this means 

that if the set of exception to the behavior ‘go toward equilibrium’ is very small, then it is 

highly probable that systems will go toward equilibrium. And thus that it’s only natural to 

interpret   as a probability measure. However, this may be too big a step. In fact, up to 

this point the measure merely does this: 

                                                 
12

 See Badino (2019) and references therein for a discussion.  
13

 Formally, given an object 𝑥 in a set 𝑆, a property 𝑃 is typical for objects in 𝑆 if and only if almost all 

elements of 𝑆 possess 𝑃. See also Wilhelm (2019) on typicality in scientific explanation. 
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1. It counts the microstates, 

2. It allows to define what it means that the size of the set of exceptions 𝐸 is small. 

These two conditions define a typicality measure. In contrast, a probability measure is 

much richer. For once, it also has to be additive (that is, the probability of the sum of two 

sets is the sum of the probabilities of each set), in contrast to the typicality measure. In 

addition, while there is a difference between the probability being ½, say, and being 1/3., 

nothing of the sort is required by the typicality measure, whose role is to make sense of 

claims that describe/account for/explain phenomena as holding with some very rare 

exception, without specifically quantify them. Similarly, the typicality measure does not 

have to satisfy the probability axioms.14 

Let us now turn to the question of whether we need something more, namely 

whether we also need a probability measure. I think not: a typicality measure, which 

provides us with a rough guidance about the relative size of sets in phase space, is enough 

for the current purposes. In fact, the only reason we need a measure for the size of the 

macrostates is to count the number of microstates in them. The details do not count: it 

does not matter what precise number the measure gives us. What matters instead is that 

the size of the set of exceptions (i.e. abnormal or anti-thermodynamic states) is extremely 

small, regardless of how much it precisely is. That is, we need a typicality measure, not a 

probability one.  Thus, postulating that the typicality measure is the uniform measure (as 

dictated by the statistical postulate), the second law of thermodynamics holds, typically. 

That is, the set of the exceptional (i.e. anti-thermodynamic) microstates is very small.  

Let us see in a bit more detail why typicality is able to explain everything that we 

seek an explanation for in recovering macroscopic laws from microscopic ones.15 

1) We want to explain why the ‘probability’ that a state is in equilibrium is very high. 

However, we do not need a precise probability estimate about how likely it is; we do 

not need to distinguish between the equilibrium state being reached with 0.95 

probability and 0.99 probability. All we need is a rough estimate, which is what 

typicality gives us. Thus, we ‘merely’ have to explain why the equilibrium state is 

typical.  And to do that we need to show that it occupies the vast majority of phase 

space. That is, we need to show that if 𝐴 is the set of microstates that do not belong to 

the equilibrium macrostate, then the size of 𝐴 is much smaller than the size of the 

equilibrium macrostate. 

2) We also want to explain why systems starting from equilibrium remain there with 

‘high probability.’  Again, details do not matter as we want to explain why the 

departure from equilibrium is atypical. That is, we need to show that the size of the set 

of microstates starting from equilibrium and remaining there, as measured by the 

typicality measure, is overwhelmingly larger that the size of the exceptions, namely the 

set of microstates whose temporal evolution brings them outside of equilibrium.  

3) Similarly, we want to explain why systems outside of equilibrium evolve towards it 

with ‘high probability.’ Like before, this is actually the request for the reason why 

equilibrium-evolving behavior is typical for states outside of equilibrium. That is, we 

                                                 
14

 For more differences between typicality and probability, see Wilhelm (2019).  
15

 For more on the connection between typicality and explanation, see Section 3.3.  
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want to show that the size of the set of exceptions, namely the set of microstates 

starting outside of equilibrium which will not go toward equilibrium, is very small 

with respect to the size of the set of microstates outside of equilibrium which will go to 

equilibrium. 

Whit these qualifications, one can answer to the one-million-dollar-question about entropy 

increase: 

4) We want to explain why entropy has an extremely ‘high probability’ of increasing. 

That is, since all that is needed is an estimate of the entropy rather than a precise 

computation, we want to explain why typical states increase their entropy during their 

temporal evolution. That is, we want to show that typical states in equilibrium will 

remain there (maintaining their entropy constant) and typical states outside of 

equilibrium will evolve towards it (increasing their entropy).  

 So, since in Boltzmann’s account using the uniform measure as a typicality measure one 

can show all of the above, then Boltzmann’s account explains the macroscopic laws as well 

as the macroscopic asymmetry in terms of time-symmetric microscopic laws, even without 

invoking the notion of probability.  

 

3.2 Typicality and Probability 

 

However, one could object that we still have not responded to the original question about 

the second law of thermodynamics. In fact, one could complain that, since typicality is not 

probability, one can only say that the second law is typical, but not that it is probable. And this 

seems wrong. Thus, one should further investigate the connection between the two notions: 

more often than not, we express probabilistic statements and not typicality statements 

when describing a macroscopic phenomenon in this way.  

Indeed, one may argue that the notion of typicality grounds the one of probability. 

That is, probability theory is a mathematical idealization developed in order to make precise 

the meaning of ‘vast majority’ through theorems like the law of large numbers. It is that notion 

which has to satisfy the axioms of probability, not the typicality measure from which it is 

derived. Be that as it may, one could also outline the connections between the various 

senses of probability, typicality and their explanatory role. The situation is not simple and 

presumably one should write another paper on this.16 Hoverer, here are some simple 

considerations. First, there is a straightforward connection with the notion of subjective 

probabilities as degrees of belief. In fact, the measure (𝐴), where 𝐴 is for example the set 

of microstates for which the entropy grows, can be interpreted as the degree of belief of an 

observer making an inference on the probability that the entropy will increase. Thus, the 

measure plays a role in the justification of why we have a reasonable degree of belief 

about the growth of entropy. Nonetheless, since this is someone’s degree of belief, it 

cannot help in explaining physical phenomena, given that only an objective notion has the 

potentiality of doing that (recall Albert’s objection to epistemic accounts of the probability 

measure).  

                                                 
16

 See also Maudlin (2020). 
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Perhaps more interesting is the connection with probabilities as relative frequencies. 

When an experimenter prepares a set of repeated experiments with substantially identical 

initial macroscopic preparations, she will obtain empirical regularities. These empirical 

distributions are the relative frequencies of the various outcomes. Take a set of 𝑁 gases 

concentrated one the corner of 𝑁 similar boxes; let them evolve freely; check what has 

happened after 2 hours, say; record the 𝑁 results: the first gas spreads out in the first box; 

the second spreads out in the second box; and so on. In general, the empirical distributions 

present statistical patterns: for instance, the vast majority of the gases spreads out in their 

container. Now, how do we explain the empirical distributions? We show that the 

distribution predicted by the theory describing the phenomena in question matches the 

one observed. In this case, we need to show that the observed distribution 𝜌𝑒𝑚𝑝 and the 

theoretical distribution predicted by statistical mechanics 𝜌𝑡ℎ𝑒𝑜 agree. That is, we need to 

show that, theoretically, the vast majority of gases expands when evolving freely. That is, 

one would then have to show that, with the right measure of typicality, the theoretical 

distribution and the empirical one are very close. Formally, one needs to show that |𝜌𝑒𝑚𝑝 −

𝜌𝑡ℎ𝑒𝑜| < 𝜀., with some positive constant 𝜀 small at will and with the distance measured by the 

typicality measure.  Having said that, then, the connection between typicality and 

probability as empirical frequencies is that typicality provides the measure with which one 

can compare the empirical and the theoretical frequencies.17 

 

3.3 Explanation Based on Typicality  

 

To sum up the results of the previous subsections, in this account to explain why a given 

regularity occurs is to explain why the regularity is typical. This can be done specifying 

the laws of nature and the typicality measure (in addition to the past hypothesis).18  

Formally, as discussed by Isaac Wilhelm (2019), this is the explanatory schema based on 

typicality: if an object 𝑥 has property 𝐴 (or belonging to a given set), and a property 𝐵 

which is typical for 𝐴-type objects, then the explanation of why 𝑥 has 𝐵 is given by this 

argument schema [typ]:  
𝑥 is 𝐴 

Typically, all 𝐴𝑠 are 𝐵𝑠   

∴ x is 𝐵
 

That is, the explanation of the fact that a given system has a given property is given by 

showing that this property is typical for objects of that type. In other words, if one has 

shown that 𝐵 is typical of 𝐴 -objects (the objects that belong to the set of objects having the 

property 𝐴), the one has explained why 𝑥 has the property 𝐵 too. For instance, the 

explanation of the fact that this gas expands is given by the fact that one can prove that 

free expansion is typical for gases. That is, for the vast majority of initial conditions one 

can show that gases expand.  

                                                 
17

 For more on the relation between typicality and probability, see Volchan (2007), Goldstein (2011), 

Pitowsky (2012), Hemmo and Shenker (2012), Wilhelm (2019), Maudlin (2020). 
18

 This is similar to what Albert and Loewer conclude, with the only difference that here we have typicality 

rather than probability.  
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A longer discussion would be appropriate, but let me observe that the explanatory 

schema sketched above shares some similarities with Hempel’s covering law model (1965), 

whose main idea was that explanations are arguments with laws of nature as premises. 

The idea is roughly that if one finds the relevant law that made the phenomenon happen, 

one has found the explanation for why it happened.  Here, explanations are also 

arguments, but the explanation is given not by nomological facts but by typicality facts. 

However, the difference between the two types of facts is not in kind but merely of degree: 

they are both nomological facts, but while laws of nature are exception-less, typicality facts 

are not. That is, one can think of typicality facts as nomological facts which allow for rare 

exceptions. Notice that this is compatible with typicality explanations being used in a 

macroscopic context in which it seems fine to allow for exceptions, while it is not used at 

the fundamental level, in which exceptions are seen as problematical. If so, the parallel 

with the deductive-nomological (DM) model is striking:   
𝑥 is A 

All 𝐴s are 𝐵s   

∴ 𝑥 is 𝐵
 

That is, if one can show that there is an exception-less regularity such that all 𝐴s are 𝐵s, 

this explains why this 𝑥, which is an 𝐴, is  also a 𝐵. Similarly, in the typicality schema, if 

one can show that 𝐵 is typical of 𝐴-objects, this explain why this 𝑥, who is an 𝐴, has also 

property 𝐵.  Nonetheless, the schemas are not identical: while in the DN one can deduce 

that 𝑥 is a 𝐵 from the other premises, this is not so for the typicality schema because there 

are exceptions. That is, no deductive derivation can be provided, not even in principle: in 

the case of Boltzmann, for instance, there will always be anti-thermodynamics states. Thus 

Boltzmann proved ‘merely’ that most systems have increasing entropy, not that all of 

them did. Accordingly, the DN model could not be used to explain the laws of 

thermodynamics, but the typicality schema could.19  

In addition, there is a sense in which the typicality explanation is similar to 

Hempel’s inductive statistical (IS) model. The original idea was that if one can prove that 

two features occur together with high probability then one explain why something 

possessing one also possesses the other. Formally, an explanation is provided by the 

following inductive argument: 
𝑥 is 𝐴 

                                                 
19 Moreover, as in the DN model, also in the typicality schema every explanation is a prediction: a given gas 

(𝑥) is in non-equilibrium (𝐴); it’s typical for non-equilibrium gas to expand freely (𝐵); so this gas expands 

freely.  This is an explanation of why the gas in this box has expanded, or a prediction that it will expand, if 

the gas has not been observed yet. However, unlike the DN model, the typicality schema has not the 

problem of asymmetry. Let’s recall what this problem is. Given the height of a flagpole, the height of the sun 

on the horizon, and the laws of optics (and trigonometry), one can deduce the length of the shadow cast by 

the pole. This is an adequate explanation as well as a prediction of the shadow’s length of a given flagpole of 

that height, observed or not. However, one could also use the length of the shadow, together with the height 

of the sun on the horizon, and the laws of optics (and trigonometry), to deduce the height of the flagpole. 

This is an accurate prediction, but not an explanation of the height of the pole. Critics track this down to the 

idea that explanation is asymmetric while deduction is not. This is not true for the typicality explanation, 

because the explanation is not deductive but follows the schema above.  
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𝑃𝑟𝑜𝑏(𝐴, 𝐵) = 𝑟   

∴ 𝑥 is 𝐵
[𝑟] 

where 𝑟 is the strength of the induction. For instance, if this apple (𝑥) is red (𝐴), and if one 

can show that there is a high probability (𝑟) that red apples are also sweet (𝐵), then one 

has explained why this apple is sweet.20  Compare this with the typicality schema [typ]. 

According to the IS model, a phenomenon of type 𝐴 is explained to be also a 𝐵 by showing 

that the probability of some𝐴 being also a 𝐵 is high. In typicality account a phenomenon of 

type 𝐴 is explained of being also a 𝐵 by showing that being a 𝐵 is typical of being an 𝐴. So 

these schema are very similar, if not formally identical. The difference is in the logic 

operators (𝑇𝑦𝑝 vs. 𝑃𝑟𝑜𝑏), and we have seen that typicality is not probability.21 Some 

probabilistic explanations are not typicality explanations: consider a nucleus of the 

element 𝑋 having the probability of decaying being less than 0.5. Then, one can explain 

why this nucleus has decayed using the IS model, providing therefore a probabilistic 

explanation. However, it would not be typical for 𝑋 to decay, since 𝑟 is small.22   

Be that as it may, I think that the reason why the apple argument in terms of 

probabilities appears to be explanatory (to those who think it is explanatory) is because 

what one has in mind is a typicality argument instead. That is, we could have said:  

science has shown that red apples are typically sweet, and that is why this red apple is 

sweet. Details on the strength of the induction (whether it is 0.98 or 0.97) do not matter 

much, as long as 𝑟 is large. This is typical of typicality reasoning (pun intended), not of 

probabilistic reasoning.  This is compatible with Hempel’s original idea that the IS model 

works only for large probabilities.23 Also, to make the point that typicality explanations 

are not probability ones, one could point out that probabilistic reasoning can be 

counterintuitive, while typicality reasoning is not. For example, think of the probability of 

having a rare (one case over 10,000 people) but terrible disease when testing positive for it, 

assuming the testing methods has 99% of accuracy. Most people will be terrified, but they 

would be wrong: using Bayes theorem your probability of having the disease is 0.01. So, 

testing positive but not having the disease is, arguably, explained by the fact that Bayes 

theorem show that the probability of having the disease was low. However, this is 

extremely counterintuitive. In contrast typicality arguments are not like that at all. They 

are used all the time in everyday reasoning arguably because they are very intuitive: 

typically, dogs are affectionate, and that is why my dog is affectionate. Interestingly, this is 

connected to the use of stereotypes: we immediately nod in agreement when someone 

says that our husband’s bad behavior is explained by the fact that will all probability all 

men are jerks. We use probability talk, but since details do not matter, we are actually 

                                                 
20I am assuming that these claims are explanatory. People have objected to this, but pointing at this misses 

the point: all I am saying is that as long as the IS model is explanatory, so is the typicality model.  
21

 See Crane and Wilhem (2020) for two proposals for a formal logic for typicality arguments, one based on 

propositional modal logic, and the other on intuitionistic logic. 
22

 See Wilhelm (2019) for more examples.  
23

 Later, critics of the model argued that also small probabilities can be explanatory. See Strevens (2000) for a 

nice summary and an argument that the strength of the induction doesn’t necessarily correlate with the 

strength of the explanation. This does not affect my point because the argument is not that all explanations 

are typicality explanations.  
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using a typicality explanation: typically, men are jerks.24 Similarly, I think, we may use 

probability talk to present Boltzmann’s explanation of the macroscopic laws, but we 

actually have in mind typicality: typically, entropy increases. 

On another note, as pointed out by Wilhelm (2019), notice that there seems to be the 

right correlation between typicality and causation. The claim that ‘woodpeckers typically 

have a pointy beak’ may be further explained citing some genetic factor, which may play a 

causal role in beaks having a pointy shape.  Notice however, that this is itself a typicality 

explanation: those genes typically give rise to such beaks. This shows that the typicality 

schema is not wedded to the covering law model, even if it shares with it some important 

features.  

Aside from the comparison with the covering laws model, let us explore whether 

the explanation based on typicality is adequate. Among the desiderata for a satisfactory 

scientific explanation, one can list the following: informativeness, predictive power, and 

expectability. A phenomenon is suitably explained if the account is able to provide an 

informative and concise description of the phenomenon in question, and typicality is able 

to do that, as also pointed out by Wilhelm (2019). It is informative because it tells us about 

the behavior of the vast majority of systems: typical systems approach equilibrium. And it 

does so very succinctly, in a single sentence, merely using the uniform measure as 

typicality measure to count the number of microstates.  Notice that it is informative only 

because it tells us about the typical behavior, namely the behavior that the vast majority of 

systems will display. Otherwise, one would not know, by merely accessing the macrostate, 

whether the system’s microstate will evolve thermodynamically or not.   

Moreover, as also emphasized by Dustin Lazarovici and Paula Reichert (2015), 

typicality can provide us with predictive power, which is not surprising, given what we 

observed above in relation with the connection with the covering law model. In fact, if one 

shows that a given property is typical, then one has reasons to expect to see this property 

in other systems similar to the original one. Given that one has proven that a typical 

system will approach equilibrium, this is what one should expect a system to generally do. 

Notice how, obviously, this predictability would not be possible if one had shown that 

only some states, not the great majority of them, approach equilibrium. Consider a gas in 

the corner of a box. If one could only show that some state will approach equilibrium 

while other will not, what can one conclude about the behavior of a given gas which 

hasn’t been observed yet? Not much, since the size of equilibrium-approaching states and 

the size of non-equilibrium-approaching states are comparable (in our pretend-example). 

It is only when we can rule out the possibility of non-thermodynamic states because the 

size of the corresponding states is incredibly small that we can predict what is likely to 

happen in similar circumstances.       

                                                 
24

 Notice that I am not saying that stereotypes, by themselves, can explain: in contrast, stereotypes do not 

really explain unless someone actually shows that they hold typically. The point was merely that stereotypes 

are commonly used in accounting for certain phenomena happening, in contrast with ‘true’ probabilistic 

explanations, in which the details mater, which are notoriously difficult to grasp (see the above mentioned 

use of Bayes theorem). 
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In addition, typicality provides an explanation which holds for most initial 

conditions: a phenomenon has been explained if it holds for typical initial conditions. That 

is, with rare exceptions as defined by a suitable measure of typicality. As Bricmont (2001, 

2020) has suggested, if something is typical, no further explanation seems to be required. 

For instance, the fact that this particular gas expands is not surprising, once Boltzmann’s 

account has been provided. What would be surprising is if it did not expand. A less 

satisfactory explanation would be, on the contrary, one which is true only for very 

peculiar initial conditions. In fact, too many things could be explained by appealing to 

special initial conditions, for one can always find an initial condition that will account for 

the phenomenon. If we accept this type of explanations, allowing for fine-tuned initial 

conditions, then one could ‘explain’ everything. Let me elaborate. There is a sense in 

which to explain a phenomenon is to remove the surprise in seeing this phenomenon 

happening. This is related to what Hempel had in mind with his notion of ‘expectability.’ 

We are not surprised that a piece of salt will dissolve in water because we know the reason 

why it happens: the positive ions in water (H+) attract the negative chloride ions, and the 

negative ions in water (O--) attract the positive sodium ions. However, consider the case of 

a monkey who, by randomly hitting computer keys, ends up writing the “Divine 

Comedy.” One can account for this fact by cherry picking an initial condition for which 

this actually happened. So, there is a sense in which the phenomenon is ‘explained.’ 

However, the fact that the monkey ended up writing that book is extremely surprising, 

and by pointing to a special, perhaps unique, initial condition that made it true does not 

help much to remove the surprise. So, there is a sense in which we are not completely 

explaining the phenomenon if we rely on special initial conditions. In other words, 

monkey writing books is not something that we expect. This is not something that 

monkeys typically do, because monkeys, typically, cannot read or write, for starters. It is 

not impossible that they write a wonderful book: indeed, it could just be a very lucky set 

of keyboard strokes. However, if they end up writing this wonderful book, we find it 

surprising. That is why I used the world ‘lucky’ in the previous sentence: the event has 

happened because of a ridiculously special initial condition. A slightly different initial 

condition would not have brought about a similar event. Instead, if one were to point out 

that most initial conditions would have the same outcome, the surprise will cease. In other 

words, a satisfactory explanation is one which, for the majority of initial conditions, 

monkeys would indeed write books like the “Divine Comedy.” However, this typically 

does not happen: monkey randomly hitting computer keys would typically write 

gibberish. So, when asking for an explanation of a given phenomenon what we are 

actually asking for is a reason why we should not find the phenomenon surprising, and the 

response is that the phenomenon happens for most of the initial conditions. Moreover, in 

this framework, if we rely on a special initial condition to account of why a phenomenon 

has happened, we are not truly providing an explanation for it because we are not 

removing the surprise element. Or, in other words, the ‘explanation’ lacks expectability. 

Something similar happens in statistical mechanics: for the great majority of initial 

conditions, entropy will increase, not just for a special one. Because of this, the surprise is 

removed and the phenomenon explained. Moreover, one can account for why anti-
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thermodynamic states are not observed by pointing out that they are atypical, but 

Boltzmann’s statistical mechanics does not provide an explanation of why atypical states 

happen, other than that they typically do not happen.25     

One could object that this is something missing, namely we need to be able to 

explain all phenomena, including the atypical ones. That is fair enough; however let me 

just notice that the situation remains unchanged if we use probabilities instead, and 

explain improbable events. In any case, one could always rely on initial conditions: the 

only explanation of why this gas is not expanding, as opposed to that other one, is that this 

is what the initial conditions, together with the dynamics, bring about for it. Indeed, some 

have argued that the requirements for a satisfactory scientific explanation I discussed 

above are too strict: one would provide a satisfactory explanation of the phenomenon even 

if one relies on special initial conditions.26 All that is required is that there is one such 

condition that would bring the phenomenon about. That may be so. However, as already 

seen, in this way one would not be able to account for the link between expectability and 

explanation: it would be difficult to understand why one would find monkey writing 

books surprising while one would not find surprising that gases expand when evolving 

freely.   

Moreover, let me emphasizes that the idea of a satisfactory explanation being an 

explanation for most initial conditions is compatible with scientific practice in physics. For 

example, one of the reasons why Alan Guth (1981) proposed his theory of inflationary 

cosmology is that the big bang model requires strict assumptions on initial condition. In 

contrast, inflation would explain all the phenomena without relying on these special 

assumptions, and for this reason is considered a better theory: “The equations that 

describe the period of inflation have a very attractive feature: from almost any initial 

conditions the universe evolves to precisely the state that had to be assumed as the initial 

one in the standard model” (Guth and Steinhardt 1984).  

In this respect and to conclude, let me add a remark regarding the past hypothesis. 

The past hypothesis has been introduced in order to break the past-future symmetry of the 

microscopic laws, by postulating that the universe had an initial very low entropy. One 

may think that this is a problem that undermines the whole account based on typicality: 

haven’t we just said that a satisfactory explanation should hold for the typical initial 

condition?  In contrast, a low entropy state is a very atypical state. So, have we ended up 

explaining what is typical by postulating something atypical? Isn’t that bad? One thing 

that can be said to mitigate the problem is that, with respect to this low entropy initial 

macrostate, the initial microstate of the universe is typical in regard to its future evolution, 

which accounts for the entropy increase.27 However, I honestly do not think this is helping 

                                                 
25

 The notion of expectability and the one of typicality go together as long as the world is typical. In fact in a 

typical world, entropy increases, and expectability goes with typicality. However, in an atypical world, one 

would expect something different than what it is typical, as in that world entropy would decrease. This is 

because what is expected comes from what is 'usual' in our world, and only in typical worlds what is usual 

and what is typical are the same. Thank you to Katie Elliot, Barry Loewer and Tim Maudin to make me be 

explicit on that.  
26 See, e.g., Valentini (2020). Also, see Myrvold (2020). 
27 See Lazarovici and Reichert (2015). 
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a lot, given that the initial macrostate is incredibly small.  Indeed, many think this is a 

serious problem and propose mechanisms to make the initial state typical.28 In contrast, 

Humeans such as Craig Callender (2004) argue that there is no need to explain the past 

hypothesis because, in a Lewisian fashion, it is simply one of the axioms of the best system 

of the world.29 Notice, however, that from the point of view of the typicality account, the 

situation gets better, rather than worse: add the typicality, rather than the probability, 

postulate, and everything follows, without any additional need for explanation.  

 

3.4 Objections to the Typicality Account 

 

The typicality approach as applied in statistical mechanics described so far is what 

Massimiliano Badino (2020) dubs the “simple typicality account,” or STA. In this view, the 

approach to equilibrium is explained entirely in terms of the size of the macrostates, by 

showing that the vast majority of microstates will fall into the equilibrium state. However, 

according to some critics, this approach dismisses the dynamics, which apparently plays 

no role in explaining the approach to equilibrium. Accordingly, Roman Frigg and 

Charlotte Werndl propose the one Badino calls “combined typicality approach,” or CTA 

(Frigg and Werndl 2012, Werndl 2013, Werndl and Frigg 2015). The idea is that one should 

show that equilibrium is approached for the typical dynamics, in addition to showing it is 

approached for the typical initial condition. Frigg and Werndl prove that typical 

Hamiltonians produce systems which are epsilon-ergodic, namely they are such that the 

time spent in a macrostate is proportional to the size of the macrostate. Because the 

equilibrium state is the largest of the macrostates, an epsilon-ergodic system will spend in 

it most of the time, explaining in this way the approach to equilibrium of typical dynamics 

as well as for typical initial conditions.  

In this regard, let me enter into some details about the STA and the role of the 

dynamics: it is not true that, strictly speaking, in the STA the dynamics is ignored. Frigg 

and Werndl prove that phenomena such as the approach to equilibrium are to be 

explained for most (typical) initial conditions and for most (typical) dynamics. Instead, 

Frigg and Werndl complain, the STA merely does that for most initial conditions, 

forgetting about typical Hamiltonians. However, this is not so. Indeed, the STA manages 

to do something more, rather than less, general. That is, in the STA one is able to account for 

phenomena such as the approach to equilibrium dynamics for most initial conditions, 

without being specific about any feature the dynamics needs to have. That is, the 

phenomenon is explained for most (typical) initial conditions and for all dynamics. This is 

why the dynamics is never mentioned: not because it is irrelevant, but because for most 

initial conditions the details of the dynamics do not matter, and the system will reach 

                                                 
28 To this end, Penrose (1999) for instance proposes his ‘Weyl curvature hypothesis’ as an additional law in 

order to explain how the low entropy initial state is not atypical. In addition, Carrol and Chen (2005) put 

forward a model whose purpose is to completely eliminate the past hypothesis. See Lazarovici and Reichert 

(2019) for a proposal built on Chen and Carrol’s model. 
29 For more on this approach and its challenges, see also Olsen and Meacham (2020).  
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equilibrium regardless of the Hamiltonian. For more on this ‘genericity’ of the Hamiltonian, 

see the next section. 

Finally, to counter the idea that the dynamics plays no role in the STA, in the next 

section I show that the statistical postulate can be derived from the dynamics. If so, the 

dynamics plays a big role in the STA, namely the role of selecting the typicality measure, 

henceforth reducing the gap between the STA and CTA.  

 

4. How to Dispense of the Statistical Postulate: The Stationarity 

Argument  
 

Up to now we have simply assumed that the choice of the measure, typicality or 

probability, had to be postulated.  In this section I wish to explore what I take to be the 

proposal put forward by Goldstein (2001, 2011), Dürr (2009), and Zanghí (2005). That is, 

the proposal that the typicality measure is derived from the dynamics introducing suitable 

symmetry constraints. I find it extremely surprising that this argument has received very 

little attention in the literature,30 because not only it provides a non-epistemic justification 

for the uniform measure but also shows how the dynamics plays a crucial role in the 

typicality account.31 

The main idea, I take it, is that the typicality measure is the uniform measure (the 

Lebesgue-Liouville measure) not because it is uniform, but because of these two features: 

1) it is time-translations invariant; and 2) it is generic with respect to the Hamiltonian of the 

system. Let’s see what these features amount to starting with the first. A measure is time-

translation in variant when the volume it defines in phase space is conserved. That is, if 𝐴 

is any set in phase space, and 𝐴−𝑡   is the set of points in phase space that evolve into 𝐴 after 

a time 𝑡, then 𝐴 and 𝐴−𝑡 have the same volume (this is Liouville’s theorem). The reason 

why time-translation invariance, also called stationarity, is a requirement for the typicality 

measure is connected with the idea that no temporal instant needs to be privileged. In fact, 

as Goldstein, Dürr and Zanghí notice, the measure counts the space-time histories of the 

universe, while the phase space point is just a convenient way of representing them. So, 

when counting the histories, one needs to regard the initial time merely as conventional, 

by not privileging any particular time, and a time-translation invariance measure would 

guarantee that. The uniform measure is not the only time-translation invariant measure. In 

fact, given a conservative force, there could be other measures, whose explicit form 

depends on the particular law of the force. However, it is argued, one can single out a 

                                                 
30

 Aside from the comments of Bricmont (2001, 2020), discussed in Section 4.1.  
31 Itamar Pitowsky (2012) proposes a justification of the uniform measure as the typicality measure which 

has been later criticized by Werndl (2013). She proposes that the choice of the typicality measure should be 

done using symmetry consideration, in particular the typicality measure should be invariant with respect to 

the dynamics. Maudlin (p.c.) maintains that there are other ways of justifying the use of the uniform 

measure. For instance, one could say that the uniform measure is privileged because it is the one that phase 

space inherits from the spatial measure. However, considerations like this will have less weight when one 

moves to the quantum domain, especially in the context of the pilot-wave theory. In that context in fact the 

choice of the typicality measure is justified by an argument which is a direct analog of the stationarity 

argument discussed in this section, and this is one of the reasons I think it is worth exploring.   



20 

 

unique measure by requiring an invariant measure that is also generic with respect to the 

dynamics: that is, it is independent of the particular law of the force. Tying the measure to 

the dynamics arguably makes the choice of the uniform measure natural: the uniform 

measure is the typicality measure because it is the only stationary generic measure.  

This argument, which I will call from now the ‘stationarity argument,’ can be 

therefore summarized as follows:   

P1: The purpose of the typicality measure is to count microstates (definition);  

P2: One can do this at different times (definition/construction); 

P3: One should not privilege one time over any other (the initial time is conventionally 

chosen) 

subC : Thus the typicality measure should be time-translation invariant or stationary;  

P4: If the dynamics is Hamiltonian, the typicality measure should be independent from 

the specific form of the Hamiltonian (genericity); 

P5: The only measure satisfying these two requirements is the uniform measure 

(mathematical proof); 

C: Thus the uniform measure is the typicality measure. 
  

4.1 Objections to the Stationarity Argument 

 

The stationary argument for the uniform measure as typicality measure has been criticized 

most notably by Bricmont (2001), who argues that there are several problems.  

First, the argument applies only to Hamiltonian systems. As we just saw, 

Hamiltonian systems are volume preserving: they are such that the phase-space volume, 

defined by the uniform measure, is preserved under time evolution. Instead, Bricmont 

urges us to consider certain dissipative systems like dynamical systems with a chaotic 

attractor. These systems usually give rise to solution flows which contract volumes in 

phase space. This volume contraction gives rise to a set in phase space called an attractor, 

toward which solutions ultimately evolve. Certain dissipative systems are chaotic, that is 

they show sensitive dependence of initial conditions. For chaotic systems the attractor is 

special because merely studying the dynamics on the attractor is sufficient to have 

information about the overall dynamics. As Bricmont points out, the uniform measure is 

not time-translation invariant for these systems (because the volume is not conserved) but 

it is still the typicality measure: for most initial conditions in the basin of attraction, 

counted using the uniform measure, the relevant empirical frequencies will be correctly 

reproduced. How do we justify this choice? According to Bricmont the uniform measure is 

chosen as typicality measure not because it is stationary (which it is not). Rather, the 

justification is more generally based on what Bricmont calls “Bayesian grounds” (Bricmont 

2020): the typicality measure is whichever measure that reproduces the relevant empirical 

frequencies, regardless of whether it is stationary or not. This argument, according to 

Bricmont, provides a more general account of the reasons why the uniform measure is the 

typicality measure which holds for non-Hamiltonian systems. So, why should one need 

another argument for Hamiltonian systems?  
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Another objection raised by Bricmont against the stationary account of the 

typicality measure is that it is too sophisticated to genuinely be part of the scientific 

explanation of thermodynamic phenomena. In fact, he notices that we are trying to 

provide an account of scientific explanation, and as such the proposed account should be 

not too distant from our intuitive understanding of the notion of explanation. Because of 

this, time-reversal invariance does not seem the right notion, since when we give our folk 

explanations we never use anything that remotely resembles stationarity.   

To conclude, let me add an objection which challenges the premise requiring 

genericity for the measure. Indeed, I find this to be the weakest point of the stationarity 

argument as nowhere it has been argued why such a constraint is required: why would 

one want the measure to be independent of the Hamiltonian, hence the potential? If the 

whole point of caring about Hamiltonian systems was to ensure that they have the chance 

of describing the universe, since there’s only one universe, there’s also only one 

Hamiltonian. So why one would care about other possible dynamics?  

 

4.2 Replies to Objections to the Stationarity Argument 

 

First, consider the objection based on chaotic dynamics: if for non-Hamiltonian systems 

the uniformity measure is chosen as the typicality measure without using stationarity 

considerations, why use them for Hamiltonian systems? This is, in my view, a well-

thought objection to the stationarity account of the typicality measures, and as such should 

be carefully considered. The best response to this, I think, is the following. Upon reflection, 

one should not find it surprising that for non-Hamiltonian systems the uniform measure is 

the typicality measure even if it is not stationary. Indeed, I think it would be unreasonable 

to expect that stationarity would pick out the correct typicality measure in these cases. In 

fact, while in Hamiltonian systems the volume in phase space is preserved, and the 

natural weighting of all points in phase space is equal, this is not so for non-Hamiltonian 

systems because the system is dissipative and the attractor carry more weight. And this in 

turn is not surprising because non-Hamiltonian systems are open systems. They are 

dissipative system, so there has to be somewhere they dissipate to. Because of this, they 

are less general than Hamiltonian systems, in the sense that while Hamiltonian systems 

may reproduce the behaviour of the whole universe, non–Hamiltonian systems at best can 

reproduce the behaviour of open subsystems. To put it in another way, the universe is a 

Hamiltonian system, while non-Hamiltonian systems may be descriptions of non-isolated 

subsystems. If so, the stationarity constraint needs to be fulfilled to select the typicality 

measure for the universe, not its subsystems. Then, when describing dissipative system, 

which are open subsystems of the universe, the choice of the typicality measure has been 

already made. Then one looks for other ‘natural invariant’ or ‘physical’ measures, such as 

the Sinai-Ruelle-Bowen (SRB) measure, defined on the attractor, which is time-translation 

invariant. However, when considering that these systems are merely subsystem of a more 

general Hamiltonian system, the apparent paradox (why the SRB measure, which is 

stationary, is not the typicality measure, while the uniform measure is, even if it’s not 

stationary?) is resolved: the uniform measure is selected as the typicality measure because 
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it is the stationary measure for the universe, and whatever is stationary in a subsystem 

does not really matter. Bricmont’s question (‘why one needs to look for an additional 

justification for Hamiltonian systems based on stationarity if one already accepts the 

Bayesian justification for non-Hamiltonian systems?’) seems compelling only if one 

considers non-Hamiltonian systems to be more general than Hamiltonian ones. However, 

in this context, this is not the case, and the logic is reversed: first one looks at the universe 

(which is described by a Hamiltonian) to find the typicality measure using stationarity 

(and this is the uniform measure); and then at its subsystems (which are not). When 

dealing with them, stationarity is no longer relevant and the typicality measure is the 

uniformity measure because it has been inherited by the one for the universe.  

Now, let us move on to the second objection that the stationarity argument is too 

sophisticated to genuinely capture what we mean by explanation. In response, one could 

say that the ingredients of a scientific explanation need not to be familiar to us to make the 

theory an adequate account of scientific explanation. One judges a theory of explanation to 

be adequate if it is able to reproduce our intuitions regarding which truly are explanations 

and which are not, not necessarily using notions that we are already familiar with. For 

instance, as we have seen, in the DN model of explanation, an explanation is a valid 

deductive argument in which (at least) one of the premises is a law of nature. The 

adequacy of this model is judged by considering whether every explanation as given from 

the model is also intuitively an explanation, and vice versa. Indeed, one of the 

counterexamples of the model points to asymmetry in the account that contradicts our 

intuition. One in fact can derive the length 𝑆  of the shadow cast by a flagpole from the 

height 𝐻 of the pole and the angle 𝜃 of the sun above the horizon and laws about the 

rectilinear propagation of light. This derivation is thus an explanation according to the 

deductive nomological model, and that seems right. However, the ‘backward’ derivation 

of 𝐻 from 𝑆 and 𝜃, which is also an explanation according to the model, intuitively does 

not seem explanatory. While it makes sense to say that the shadow of a flagpole being a 

particular length is explained by the flagpole having a particular height, we do not explain 

the flagpole having a certain height in terms of the shadow being of a particular length. 

Rather, the flagpole has that height because it was constructed that way, for other reasons. 

The model of explanation has therefore to pass the test of intuition. Nonetheless, this is a 

test for the outcome of the model, namely what counts as an explanation, rather than for the 

ingredients used to arrive to the model’s outcome. In this case, one may notice, also the 

ingredients used in the model to generate explanations are familiar: deductive arguments 

and laws of nature. However, it does not seem to me that using other unfamiliar notions 

would be problematic, unless they appear in the explanation itself. In fact, consider 

Boltzmann’s account of thermodynamics. We have said that the second law, say, is 

explained by claiming that it can be shown that ‘entropy-increasing behaviour is typical.’ 

The sentence within quotes is the explanation.  The notions in it are ‘entropy’ and 

‘typicality,’ which have an intuitive meaning that is qualified and made precise in the 

process of working out the explanation. Moreover, even if the notions involved to derive 

such an explanation are far from being intuitive, they are built bottom-up from intuitive 

notions into sophisticated mathematical notions. Think of the notions of macrostate, 
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microstate, measure, and so on. Notice that also stationarity is like that. It is a notion 

which is far from intuitions, which however is connected with the intuitive idea that no 

temporal instant should be privileged. The explanation of the choice of the typicality 

measure uses intuitive notions, through its implementation with the sophisticated notion 

of stationarity, to explain physical phenomena. In other words, it is this intuition that 

provides the reason why stationarity enters the explanatory machinery. As Einstein (1936) 

said: “the whole of science is nothing more than a refinement of our everyday thinking”. 

However, this refinement can lead us far from intuition without losing its legitimacy. Be 

that as it may, let me conclude that, interestingly, Bricmont agrees that ‘entropy-increasing 

behaviour is typical’ is an explanation of the phenomena, even if it includes the notions 

above (which are built from intuition into mathematical notions without being themselves 

intuitive). However, he maintains that stationarity is not explanatory because it is not a 

notion we commonly use. Nonetheless, it seems inconsistent to complain about 

stationarity being ‘counterintuitive’ and thus not explanatory, if one agrees that typicality 

is ‘counterintuitive’ but explanatory.  

As far as Bricmont’s own view (Bricmont 2020), he thinks that the best way to 

justify the uniform measure is in a Bayesian framework. In this account, the probabilities 

used in statistical mechanics are seen as epistemic: they express our ignorance and are 

used to update one’s probabilities estimate when new information becomes available. In 

this way, the uniform measure is taken to be a generalization of the principle of 

indifference, according to which one should not introduce any bias, or information that 

one does not have. Since this account resembles the accounts that Albert criticized in his 

book, there may be problems as to how is it that our ignorance can explain the behavior of 

objects. In particular, in such a Bayesian account, two people may disagree about what 

counts as 'vast majority', and thus they may disagree about what counts as typical. Since 

typicality is used to explain, they may arrive to different explanation for the same physical 

phenomena (or may fail to explain some phenomena), and this is far from being desirable 

because we want explanations to be objective. Perhaps, a response to this kind of 

arguments would be that explanation based on typicality only requires 'coarse-grained' 

constraints (such as that the number of non-thermodynamic states is overwhelmingly 

smaller than the number of thermodynamic states) and therefore no two people may 

actually disagree on what is typical and what is not. Otherwise, one may want to link this 

notion of entropy to the notion of rationality, which is what Bricmont (2020) suggests. 

However, this account seems to share very similar objections as the epistemic view, as well 

as new ones: what is rationality? More discussion on this is needed, but here I will merely 

recall that the debate over rationality and rational decision making in Everettian 

mechanics, even if the context is different, is still wide open.32  

 Finally, let me discuss the objection that it is unclear why the measure needs to be 

generic under the dynamics. Here is a possible answer. While it is true there is a unique 

true Hamiltonian 𝐻, when looking at subsystems within the universe this may be 

different: one can use some effective Hamiltonian 𝐻𝑒𝑓𝑓 (if the subsystem of the universe is 

still Hamiltonian), which is an approximation of the true one, 𝐻, for that subsystem under 
                                                 
32

 See Wallace (2012) and references therein.  
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consideration. If we use 𝐻 to find the typicality measure, we will find many stationary 

ones; likewise, if we use 𝐻𝑒𝑓𝑓, we find another bunch of stationary measures.  Which one 

should we choose? Since both 𝐻 and 𝐻𝑒𝑓𝑓  should give rise to the same empirical results 

(otherwise we have done a bad approximation), then one should require that the 

stationary measure they find be the same. In addition, one could argue33 that in order to 

provide a genuine explanation one would have to require genericity: it is not the specific 

form of the Hamiltonian that gets the fact explained, it is not because of some special fact 

of the Hamiltonian that the fact is explained; rather it is explained independently of what 

kind of Hamiltonian we have. Moreover, and perhaps more importantly, notice that the 

request for genericity is what guarantees that the dynamics is ‘irrelevant’ in the sense 

discussed in Section 4.2: the phenomena are explained for typical initial conditions and for 

all (rather than for typical) Hamiltonians. That is, the genericity of the Hamiltonian is what 

guarantees that explanation is so general that the details of the dynamics do not matter at 

all.  

 

4.3 Boltzmann’s Ingredients in the Typicality Account 

 

To conclude this section, let me summarize the situation. We started from the 

characterization of Boltzmann’s explanation of macroscopic laws in terms of the classical 

dynamical laws, the statistical postulate and the past hypothesis. Some reflections on the 

statistical postulate lead us to the conclusions that:  

1) Typicality (not necessarily probability) is enough to explain; 

2) The correct typicality measure (namely the one that proves empirically adequate) 

may be inferred from the dynamical laws using symmetries considerations, and 

therefore not postulated.   

If the arguments presented here are sound, one could conclude that the statistical 

postulate is not needed because the typicality measure is suitably derivable from the 

dynamics. As a consequence, the ingredients of Boltzmann’s explanation are now reduced 

to the following:  

1) The laws of motion (which determine the typicality measure on phase space);  

2) The past hypothesis.34 

 

5. Quantum Statistical Mechanics  
 

Now that we have discussed Boltzmann’s account in the classical domain, let’s discuss 

about its possible generalizations. If one wishes to generalize Boltzmann’s explanatory 

schema to the quantum domain, prima facie, one should not expect some fundamental 

differences, especially in the case of deterministic theories like for instance the pilot-wave 
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 Maudlin (p.c.). 
34

 Interestingly, but from a very different perspective, Eddy K. Chen (2020) has recently argued that one can 

dispense of the statistical postulate in a quantum extension of statistical mechanics by assuming that the 

ontology is given by the density matrix rather than by the wave-function.  
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theory.35 However, the spontaneous localization theory provides something new, namely 

intrinsic stochasticity. In fact, this is a theory in which the wave-function does not always 

evolve according to the Schrödinger equations. Rather, it does for some time, then at a 

random time the wave-function ‘collapses’ into a random localization, then it continues to 

evolve according to the Schrödinger dynamics, and so on. Albert (2001) argued that this 

theory can provide a dynamical explanation for the statistical postulate. If so, the statistical 

mechanical probabilities would just be the quantum mechanical probabilities. That is, 

Albert argues that one can dynamically derive the statistical postulate if the spontaneous 

localization theory is true. In the last section I also argued that one can dynamically derive 

the statistical postulate, even if the arguments are very different. In this section I plan to 

show that this approach can be extended to all theories, including indeterministic 

quantum ones. Before entering into this, let us present Albert’s argument for his thesis.  

Since the overwhelming majority of microstates is thermodynamically normal (that 

is, entropy-increasing), they are stable. In fact everything close to them is also likely to be 

normal. In contrast, abnormal microstates (that is, entropy-decreasing) are very unstable, 

since they are surrounded almost always by normal microstates. Because of this, any 

abnormal system is extremely close to being in a normal state. Albert’s idea is that the 

effect of a wave-function collapse like those happening in the spontaneous localization 

theory, with overwhelming likelihood, will keep a normal microstate normal, and will 

make an abnormal microstate ‘jump’ into a normal one. In the theory, to technically 

implement the collapse the wave-function is multiplied by a Gaussian, which effectively 

restricts the support of the wave-function to a random and very small region of space. In 

this sense, there is a set of random and small macrostates (the regions after the collapse) to 

which the wave function can go to at any time, each of which with its own probability 

distribution, given by the quantum rules. That is, there is automatically a probability 

distribution on each macrostate, in contrast with deterministic theories, where one has to 

add it by hand. The region after the collapse is, by construction, smaller than any region 

possibly representing a macrostate. However, the size of the set of abnormal states is much 

smaller, so one could still say that the vast majority of microstates in the collapsed region 

will go toward a higher entropy state, in agreement with the statistical mechanical 

predictions. Therefore, Albert claims that the spontaneous collapse theory can do away 

with the statistical postulate: it is the dynamics itself, being open toward the future and 

assigning a probability to each possible collapsed region, that fills in the gap between the 

microstate number talk and the probability talk.  

 

5.1 The Indeterministic Case 

 

Let’s now explore how my approach may translate into the quantum domain and to 

indeterministic theories. Given the conclusions drawn in Section 4, namely that the 

statistical postulate is not needed and the relevant explanatory notion is derivable from 

the dynamics, one naturally wonders whether this extends to indeterministic theories as 

well. In Section 4 we considered Boltzmann’s explanation when the fundamental theory of 
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 See Goldstein et al (2020). 
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the world is deterministic. As already discussed, it seems that in an indeterministic theory 

the dynamical laws are time-directed in the sense that while the past is determined the 

future is open, and each possible future has its own probabilities of happening. Albert 

argued that this is likely to help, getting rid of the statistical postulate. However, I argue, 

following Zanghí’s suggestions (2005), that the differences are not as striking as one may 

think, and do not majorly affect the structure of Boltzmann’s explanatory schema (with 

qualifications). 

Indeterministic theories are notoriously difficult to get a grip on, so one may use the 

simple model proposed by Ehrenfest (Baldovin et al 2019, Ehrenfest 2015). This model can 

be taken as the prototypical example of indeterministic dynamics and can be used to study 

the differences and the similarities between deterministic and indeterministic theories 

(Zanghì 2005). Suppose there are 𝑁 numbered balls in two boxes, one on the right and on 

the left. The Ehrenfest process is a discrete-time process which describes the 

indeterministic dynamics defined by a series of random jumps of the balls from one box to 

the other, one at a time. To describe this dynamics, somewhat oddly but ultimately 

usefully, one can think in terms of macrostates and microstates also in this context. The 

microstate at a given time is the list of ball locations in one or the other box at that time. 

That is,  𝑋 = (𝑎1, … , 𝑎𝑁), such that the i-th entry is 0 if the i-th ball is in the right box and is 

1 if it is in the left one. At another time, take a ball at random from a box and put it in the 

other (or: let one ball at random ‘jump’ from one box to the other). Consequently, the 

microstate changes. For instance, assuming for simplicity there are only two balls, there 

are only four possible initial states: (1,1), both balls on the left, (0,0), both balls on the right, 

(1,0) and (0,1), respectively the first ball on the left and the second on the right, and the 

other way around. If the actual initial state is, say, (1,1), then the system can evolve at time 

𝑡 = 1 into (1,0) or (0,1) with probability ½ each.  Assuming the state at 𝑡 = 1 is (1,0), then, it 

can evolve at time 𝑡 = 2 into either (0,0) or (1,1), again with ½ probability each. And so on.  

Now drop the simplification that there are just two balls. If at the beginning all balls are in 

the left container, that is 𝑋0 = (1,1,1,1 … ), it can be shown that, as the number of jumps 

increases, the number of balls contained in each box will tend to be the same. If so, an 

example of microstate after a sufficiently long time 𝑇 is 𝑋𝑇 = (1,0, … ,0,1 … ), with an equal 

number of randomly distributed zeros and ones. This is so for combinatorial reasons, 

given that there are many more ways in which 𝑁 balls can be distributed half in the left 

and half in the right box than any way. Thereby, one can define an ‘equilibrium’ 

macrostate as the state of all the microstates in which the balls are half in one box, and half 

in the other. We can call it equilibrium because after this configuration is reached, the 

systems will tend to stay there, just like in statistical mechanics.  

Can we write a law for this behavior? A first possibility is to describe the law in 

pure probabilistic terms: if the system is at a given initial time 𝑡 = 0 in the state 𝑋0, at the 

time 𝑡 the system will have certain probability (namely 1/2𝑁) to evolve in one of the 2𝑁 

possible states. In this picture the past is fixed and the future open, and accordingly there 

is a fundamental difference between indeterministic and deterministic dynamics, in which 

both the past and the future are fixed. Nevertheless, Zanghí points out, there is another 

mathematically equivalent way of reformulating the law avoiding the postulation of a 
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fundamental difference between past and future. Let us start from the microstate 𝑋0 at 

𝑡 = 0. At time 𝑡 = 1, there are 𝑁 possible states; at 𝑡 = 2, the different states are 𝑁2; and so 

on, so that at 𝑡 = 𝑛 they are 𝑁𝑛. In other words, from the initial microstate 𝑋0, which 

describes how the balls are arranged in the two boxes, the microstate, namely the balls 

distribution,  evolves in time as described by a branching graph (See figure 1). 

 
Figure 1: Possible histories in an Ehrenfest process. For graphical simplicity I have assumed that 

there are only two balls (N=2). 

In a deterministic dynamics, one microstate evolves in time into another microstate, 

and therefore, the complete history of the world is a single curve in phase space. In 

contrast, in an indeterministic theory described in this way, given that multiple states 

become available to the incoming microstates, the history of the world involves a 

continuous ramification in phase space. Accordingly, the set of all the histories of the 

world for all the 2𝑁 possible initial microstates is the union  of the graphs corresponding 

to the different initial microstates, which becomes the space of all the possible state of 

affairs of the world in the case of an indeterministic theory. This branching scenario is a 

pictorial representation of what having multiple future means. However, even if there are 

multiple future available, the system will invariably evolve into only one of them. That is, 

if we assume a timeless view and look at the space of possible histories, there will always 

be single histories, namely single sequences of states at different times: one sequence for 

each path the system at one time will have taken at a later time. 

Now, let us go back to Boltzmann’s explanation. One of the ingredients was the 

typicality measure, which is a measure in phase space, given that phase space represents 

the space of all the possible histories of the world. However, in this context, the space of 
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the possible histories of the world is , namely the union of the graphs corresponding to 

each possible initial microstate. Accordingly then, the typicality measure will have to be 

taken on such space and thus applied to all the possible histories. If the stationary account 

of typicality is correct, then, the indeterministic dynamics will determine as typicality 

measure the one which is stationary on the space of possible histories. Namely, the one 

does not privilege any temporal instant.  

One can define the notion of time-translation invariance in this context as follows: 

assuming that 𝐴 is a set of possible histories and that 𝐴−𝑡 is the set of these histories 

translated back in time, then the measure is time-translation invariance if it assigns the 

same size to both sets: 𝜇(𝐴) = 𝜇(𝐴−𝑡). In fact, since there is no privileged time, a possible 

history is a sequence of instantaneous states with both endings open, of the form: 𝑋 =

[… , 𝑋−1, 𝑋0, 𝑋1, … ], which is infinite on both the right and the left hand sides. Translating 

this sequence back in time of, say, a single time unit, means considering another way the 

world can be, one in which: the state at time 𝑡 = 1 is identical with the state at time 𝑡 = 0 

of the original sequence, namely 𝑋0; the state at time 𝑡 = 2 is identical with the state at 

time 𝑡 = 1 of the original sequence, namely 𝑋1; and so on.36 

How does this apply to the spontaneous collapse theory? The situation is more 

complicated because there are not only two states to jump between, but infinitely many, 

since the positions in which the wave-function can be localized after a collapse form a 

continuum.37 Moreover, the accessible states are constrained by the quantum probability 

rules rather than being accessible with the same probability.  However, it seems that given 

the initial wave-function, the set of possible accessible states at a later time will still be a 

graph. Similarly, therefore, the space of possible microstates is the union of these graphs, 

one for each initial possible microstate. Hence, the typicality measure is the stationary, 

generic measure on this space as defined by the dynamics.  

If this is so, there are more similarities than differences between deterministic and 

indeterministic theories: in deterministic theories, given an initial state, the dynamical 

laws determine the typicality measure on the space of possible histories of the world, 

namely phase space, and in indeterministic theories, given an initial state, the dynamical 

laws determine the typicality measure on the space of possible histories, namely  . Thus, 

in both deterministic and indeterministic cases, given an initial condition and the 

dynamics, ‘everything follows.’ That is, the set of possible states and the typicality 

measure are specified by the dynamics.   

 

6.  Conclusions 
 

Let us finally go back to the originally discussed Boltzmann’s account of macroscopic 

regularities. According to Albert and Loewer’s view discussed here, three ingredients are 

needed:  

                                                 
36

 See also Bedingham and Maroney (2017) and Allori (2019) for a similar view to define time reversal for 

indeterminist theories. 
37 I am leaving aside considerations about the so-called primitive ontology approaches to GRW theory (see 

Allori, Goldstien Tumulka and Zanghí 2008) but a generalization seems straightforward.  
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1. The laws of motion, 

2. The past hypothesis, 

3. The statistical postulate. 

From this, one can construct an argument that the spontaneous localization theory does  

not need to introduce the statistical postulate, for probability appears once and, so to 

speak, it is ‘in the right place’ within the dynamics. This, if this theory were true, one 

would need two, rather than three, ingredients, and on this basis such a theory should be 

preferred over the deterministic alternatives.  

In this paper I have done the following:  

1) I have shown, building on the work of Goldstein and collaborators, that, assuming 

there is a statistical postulate that specifies how to count states, it is not necessary 

for it to be about probabilities. In fact the notion of typicality is enough.  

2) I have also shown that the statistical postulate, now understood as a typicality 

postulate, can be derived from the dynamics under symmetry constraints 

(stationarity, genericity).  

3) Finally I have shown, following Zanghí, that both indeterministic and deterministic 

theory can ground a typicality-based understanding of macroscopic phenomena. In 

fact, when appropriately reformulated, they both require the same two ingredients:  

a. The specification of the dynamical laws, which determine the space of 

possible histories as well as the typicality measure; 

b. The past hypothesis.  

If that is so, then both indeterministic and deterministic theories have basically the same 

relevant structure, and therefore there cannot be any fundamental difference in how 

satisfactorily they explain the macroscopic laws. 
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