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Abstract: 

Thermodynamic macro variables, such as the temperature or volume macro variable, can 

take on a continuum of allowable values, called thermodynamic macro values. Although 

referring to the same macro phenomena, the macro variables of Boltzmannian Statistical 

Mechanics (BSM) differ from thermodynamic macro variables in an important respect: 

within the framework of Boltzmannian Statistical Mechanics the evolution of macro values 

of systems with finite available phase space is invariably modelled as discontinuous, due to 

the method of partitioning phase space into macro regions with sharp, fixed boundaries. 

Conceptually, this is at odds with the continuous evolution of macro values as described by 

thermodynamics, as well as with the continuous evolution of the micro state assumed in 

BSM. This discrepancy I call the discontinuity problem (DP). I show how it arises from BSM’s 

framework and demonstrate its consequences, in particular for the foundational project of 

reducing thermodynamics to BSM: thermodynamic macro values are shown to not 

supervene on the corresponding BSM macro values. With supervenience being a conditio 

sine qua non for the kind of reduction envisaged by the foundational project, the latter is in 

jeopardy. 
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Introduction 
 

A core method of the framework of Boltzmannian Statistical Mechanics (BSM) is the 

partitioning of phase space into non-overlapping macro regions, i.e., disjoint sets of micro 

states. Macro regions are of finite, non-zero volume, and stand in a one-to-one 

correspondence with different macro states.1 Given a finite volume of phase space to be 

partitioned, there is a finite number of macro regions in a partition. Macro states are 

specified via particular macro values, e.g., for temperature, volume and pressure of a gas. In 

general, macro states are defined and specified via particular macro values taken on by 

macro variables: following Werndl & Frigg (2015, 1225), a system “can be characterized by a 

set {𝑣1, … , 𝑣𝑘} of macrovariables (𝑘 ∈ ℕ). The 𝑣𝑖 assume values in [macro value space] 𝕍𝑖, 

and capital letters 𝑉𝑖 denote the values of 𝑣𝑖. A particular set of values {𝑉1, … , 𝑉𝑘} defines a 

macrostate 𝑀𝑉1,…,𝑉𝑘
.” 

 

Boundaries between macro regions are construed as being sharp: under a given partition, 

each micro state is a member of one and only one macro region. Since macro regions stand 

in a one-to-one correspondence with macro states – i.e., there is a bijection between the set 

of macro regions and the set of macro states – each micro state instantiates one and only 

one macro state, and micro states from different macro regions instantiate different macro 

states. Also, once fixed, a given partition doesn’t change (Hemmo & Shenker 2012, 53): “The 

partition of the state space into macrostate regions is fixed in time”; and (ibid., 56): “the 

partition of the state space into macrostates […] is time-independent”. This partition of 

phase space into a finite number of macro regions with sharp, fixed boundaries results in 

models that are unable to describe continuous macroscopic change: whenever macroscopic 

change is modelled within the framework of BSM, it is modelled as discontinuous. That is, 

according to BSM’s models, every time the micro state of a system crosses the boundary 

between two macro regions, a discontinuity in (at least one of) the system’s macro values 

results. 

 
1 See, e.g., Callender (1999), Frigg & Werndl (2012), Werndl & Frigg (2015), Goldstein et al. (2017). The 
following discussion is based mainly on the framework of BSM as presented in the writings of Charlotte Werndl 
and Roman Frigg, but also others. I will often refer to it as the “usual framework”, for it is fairly common, 
without intending to imply that there aren’t any alternatives. Thus, the issues identified pertain at least to this 
“usual” account, but not necessarily to all possible accounts. In particular, I deem it possible to avoid the 
discontinuity problem described below by adopting a different way of carving up phase space. Such an 
alternative I will present in a companion paper. 
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Conceptually, this is at odds with the thermodynamic description of the continuous time-

evolution of macro values, and likewise with the continuous evolution of the micro state in 

phase space. From this discontinuity problem (DP), as I call it, ensues a problem for the 

foundational project2 of reducing thermodynamics to BSM.3 The foundational project is, as 

Callender (1999, 348) puts it, “the project of demonstrating how real mechanical systems 

can behave thermodynamically.” 

 

Take, for example, a gas consisting of a number 𝑁 of particles and assume that classical 

mechanics provides a correct description of the fundamental goings-on, i.e., of the dynamics 

of the 𝑁 particles. The micro state of such a 𝑁-particle system is represented by a point 𝑥 in 

6𝑁-dimensional phase space 𝛤, specifying all positions and momenta of the 𝑁 particles. “As 

the system evolves through time, this representative point will trace out a trajectory through 

𝛤. We thus have two descriptions of our gas: one mechanical and the other 

thermodynamical. We would like to know how they relate to one another. This kind of 

problem is quite familiar to philosophers. Philosophers of biology, psychology, and all of the 

special sciences are busy trying to demonstrate how the properties and concepts used by 

their science are (not) reducible in some sense to the properties and concepts of ‘lower 

level’ sciences. The problem is one of intertheoretic reduction.” (Callender 1999, 350f.) 

 

The thrust of this paper is to show that this inter-theoretic reduction of thermodynamics to 

BSM isn’t as straightforward as it might seem at first – even in the seemingly simple case of 

reducing the thermodynamic concept of temperature to its analogue in BSM – and to show 

why this is so. This problem will be framed in terms of models and their (in)adequate 

tracking of their target systems. The question to be answered, then, is the following: Is the 

evolution of macro values of thermodynamic target systems adequately tracked by BSM’s 

models? It will be answered in the negative: the BSM framework, in principle, doesn’t allow 

for models that adequately track the evolution of thermodynamic macro values. This, while 

 
2 I adopt the terminology from Callender (1999, 348). 
3 Throughout this paper, I adopt the “Philosopher’s sense of reduction”, see Batterman (2020). 
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being unproblematic for the practitioner, constitutes a conceptual hurdle for the 

foundational project.4 

 

Many of the literature on the reduction of thermodynamics to statistical mechanics engages 

with the tension between time-reversal invariant micro dynamics and the second law of 

thermodynamics. This is not the subject of the present investigation. The problem at hand, 

in a sense, is more basic: while thermodynamic descriptions allow for continuous change of 

temperature macro values, descriptions provided by BSM’s models don’t. It is in this sense 

that the latter do not adequately track the former. The two descriptions come apart: 

macroscopic temperature, as described by BSM, behaves differently in its evolution over 

time than macroscopic temperature as described by thermodynamics. This indeed is 

puzzling, and poses a threat to the foundational project: with macroscopic temperature in 

thermodynamics (𝑇𝑇𝐷) differing in this way from macroscopic temperature in BSM (𝑇𝐵𝑆𝑀), 

the possibility of reducing one to the other is put into question. At the very least, 𝑇𝑇𝐷 and 

𝑇𝐵𝑆𝑀 aren’t readily identified with one another, as might seem possible at first sight. What’s 

more, as will become evident later, 𝑇𝑇𝐷 doesn’t supervene on 𝑇𝐵𝑆𝑀, a condition generally 

regarded as a necessary requirement for reduction. As van Riel & Van Gulick (2019, 4.5.3) 

write: “it [supervenience] surely is a necessary condition for reduction”. Likewise, 

McLaughlin & Bennett (2018, 3.3): “Everyone agrees that reduction requires 

supervenience”. But with supervenience being a conditio sine qua non for reduction, and 

𝑇𝑇𝐷 not supervening on 𝑇𝐵𝑆𝑀, the former cannot be reduced to the latter. 

 

The aim of this paper is not to argue against the foundational project of reducing 

thermodynamics to BSM, or to attack the latter. Rather, the goal is to contribute to the 

foundational project by providing counterexamples that show where BSM and its models, as 

it stands, have their shortcomings, and how these threaten the foundational project. 

Following Wimsatt (2006, 473), “counterexamples become revealing sources of information 

about limitations of a model, or suggestions for probing its depths; in either case, a tool to 

refine the model, not an argument for trashing the system, or something to be swept under 

the rug.” 

 
4 Like Callender’s (see ibid., 349), my quarrels are philosophical in nature, concerning the foundational project. 
The practicing scientist needn’t be concerned. 
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Models describing change of macro values as always discontinuous are at odds with 

thermodynamic descriptions of these macro values: a system’s macroscopic evolution as 

described by thermodynamics involves continuous change of its macro properties – of the 

temperature value, for example. Likewise, such models are at odds with the continuous 

evolution of the micro state 𝑥 through 𝛤. A continuous evolution of the micro state should 

not lead to discontinuous change of the macro state, i.e., should not lead to a discontinuity 

in the evolution of macro values. Yet, as the framework of BSM is set up, continuous change 

of the micro state sometimes (i.e. upon traversing boundaries between macro regions) does 

lead to discontinuous change of the macro state. In fact, the models resulting from the 

framework of BSM predict that, whenever there is macroscopic change, it is sudden and of a 

jumpy nature: during its wanderings within a macro region, the micro state always and 

invariably instantiates the same, unchanging macro state, according to the framework’s 

models. As soon as the micro state moves into a different macro region, however, it 

suddenly instantiates a different macro state: since boundaries between macro regions are 

construed as sharp, macro values jump upon traversal of the micro state from one macro 

region to another. This results from the definition of macro states via “particular set[s] of 

[macro] values”, and the bijective association of the so defined macro states with macro 

regions of finite volume (Werndl & Frigg 2015, 1225): “a system’s microstate uniquely 

determines its macrostate. Every macrostate 𝑀 is associated with a macroregion 𝛤𝑀 

consisting of all 𝑥 ∈ 𝛤𝐸  [with 𝛤𝐸  denoting the energy hypersurface, i.e. the complete 

available phase space for a constant energy] for which the system is in 𝑀.” The consequence 

of this construal is that at least one macro value always jumps upon the micro state crossing 

boundaries between macro regions. Assuming that the continuous thermodynamic 

evolution of macro states is to be recovered when reducing thermodynamics to BSM, 

jumping macro values, especially upon tiny changes of the micro state, are ill-suited. Yet, the 

partition of phase space into disjoint macro regions of finite, non-zero volume with fixed, 

sharp boundaries, as prescribed by the usual framework, results in models describing 

jumping macro states. 

 

This discontinuity problem, merely sketched so far, will be discussed in detail in the 

following. At this point, some emphasis should be put on the fact that DP only pertains to 



 6 

models resulting from the usual framework of BSM, and explicitly not to the target systems 

described by those models. The claim is neither that the physical systems themselves suffer 

from DP, i.e., that they always undergo discontinuous macroscopic change, if they undergo 

macroscopic change at all. Nor, that the thermodynamic description of these physical 

systems suffers from DP. Rather, only the BSM models that describe them entail these 

unavoidable discontinuities. This, in itself, would even be unproblematic. Per se, there is 

nothing wrong about models allowing only for discontinuous change. DP arises only if one 

wants to have these models adequately describe systems that undergo continuous 

macroscopic change as described by thermodynamics. Hence, what renders DP problematic 

is the discrepancy between two modes of description – BSM’s models on the one hand and 

the thermodynamic description on the other. And this discrepancy becomes problematic in 

particular within the context of the foundational project. However, if no inter-theoretic 

reduction of thermodynamics on BSM is sought, and in particular, if no reduction of 𝑇𝑇𝐷 on 

𝑇𝐵𝑆𝑀 is sought, one might as well live happily with this discrepancy. 

 

The framework of BSM 

 

Let’s take a closer look at the framework of BSM as it is usually presented, e.g. in discussions 

of approach to equilibrium:5 We are interested in a (classical) system comprised of 𝑁 

constituents that move through physical space. The micro state of the system – a complete 

specification of the positions and momenta of all the constituents involved in the system – is 

represented by a point 𝑥 in its 6𝑁-dimensional phase space 𝛤. (If the energy of the system is 

constant, the phase space volume available to the system is reduced to a (6𝑁 − 1)-

dimensional energy hypersurface 𝛤𝐸.) The available phase space is partitioned into sub-

regions that correspond to different macro states 𝑀𝑖 – specified by particular macro values 

taken on by macro variables, see above – of the system: the sub-region in 𝛤 corresponding 

to a macro state 𝑀𝑖 is the set of all 𝑥 ∈ 𝛤 that instantiate 𝑀𝑖 and called the macro region 

𝛤𝑀𝑖
. Macro regions 𝛤𝑀𝑖

 form a partition of 𝛤: they cover all of the available 𝛤 and do not 

overlap. A macro state of special interest is 𝑀𝑒𝑞 , the equilibrium state, instantiated by any 

 
5 Roughly following the presentation in Frigg & Werndl (2012, 101f.). 
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micro state 𝑥 ∈ 𝛤𝑀𝑒𝑞
 (and counterfactually instantiated6 by all micro states 𝑥 ∈ 𝛤𝑀𝑒𝑞

). Given 

the standard Lebesgue measure, the volume of sub-regions of 𝛤 can be assessed and hence 

is rendered comparable. It is usually said that (Frigg & Werndl 2012, 102) “for gases 𝛤𝑀𝑒𝑞
 is 

vastly larger […] than any other macro-region, a fact also known as the ‘dominance of the 

equilibrium macrostate’ […]; in fact 𝛤𝐸  is almost entirely taken up by equilibrium microstates. 

For this reason the equilibrium state has maximum entropy.”  

 

Partitioning phase space into macro regions 

 

Of special importance for the purposes of this paper is the notion of macro regions and their 

partitioning phase space (ibid.): “From a macroscopic perspective, the system is 

characterised by a set of macrostates 𝑀𝑖 , 𝑖 = 1, … , 𝑚. To each macrostate corresponds a 

macro-region 𝛤𝑀𝑖
 consisting of all 𝑥 ∈ 𝛤𝐸  for which the system is in 𝑀𝑖. The 𝛤𝑀𝑖

 form a 

partition of 𝛤𝐸, meaning that they do not overlap and jointly cover 𝛤𝐸.” Frigg et al. (2016, 4.1) 

summarise the key feature of the correspondence between micro states and macro states in 

a short statement: “to every given microstate 𝑥 there corresponds exactly one macrostate”. 

 

For one thing, this means that 𝑥 either instantiates a certain macro state 𝑀𝑖 or another 

macro state 𝑀𝑗, (𝑖 ≠ 𝑗), but never both. Since macro states 𝑀𝑖 and 𝑀𝑗 correspond to macro 

regions 𝛤𝑀𝑖
 and 𝛤𝑀𝑗

, respectively, 𝑥 must not belong to two macro regions. This can be called 

the no-overlap condition: 

 

∀𝑥∀𝛤𝑀𝑖,𝑗
 ¬ (𝑥 ∈ 𝛤𝑀𝑖

∧ 𝑥 ∈ 𝛤𝑀𝑗
) ;  𝑖 ≠ 𝑗  (no-overlap) 

 

For another, it means that macro regions exhaustively cover the available phase-space 

volume. All micro states must instantiate exactly one macro state, read as: every micro state 

must instantiate some macro state, and hence belong to some macro region. It cannot 

belong to no macro region at all. Hence, all of the available phase space must be covered by 

 
6 “Counterfactually instantiated” in the sense that at any time, only one micro state is actualized, and thus only 
one micro state actually instantiates the macro state, but the actualization of the other micro states in the 
same macro region would instantiate the same macro state, if they were actualized instead. 
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macro regions (“they … jointly cover 𝛤𝐸.” (Frigg & Werndl 2012, 102.)) This can be called the 

exhaustive-cover condition: 

 

∀𝑥∃𝛤𝑀𝑖
(𝑥 ∈ 𝛤𝑀𝑖

)  (exhaustive-cover) 

 

Taken together, no-overlap and exhaustive-cover ensure that there is always some macro 

state instantiated, that this macro state is internally consistent, i.e., that a micro state never 

instantiates two (or more) distinct macro states at the same time, and that macro regions 

are not fuzzy: while it might be the case that there is some uncertainty or even complete 

ignorance about which macro state a given system is actually in – if only because the 

respective macro values haven’t been measured/observed – one can always be sure that its 

actual micro state 𝑥 is located in some macro region or other, i.e. in one (exhaustive-cover) 

and only one (no-overlap) macro region 𝛤𝑀𝑖
, and that thus, one and only one macro state is 

instantiated at any given time. After all, fuzzy boundaries would mean that the actual micro 

state does not always belong to a certain (i.e. to one and only one) macro region. Being 

located at the fuzzy boundary, 𝑥 could belong to 𝛤𝑀𝑖
, to 𝛤𝑀𝑗

, to neither, or to both. The latter 

option “both” is excluded by no-overlap. The option “neither” is excluded by exhaustive-

cover. Hence, it must belong to either one of the former. In other words: boundaries of 

macro regions are sharp. 

 

These considerations about the overlap and fuzziness of macro regions – or rather: these 

stipulations of their impossibility – are reflected in the schematic pictorial representations of 

phase-space partitioning we find, e.g., in Goldstein et al. (2019)7: 

 

 
7 I thank Sheldon Goldstein and the publisher of Annalen der Physik for the permission to reproduce this figure. 
It first appeared in Goldstein et al. (2017). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with 
permission. 
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Figure 1 

As can be seen, macro regions cover all of phase space, do not overlap and have sharp 

boundaries. 

 

The origin of the discontinuity problem 

 

As stated above, macro regions in phase space are of finite, non-zero volume, and there is a 

finite number of macro regions in a partition. Why is that so? First, let’s answer the question 

why macro regions must have a finite, non-zero volume. The reason for this lies in the way 

BSM works. The Boltzmann entropy function – 𝑆𝐵(𝑀𝑖) ≔ 𝑘𝐵log [𝜇(𝛤𝑀𝑖
)]8 – relies on the 

volume of macro regions in order to assign different entropy values to different macro states 

of a system. If, contrary to this, macro regions in fact were of volume zero, the entropy 

function would assign to macro states no well-defined entropy value. This would seriously 

undermine the spirit and functionality of BSM. For example, it would be impossible to mark 

the equilibrium macro state as dominant in virtue of its having the highest entropy. Likewise, 

arguments about the relation of entropy change and the arrow of time would be blocked. 

This consequence is to be avoided, if only for the fact that it would be too high of a price to 

pay in comparison to what potentially could be gained by having zero volume macro regions. 

 
8 See Frigg & Werndl (2012, 102), Werndl & Frigg (2015, 1225). 
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In order to retain its spirit and functionality, BSM must construe macro regions as having 

finite volume greater zero. 

 

Let’s move on to the second part of the statement above: there is a finite number of macro 

regions in a partition. The reason for that is rather simple. Given macro regions, as construed 

within the framework of BSM, are of finite, non-zero volume (and do not approach zero 

volume), it is trivial that the finite volume of phase space available to a system can only be 

partitioned into a finite number of macro regions. But why even assume that the available 

phase space volume is finite? If it were infinite itself, it could be partitioned into an infinite 

number of compartments, despite the latter having a finite, non-zero volume. However, it is 

unreasonable to assume an infinite phase space volume for at least many of the systems 

BSM is supposed to model. For example, in the paradigmatic gas in a box, the spatial degrees 

of freedom each constituent has are bounded: particles can only move within the box (itself 

of finite volume). Such cases should be covered by BSM, so it is uncalled for to simply 

assume that BSM only models systems that are not limited to a finite spatial volume. 

Likewise, for finite temperatures, the momenta of the particles can only take on values 

within certain limits. Accordingly, the phase space volume of the entire system is restricted 

to be finite, if very large. And once the available phase space volume is finite, it is impossible 

to partition it into an infinite number of compartments with finite, non-zero volume. So the 

number of macro regions in a partition must be finite. 

 

Having established that there is a finite number of macro regions in a partition, there can 

only be a finite number of different macro states. Macro states and macro regions, as 

described before, stand in a one-to-one correspondence. That is, the mapping between 

macro regions and macro states is bijective. But it is impossible to map a set containing an 

infinity of elements – let alone a set containing an uncountable infinity of elements – 

bijectively onto a set containing only a finite number of elements. Accordingly, it is 

impossible to bijectively map infinitely many macro states onto finitely many macro regions. 

So if there is a finite number of macro regions, they can only correspond to a finite number 

of different macro states. In fact, the number of macro states and the number of macro 

regions in the model must be equal: there are precisely as many macro states as there are 

macro regions, and this number is finite. 
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Given there is a finite number of different macro states, there can only be a finite number of 

different sets of macro values corresponding to them. In the BSM framework, a macro state, 

as defined above, is specified by a set of macro variables, taking on macro values. The 

simplest case, of course, is if this set only contains one relevant element, such that we can 

ignore the rest. Take, for example, some macro states that differ only in their temperature 

macro values. In this case, we can ignore other macro variables: they are assumed to take on 

identical values for the different macro states. Since there is a finite number of different 

macro states in the model, and these macro states differ in their temperature macro value, 

there is a finite number of different temperature macro values. The reason for this is similar 

to the one just discussed in the case of macro regions and macro states: the set of different 

macro states, since the latter are specified by temperature macro values, stands in a one-to-

one correspondence to the set of different temperature macro values. So with a finite 

number of different macro states, there is a finite number of different temperature macro 

values specifying the former. 

 

It is important to recognize that different macro regions must correspond to different macro 

states, and thus to different macro values. For if different macro regions would correspond 

to the same macro state, i.e. to identical macro values, they wouldn’t be different macro 

regions in the first place. Such macro regions, corresponding to the same macro state, would 

be combined into one macro region. This is a consequence of the one-to-one 

correspondence between macro regions and macro states in the framework of BSM. In 

effect, different macro regions must correspond to different macro states, and, a fortiori, to 

different macro values. In the simplified example, being concerned only about the 

temperature macro variable, this means that different macro regions must correspond to 

different temperature macro values. But, as argued above, there is only a finite set of macro 

regions, and hence a finite set of different temperature macro values assigned to them. 

What, then, does it mean for a finite set of temperature macro values to consist of different 

temperature macro values? It means that, when subtracting any value from this set from 

any other, the result must always be different from zero, for if it was zero, the two values 

would be identical. It is unreasonable to assign identical macro states, i.e., macro states not 

differing in their macro values, to different macro regions, as argued before: those macro 
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regions would be combined into one macro region, such that, in the end, macro regions and 

macro states remain in a one-to-one correspondence, and likewise macro regions and (sets) 

of macro values. 

 

So there is a finite set of different macro values, each specifying a different macro state, 

corresponding to different macro regions. But if all pairs of elements of the set of macro 

values are different in that the subtraction of any one of them from any other results in a 

non-zero difference, then the transition between two macro values, i.e. between two macro 

states, i.e. between two macro regions, is always modelled as discontinuous. To illustrate 

this, imagine the temperature macro value of a system as modelled by BSM graphed as a 

function over time (figure 2): 

 

 

Figure 2 

 

As long as the micro state wanders through a macro region 𝛤𝑀𝑖
, the temperature macro 

value 𝑇(𝑡) = 𝑇𝑀𝑖
 remains absolutely constant, according to the model. So the graph shows a 

continuous, straight line parallel to the time axis, representing the constant temperature 

macro value. But at the precise instant the micro state crosses the boundary and moves into 

another macro region 𝛤𝑀𝑗
 – call this instant 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 – the temperature macro value changes 

to 𝑇(𝑡) = 𝑇𝑀𝑗
. Then, as long as the micro state stays in this macro region, the temperature 
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macro value again remains absolutely constant, so the graph again shows a continuous, 

straight line parallel to the time axis, representing this different temperature macro value. 

Thus, the graphed function, at 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔, contains a discontinuity which is not removable: 

consider the limit 𝐿− = lim
𝑡→𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

−
𝑇(𝑡) of the function for 𝑡 approaching 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  from the 

left side, i.e. for the time during which the micro state moves through the first macro region 

𝛤𝑀𝑖
. The value of this limit is the temperature value before crossing the boundary: 𝐿− = 𝑇𝑀𝑖

. 

Now consider the limit 𝐿+ = lim
𝑡→𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

+
𝑇(𝑡) of the function for 𝑡 approaching 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  from 

the right side, i.e. for the time during which the micro state moves through the second 

macro region 𝛤𝑀𝑗
, traced backwards. The value of this limit is the temperature value after 

crossing the boundary, 𝐿+ = 𝑇𝑀𝑗
. Since 𝑇𝑀𝑖

≠ 𝑇𝑀𝑗
, the limit from the left side and the limit 

from the right side are unequal as well: 𝐿− ≠ 𝐿+. So there exists no single limit; the 

discontinuity at 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  indeed is a jump discontinuity. 

 

This is how the discontinuity problem arises from the usual framework of BSM. As stated 

before, DP consists in the discrepancy between the thermodynamic description of the time 

evolution of macro values, which can change continuously, and the fact that, in the usual 

framework of BSM, continuous change of macro values can’t be modelled. So it neither 

consists solely in the fact that BSM is unable to model continuous change alone, nor does it 

contain the claim that in nature, or in thermodynamics, or in reality, macroscopic change is 

always discontinuous. The discontinuity encountered in BSM’s models is an artefact resulting 

from the way the framework is set up: partitioning phase space into a finite number of 

macro regions, standing in a one-to-one correspondence with different macro states, the 

latter themselves standing in a one-to-one correspondence with different sets of macro 

values specifying them, such that, in the end, the elements of a finite set of macro regions 

stand in a one-to-one correspondence with the elements of a finite set of macro values – – 

this partitioning, judged from the thermodynamic viewpoint, where continuous change of 

macro values is allowable, is an idealisation. In which sense this idealisation is problematic 

will be discussed in the following. 

 

Models, fundamentality, and the discontinuity problem 
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The discontinuity problem of BSM is put into sharp relief in the context of the foundational 

project of reducing thermodynamics to BSM, regarding BSM as the fundamental theory, as 

for example Frigg & Werndl (2019) do. They classify BSM as a fundamental, true and 

complete theory (within the scope of statistical mechanics, and as opposed to Gibbsian 

statistical mechanics, which they consider to be an effective theory): “BSM is a fundamental 

theory” (425, 430, 436); “BSM provides a true description of the systems within the scope of 

SM” (425); “BSM provides the complete fundamental theory of SM systems” (431). By 

contrast to effective theories, fundamental theories are supposed to provide correct 

descriptions of the world (ibid. 431): “BSM is quite unlike GSM [...]. Dynamical 

considerations occupy centre stage in BSM. It introduces macrostates with corresponding 

macroregions, and then defines equilibrium in explicitly dynamical terms (namely as the 

macrostate whose macroregion is such that, in the long run, the system’s state spends most 

of its time in that macroregion). […] [U]nder the assumption that the world is governed by 

Newton’s equation of motion […] the dynamics considered in BSM is the true dynamics at 

the fundamental level: the unabridged and unidealised dynamics with all interactions 

between all microconstituents of the system. Equilibrium results from macrostates that are 

defined in terms of macrovariables that supervene on the true microdynamics of the system, 

and where a system fluctuates away from equilibrium it does so as a result of the true 

underlying dynamics. In a classical world the theory gives a full account of all this – nothing is 

left out and nothing is averaged over. BSM provides the complete fundamental theory of SM 

systems.” 

 

Clearly, Frigg and Werndl engage in the foundational project, explaining macroscopic 

(thermodynamic) behaviour qua reduction to the more fundamental level as modelled by 

BSM. In order to make clear why this isn’t as trivial as it seems, one first needs to distinguish 

between two types of functions models can have, and the way in which they can be 

deficient. 

 

The first type of function of models is to “represent a selected part or aspect of the world, 

which is the model’s target system.” (Frigg & Hartmann 2020, 1., my emphasis.) Scale 

models have this function. They are (ibid.) “down-sized or enlarged copies of their target 

systems. A typical example is a small wooden car that is put into a wind tunnel to explore 
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the actual car’s aerodynamic properties.” Whether a model fulfils its representational 

function successfully depends on the application. The wooden car model might be successful 

in representing the aerodynamic aspects of the real car, but it certainly fails in representing 

the real car’s material composition (see ibid.). It is deficient in the sense that it doesn’t 

represent all aspects of the real car. With respect to the intended application, this deficiency 

isn’t problematic. There, its function is to represent a certain aspect of the real car, not all of 

them. 

 

A different type of function of models is to describe a target system that falls within the 

domain of description of a given theory or theoretical framework. For example, a system of 

two massive objects orbiting each other in empty space is a target system that falls within 

the domain of description of Newtonian classical mechanics. Models describing a target 

system often entail approximations or idealisations. Borrowing the distinction from Norton 

(2012, 210), “an approximation is an inexact description of a target system.” For example, 

using Newtonian mechanics to describe the target system of two objects orbiting each other 

in empty space results in a model ignoring relativistic effects. This amounts to an 

approximation. “An idealization”, on the other hand, “is a real or fictitious system, distinct 

from the target system, some of whose properties provide an inexact description of some 

aspects of the target system” (ibid.). (Fictitiously) modelling the above two-body target 

system as a system of two point-like masses would be an idealization. This model isn’t 

merely an approximation. It also has a representational function in that it represents the 

aspects “mass” and “position” of the target system in a fictitious system of point-like 

masses. Different functions of models aren’t necessarily mutually exclusive. Approximations 

are deficient in virtue of being inexact, and the same is true for idealisations, for they entail 

approximations. Idealisations however, because they are systems themselves (if only 

fictitious ones), may also be deficient in virtue of not representing all aspects of the target 

system. Again, these deficiencies aren’t problematic, as long as the model fulfils its intended 

function. 

 

The function of BSM’s models is of the second type. They describe some aspects of a target 

system, e.g., of a gas in a box, that falls within the domain of description of BSM. To be more 

precise, they describe the macro evolution of a thermodynamic target system, e.g., during 
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approach to equilibrium. Due to its method of partitioning phase space, BSM’s models are 

an idealisation in that they replace the thermodynamic target system with a fictitious system 

that can only instantiate a subset of the macro states the target system can assume.9 Their 

representation of the time evolution of the target system, in other words, is deficient in 

virtue of not representing all aspects of it. This idealisation entails also an approximation: 

BSM’s models ignore the actual macro values of the thermodynamic target system’s macro 

variables at any given time and approximate them by assigning fixed macro values for finite 

intervals of time. 

 

Now this approximation is unproblematic in practice. If the model is too crude, if the 

approximation is too inexact, one can always impose a more fine-grained partition. 

However, that BSM’s models are idealisations with respect to the possible macro states a 

thermodynamic target system can take on is problematic for the foundational project. 

Working “under the assumption that the world is governed by Newton’s equation of 

motion”, Frigg & Werndl regard BSM as a “true complete fundamental theory”. As Norton 

(2012) points out, one would expect the less fundamental theory to be an idealisation of the 

fundamental theory, not the other way around, as is the case here. Clearly, BSM’s models 

being idealisations with respect to the possible macro states a system can take on is an 

oddity that must not be overlooked when engaging with the foundational project of 

reducing thermodynamics to BSM, especially if the latter is supposed to be not only a 

fundamental, but also a true and complete theory. 

 

Partitioning phase space: a known issue 

 

As described above, the construal of phase space partitioning within the framework of BSM, 

with sharp boundaries between a finite number of non-overlapping macro regions of finite, 

 
9 By contrast, Frigg & Werndl (2019, 431) are correct when they write that the dynamics of the micro state “is 
the true dynamics at the fundamental level: the unabridged and unidealised dynamics with all interactions 
between all microconstituents of the system”, given “the assumption that the world is governed by Newton’s 
equation of motion”. Reduction has already taken place “in the background” (Sklar 1993, 348), in the sense 
that, as Sklar puts it (ibid.), “we have already identified gases as collections of interacting molecules and 
reduced our gas theory to a theory of molecules and their interaction.” The threat to the foundational project 
doesn’t consist in putting into question this background reduction. (More on that below.) That is, it doesn’t 
stem from the ontology and micro dynamics assumed by BSM, which, in this context, i.e., given the above 
assumption, isn’t an idealisation in Norton’s sense. Rather, the threat exists due to discrepancies regarding 
macro properties and their evolution, and stems from BSM’s method of partitioning phase space. 
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non-zero volume, underlies the discontinuity problem. At the same time, this construal 

seems to be standard. There are hints to be found in the literature, showing that not 

everyone considers it to be entirely unproblematic. Goldstein et al. (2019, 4) remark that 

phase space partitioning is not as straightforward a procedure as one might think: “𝛤(𝑋) is 

the set of all phase points that ‘look macroscopically the same’ as 𝑋. Obviously, there is no 

unique precise definition for ‘looking macroscopically the same,’ so we have a certain 

freedom to make a reasonable choice”. And later (ibid., 28), introducing the idea of “‘fuzzy’ 

macro sets”, i.e. fuzzy macro regions: “The point here is to get rid of the sharp boundaries 

between [macro regions] as the boundaries are artificial and somewhat arbitrary anyway.” I 

agree with Goldstein et al.’s verdict that boundaries are “artificial”. They are an artefact, 

resulting from the way the framework of BSM is set up.10 

 

Here is Wallace (2018, 19) taking a similar line regarding the arbitrariness of phase space 

partitioning in BSM: “the macrostate partition at the heart of Boltzmannian statistical 

mechanics is […] vulnerable to these criticisms [(concerning the adequacy of coarse-

graining)] […] Consider some standard descriptions of the coarse-graining: ‘[W]e must 

partition [phase space] into compartments such that all of the microstates 𝑋 in a 

compartment are macroscopically indistinguishable[.]’ (Callender 1999, p.355). ‘Everyday 

macroscopic human language (that is) carves the phase space of the universe up into 

chunks.’ (Albert 2000, p.47) If pushed, I suspect Boltzmannians would reply that it is not the 

epistemic indistinguishability of macrostates that is doing the work, but rather the possibility 

of writing down robust higher-level dynamics in terms of macrostates, and largely 

abstracting over microscopic details”. Wallace’s argument here is a tu quoque: if the 

Gibbsian approach can rightly be criticized for coarse-graining, then the Boltzmannian 

 
10 That they are artificial is not to say that they are necessarily “subjective” or “anthropocentric”. There is a 
strong analogy between coarse-graining in GSM and partitioning in BSM. Robertson 2020 defends both against 
attacks referring to the alleged subjectivity and anthropocentricity, justified by what Robertson (op.cit. 564) 
calls (ibid.) “the MI justification” – the appeal “to our [limited] observational capacities”. As she points out, 
“the MI justification is unsatisfactory”. Most importantly, without going into too many details, coarse-graining, 
and by analogy, partitioning, are (op.cit, 565) “abstraction[s] to a higher level of description”, a level of 
description that in its own right is endowed with explanatory power and describes regularities in the behaviour 
of macroscopic systems such as gases (see op.cit. 566). All this would be lost if it wasn’t for coarse-graining or 
partitioning. As will become clear below, I strongly agree with Robertson’s take: to simply adopt an infinitely 
“fine-grained” partition would amount to not partitioning at all. It would render BSM dysfunctional. That being 
said, for the issues discussed in this paper, it is irrelevant how the partition is justified, and whether this 
justification itself is justified or not. As long as we do partition phase space in the usual way, the issues 
discussed here arise, independently of the particular partition employed and its justification. I am indebted to 
an anonymous referee for the pointer to Robertson’s account. 
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approach can rightly be criticized for partitioning phase space into macro regions. The 

Gibbsian approach is not under consideration here, so this issue shall not further defer the 

discussion. The point to be made is merely that others see a potential for criticism of the 

BSM framework as well, and locate it at the same juncture: the partition of phase space into 

macro regions with sharp boundaries.11 

 

The micro state crossing sharp boundaries 

 

Let’s make DP apprehensible and reveal its consequences in a series of examples. Imagine a 

system of interest, e.g., a gas in a (sealed, insulated) room. Modelling it in the usual way, a 

partition of its available phase space including sharp boundaries between macro regions is 

introduced. These macro regions correspond to different macro states of the gas, such that, 

if the micro state of the gas is located within a certain macro region, the gas instantiates the 

macro state as specified by its corresponding macro values. Hence, the actual micro state of 

the gas determines its actual macro state. Let’s say that, in its initial macro state 𝑀0 at 𝑡0, 

the gas is confined to a certain corner of the room. Let the system evolve until the gas has 

spread out and evenly fills the whole room. This state is called 𝑀𝑒𝑞  and marked with the 

time stamp 𝑡𝑒𝑞 . Clearly, the micro state representing the system must have evolved and 

crossed some boundaries. To simplify the picture, imagine that there are only two macro 

states: 𝑀0 with the gas in the corner, and 𝑀𝑒𝑞  with the gas spread out. Accordingly, there 

 
11 The following exchange between Sheldon Goldstein and Daniel Sudarsky during the former’s talk Gibbs vs. 
Boltzmann Entropy at the Chimera of Entropy summer school in Split in 2018 is also elucidating (my transcript):  
Daniel Sudarsky: “Something that has bothered me all the time: consider that partition that you have [the usual 
partition with sharp boundaries]. Then consider a collection of points that are approaching the boundary from 
the two sides. I cannot imagine being able always to differentiate between them [... inaudible]”. 
Sheldon Goldstein: “You are right. So maybe you need to develop a better scheme which is more realistic, so 
you don't have sharp boundaries. [...] You are quite right; in a better world than ours, somebody will have done 
that. Maybe somebody has some kind of fuzzy notion of macro state. But you don't want to introduce that 
here [in the context of a heuristic discussion of entropy and approach to equilibrium], which will just 
complicate things. But you are completely right, there isn't that realistic division between [macro regions]: ‘Oh, 
these points over here look like equilibrium, go epsilon further, doesn't look like equilibrium anymore.’ That, 
obviously, is unrealistic. But if you want to get an understanding of the phenomena you should make that 
idealisation.” (https://www.youtube.com/watch?v=jU838SXBrv4, 00:52:30 – 00:53:40)  
Of course, such a statement, made in the context of a presentation, must not be mistaken for the “official” 
position of the speaker. That is, it must not be assumed that Goldstein (or Sudarsky) would have made the 
same or a similar statement in a published paper. (Neither, that they wouldn’t make such statements in a 
published paper. After all, Goldstein et al. 2019 call a partition with sharp boundaries “artificial”.) Nevertheless, 
this exchange can be regarded as a further hint to the effect that the way phase space is partitioned in the 
framework of BSM isn’t unanimously viewed as entirely unproblematic. 

https://www.youtube.com/watch?v=jU838SXBrv4
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are two macro regions, 𝛤𝑀0
 and 𝛤𝑀𝑒𝑞

. Since the gas has changed its macro state from residing 

in the corner to filling the whole room, its micro state must have wandered from 𝛤𝑀0
 to 𝛤𝑀𝑒𝑞

. 

Hence, it must have crossed the boundary between these macro regions. Zooming in on the 

phase space region where the micro state crosses the boundary between 𝛤𝑀0
 and 𝛤𝑀𝑒𝑞

, 

there is a precise instant when this happens, namely when the micro state lies exactly on the 

boundary. Let’s mark this instant 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔. Just before 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔, the micro state is in 𝛤𝑀0
, 

such that it is instantiating the macro state 𝑀0, with the gas in the corner. Just after 

𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 , the micro state is in 𝛤𝑀𝑒𝑞
, such that it is instantiating the macro state 𝑀𝑒𝑞 , with the 

gas spread out. Hence, the continuous evolution of the micro state over just a tiny distance 

in phase space, such that it crosses the boundary, amounts to a rather dramatic 

discontinuity in the macro state of the gas in this model: at 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 , the volume jumps from 

a rather small value (the gas confined in the corner of the room) to a comparatively large 

value (the gas spread out over the entire room). Yet, judging from the viewpoint of 

thermodynamics, as well as from considerations about the speeds at which gas particles 

usually move – at finite speeds, certainly – one would expect a small, continuous evolution 

of the micro state only to amount to an accordingly small, and likewise continuous evolution 

of the macro state. After all, the continuous change of the micro state around 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  

might represent nothing but the displacement of one measly particle by a few microns. Such 

a tiny difference between micro states before and after 𝑡𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 can hardly account for the 

tremendous discontinuity between macro states 𝑀0 and 𝑀𝑒𝑞 . 

 

One might want to reply that this strange correlation between the microscopic and 

macroscopic evolution of the system is due to the overly simplified example used. Certainly, 

there are not only two macro states, and, accordingly, not only two macro regions with one 

boundary between them. The partition is way too coarse. But irrespective of how many 

macro regions are introduced in accordance with equally many macro states, the boundaries 

between macro regions are always sharp, and macro regions are of finite number, 

corresponding to a finite number of different macro states of the gas. So, no matter how 

fine-grained the partition is, as long as it contains finitely many macro regions of non-zero 

volume, corresponding to finitely many different macro states, the problem will prevail: a 

small, continuous change in the micro state of the gas, while crossing the boundary, will 

amount to a discontinuous change in its macro state. The issue can be put like this: as soon 



 20 

as boundaries are introduced when carving up phase space, i.e., as soon as a partition into 

macro regions is introduced, this entails the assumption that micro states “left” and “right” 

of these boundaries, i.e. micro states in different macro regions, instantiate different macro 

states. Otherwise, it would be nonsensical to introduce this partition. But once there are 

sharp boundaries, DP arises, no matter how fine- or coarse-grained the partition. 

Differentiating between fewer or more macro states results in coarser or finer graining of 

the partition, but partitions will always be grainy, as long as macro regions are of finite, non-

zero volume. 

 

Sharp boundaries being shifted 

 

The following example exploits the aforementioned arbitrariness of the partition. Imagine a 

partition of the available phase space of a system. Two neighbouring macro regions, 𝛤𝑀𝑖
 and 

𝛤𝑀𝑗
, correspond to different macro states 𝑀𝑖 and 𝑀𝑗 and are separated by a sharp boundary. 

Three micro states, 𝑥1, 𝑥2, 𝑥3, are selected, such that 𝑥1 lies somewhere in the middle of 𝛤𝑀𝑖
, 

𝑥2 lies arbitrarily close to the boundary, but still in 𝛤𝑀𝑖
, and 𝑥3 resides equally close to the 

boundary, but opposite from 𝑥2, in 𝛤𝑀𝑗
. Figure 3 provides an illustration: 

 

 

Figure 3 
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A tiny change of the partition, i.e. a small shift of the boundary between 𝛤𝑀𝑖
 and 𝛤𝑀𝑗

, should 

not amount to a model representing a completely different physical situation. Yet, this is 

what will happen. If the boundary indeed is drawn arbitrarily, it can be shifted, say, a wee bit 

towards 𝛤𝑀𝑖
, such that the volume of 𝛤𝑀𝑖

 decreases ever so slightly, while the volume of 𝛤𝑀𝑗
 

increases by the same amount. With 𝑥2 lying arbitrarily close to the boundary, this shift 

results in both, 𝑥3 and 𝑥2, lying in 𝛤𝑀𝑗
 (figure 4). 

 

Figure 4 

 

This new, slightly different partition seems an appropriate correction to the previous one, at 

least at first sight: the micro states 𝑥2 and 𝑥3, always residing extremely close together, are 

now grouped into the same macro region 𝛤𝑀𝑗
, thereby, according to the model, instantiating 

the same macro state 𝑀𝑗. The relatively remote micro state 𝑥1 remains in its original region 

𝛤𝑀𝑖
. From a macroscopic point of view, 𝑥2 and 𝑥3 are now “macro-identified” in that they are 

taken to instantiate the same macro state. This macro state is different from the macro state 

instantiated by the fairly remote 𝑥1. 

 

But all is not well. A tiny change of the partition, this example shows, amounts to models 

representing completely different physical situations on the macro level while nothing on 

the micro level changes: before the boundary shift, 𝑥1 and 𝑥2 were regarded as instantiating 

the same macro state 𝑀𝑖, while 𝑥3 was instantiating 𝑀𝑗. After the shift, 𝑥2 and 𝑥3 are 
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instantiating the same macro state 𝑀𝑗, while 𝑥1 is still instantiating 𝑀𝑖. So in case 𝑥2 

becomes actual, it makes a huge difference in the model whether the boundary has been 

shifted or not. At the same time, nothing in the target system’s micro state has actually 

changed: 𝑥2 specifies the exact same micro state as before the shift of the boundary. The 

disagreement between the two models, despite describing the same microscopic situation 

of the same target system, is evident. Merely changing the partition slightly while keeping 

the actualised micro state fixed results in different macro states being instantiated. This 

suggests that, on BSM, the macro state doesn’t depend on the micro state alone, but also on 

the partition, which can be chosen rather freely. This is a troubling result. 

 

And there is more: 𝑥1, 𝑥2 and 𝑥3 have been arbitrarily selected. They are just phase points, 

like any other. So why not select another micro state, call it 𝑥4, also arbitrarily close to the 

(now shifted) boundary, opposite of 𝑥2 (figure 5)? 

 

 

Figure 5 

 

The same problem as before reappears. So the “correction” of the partition turns out to be 

no correction after all. Shifting boundaries around, in effect, is just shifting around a 

discontinuity; it is shifting the problem to a slightly different location, thereby making the 

underlying problem more evident. 
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Sharp boundaries between macro regions in phase space, as these examples should have 

illustrated, are just as artificial as the border between the Netherlands and Belgium.12 There 

is a line, drawn arbitrarily, but in its immediate vicinity, on both sides, things look quite the 

same. 

 

 

 

 

The case of entropy 

 

There is yet another, related issue arising from sharp boundaries that at least deserves 

mentioning. In the usual framework, the Boltzmann entropy function is generally defined as 

a function assigning an entropy value to macro states, depending on the volume of their 

respective macro regions: 𝑆𝐵(𝑀𝑖) ≔ 𝑘𝐵log [𝜇(𝛤𝑀𝑖
)]. The larger the volume, the higher the 

entropy. Thus, the largest region, i.e. the equilibrium region, is assigned the highest entropy. 

Accordingly, increase of Boltzmann entropy of a system13 is described by the micro state 

 
12 Incidentally, the border between Belgium and the Netherlands has shifted as recently as 2018. See Stone 
(2018). 
13 Boltzmann entropy of a system is defined as follows by Werndl & Frigg (2015, 1225): “The Boltzmann 

entropy of a system at time 𝑡, 𝑆𝐵(𝑡), is the entropy of the system’s macrostate at 𝑡: 𝑆𝐵(𝑡) ≔ 𝑆𝐵(𝑀𝑥(𝑡)), where 

𝑥(𝑡) is the system’s microstate at 𝑡 and 𝑀𝑥(𝑡) is the macrostate supervening on 𝑥(𝑡).” See also the almost 

identical definition in Frigg & Werndl (2012, 102). 
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moving to regions of larger volume (Goldstein et al. 2019, 19): “increase of Boltzmann 

entropy means that the phase point [𝑥] moves to bigger and bigger macro sets [𝛤𝑀𝑖
].” 

 

In a partition, different macro regions usually have different volumes, such that the micro 

state, upon traversing the boundaries between them, instantiates a macro state of different 

entropy. As a result, entropy changes in a jumpy fashion, like other macro values, as 

discussed above: upon the micro state moving from a smaller macro region to a larger one, 

entropy jumps from a lower to a higher value. The entropy function becomes discontinuous. 

By contrast, it stays at a constant value while the micro state wanders through a macro 

region, not crossing any boundaries. This behaviour, like the discontinuous behaviour of 

other macro values in BSM’s models, might come as a surprise. Wouldn’t one expect there 

to be a continuum of allowable entropy values, and that, while moving from one value to 

another, the continuum between them is instantiated, just like one would expect other 

macro values to evolve continuously? At least, it doesn’t seem implausible to say that 

entropy and its change ideally would be described by a continuous function instead of a 

function that assigns the same entropy value during one finite time interval – the time 

interval during which the micro state traverses a macro region – and then another, different 

value during the finite time interval of traversal of the micro state through another macro 

region, with discontinuous jumps at the boundaries. But this is how entropy behaves in the 

models as they result from the standard framework. Arguably, this way of modelling entropy 

change is at odds with the continuous macro state evolution assumed for the 

thermodynamic target systems classical BSM seeks to describe (and reduce). As before, the 

origin of the issue can be traced back to the method of partitioning phase space into a finite 

set of disjoint macro regions with sharp boundaries and non-zero volume. 

 

Modifying the framework? 

 

It has been argued that phase space partitioning with sharp boundaries poses a problem for 

modelling continuous macroscopic change in the usual framework of BSM. The examples 

above shall now be revisited while not assuming exhaustive-cover or no-overlap. These 

conditions, together with the requirement that macro regions are of non-zero volume, result 
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in sharp boundaries. Let’s see if, upon excising them, one at a time, the discontinuity 

problem vanishes. 

 

Removing exhaustive-cover 

 

First, exhaustive-cover shall be removed, thus allowing for models in which there are micro 

states that do not belong to a macro region: ∃𝑥∀𝛤𝑀𝑖
(𝑥 ∉ 𝛤𝑀𝑖

). Regarding the partition, this 

means that there are regions of phase space that are neither a macro region, nor belong to 

one. Figure 6 provides an illustration: 

 

 

Figure 6 

 

Via the correspondence between macro regions and macro states, phase points in those 

regions do not instantiate a macro state. Admittedly, a rather strange result. Under these 

conditions, it could well be that the micro state, while wandering through phase space, 

moves from a macro region to such a “non-region” and on to a macro region again, which 

would mean that, in between instantiating two macro states, for some time, it instantiates 

no macro state. But clearly, the constituents of the gas haven’t lost their properties, all of a 

sudden. The phase points within such a non-region still describe the same microscopic 

features of the same system as the phase points in normal regions do: all the positions and 



 26 

momenta of all the system’s constituents. Clearly, it is not the micro state of the gas that is 

responsible for this strangeness. 

 

One might be tempted to resolve this issue by regarding these non-regions as transition 

regions between others. Recall the example of a gas in a room. The coarseness of this initial 

partition with only two macro regions can be reduced by introducing a “non-region” 

between these two that is taken to be a transition region. Let’s call the resulting macro 

regions 𝛤𝑀𝑖
, 𝛤𝑀𝑗

 and 𝛤𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛
 (figure 7). That is all fine and well. The initial partition, after 

all, was too coarse. However, the so-called “non-region”, then, is not a non-region, 

corresponding to no macro state at all. Instead, the points it contains instantiate a macro 

state 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛  between the initial state 𝑀𝑖 and the final state 𝑀𝑗. Taking this route, so-

called non-regions are just ordinary regions, such that there are no true non-regions in 

phase space. Exhaustive-cover, in effect, isn’t removed. 

 

 

Figure 7 

 

Furthermore, apart from the strangeness of having true non-regions in phase space, even if 

one regards them as a perfectly normal feature of BSM’s models, one would be facing the 

same discontinuity problem as before, and even more drastically. In transitions from 

ordinary regions to ordinary regions, a jump discontinuity between macro values appears. In 
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transitions from ordinary regions to non-regions and vice versa, an essential discontinuity 

appears: one of the limits 𝐿− or 𝐿+ (see above) doesn’t exist, since non-regions don’t 

correspond to macro values. So there is not just a discontinuous jump between different 

macro values, but a jump from a macro value to an undefined value or vice versa, only 

exacerbating the issue. 

 

As an interim result, it can be noted that it seems impossible to do away with the 

exhaustive-cover condition. Either, the resulting “non-regions” are true non-regions, making 

the discontinuity problem even worse, or they are ordinary regions after all. In any case, the 

original problem to be solved remains. 

 

Removing no-overlap 

 

So let’s try keeping exhaustive-cover and excising no-overlap instead. This allows for micro 

states that belong to more than one macro region: ∃𝑥∃Γ𝑀𝑖
∃Γ𝑀𝑗

(𝑥 ∈ 𝛤𝑀𝑖
∧ 𝑥 ∈ 𝛤𝑀𝑗

) ;  𝑖 ≠ 𝑗. 

Accordingly, there can be overlap regions in phase space (figure 8). 

 

 

Figure 8 
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A micro state within such an overlap region 𝛤𝑀𝑖
∩ 𝛤𝑀𝑗

 is in 𝛤𝑀𝑖
 as well as 𝛤𝑀𝑗

, and therefore 

instantiates both, 𝑀𝑖 and 𝑀𝑗. As long as these have the same macro values, all is fine. 

However, they can’t. As per usual, since macro states are specified via macro values, and 

correspond to macro regions, macro states being specified by the same macro values are 

identical macro states, i.e. there is only one macro state, corresponding to one macro 

region. In other words: macro regions corresponding to identical macro states form a union 

into one macro region. So, whenever one wants to speak of different macro regions, they 

must correspond to different macro states. And that, in turn, means that an overlap region 

of two different macro regions corresponds to two different macro states. Accordingly, 

every micro state in an overlap region instantiates two different macro states at the same 

time, which is an inconsistency. 

 

To provide an extreme example of this equally strange result, recall again the simple gas 

example. Imagine that there is some overlap 𝛤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝛤𝑀0
∩ 𝛤𝑀𝑒𝑞

. If the micro state is in 

𝛤𝑜𝑣𝑒𝑟𝑙𝑎𝑝 , it is in 𝛤𝑀0
 and 𝛤𝑀𝑒𝑞

. Accordingly, the gas is concentrated in the corner (𝑀0) as well 

as evenly spread out over the whole room (𝑀𝑒𝑞) – an inconsistency even worse than DP. 

Hence, one should abstain from excising no-overlap as well. 

 

A different solution? 

 

Removing either exhaustive-cover or no-overlap from BSM’s framework results in severe 

problems. It thus seems reasonable to keep them. Yet, at the same time, leaving everything 

at status quo provides no solution to the discontinuity problem as it arises from sharp 

boundaries between a finite number of macro regions of non-zero volume. Consequently, 

one may ask whether a framework in which a set of phase points, i.e., a macro region, 

corresponds to one and the same macro state is a good one. Tweaking the framework’s 

conditions didn’t result in the desired solution. Maybe, then, it is time to consider adopting a 

different one.14 

 

 
14 Such an alternative, I present in a companion paper. 
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The discontinuity problem and the foundational project 
 

Let’s finally dwell on the consequences DP has for the foundational project of reducing 

thermodynamics to BSM. As shown above, 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀 behave differently. This 

discrepancy lies at the heart of DP. But why is this a problem for the foundational project? 

Presumably the simplest and, as Sklar (1993, 340f.) writes, “one of the primary ways in 

which our theories of the world are unified” is “reduction by identification”. “A general 

methodological principle seems to be that we ought to identify, as opposed to positing a 

correlation, whenever we can. That is, we should identify whenever the assertion of such an 

identification is not blocked by some feature of the situation, typically by the reduced entity 

having some feature genuinely not attributable to the reducing”. When trying to reduce 

thermodynamics to BSM, one encounters such a blocking feature. The reduced theory 

(thermodynamics) has a feature, namely continuous change of macro values, that is not 

attributable to the reducing theory (BSM), which can handle only discontinuous change of 

macro values. 

 

As Sklar points out, the reduction of thermodynamics to statistical mechanics does involve a 

genuine identification, insofar as it takes part in the broader reductive program (ibid., 341): 

“This is the reduction of the theory of macroscopic matter to its micro-constituents by the 

identification of the macroscopic entities as structured out of microscopic entities.” BSM 

successfully does that. It takes macroscopic systems, e.g. gases, to be structured out of 

microscopic entities (ibid., 348): “the thermodynamics of gases can only be reduced to 

statistical mechanics after we have already identified gases as collections of interacting 

molecules and reduced our gas theory to a theory of molecules and their interaction.” But 

he is also eager to point out that this is not the whole story – that the matter is more 

intricate (ibid., 341): “whether the reduction also involves, in any simple way, the 

identification of the thermal features of things (especially temperature and entropy) with 

features of things characterized at the reducing level in non-thermodynamic terms is a 

subtler matter.” One could, for example, put into question whether the thermodynamic 

concept of temperature, which is reasonably attributed to macroscopic systems, can really 

be identified with the “kinematic-dynamic” (Sklar, 362) concept of average kinetic energy of 

the microscopic constituents in terms of their velocities and masses. At the very least, such a 

conceptual identification is certainly not trivial. But one doesn’t even have to go this far in 
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order to encounter a problem. The thermodynamic macroscopic temperature value of a 

target system (𝑇𝑇𝐷) can change continuously. The macroscopic temperature value of the 

BSM model (𝑇𝐵𝑆𝑀) describing the target system cannot. Already these closely related 

concepts, both denoting temperature on the same, macroscopic level of description, are not 

identified trivially. It is easy to see this by asking: does 𝑇𝑇𝐷 supervene on 𝑇𝐵𝑆𝑀? The answer 

is “no”. In order to have 𝑇𝑇𝐷 supervene on 𝑇𝐵𝑆𝑀, the latter must change whenever the 

former changes, which is not the case, due to DP. Supervenience is certainly necessary for 

identification, and a fortiori for reduction qua identification. So, since 𝑇𝑇𝐷 doesn’t supervene 

on 𝑇𝐵𝑆𝑀, reduction of the former to the latter qua identification is blocked. Adopting the 

terminology from Wimsatt (2006), one could say that the intra-level reduction from 

thermodynamics to BSM fails for the macro-quantity temperature. 

 

This is quite unlike the reduction (qua identification) of the concept of a gas (pre kinetic gas 

theory) to the concept of a gas (post kinetic gas theory) in terms of a collection of 

interacting, particular constituents. The thermodynamically described, macroscopic gas 

clearly supervenes on its constituents: macroscopic, thermodynamically described change of 

the gas is always accompanied by microscopic, kinematic-dynamic change, as reflected by 

the fact that the micro state evolves through phase space. That is, whenever 𝑇𝑇𝐷 changes, 

the micro state changes as well. But not so the BSM temperature macro value 𝑇𝐵𝑆𝑀. In 

BSM’s models, 𝑇𝐵𝑆𝑀 remains fixed for a finite interval of time (during the micro state’s 

evolution within a macro region) while, during the same time interval, the thermodynamic 

temperature value 𝑇𝑇𝐷 changes. So 𝑇𝐵𝑆𝑀 doesn’t always change whenever 𝑇𝑇𝐷 changes. So 

𝑇𝑇𝐷 does not supervene on 𝑇𝐵𝑆𝑀. Instead, the supervenience relation holds the other way 

round: whenever 𝑇𝐵𝑆𝑀 changes, 𝑇𝑇𝐷 changes as well. However, this is the wrong way for the 

foundational project. For a reduction of thermodynamics to BSM to be possible, 𝑇𝑇𝐷 must 

supervene on 𝑇𝐵𝑆𝑀. In effect, the foundational project is partially successful, and partially 

not. It is successful in that thermodynamically described systems can be reduced to systems 

of interacting constituents qua identification. That is, inter-level reduction succeeds. It is 

unsuccessful in that macro properties as described by thermodynamics cannot be reduced 

to macro properties as described by the models of BSM, because, as the exposition of DP 

establishes, the former do not supervene on the latter. Hence, intra-level reduction fails. 
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Does 𝑇𝑇𝐷 supervene on 𝑇𝐵𝑆𝑀? 
 

Above, I have argued that 𝑇𝑇𝐷 cannot be reduced to 𝑇𝐵𝑆𝑀 because the former does not 

supervene on the latter. In this section, I want to make this failure of supervenience, and a 

fortiori of reduction, explicit in a more technical way.15 

 

For the sake of the following argument, we restrain ourselves to the classical, kinetic gas 

theory.16 Here, thermodynamic temperature 𝑇𝑇𝐷 is conceptualized as a measure of the 

average kinetic energy 𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ of the constituents of a system, e.g., of the particles of an ideal, 

monatomic gas. The kinetic energy of a single particle is given as 

𝐸𝑘𝑖𝑛 =
1

2
𝑚𝑣2 

with 𝑚 denoting the mass of the particle and 𝑣 its velocity. Since in an ideal, monatomic gas 

𝑚 is the same for all particles, the average kinetic energy of all particles of the gas is given as 

𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ =

1

2
𝑚𝑣2̅̅ ̅ 

where the bars denote averages, i.e., 𝑣2̅̅ ̅ is the average squared velocity of the particles and, 

accordingly, 𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ their average kinetic energy. 

 

With the above conceptualization of thermodynamic temperature as a measure of average 

kinetic energy, 𝑇𝑇𝐷 is directly proportional to 𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅:  

𝑇𝑇𝐷 ∝ 𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ 

Via the ideal gas law, with 𝑘𝐵 denoting the Boltzmann constant, this proportionality is 

expressed as 

𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ =

1

2
𝑚𝑣2̅̅ ̅ =

3

2
𝑘𝐵𝑇𝑇𝐷 

 
15 I am indebted to an anonymous referee who pressed me on spelling out this argument in greater technical 
detail. 
16 If one should be concerned about the assumption of kinetic gas theory and insist on construing gases as 
continua for thermodynamics, the same argument can be construed without referral to individual gas particles 
by imagining the arbitrarily small increase of the temperature of such a continuous gas by an arbitrarily small 
amount of energy transferred into it from an external system, as heat or work exerted on it. The main purpose 
of construing the argument based on kinetic gas theory not only for the BSM framework but also for 
thermodynamics is to emphasize that the problem of reduction discussed here is nothing to do with the 
underlying physical ontologies assumed for the respective theories. The argument gains clarity by assuming the 
same physical ontologies for both, but it goes through even without this assumption, since the intertheoretic 
reduction we are after is an issue of how the theoretical properties of the theories – the values of the variables 
with which they represent the phenomenon of macroscopic temperature and its change – relate to each other: 
whether they instantiate the appropriate supervenience relation or not. 
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i.e. 

𝑇𝑇𝐷 =
𝑚𝑣2̅̅ ̅

3𝑘𝐵
 

𝑚

3𝑘𝐵
 is a positive, real-valued constant. For simplicity, let’s call it 𝜅, such that 

𝑇𝑇𝐷 = 𝜅𝑣2̅̅ ̅ 

This shows the direct correspondence between thermodynamic temperature and average 

particle velocity in the case of ideal, monatomic gases. 

 

Imagine now that the thermodynamic temperature increases by some amount Δ𝑇𝑇𝐷. With 

the above relation 𝑇𝑇𝐷 = 𝜅𝑣2̅̅ ̅, where 𝜅 is constant, some corresponding increase of the 

average particle velocity squared must account for it. And with 𝐸𝑘𝑖𝑛
̅̅ ̅̅ ̅ =

1

2
𝑚𝑣2̅̅ ̅, this 

corresponds to an increase in average kinetic energy. Thus, whenever 𝑇𝑇𝐷 changes, average 

kinetic energy changes as well. The former supervenes on the latter (figure 9). 

 

 

Figure 9 

 

We can even show that this supervenience relation holds in the opposite direction, too. 

Imagine that the velocity of one particle is increased by some amount Δ𝑣 while everything 

else remains unchanged. Already intuitively, it is clear that this increase in velocity of one 

particle amounts to a proportional increase of 𝑇𝑇𝐷: 

Δ𝑣 ∝ Δ𝑇𝑇𝐷 
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The average velocity (i.e., the arithmetic mean)17 of all particles of the system at time 𝑡1is 

the sum of the velocities of the individual particles over the number 𝑁 of particles: 

𝑣𝑡1
̅̅ ̅̅ = ∑

𝑣𝑖

𝑁

𝑁

𝑖=1

 

If at 𝑡2 the velocity of one particle is increased by Δ𝑣, this increases to 

𝑣𝑡2
̅̅ ̅̅ = (∑

𝑣𝑖

𝑁

𝑁

𝑖=1

) +
Δ𝑣

𝑁
 

Thus, the average velocity 𝑣𝑡2
̅̅ ̅̅  at time 𝑡2 is larger than the average velocity 𝑣𝑡1

̅̅ ̅̅  at 𝑡1 by 
Δ𝑣

𝑁
: 

𝑣𝑡2
̅̅ ̅̅ = 𝑣𝑡1

̅̅ ̅̅ +
Δ𝑣

𝑁
 

The average squared velocity of all particles of the system at time 𝑡1is the sum of the 

squared velocities of the individual particles at 𝑡1 over the number 𝑁 of particles: 

𝑣𝑡1

2̅̅ ̅̅ = ∑
𝑣𝑖

2

𝑁

𝑁

𝑖=1

 

If the velocity of one particle – particle 1, say – is increased by Δ𝑣1, this increases to 

𝑣𝑡2

2̅̅ ̅̅ = (∑
𝑣𝑖

2

𝑁

𝑁

𝑖=1

) +
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
= 𝑣𝑡1

2̅̅ ̅̅ +
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
 

When plugging this into 

𝑇𝑇𝐷 = 𝜅𝑣2̅̅ ̅ 

we see that 𝑇𝑇𝐷2 must be larger than 𝑇𝑇𝐷1, by the amount 𝜅 (
2𝑣1Δ𝑣1+Δ𝑣1

2

𝑁
): 

𝑇𝑇𝐷2 = 𝜅𝑣𝑡2
2̅̅ ̅̅ = 𝜅 (𝑣𝑡1

2̅̅ ̅̅ +
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
) = 𝜅𝑣𝑡1

2̅̅ ̅̅ + 𝜅 (
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
)

= 𝑇𝑇𝐷1 + 𝜅 (
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
) 

As long as 𝑣1 and Δ𝑣1 share the same sign (𝑣1Δ𝑣1 > 0) and Δ𝑣1 is finite, i.e., as long as Δ𝑣1 is 

an actual increase of velocity in the same direction as 𝑣1 (or in any direction, if 𝑣1 is 0), it is 

always the case that 

𝜅 (
2𝑣1Δ𝑣1 + Δ𝑣1

2

𝑁
) > 0 

 
17 Instead of the arithmetic mean one could use the root mean square (rms). However, the difference is 
irrelevant for the present argument; taking the rms would merely complicate calculations without any gain in 
clarity. See, e.g., Giancoli (2010, 630f.). 
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and thus that  

𝑇𝑇𝐷2 > 𝑇𝑇𝐷1 

 

This shows that, in thermodynamics, an increase in the velocity of one constituent particle of 

a system, with the other parameters held fixed, amounts to an increase in temperature of 

that system. Importantly, this Δ𝑣 can be arbitrarily small; as long as it isn’t zero, 

thermodynamic temperature increases. Thus, whenever average kinetic energy changes, 𝑇𝑇𝐷 

changes as well. The former supervenes on the latter (figure 10). 

 

 

Figure 10 

 

That 𝑇𝑇𝐷 and average kinetic energy supervene on each other doesn’t come as a surprise. 

This symmetric supervenience is a necessary condition for the background reduction qua 

identification already mentioned above. When temperature is conceptualized as a measure 

of average kinetic energy, it is only to be expected that the two supervene on each other. 

 

How does this situation present itself in the BSM framework? There, the micro state of a 

system consisting of 𝑁 constituents is given as a point 𝑥 in a 6𝑁-dimensional phase space 𝛤, 

where the three position degrees of freedom and the three momentum degrees of freedom 

of each of the 𝑁 particles are represented by one dimension each. In other words, the micro 

state is represented by an ordered 6𝑁-tuple (𝑞1, 𝑞2, … , 𝑞3𝑁 , 𝑝1, 𝑝2, … , 𝑝3𝑁), where the 𝑞𝑖 

each represent the position of one particle in one spatial dimension, and the 𝑝𝑖 each 

represent the momentum of one particle in one spatial direction. Since momentum is 
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defined as the product of mass and velocity, 𝑝 = 𝑚𝑣, it can be increased by increasing 

velocity: 𝑝 + Δ𝑝 = 𝑚(𝑣 + Δ𝑣). With 𝑝 = 𝑚𝑣, the increase of momentum is 

Δ𝑝 = 𝑚Δ𝑣 

As before, suppose the velocity of one particle – particle 1 – is increased by Δ𝑣 in a certain 

direction, e.g., the second spatial direction, such that its momentum is increased by Δ𝑝 in 

that direction as well. That is, the micro state changes from 

𝑥1 (𝑞1, 𝑞2, … , 𝑞3𝑁 , 𝑝1, 𝑝2, … , 𝑝3𝑁) to 𝑥2 (𝑞1, 𝑞2, … , 𝑞3𝑁 , 𝑝1, 𝑝2 + Δ𝑝2, … , 𝑝3𝑁). 

 

Choose Δ𝑣 such that the resulting Δ𝑝2 is so large that 𝑥2 resides in a different macro region 

than 𝑥1, i.e., that 𝑥2 instantiates a different macro state than 𝑥1 does. Then, 𝑇𝐵𝑆𝑀2(𝑥2) ≠

𝑇𝐵𝑆𝑀1(𝑥1). In fact, whenever 𝑇𝐵𝑆𝑀2(𝑥2) ≠ 𝑇𝐵𝑆𝑀1(𝑥1), 𝑥2 ≠ 𝑥1, because 𝑇𝐵𝑆𝑀1 and 𝑇𝐵𝑆𝑀2 

correspond to different macro regions, and macro regions don’t overlap, such that 𝑥1 and 𝑥2 

cannot be identical (see above). Since the only difference between 𝑥1 and 𝑥2 is a difference 

in the velocity of one particle, 𝑥1 and 𝑥2 differ in average kinetic energy. Thus, whenever 

𝑇𝐵𝑆𝑀 changes, average kinetic energy changes as well. The former supervenes on the latter 

(figure 11). 

 

 

Figure 11 

 

But now recall from above that Δ𝑣 can be chosen arbitrarily small. If Δ𝑣 can be arbitrarily 

small, then so can be Δ𝑝. Make it so small that the micro state 𝑥, after increasing the 

velocity of particle 1 by Δ𝑣 in the second spatial direction, remains in the same macro region 

in the BSM picture. I.e., 𝑥1 and 𝑥2 are both elements of the same macro region: 𝑥1, 𝑥2 ∈ 𝛤𝑀𝑖
. 

But since all micro states in 𝛤𝑀𝑖
 are assigned the same temperature macro value 𝑇𝐵𝑆𝑀𝑖 via 
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the one-to-one correspondence between macro regions and sets of macro values, 𝑥1 and 𝑥2, 

according to the BSM picture, instantiate the same temperature: 𝑇𝐵𝑆𝑀1(𝑥1) = 𝑇𝐵𝑆𝑀2(𝑥2). 

Since the difference between 𝑥1 and 𝑥2 is a difference in the velocity of one particle, 𝑥1 and 

𝑥2 differ in average kinetic energy. At the same time, 𝑇𝐵𝑆𝑀1 and 𝑇𝐵𝑆𝑀2 don’t differ. Thus, 

average kinetic energy doesn’t supervene on 𝑇𝐵𝑆𝑀. 

 

 

Figure 12 

 

We have seen that, if Δ𝑣 is sufficiently small, 𝑇𝐵𝑆𝑀1(𝑥1) = 𝑇𝐵𝑆𝑀2(𝑥2). At the same time, 

according to the thermodynamic picture, for the same Δ𝑣, 𝑇𝑇𝐷2 > 𝑇𝑇𝐷1. Even though in both 

cases, the velocity of the same particle was increased in the same direction by the same 

amount Δ𝑣, thermodynamic temperature 𝑇𝑇𝐷 did change while BSM-temperature 𝑇𝐵𝑆𝑀 did 

not. Thus, there are cases in which 𝑇𝑇𝐷 changes while 𝑇𝐵𝑆𝑀 does not change. And since 

supervenience of A on B requires that, whenever A changes, B changes as well, 𝑇𝑇𝐷 does not 

supervene on 𝑇𝐵𝑆𝑀 (figure 13). 

 

 

Figure 13 

 

Conversely, 𝑇𝐵𝑆𝑀 does supervene on 𝑇𝑇𝐷 (figure 14): whenever Δ𝑣 is chosen sufficiently 

large that 𝑇𝐵𝑆𝑀1 ≠ 𝑇𝐵𝑆𝑀2, it is also sufficiently large that 𝑇𝑇𝐷1 ≠ 𝑇𝑇𝐷2, because every finite 

Δ𝑣 suffices for that (see above). 
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Figure 14 

 

Let’s put the pieces together. We have seen that a) 𝑇𝐵𝑆𝑀 supervenes on average kinetic 

energy, but not vice versa; b) 𝑇𝑇𝐷 supervenes on average kinetic energy and vice versa; c) 

𝑇𝐵𝑆𝑀 supervenes on 𝑇𝑇𝐷, but not vice versa (figure 15). 

 

 

Figure 15 

 

That 𝑇𝑇𝐷 does not supervene on 𝑇𝐵𝑆𝑀 (but vice versa) is the most important result. It has 

been established by the independent arguments above, but it can also be seen when tracing 

the supervenience relations via average kinetic energy: 𝑇𝐵𝑆𝑀 does supervene on average 

kinetic energy, and the latter supervenes on 𝑇𝑇𝐷. A fortiori, since supervenience is transitive, 

𝑇𝐵𝑆𝑀 does supervene on 𝑇𝑇𝐷. Conversely, while 𝑇𝑇𝐷 does supervene on average kinetic 

energy, the latter does not supervene on 𝑇𝐵𝑆𝑀. Hence, 𝑇𝑇𝐷 does not supervene on 𝑇𝐵𝑆𝑀. 

 

One might be tempted to respond that the failure of supervenience of 𝑇𝑇𝐷 on 𝑇𝐵𝑆𝑀 is all due 

to the specific way the partition was set up, and that partitioning into ever smaller macro 

regions would circumvent the issue. The first half of this response would be correct: indeed, 

the issue arises because of the partition. However, the second half of the statement is not 

correct: partitioning 𝛤 into ever smaller macro regions is of no avail, since Δ𝑣 can be chosen 

arbitrarily small. Without modifying the BSM framework substantially, the issue could be 
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avoided only if one chooses to make the partition so small that, ultimately, every macro 

region contains only one micro state; that, however, amounts to the same as not 

partitioning at all. It is the same as directly assigning sets of macro values to individual phase 

points, which would be a nice thing to do, if we were able to do it. However, one of the main 

perks of SM is to circumvent the fact that we can’t. On top of that, we’d be giving up 

advantages of the BSM framework, e.g. the possibility to define Boltzmann entropy as a 

measure of the size of macro regions: 𝑆𝐵(𝑀𝑖) ≔ 𝑘𝐵 log [𝜇(𝛤𝑀𝑖
)]. With an infinitely fine-

grained partition, not only would all macro states be assigned the same entropy, but that 

entropy value would be undefined – a situation that can hardly be satisfactory. 

 

Does thermodynamics reduce to BSM? 
 

We have just seen that 𝑇𝑇𝐷 does not supervene on 𝑇𝐵𝑆𝑀. As van Riel and Van Gulick (2019, 

4.5.3) write, supervenience is a conditio sine qua non for reduction: “[Supervenience] surely 

is a necessary condition for reduction.” McLaughlin & Bennett (2021, 3.3, my emphasis) even 

maintain that this conviction is held unanimously: “Everyone agrees that reduction requires 

supervenience.” And they go on: “[O]n any reasonable view of reduction, if some set of A-

properties reduces to a set of B-properties, there cannot be an A-difference without a B-

difference.”18 In the case discussed here, which is a case of intertheoretic reduction, the sets 

 
18 An anonymous referee has pointed out that supervenience might not be a conditio sine qua non for all kinds 
of reduction. I concur; indeed, it is possible to challenge the universality expressed in these quotations. 
However, for the kind of reduction envisaged by the foundational project, I think that supervenience is 
necessary. To flesh this out with two examples, suppose that supervenience isn’t necessary for reduction. 
Then, reduction is possible without supervenience. That is, it is then possible to reduce some A property to 
some B property without B changing whenever A changes. First, it is then possible to reduce the temperature 
of an ideal, monatomic gas to its micro state without the latter changing whenever the former changes. That, 
however, entails that the gas temperature can change without the micro state undergoing any change 
whatsoever. At least in my view, this is inconceivable: how would a physical macro property of a physical object 
change without the physical micro state of the very same object changing as well? Such a position would 
undermine the very basic assumption of physical composition: that macroscopic objects such as gases are 
made up of smaller stuff, atoms in this example, and that their properties and behaviour arise from the 
properties and behaviour of the smaller stuff. And because of that, it would undermine the background 
“reduction of the theory of macroscopic matter to its micro-constituents by the identification of the 
macroscopic entities as structured out of microscopic entities.” (Sklar 1993, 341.) As Sklar points out, without 
this background reduction, the reduction of thermodynamics to statistical mechanics is impossible. 
Similarly, in the case of the temperature macro property: if supervenience wasn’t necessary for reduction, one 
could reduce 𝑇𝑇𝐷 to 𝑇𝐵𝑆𝑀 without the latter changing whenever the former changes. Surely, that would 
alleviate the problem discussed here, but it is questionable whether this approach is reasonable and in the 
spirit of the foundational project. How would a macro variable (𝑇𝑇𝐷), describing a physical macro property of a 
physical object, change, without another macro variable (𝑇𝐵𝑆𝑀), intended to describe the very same physical 
macro property of the very same physical object, changing as well? As long as one engages in the foundational 
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of A- and B-properties mentioned by McLaughlin & Bennett are properties of the respective 

theoretical frameworks, i.e. thermodynamics and BSM. More precisely, they each are the 

theoretical elements that represent the temperature of a target system in their respective 

theoretical frameworks, the values of the temperature variables 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀, respectively. 

For thermodynamics to reduce to BSM, according to the statements just quoted, the value 

of 𝑇𝐵𝑆𝑀 should change whenever the value of 𝑇𝑇𝐷 changes. But as we have seen, this is not 

always the case: 𝑇𝑇𝐷 does not supervene on 𝑇𝐵𝑆𝑀. Thus, thermodynamics does not reduce 

to BSM. 

 

With supervenience being a conditio sine qua non for reduction, any kind of reduction of 

thermodynamics on BSM is blocked. But one might want to elaborate a bit. I am willing to 

concede that BSM partially – but only partially! – reduces thermodynamics, if only in a way 

that is not exclusive to BSM: the particular way in which BSM reduces thermodynamics is 

available even without BSM. Thus, this reduction of thermodynamics isn’t BSM’s merit. 

 

Van Riel & Van Gulick (2019, 2.1) distinguish between two main strands of reduction, 

diachronic and synchronic reduction. The former construes reduction, amongst being “a 

temporal affair”, as a process of “replacement of one theory by another theory, such that 

one theory (the reducing one) becomes the successor of the reduced theory”. 

 

However, for one theory to become the successor of another in this sense, it is not sufficient 

that it comes after its predecessor, in the temporal sense. This is just one aspect of the 

successor relation. Usually, this relation also comprises, as Kemeny & Oppenheim (1956, 7) 

put it, “the replacement of an accepted theory (or body of theories) by a new theory (or 

body of theories) which is in some sense superior to it. Reduction is an improvement in this 

 
project, i.e., as long as one aims to fully reduce TD to BSM, one must ensure that BSM’s models adequately 
track those of TD. And in order to ensure that, in turn, 𝑇𝐵𝑆𝑀 must change whenever 𝑇𝑇𝐷 changes. And that is 
nothing other than to say that 𝑇𝑇𝐷 must supervene on 𝑇𝐵𝑆𝑀. In short: for the foundational project, I see no way 
around the supervenience condition. 
That being said, it might be worthwhile to try to come up with a kind of reductionist account that i) is in the 
spirit of the foundational project and the reduction it envisages; ii) does not do away with very basic 
assumptions such as physical constitution; but iii) does not require supervenience. It can already be said that 
this kind of reduction, then, must adhere to some constraints. For example, it must not simply be a limiting 
reduction (see Palacios 2019 for an enlightening demarcation of limiting reduction from other kinds of 
reduction) where the size of macro regions goes to zero, for the reasons extensively discussed above. This, 
however, is a separate – and intricate – project that lies outside the scope of this paper. 
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sense.” Van Riel & Van Gulick (2019, 2.1, my emphasis) elaborate on this: “[Diachronic 

reduction] is also often described as a sort of theory-improvement or scientific progress: 

particularly one in which the laws of the prior theory apply to a proper subset of the cases 

covered by the laws of the succeeding theory”.  

 

An example that gets cited for this kind of reduction is the alleged reduction of Newtonian 

dynamics of massive bodies to special relativity: the latter came not only after the former, it 

also improved on it, in the sense that it covered a wider range of phenomena, while still 

covering non-relativistic cases, i.e. cases in the low velocity limit, where 𝑣 ≪ 𝑐. Thus, 

Newtonian laws apply to a proper subset of cases of special relativity, and consequently, the 

second requirement for diachronic reduction, apart from temporal succession, is fulfilled, at 

least in this “narrow demonstration” (Fletcher 2019). 

 

Whether this really suffices to make the case for a successful reduction is a matter of 

ongoing debate, see Fletcher (2019). But at least the supervenience requirement is fulfilled 

for the crucial variables. For example, whenever Newtonian momentum 𝑝𝑁𝑒𝑤𝑡 = 𝑚𝑣 

changes, relativistic momentum 𝑝𝑅𝑒𝑙𝑎𝑡 =
𝑚𝑣

√1−(𝑣 𝑐⁄ )2
 changes as well. Thus, 𝑝𝑁𝑒𝑤𝑡 supervenes 

on 𝑝𝑅𝑒𝑙𝑎𝑡. At least, there is no issue of failed supervenience standing in the way of this 

(alleged) example of diachronic reduction. 

 

The reduction of the concept of a gas (pre kinetic gas theory) to the concept of a gas (post 

kinetic gas theory) is an example of successful diachronic reduction, see above. What’s 

more, it is also an example of successful intertheoretic reduction in the Nagelian sense. 

 

The Nagelian model describes intertheoretic reduction as an explanation relation between 

two theories (see ibid., 2.2.1). Insofar explanation is demanded of successful, intertheoretic 

reduction, one can state that indeed, BSM explains, to some extent, thermodynamics, and, 

in this restricted sense, reduces it successfully. However, the qualification “to some extent” 

is important here, because it actually is the “background reduction” of “our gas theory to a 

theory of molecules and their interaction” (Sklar 1993, 348) that does all the work, qua some 

identity assumptions: in the exemplary case of a gas, the spatial distribution of its 

constituent particles is identical to the (macroscopic) volume 𝑉 of the gas and thus explains 
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it; the force per area the particles exert on the walls of a container is identical to the 

(macroscopic) pressure 𝑃 of the gas in that container and thus explains it; the average 

kinetic energy of the particles is identical to the (macroscopic) temperature 𝑇 of the gas and 

thus explains it; the transfer of kinetic energy from particles of one system to those of 

another, and with it the redistribution of particle velocities, is identical to conductive heat 

flow from a hotter to a colder body after they are brought into contact, and thus explains it; 

etc. The background assumptions relevant for these explanations are part and parcel of 

kinetic gas theory. But kinetic gas theory, while it also features in BSM, can be had without 

BSM. And the other crucial part of BSM, its partitioning of the available phase space of a 

system, doesn’t contribute to this explanation. In fact, it introduces difficulties: even while 

gases are identified with collections of particles in BSM, and macroscopic temperature 𝑇 is 

thought of as average kinetic energy of these particles, BSM-temperature 𝑇𝐵𝑆𝑀, qua BSM’s 

association of macro values with macro regions, merely approximates 𝑇, unless the partition 

is so fine-grained that it becomes dysfunctional and pointless. So, while a background 

assumption of BSM does all the reductive work, and a fortiori, BSM in this restricted sense 

does reduce thermodynamics, the complete BSM framework is not an integral part of this 

reduction, and 𝑇𝐵𝑆𝑀 may not be identified with temperature in the sense of average kinetic 

energy, although it supervenes on it. Thus, BSM, as opposed to the kinetic gas theory, does 

not reduce temperature qua identification. Hence the caveat. 

 

Most importantly, however, this background reduction is not the reduction we are after. Our 

question was whether 𝑇𝑇𝐷 reduces to 𝑇𝐵𝑆𝑀. And while both, 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀, supervene on 

average kinetic energy, via their common background assumption of kinetic gas theory, 𝑇𝑇𝐷 

does not supervene on 𝑇𝐵𝑆𝑀, and hence cannot be reduced to it. In other words, while prima 

facie one might be led to believe that the notion of temperature is the same in 

thermodynamics and BSM, it is, in fact, not. 

 

And there is more. On the Nagelian account of reduction (and successors of it, e.g. the 

Generalised Nagel-Schaffner Model of Reduction, see Dizadji-Bahmani et al., 2010), 

explanation of the reduced theory by the reducing theory stems from derivability: the laws 

of the (corrected) reduced theory must be derivable from the laws of the reducing theory 

plus “some auxiliary assumptions” and bridge laws in order to explain and thus reduce it. 
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The law of the reduced theory we are concerned with here is the (corrected) law governing 

the time evolution of 𝑇𝑇𝐷; the law of the reducing theory is the law governing the time 

evolution of 𝑇𝐵𝑆𝑀. So, the question arises: can the (corrected) law governing the time 

evolution of 𝑇𝑇𝐷 be derived from the law governing the time evolution of 𝑇𝐵𝑆𝑀 (plus bridge 

law and auxiliary assumptions)? At least for a “corrected” version of thermodynamics, it 

would be unnecessary to recover the exact, uncorrected thermodynamic treatment from 

BSM. Unfortunately, this derivation is not possible. On the one hand, the only candidate 

auxiliary assumption that would render it possible is an infinitely fine-grained partition. But, 

as I have argued, this route is not available, in particular because it leaves BSM dysfunctional 

and would amount to the same as not partitioning at all, such that we are left with the 

description of the micro state and its time evolution, disregarding macroscopic regularities 

(see fn. 10 above). But the law governing the time evolution of 𝑇𝑇𝐷 is not derivable from the 

law governing the time evolution of the micro state alone, without a proper partition, not 

even only in approximation. If it were, we wouldn’t need BSM in the first place. On the other 

hand, when applying the usual partition, at least we have a candidate bridge law, something 

that looks like a bridge law, but unfortunately, isn’t one. Dizadji-Bahmani et al. even provide 

the reason why there is no bridge law establishing the relevant correlation between 𝑇𝑇𝐷 and 

𝑇𝐵𝑆𝑀. They write (399. I have replaced their placeholders for theoretical terms, 𝑡𝑃 and 𝑡𝐹 , by 

the ones that are relevant here, 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀):  “A bridge law is a statement to the effect 

that (1) 𝑇𝑇𝐷 applies if, and only if, 𝑇𝐵𝑆𝑀 applies, and (2) 𝜏𝑇𝑇𝐷
= 𝑓(𝜏𝑇𝐵𝑆𝑀

)”, where 𝜏𝑇𝑇𝐷
 is the 

value of 𝑇𝑇𝐷 and 𝜏𝑇𝐵𝑆𝑀
 the value of 𝑇𝐵𝑆𝑀. 𝑓(𝜏𝑇𝐵𝑆𝑀

) is a function that transforms 𝜏𝑇𝐵𝑆𝑀
 into 

𝜏𝑇𝑇𝐷
, i.e., the BSM temperature value into the thermodynamic temperature value. However, 

in the case we are discussing here, 𝑓 is not even a function, because uncountably many 𝜏𝑇𝑇𝐷
 

correspond to every 𝜏𝑇𝐵𝑆𝑀
. Hence 𝑓(𝜏𝑇𝐵𝑆𝑀

) does not map each element of 𝜏𝑇𝐵𝑆𝑀
 (its 

domain) to exactly one element of 𝜏𝑇𝑇𝐷
 (its codomain). The second requirement for the 

bridge law isn’t met, and thus, there is no bridge law connecting 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀 in the 

necessary way, even if the two are coextensive. Note that this has nothing to do with 

multiple realisability, which states that a property of the reduced theory may correspond to 

several properties of the reducing theory. Here, it is the other way round: several properties 

of the reduced theory correspond to one property of the reducing theory, which means that 

the reduced theory does not supervene on the reducing theory. Again, the lack of the 

appropriate supervenience relation between 𝑇𝑇𝐷 and 𝑇𝐵𝑆𝑀 is the culprit. 
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For the present purposes, this exposition of the threat DP poses for the foundational project 

must suffice. In a companion paper, I will suggest an alternative method of carving up phase 

space that avoids DP while keeping the functionality and spirit of BSM intact. By avoiding DP, 

supervenience of 𝑇𝑇𝐷 on 𝑇𝐵𝑆𝑀 will no longer be blocked and a fortiori, this threat to the 

foundational project can be avoided. 
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