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Abstract

A phenomenon resulting from a computationally irreducible (or computationally incom-
pressible) process is supposedly unpredictable except via simulation. This notion of unpre-
dictability has been deployed to formulate recent accounts of computational emergence. Via
a technical analysis, I show that computational irreducibility can establish the impossibility
of prediction only with respect to maximum standards of precision. By articulating the
graded nature of prediction, I show that unpredictability to maximum standards is not equiv-
alent to being unpredictable in general. I conclude that computational irreducibility fails to
fulfill its assigned philosophical roles in theories of computational emergence.

1. Introduction
Predictability is a common area of interest and investigation for both scientists and
philosophers. It is not surprising, therefore, that some scientific theories on predict-
ability have made their way into philosophical discussions. In particular, some philos-
ophers have used computer science theories to formulate accounts of emergence that
inform critical debates such as the nature of mind, the autonomy of the special
sciences, or the origin of biological novelty (Bedau 1997; Huneman 2008, 2012;
Humphreys 2016). In this paper, I use one of these computational theories,
Wolfram’s computational irreducibility (Wolfram 2002), or as some call it computa-
tional incompressibility (Bedau 2008; Huneman 2008), as a foil to show how these
theories fail to fulfill some of their assigned philosophical roles.

There are two major types of emergence discussed in the literature, weak and
strong, with two corresponding types of unpredictability. The weakly emergent
are reducible to their fundamental bases and therefore are unpredictable only in
practice, while the strongly emergent are irreducible and therefore are unpredictable
in principle. There is a third type of emergence discussed in the recent literature that
sits somewhere between weak and strong emergence. According to computational
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emergence, or as I will call it, ontological weak emergence, emergent phenomena are
reducible to their bases, yet because of their specific computational characters,
namely their computational irreducibility, they are, as Bedau puts it, unpredictable
in practice in principle.

Wolfram (2002) claims that from the computational perspective, the outcomes
of computationally irreducible processes are unpredictable for any observer.
Philosophers such as Bedau (1997) and Huneman (2008) have adopted this view to
formulate ontological weak emergence, according to which emergent phenomena
are unpredictable for any observer because of the computational irreducibility of
the path leading to those phenomena. These computational accounts of emergence
supposedly have the best of the two worlds of weak and strong emergence, and
are doubly attractive for the scientifically minded. They retain the familiar scientific
metaphysics of weak emergence while they underpin the unpredictability of the
emergent with an ontological and scientifically backed explanation.

However, I show that computational irreducibility, no matter how it’s interpreted,
guarantees unpredictability only with maximal standards of accuracy and precision,
while the scientifically and practically relevant concept of predictability is graded and
submaximal. This creates a dilemma for supporters of computational emergence; they
cannot have their ontological cake and eat it, too. If they cite computational irreduc-
ibility as their ontological guarantee of unpredictability of the emergent, they have to
stick to the maximal standards of prediction. The unhappy consequence, however,
would be that all natural phenomena would trivially turn out to be unpredictable
and “emergent,” and computational emergence would be indiscriminatory, trivial,
and irrelevant to the intuitive concept of emergence and the practical puzzles it
creates.

On the other hand, if they ease the standards of prediction, computational irreduc-
ibility can no longer guarantee unpredictability and computational formulations of
emergence will be sullied by subjectivity and arbitrariness. Consequently, computa-
tional ontological weak emergence would not be much different or superior
compared to simpler and more flexible non-ontological accounts of weak emergence.
If successful, the arguments will take ontological weak emergence off the table, and
we will go back to the choice between weak and strong emergence.

2. Computational irreducibility
Wolfram describes the causal or computational path leading to a phenomenon as an
algorithm that computes that phenomenon. The original algorithm generating a
phenomenon is computationally irreducible if it is the shortest possible path to derive
that phenomenon (Wolfram 2002). As there is no alternative pathway to compute the
resulting phenomenon faster than the original algorithm, the resulting phenomenon
is unpredictable (Figure 1).

Wolfram presents the concept of computational irreducibility in the context of
cellular automata, although the concept can be extended beyond that context.
Cellular automata (CA) are lattices of cells called the cell-space, where each cell stores
a value such as a color. Starting from some initial values, the values of cells are
updated in consecutive timesteps by some updating rules. At each timestep, the
updating rule looks at a cell’s own value and its neighboring cells’ values and
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determines the cell’s value in the next timestep. Starting from some initial values and
following the updating rules, some general patterns of values form on the cell-space
as time goes by. The value of any single cell in each step is the micro-dynamics of a CA,
and the overall patterns formed on the cell-space are the macro-states. Various combi-
nations of cell shapes, dimensions of cell-space, cell values, and updating rules result
in different CA (Charbonneau 2017; Berto and Tagliabue 2017).

Wolfram works with a particular setup of one-dimensional CA. Consider a chess-
board with all white cells. Start by coloring some of the first top row cells black. In
each iteration, move one row down and color cells based on the color of their neigh-
boring cells on the immediately above row following a set of updating rules. Each cell
has three neighbors in the top row, and one, two or three of these neighbors might be
black, allowing eight different color combinations (Figure 2). An updating rule states
whether a cell will be colored black or not in each of these eight possible combina-
tions. This means that we can have 28= 256 different updating rules. These rules are
numbered 0 to 255. Starting from some black and white cell configuration on the first
row, different rules result in evolution of different general patterns on CA.

Wolfram categorizes these 256 rules into four classes (Figure 3). Class one
comprises of those rules under which CA converges into a uniform final state, for
example, all cells become black (e.g., rule 250). Class two are those rules that result
in some simple periodic behavior (e.g., rule 108), and class three are those that lead to
random patterns (e.g., rule 90). Class four generates patterns that are a combination
of randomness and periodicity (e.g., rule 110).

Eight possible 
color 
combinations 
of the top row

Color of the 
below cell 
according to 
rule 110

Figure 2. Overview of Wolfram’s CA set up. Rule 110 is given as an example.

Figure 1. A computationally irreducible path to a
phenomenon (solid line) is the shortest path to that
phenomenon.
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Out of these four classes, the outcome of classes one and two are predictable using
simple constant or oscillating predicting models. Using such predicting models, there
is no need to simulate a class one or two CA in order to know its outcome. But when it
comes to classes three and four, Wolfram claims that there are no predicting models
and one has no alternative but to simulate the CA and watch what happens. Unlike the
cases of classes one and two, there are no shortcuts, and the fastest way to know the
outcome of the CA is going through the CA itself. These CA, therefore, are computa-
tionally irreducible (Wolfram 2002).

Computational irreducibility is not limited to CA. Any algorithmic process would
be computationally irreducible if the computationally most efficient way to know its
outcome is running the algorithmic process itself. This is a mathematical hard lower
bound and no observer whatsoever, not even a Laplacian demon, can pass it. The
output of such an algorithmic process will be unpredictable because there is no
way to compute its outcome faster than running the algorithm itself. In Wolfram’s
words (2002, 739): “Whenever computational irreducibility exists in a system it means
that in effect there can be no way to predict how the system will behave except by
going through as many steps of computation as the evolution of the system itself.”

The above apparently clear statement is in fact utterly ambiguous. Wolfram does
not precisely clarify what he means by “as many steps of computation” and does not
give a formal proof for his claim. Therefore, it remains unclear exactly in what sense
and why a computationally irreducible process is irreducible after all. There are a
few options to explain these what and why. I explore these options below and examine
the type of unpredictability each can guarantee. The exploration will show
that computational irreducibility can guarantee unpredictability only for all cases,
in infinite time, or with infinite precision.

2.1 Computational irreducibility as a case of the halting problem
Wolfram deduces computational irreducibility from his principle of computational
equivalence. This principle has multiple components, but the most important for
the present discussion is the conjecture that any process, in nature or a computer,
that does not converge to a constant or to an oscillating pattern is a universal
Turing machine (Mitchell 2009).

Turing machines are models of computers initially introduced by Alan Turing
(1937) and now widely used in computer science. A simple Turing machine is
composed of an infinite tape of individual cells as its memory and a head that points
to one of these cells at a time. The head can read the cell it is pointing to, write on it,
and move to the next neighboring cell on either left or right. The machine can be in

Rule 250

Class 1

Rule 108

Class 2

Rule 90

Class 3

Rule 110

Class 4
Figure 3. Examples of CA in each of
Wolfram’s four classes.
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one of a set of predefined states. The behavior of the head is dictated by a transition
function based on the current state of the machine and the symbol read on the cell.
The transition function determines what the head should write on the cell, the direc-
tion the head should move to, and the state to which the machine should transit.
A Turing machine begins at a “start” state and halts when it enters one of the “final”
states. When the machine enters one of the final states, the computation finishes. But
it is also possible that the machine never enters a final state and infinitely iterates
over a loop of nonfinal states.

According to the Church-Turing thesis, any computable function is computable by
some Turing machine. There are “universal” Turing machines that can simulate any
other Turing machine and, therefore, can compute any computable function. Cook has
shown that Rule 110 CA is a universal Turing machine (Aaronson 2002). This means
that given the right initial conditions, a rule 110 CA can compute any computable
function. Figuring out the right initial conditions for computing different functions
with this CA is extremely hard. But it is in principle possible.

Although only a very limited number of CA are demonstrated to be universal
Turing machines (Aaronson 2002; Berlekamp, Conway, and Guy 1982; Rendell
2011), Wolfram conjectures that any CA that does not converge to a constant or
an oscillating pattern is a universal Turing machine. And because he sees natural
processes as CA, he extends this claim to natural processes as well. Any natural
process that does not result in a constant or oscillating behavior, therefore, is a
universal Turing machine, or so Wolfram claims. Both the initial conjecture and
the extension to natural processes are open to objection. Nonetheless, let us grant
both the conjecture and the extension and see where that would lead us.

Being a universal Turing machine subjects CA to the halting problem. The halting
problem states that there is no single algorithm that can predict for any arbitrary
input whether a universal Turing machine will halt. This can be one interpretation
of computational irreducibility. Based on this interpretation, some CA are computa-
tionally irreducible and hence unpredictable because there is no general algorithm to
predict if they will halt given some input. The only way to know whether they halt is
to run the CA themselves (Ilachinski 2001). For example, there is no single algorithm
that can predict for any arbitrary initial pattern if Rule 110 will halt or continue to
iterate indefinitely.

This unpredictability is not because of some technological limitation or lack of
mathematical ingenuity. The halting problem dictates that halting or not halting
of the computationally irreducible CA is unpredictable in principle. No technological
breakthrough nor mathematical genius can ever devise a path around the halting
problem (Yanofsky 2016). Even a Laplacian demon would be stalled.

The conclusion drawn from the halting problem, however, is very restricted. The
halting problem shows that no single algorithm can predict halting or not halting for
all computations and for any arbitrary input. But the halting problem does not show
that we cannot have multiple predicting algorithms that each correctly predicts
halting or not halting for a broad subset of computations and inputs. Being subject
to the halting problem is completely consistent with being predictable in many
instances. The halting problem only shows that we cannot predict the halting or
not halting for all and every case.
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In other words, the halting problem shows that there cannot be one single “Grand
Algorithm of Everything” that predicts the fate of every natural process for all inputs.
In this way, it seems that there might be a path from the halting problem to the
impossibility of a “Theory of Everything.” But the halting problem cannot show that
particular natural processes are necessarily unpredictable by any theory. Scientists
can appreciate the halting problem and yet go back to their benches and blackboards
to make predictions.

I believe the recourse to the halting problem is the closest interpretation of
computational irreducibility to what Wolfram has presented in his works.
We saw that the unpredictability we can conclude from this interpretation is very
restricted. But there are other ways to interpret computational irreducibility and
those might be more successful in securing unpredictability. Let us explore those
alternatives.

2.2 Algorithmic computational irreducibility in terms of algorithmic
time complexity
Another way to understand Wolfram’s irreducibility is to define it in terms of
algorithmic time complexity (Zwirn and Delahaye 2013; Rucker 2003; Zwirn 2013;
Huneman 2008). I explore a number of different versions of this approach in this
section. But at their core and on a very rough sketch, all of those define a computa-
tionally irreducible algorithm as the one with the lowest (=best) algorithmic time
complexity. It turns out that these formulations can guarantee unpredictability only
over long times, and with infinite accuracy and precision.

Algorithmic time complexity is the computer science currency of speed and effi-
ciency. In simple terms, it shows how the time needed for an algorithm to solve a
problem scales with some measure of the input size. The time is estimated by the
number of the elementary operations that an algorithm goes through to give the solu-
tion, and that number varies as a function of the input size. Time complexity is the
order of this function which is expressed by notations such as the big O notation and is
used to rank algorithms according to their efficiency.1 The order shows how the
number of operations scales with the input size. The lower the order, the more effi-
cient the algorithm. Although time complexity is initially defined for algorithms,
computer science usually associates time complexity with problems and not algo-
rithms. The time complexity associated with a problem is the time complexity of
the most efficient algorithm to solve it. Here, however, we need to zoom in, and
discuss the time complexity of individual algorithms.

Here I devise a simple and familiar programming language to write the pseudo-
codes. INPUT (X) means receiving an input and assigning its value to X. FOR (X)
means repeating what is contained in the FOR-block X times. The FOR-block is
determined by the brackets, the first of which is placed on the line immediately
following the FOR command. OUTPUT (X) means finishing program and returning
X as the output. Let us look at an example. Suppose you want an algorithm to
compute the number of bacteria after n generations starting from a single

1 Here I use the time complexity notations very loosely based on the general idea behind them and not
their precise formalism. I stick with the big O notation as it is a weaker requirement compared to the
small o notation.
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bacterium. For simplicity, assume that no bacterium dies. In every generation, each
bacterium divides and makes two daughter bacteria. This means that in each gener-
ation, one bacterium is added to the population per every bacterium in the
previous generation. Here is the first algorithm (algorithm A) inspired by this
observation:

To determine the time complexity of this algorithm, we need to count the number
of operations it performs for input n. The first FOR loop repeats the operations within
its brackets for n generation. In each generation, the algorithm performs one addition
per present bacteria. In the first generation, it does one addition, in the second, it does
2, in the third, it does 4, and so forth. The total number of additions performed by
algorithm A, therefore, can be computed by the following formula:

1� 2� 4� 8� . . .� 2n�1 �
Xn�1

i� 0

2i � 2n � 1

The function 2n � 1 is of order 2n. Therefore, algorithm A has time complexity
O 2n� �. It means that as the number of generations n increases, the number of oper-
ations needed to get the result, and consequently, the time spent to run the algorithm
scales by the order of 2n. This is an inefficient time complexity, and there are algo-
rithms of lower time complexities to solve this problem. For example, noting that the
number of bacteria doubles in each generation, one can write algorithm B:
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Algorithm B has time complexity O n� �, and this is significantly more efficient
compared to algorithm A. If we understand computational reduction in terms of time
complexity, then algorithm A is computationally reducible to algorithm B. We can use
algorithm B to compute the result of algorithm A with a lower time complexity. And
as algorithm B is more efficient than algorithm A, so the thought goes, we can predict
the results of algorithm A using algorithm B.

There is an even more efficient algorithm to solve this problem. We know that
starting from one bacterium, the number of bacteria after n generations equals 2n.
This translates to the following algorithm C:

Note that 2n is not an elementary operation and itself takes a few steps to compute.
We have algorithms that compute 2n with time complexity O�log n� ��.2 Thus,
algorithm C has time complexity O�log n� �� that is a lower order compared to
algorithm B’s O n� �. Therefore, even algorithm B is reducible.

There is an important difference between algorithm C and the two previous algo-
rithms A and B, and that difference has inspired one interpretation of computational
irreducibility. Contrary to algorithms A and B, there is no looping over generations in
algorithm C. Algorithms A and B walk through the generations of cell division one by
one, and they compute the number of bacteria for generations 1 to n-1 before they

2 For example, method of exponentiating by squaring.
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compute the number of bacteria in generation n. Algorithm C, on the other hand, does
not go through this generation-by-generation path and jumps directly to generation n
without computing the number of bacteria in the intervening generations. This is why
algorithm C can be packaged as a closed-form formula, like a formula from physics:

current number of bacteria � 2n

Rucker (2003) seems to interpret Wolfram’s computational irreducibility as the
impossibility of a closed-form formula. On this interpretation, a computationally irre-
ducible algorithm is one the result of which cannot be computed by a closed-form
formula and, therefore, one needs to necessarily walk through the steps of the algo-
rithm to know its results. Imagine that algorithm C or any other closed-form formula
were not possible to solve our bacteria problem, and the only way to compute the
result was to do the calculations generation-by-generation. Then, on Rucker’s inter-
pretation, the bacteria problem would have been computationally irreducible.

The example of the three algorithms above, however, shows that the mere impos-
sibility of a closed-form formula is not enough to guarantee irreducibility and unpre-
dictability. Even if algorithm C were not possible, algorithms A and B could be ranked
according to their time complexity with the idea that the result of the more efficient
algorithm B can predict the results of the less efficient algorithm A.

Zwirn and Delahaye (2013) and Zwirn (2013) formalize a more detailed definition
for algorithmic computational irreducibility in terms of time complexity. Here I try to
avoid the mathematics of Zwirn’s account as much as possible and emphasize the
general idea. The mathematical reader is referred to Zwirn’s original paper for the
exact formalism. Assume an algorithmic process F(n), that computes fn by going
through f1 to fn-1. Starting from some initial input value for f1, in each time step i,
fi receives the output of fi-1 and computes an output, which in turn will be the input
for fi�1.3 On this setup, Zwirn requires two conditions for computational irreducibility
of F(n). The first condition requires that given n as input, a computationally irreduc-
ible F should compute fn with the best possible time complexity. There should be no
alternative algorithmic process G that computes fn with lower time complexity. The
second condition requires that any other alternative algorithmic process G that
computes the same result fn by an alternative function g should necessarily do so
by going through steps g1 to gn-1 where each gi is an approximation of its corre-
sponding step fi. By “approximation” Zwrin means that one can compute fi from gi
by a very short computation.4

Assume, just for the sake of argument, that the above algorithms A and B are the
only possible algorithms to solve the bacteria problem. This (wrong) assumption
guarantees that B has the lowest possible time complexity. It also ensures that the
single alternative algorithm (algorithm A) computes the number of bacteria in gener-
ation n by going through steps 1 to n-1, and its value in each step can be easily

3 Zwirn takes all fi to be the same function f, which runs iteratively, but I think this assumption is not
necessary.

4 Zwirn distinguishes strong computational irreducibility from computational irreducibility.
The former satisfies the two conditions for any n, and the latter for infinitely many n. In this paper,
I use computational irreducibility in the strong sense.
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transformed to the value computed by algorithm B (by B(n) = A(n)). B, therefore,
would be computationally irreducible by Zwirn’s definition.

Zwirn formulation has limited power to show unpredictability of the computation-
ally irreducible. The reason is that having the same/lowest time complexity does not
necessarily mean having the same/lowest absolute number of computations and the
same/lowest run time in all conditions. For example, consider algorithm B 0 that
solves the bacteria problem mentioned above as follows:

B 0 has the same time complexity as algorithm B, but it has a higher absolute
number of computations and therefore, it runs slower than B (Figure 4). The differ-
ence between B and B 0 will eventually become insignificant as n increases to infinity.
But in finite time, B can compute the results faster than B 0 and, therefore, can predict
its outcome. Even more, B 0 has a better time complexity compared to algorithm A, but
until n=10, A has a lower absolute number of computations and therefore, runs faster
than B 0 and can predict its outcome (Figure 4).

It is only when n increases toward infinity that the difference between algorithms
of the same time complexity diminishes to insignificance and the algorithms with the
best time complexity are guaranteed to be faster than the alternative algorithms with
higher time complexities. Therefore, computational irreducibility as defined by Zwirn
guarantees unpredictability only toward the infinite time. For shorter times, a
computationally irreducible algorithm might be predictable. Unpredictability based
on Zwirn’s definition is also limited by the possibility of heuristic solutions that I
discuss at the end of this section.

On another interpretation, a process is computationally irreducible if predicting its
outcome is an NP-hard problem (Buss, Papadimitriou, and Tsitsiklis 1990; Huneman
2008). Roughly speaking, NP-hard problems are those for which we do not yet have a
solution with polynomial time complexity (O nα� �; α > 1).5 For any relatively large

5 Buss et al. (1990) use space complexity rather than time complexity. The two types of complexity are
closely connected, and as far as the arguments of this paper are concerned, there is no difference
between the two.
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input size, it takes a prohibitively long time to solve a problem with a time complexity
of higher than polynomial, and, therefore, NP-hard problems are practically unsolv-
able, or, as computer scientists call them, intractable. Intractability applies not just to
us, the humans of the twenty-first century, but to any natural intelligence. For
example, consider the Traveling Salesman, a classic NP-hard problem. The problem
is finding the shortest path to visit each of n towns exactly once and come back to the
starting town. A demon who can use all the atoms of the universe as processing units
needs 1062 centuries to solve the Traveling Salesman problem for an input size of
n � 100 (Yanofsky 2016). As an NP-hard problem becomes intractable relatively
quickly, we do not need to go toward infinite time for the prediction to become prac-
tically impossible.

Nevertheless, being NP-hard is also restricted in what it guarantees to be unpre-
dictable. It is only the exact solution for an NP-hard problem that is intractable, and
an approximate solution might be computable in much less time. In fact, NP-hard
problems constitute a good portion of practical problems we are dealing with from
everyday life to advanced science. Assigning wedding guests to seats in a way that
friends share a table but foes do not (Lewis and Carroll 2016), or constructing a phylo-
genetic tree (Habib and Stacho 2013) are some examples. Computer scientists may not
be able to provide exact solutions to these problems, but they have devised plenty of
approximate solutions that are both fast and acceptably accurate. It does not even
take an intelligent computer scientist to find fast approximate solutions for NP-hard
problems. Zhu et al. (2018) have shown that even as humble intelligence as an amoeba
can find linear time approximate solutions for NP-hard problems.

Approximate solutions for NP-hard problems are examples of heuristic approaches
that find approximate solutions for problems that are hard, or even impossible to
solve. One particular approach that is specifically relevant to our discussion is
coarse-graining of CA. Israeli and Goldenfeld (2006) have shown that computationally
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irreducible CA can be turned into reducible ones by coarse-graining. Coarse-graining
of CA means combining some neighboring cells into one cell. The process results in a
lower-resolution and an imprecise re-description of a CA pattern. Israeli and
Goldenfeld show that the patterns generated by a computationally irreducible class
4 rule (e.g., Rule 110) may be re-described as patterns of another rule of a lower class
after coarse-graining (e.g., Rule 0) that are not computationally irreducible. This
means that computational irreducibility and its consequent unpredictability hold
only for full precision CA. No matter how we define computational irreducibility,
we lose it when we go to a coarse-grained view of CA.

In summary, different accounts of computational irreducibility based on algo-
rithmic time complexity can guarantee unpredictability only for infinite time and
infinite precision. Wolfram is aware of this problem, and he emphasizes this point
in his previous papers. He writes (Wolfram 1984, 424): “The large time limit of the
entropy for class 3 and 4 cellular automata would then, in general, be non-comput-
able: bounds on it could be given, but there could be no finite procedure to compute it
to arbitrary precision.”

But do we need arbitrary precision for predictability? And how far into the future
should this “large time limit” be? In the next section, I argue that to have a predict-
able phenomenon we do not need arbitrary precision and we do not need to predict
until indefinitely long time limits.

3. Prediction is graded
We generally understand prediction as describing a phenomenon before observing it,
and we talk about “successful” or “failed” predictions, and accordingly, we say some-
thing is “predictable” or “unpredictable.” These expressions of success, failure,
predictability, and unpredictability represent prediction as a black-and-white concept
that is either successful or unsuccessful, possible or not possible. This language usage
hides the fact that prediction extends over a spectrum, and it is almost always not
black or white, but grey.

This graded nature of prediction is well reflected in the science of prediction.
There are fields like weather or political forecast where the success of prediction
has been subject of heavy investigation. The metrics that these fields use to gauge
the success of prediction rank various predictions on a range between complete
success and complete failure. An example is the Brier score, one of the most widely
used of these metrics (Brier 1950). Brier originally formulated the score to measure
the goodness of weather predictions, but later the score made its way to studies of
socio-political predictions as well (Tetlock and Gardner 2016). Brier score has the
following formula:

B � 1
n

Xn

i� 1

Xr

j�1

pij � Eij
� �

2

The index j corresponds to each possible outcome, and r shows the total number of
possible outcomes. For example, it might rain ( j � 1) or not rain ( j � 2 and in this
case, r � 2). The index i corresponds to an occasion of prediction, and n shows the
total number of the predictions made. For example, we may predict whether it
rains or not for ten days, and in that case i � 1; 2; . . . ; 9; 10 and n � 10 pij is the
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probability that the forecaster assigns to outcome j on occurrence i. Eij indicates
whether outcome j has happened on an occurrence i (Eij � 1), or not (Eij � 0). The
best Brier score is zero, and the lower the Brier score, the better.

Suppose we have four weather forecasters. The Archangel who predicts all the
rainy and not rainy days correctly and is always 100% confident about the predicted
outcome. The Demon who mispredicts all days but is also 100% confident. The Bold
forecaster who correctly predicts 60% of the rainy days, but she is 90% confident
about her predictions. And the Cautious forecaster who also predicts 60% of rainy
days correctly, but she is only 60% confident about her predictions. Table 1 shows
the predictions of these four forecasters over ten consecutive rainy days and the
corresponding Brier score.

The best score is zero, and it goes to Archangel. The worst is 2, and it goes to
Demon. The interesting point is the score differentiates between Cautious and
Bold, although both make the same predictions. The better score of Cautious
compared to Bold implies that someone who predicts with 60% accuracy should be
only 60% confident in her predictions. Bold gets a worse score for being over-confi-
dent. The confidence of a prediction is not necessarily a subjective perception in the
eyes of the forecaster. The probability that a probabilistic natural law assigns to an
outcome can replace the confidence a forecaster puts in her forecast. In this way, the
Brier score can rank predictions of alternative probabilistic laws.

One might come up with other scores to measure the success of predictions of a
law or a forecaster. For example, the formulation of the Brier score that I presented is
suitable only for predictions of binary outcomes such as rain or no rain. But when the
outcome can have a range of values, the above formulation of the Brier score would
not be sufficient. We would need an alternative score that incorporates the precision
of the prediction as well. For example, if the temperature is 14 Celsius, a prediction of
14.5 Celsius must get a better score than a prediction of 16 Celsius. The new score
should somehow combine accuracy, certainty, and precision. Or one might come
up with another score that looks also at how far in the future the forecaster can
go. A forecaster who correctly predicts the weather a year from now should get a
better score than a forecaster who predicts only tomorrow’s weather. Or another
score might incorporate the variety of climate types that a forecaster can predict.
A forecaster who successfully predicts rainy days only for tropical rain forests would
get a lower score compared to a forecaster who predicts rainy days in various
geographic regions. The critical point is that no matter what criteria we add, all these
alternative scores will put the success of a prediction on a spectrum.

Even the most successful scientific predictions fall short of the absolute ends of
success spectrum for various reasons. For example, most of scientific predictions
are never maximally certain. The reason is evident if the laws used for prediction
are probabilistic. A probabilistic law predicts the outcome with a less than one prob-
ability and leaves the possibility that the predicted outcome does not happen. Some
laws of science, such as some quantum mechanical laws, are explicitly probabilistic.
But even some of the laws that look deterministic on their surface are in one way or
another probabilistic at their core. For example, chemistry teaches us that carbon
dioxide interacts with water and produces carbonic acid. But it is more accurate
to say that carbon dioxide interacts with water and produces carbonic acid only if
the molecules collide at the correct angle and with sufficient energy. And such a
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Table 1. Some predictions and their corresponding Brier scores

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Brier score

Archangel 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 100% Rainy 0

Demon 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 100% Sunny 2

Cautious 60% Sunny 60% Rainy 60% Rainy 60% Rainy 60% Sunny 60% Rainy 60% Sunny 60% Rainy 60% Sunny 60% Rainy 0.48

Bold 90% Sunny 90% Rainy 90% Rainy 90% Rainy 90% Sunny 90% Rainy 90% Sunny 90% Rainy 90% Sunny 90% Rainy 0.66
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collision is a probabilistic event. Many laws of the special sciences are like this. They
are stated with a deterministic tone, but a closer look shows that they are probabi-
listic at their core.

Scientific predictions are also not maximally accurate and precise because of the
noise inherent in any measurement and experiment. Part of this noise comes from
the random fluctuations that are always there in the context of any experiment or
measurement. And another part comes from the upper cap of precision and accuracy
of the measurement devices. But there is also a third source of noise that comes from
the limited precision of the values stored in computers. Regular computers have
between seven to sixteen decimal digits of precision. Going to more accurate
computers mitigates this type of noise but does not reduce it to zero and there is
a hard upper cap on the precision of even the ultimate hypothetical super-computer
(Davies 2004).

Scientific predictions also cannot look arbitrarily far into the future. For all the
reasons discussed, scientific predicting models all have small systematic or nonsys-
tematic errors and those cause problems for predictor simulations. Given long
enough, small systematic deviations will result in humongous differences between
the predictions and the actual outcome. In very long time periods, even nonsystem-
atic errors might find the chance to accrue in one direction at some point in time, and
significantly change the course of the outcome from then on. And both systematic and
nonsystematic small deviations might significantly deviate the prediction from the
actual outcome due to the butterfly effect. Different cases of prediction would be
more or less robust over long periods of time and would successfully see farther
or closer into the future. But no real-world prediction goes until infinite time.

Save the not-yet-found theory of everything, scientific models are also not
supposed to predict everything, everywhere. All scientific models work within a
limited scope and under certain assumptions. The wider the scope of a model and
the fewer its assumptions, the better the model. But the scope never becomes all-
encompassing and the assumptions never go to zero. Of course, some level of gener-
ality is duly expected from a scientific model. But the generality need not expand to
every phenomenon and every situation.

In short, even the best predictions in science are never maximally accurate,
precise, and certain, and they are not expected to predict until the infinite future.
They are also not expected to predict everything, everywhere. These less than
maximal standards apply even to the astonishingly accurate astrophysical predictions
and the profoundly accurate scientific devices such as atomic clocks. Maximal stand-
ards are too much to ask even from the paradigm successful predictions.

We saw computational irreducibility guarantees impossibility of prediction only
for all cases, in infinite time, or with infinite precision, accuracy, and certainty. The above
discussions, however, show that lack of prediction under these maximal conditions is
not equivalent to being unpredictable because maximal standards are not necessary
for predictability. It follows that a theory like computational irreducibility that shows
some phenomenon cannot be predicted with maximal standards does not show that
the phenomenon is necessarily unpredictable.

Computational irreducibility, therefore, cannot provide a basis for unpredict-
ability. We see the philosophical importance of this conclusion in more details in
the next section in the context of computational accounts of emergence.
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4. Ontological weak emergence and computational irreducibility
An emergent phenomenon is a feature of a system in its entirety that looks unpre-
dictable and novel given all that we know about the system’s parts. We are confident
that we know the micro-structure of a system well enough to explain and predict its
systemic macro properties and behaviors. Yet, the system shows some macro-level
features that we cannot predict or explain. There are different ways to explain this
dichotomy between what we expect from the micro-structure and what we observe at
the macro-level. One way is the approach suggested by Darley (1994) and Bedau (1997,
2008) and supported and expanded by Huneman (2008, 2012). I call this approach
ontological weak emergence.6 Due to the heavy reliance of this approach on computa-
tional concepts, it is also called computational emergence (Huneman 2008).

Ontological weak emergence sits somewhere between strong and weak emergence.
Strong emergence suggests that emergent phenomena are ontologically distinct from
their underlying micro-structure. The most famous examples are mental phenomena
that, according to strong emergentists, are of a different nature from the neurological
system underneath them (Chalmers 1996, 2008). Weak emergence, on the other hand,
suggests that there is nothing ontologically special about emergent phenomena, and
they look novel and unexpected simply due to our limited understanding of the
underlying system. In this view, emergence is merely an epistemic perspective in
the eyes of the beholder, and it will eventually dissolve as the beholder develops a
better understanding of the system (Hempel and Oppenheim 1948; Chalmers 2008).7

Weak emergence has a special appeal due to the current popularity of physicalism,
as it does not introduce any new ontological types and keeps the physicalist ontology
clean and tidy. Weak emergence, however, does not explain the notorious persistence
and prevalence of emergent phenomena in so many disciplines, from biology to soci-
ology. The history of science shows that many emergent phenomena, such as almost
any phenomenon of interest in biology, economics, and so on, still count as emergent
despite significant advances in more fundamental sciences. The early supporters of
weak emergence, such as Hempel and Oppenheim, had a different vision of the future.
According to Hempel and Oppenheim (1948), during the course of scientific progress,
phenomena are only transiently emergent because the theories and facts to explain
them are yet to be discovered. Once the advances in science provide the necessary
theories and facts, these will shed light on the phenomenon and dispel the apparent
magic of emergence. Although there would be times when “Nature and Nature’s laws
lay hid in night,” the story has a happy ending: “God said, ‘Let Newton be!’ and all was
light.”8

This has not happened, and many important phenomena in special sciences are
still unexplainable and unpredictable by the more fundamental theories (Mitchell
2009). Emergence in special sciences has proved to be way more resilient than what
early weak emergentists suggested. This resilience indeed begs an explanation.
As Fodor (1997, 160–61) nicely puts it: “Damn near everything we know about the

6 Bedau calls his theory weak emergence. I, however, call it ontologicalweak emergence to differentiate it
from other accounts of weak emergence.

7 There are inconsistencies in the field about what is called “weak” or “strong” emergence. I define the
terms in the text to avoid any confusion.

8 Epitaph by Alexander Pope.
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world suggests that unimaginably complicated to-ings and fro-ings of bits and pieces
at the extreme microlevel manage somehow to converge on stable macro-level prop-
erties : : : . On the other hand, the ‘somehow’ really is entirely mysterious : : : . So, then,
why is there anything except physics? : : : Well, I admit that I don’t know why. I don’t
even know how to think about why.”

This resilience is a good motivation to ask if there is more to emergence than
merely the transient surprise of the ignorant. In fact, betraying Hempel and
Oppenheim’s expectation, not only did the advances in science not demystify emer-
gent phenomena but it was those very advances that lead to a stronger ontological
version of weak emergence. Studies of complex systems through the twentieth
century and through today inspired Darley (1994) and Bedau (1997, 2008) to suggest
a new kind of weak emergence, namely ontological weak emergence, that while it
does not introduce new ontological types, it blames the unpredictability of emergent
phenomena on some ontological characteristics of the system. That ontological char-
acter is computational irreducibility.

Ontological weak emergence is a property or a behavior of a system that cannot be
explained, derived, or predicted except via simulation (Darley 1994; Bedau 1997,
2008). Bedau defines simulation as derivation of the macro-state of the system by
going through the course of interactions in its micro-dynamics (Bedau 1997). The
course of interactions can be followed in the system itself, its physical replica, or
a computational simulation. The important point is that the only way to derive what
comes out of the course of interactions is going through that very course of interac-
tions in one setup or another.

Note that it is not a necessary fact that we need to go through the micro-level
interactions to derive the macro-level facts of a system. For example, consider the
oscillation of an ideal pendulum. To derive the position of the pendulum at time
t (x t� �), we do not need to crunch through all the forces acting on the bob in every
swing until t. We can simply plug the value for t in the following formula and get the
position of the pendulum x t� � (A is amplitude, and ω is angular frequency).

x t� � � A cos ωt� �

But such shortcuts are not available for the ontologically weakly emergent, and the
only way to derive them is to go through all the forces step by step. Compare
predicting the position of a ball in a pinball machine with predicting the position
of a bob of a pendulum. Apparently, we know everything about the mechanics of
pinball machines. But unlike the case of the pendulum, we cannot come up with a
simple formula to tell the position of the ball at t. The only way to know the position
of the ball is to play or simulate each round of pinball. Therefore, the position of a ball
in a pinball machine at time t is ontologically weakly emergent.

But why is it the case that simulation is the only way to predict the position of the
ball in a pinball machine? Arguably, before the invention of trigonometry by
Hipparchus (180–125 BC), the shortcut formula for pendulums was not available
and simulation was the only way to derive the position of the bob. So, what prevents
us from hoping that some future genius will come up with a formula for predicting
the position of the ball in a pinball machine, even if it takes devising a whole new
branch of mathematics?
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In response to this question, Bedau takes recourse to computational irreducibility.
He suggests that a phenomenon is ontologically weakly emergent if the path leading
to that phenomenon is computationally irreducible. And computational irreducibility
guarantees that the only way to predict the phenomenon is going through the orig-
inal path itself. No shortcuts are possible. In fact, there is such a tight connection
between computational irreducibility and ontological weak emergence that Bedau
sometimes seems to take the two concepts to be identical (Bedau 2002, 18): “The
behavior of [ontologically] weakly emergent systems cannot be determined by any
computation that is essentially simpler than the intrinsic natural process by which
the system’s behavior is generated. Wolfram : : : terms these systems ‘computation-
ally irreducible.’”

Computational irreducibility is an ontological character of the system and there-
fore, an emergence arising from computational irreducibility is tied to the ontology of
the system. Thus, it is not merely in the eyes of some beholder and is here to remain
in face of any future advances. Computational irreducibility guarantees that not just
us, the mortal humans of the twenty-first century, but no pinball genius in the future,
and no pinball Laplacian demon, can tell the position of the ball without simulating it.
Forever and everywhere, simulation is the only option. Or so the supporters of
ontological weak emergence claim.

At the core of Bedau’s account sits the assumption that computational irreduc-
ibility means guaranteed observer-independent unpredictability. The discussions of
the previous sections, however, show that computational irreducibility cannot guar-
antee unpredictability. Computational irreducibility guarantees impossibility of
prediction only with maximal standards, and we saw that impossibility of prediction
with maximal standards is not equivalent to unpredictability. Computational irreduc-
ibility may be able to demonstrate that one cannot predict the position of the ball in a
pinball machine under all scenarios, after infinite time, and with infinite accuracy,
precision, and certainty, unless one simulates the play. But computational irreduc-
ibility has nothing to say against the possibility of a pinball genius, let alone a pinball
demon, predicting the position of the ball with strikingly high, yet sub-maximal
standards. Computational irreducibility is consistent with the position of the ball
being predictable for all that matters.

Avoiding this objection may be the motivation that makes Bedau emphasize accu-
racy and completeness in his relatively more recent formulation of ontological weak
emergence, saying that it is the accurate and complete derivation of an ontologically
weakly emergent phenomenon that is impossible except by simulation (Bedau 2008).
But the emphasis on accurate and complete derivation addresses the objection only
by trivializing the concept of unpredictability, and consequently the concept of emer-
gence. There is not even a single case of real-world prediction in which one predicts
the state of a system with perfect completeness and accuracy. It trivially holds that
the only way to know all future states of any physical system with one hundred
percent accuracy and completeness is to run the system itself. But by defining emer-
gence in this way, any physical system whatsoever would turn out to be ontologically
weakly emergent. Such an all-inclusive theory of emergence tells hardly anything
interesting about the emergent phenomena.

Huneman adopts Bedau’s idea but goes one step further. He suggests that on top of
unpredictability except by simulation, the nontrivial cases of ontological weak
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emergence should satisfy one additional criterion. They should show stable higher-
level regularities. He again refers to computational irreducibility to explain how an
unpredictable micro-level results in a predictable macro-level regularity. He claims
that the micro-level is computationally irreducible and hence, unpredictable, but the
computational irreducibility is lost once we go to the higher-level (Huneman 2008,
2012). For example, we saw that coarse-graining transforms a computationally irre-
ducible system to a computationally reducible one. Through a mechanism like coarse-
graining, so the explanation goes, we transit from the computationally irreducible
micro-level to the computationally reducible and, hence, predictable macro-level.

Similar to Bedau’s, a key assumption in Huneman’s account is that computational
irreducibility means guaranteed observer-independent unpredictability. It is compu-
tational irreducibility that supposedly guarantees that emergent phenomena are
unpredictable at the micro-level. But we saw that this assumption does not hold,
and computational irreducibility cannot guarantee Huneman’s criteria of unpredict-
ability on the lower level. His account faces the same problems as Bedau’s on
that level.

An alternative interpretation of Huneman’s account in which the emphasis shifts
from predictability on the lower or the higher levels to predictability with maximal or
sub-maximal standards seems to fare better. On this interpretation, emergence is
unpredictability with maximal standards because of computational irreducibility,
while being predictable with sub-maximal standards via processes such as coarse
graining that break computational irreducibility. Note that the only role that compu-
tational irreducibility plays in this version of Huneman’s account is guaranteeing
unpredictability with maximal standards, and it is a role that it indeed can play.
This guaranteed unpredictability with maximal standards, however, is useless in
delineating emergent phenomena in practice, because any natural phenomena you
name is practically unpredictable with maximal standards.

This interpretation can at most show a purely theoretical difference between the
emergent and the non-emergent, and allows the two classes of phenomena to look
exactly the same in the real world. The view, therefore, cannot explain any observable
difference between the emergent and the non-emergent phenomena. And the other
way round, the practical and observable differences between the emergent and the
non-emergent phenomena cannot provide any evidence for this purely theoretical
view. The emergence debate, however, is motivated by the supposedly observable
and practical differences between the emergent and the non-emergent. With regards
to these most eye-catching puzzles of emergence, this purely theoretical approach
seems irrelevant and inadequate.

On a third interpretation of Huneman’s account, we can focus on predictability
after coarse graining rather than unpredictability before it. On this interpretation,
we acknowledge that all natural phenomena are unpredictable with maximal stand-
ards, and we delineate the emergent as those special ones that can be made predict-
able by coarse graining. The immediate challenge would be to set a cut off for the
amount of coarse graining allowed before an emergent phenomenon becomes
predictable. To avoid this difficult challenge, we can define emergence as a graded
concept, suggesting that different phenomena show different amounts of emergence
depending on the amount of coarse graining needed before they become predictable.
It is an intuitively appealing idea, and I think it is a step in the correct direction as it
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introduces a graded emergence that reflects the graded nature of predictability. The
problem, however, is that it is very hard, maybe impossible, to formalize it as a form
of computational emergence. In the next section, I entertain the idea of graded emer-
gence and show that the theory behind computational emergence is too stiff to
accompany the moves toward graded emergence.

5. Degrees of emergence
One way to deal with the problems arising from the graded nature of predictability is
to describe emergence as a graded concept. The promoters of ontological weak emer-
gence have already proposed this idea, though mostly passingly. For example, in his
more recent works, Bedau (2008) suggests that ontological weak emergence comes in
degrees, and that phenomena can be more or less emergent. This is a move in the
correct direction as it mirrors the graded nature of prediction. The problem, however,
is that computational irreducibility cannot accompany emergence in this move.
Computational irreducibility works only in extreme and maximal conditions, and
it is silent about what falls in the middle. By claiming a graded emergence, Bedau
loses the ontological support of computational irreducibility for his theory. This is
a heavy loss. After losing the ontological support of computational irreducibility,
it is not clear what the advantage of computational emergence would be over the
other humbler non-ontological versions of weak emergence. In fact, other more
subjective accounts of weak emergence are probably in a better position to define
a graded emergence based on grades of predictability, because the spectrum of
prediction depends not only on the characteristics of the object of prediction, but also
on the subject’s epistemic goals and capacities.

The graded version of Huneman’s account faces similar problems. The degrees of
emergence in Huneman’s account start after coarse graining where we can no longer
rely on computational irreducibility. We need to devise other computational concepts
to formalize and quantify the degree to which a phenomenon becomes predictable
after coarse graining. Without such formalization and quantification, the graded
version of Huneman’s account would not have any ontological and computational
element and, hence, would not have any tangible advantage over non-ontological
types of weak emergence. The non-ontological types of weak emergence might be
even better suited to describe the degrees to which a phenomenon shows emergence
after coarse graining because they can more easily accommodate the subjective
aspects of predictability.

Is there a way to formalize and quantify degrees of emergence in Bedau’s or
Huneman’s accounts? Hovda (2008) has attempted to build such formalization and
quantification. His attempt, however, more than anything shows the seemingly insur-
mountable challenges facing such formalization and quantification. Hovda adopts
Bedau’s notion of emergence as derivability only via simulation (s-derivability)
and suggests the degree to which a phenomenon is emergent corresponds to the
amount of simulation, or more precisely, the amount of computation needed to derive
that phenomenon. The more computation is needed, the more is the phenomenon
emergent.

Despite its apparent simplicity, there are serious problems when it comes to the
details of Hovda’s formalism. The most important problem that Hovda himself
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explicitly acknowledges is that the amount of computation needed to derive a
phenomenon depends not just on the nature of that phenomenon, but also on some-
what arbitrary choices, such as the formal language used to describe the system and
the way one defines and counts the steps of the simulation. Listing various such diffi-
culties, Hovda (2008, 470) concludes that “we must acknowledge that s-derivability,
and amount of simulation required, might be relative to a derivation system.” But this
means admitting that the amount of emergence a phenomenon shows at least in part
depends on our somewhat arbitrary and subjective choices on the derivation system.
The amount of emergence would be a side effect of some arbitrary formalism rather
than an ontological fact about the phenomenon.

The dependence of Hovda’s quantity of emergence on the choice of formalism
diminishes not just its theoretical value in describing the nature of emergence,
but also its practical usefulness as a measure of emergence. Science uses different
formal frameworks to describe different natural phenomena, and therefore, it would
not be possible to use Hovda’s quantity to compare the amount of emergence across
different natural phenomena.

The lessons of Hovda’s example are not peculiar to his particular formalism. His
work shows how arbitrary and subjective factors bedevil any quantification of weak
emergence. Considering these arbitrary and subjective factors, it seems impossibly
challenging to quantify emergence as an ontological computational character of
the emergent phenomena.

6. Conclusions
Our exploration of various interpretations of computational irreducibility showed
that it can guarantee impossibility of prediction only for all cases, or in infinite time,
or with infinite precision, accuracy, and certainty. Prediction in its best scientific
sense, however, does not happen in these maximal contexts. Every predicting model
scores better or worse in terms of the variety of scenarios it can predict, the stretch of
time it can look into, and the accuracy, precision, and certainty of its predictions.
Even the archetypes of scientific predictability do not score perfectly on any of these
dimensions. Yet we deem those scientific predictions successful and, accordingly, deem
the object of their predictions predictable. Therefore, we cannot conclude unpredict-
ability of a phenomenon from a theory like computational irreducibility that shows
impossibility of prediction only with maximal standards.

This has important consequences for the philosophical positions such as onto-
logical weak emergence that rely on computational irreducibility to guarantee
unpredictability. Ontological weak emergence defines emergence as unpredict-
ability except via simulation. It is computational irreducibility that is supposed
to guarantee this unpredictability. Allegedly, computational irreducibility
provides an objective and ontological anchor for the unpredictability of the emer-
gent and, thus, frees weak emergence from being merely in the eyes of some
observer. With its mathematical power, computational irreducibility acts as the
seal of Solomon forcing even the Laplacian demons to kneel before the unpredict-
ability of the emergent. Even the demons cannot predict the outcome unless they
simulate.
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But the discussions above show that until we forge a stronger formulation, the seal
will remain lost in the sea.9 Computational irreducibility leaves open the possibility
that not only the Laplacian demons, but even the humble human observers predict
the result of a computationally irreducible process with sub-maximal, yet acceptable
standards. Computational irreducibility only shows that we cannot ask for the moon.
But we do not need the moon after all.
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