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Models provide scientists with knowledge about target systems. An important 

group of models are those that are called general. However, what exactly is meant 

by generality in this context is somewhat unclear. The aim of this paper is to draw 

out a distinction between two notions of generality that has implications for 

scientific practice. Some models are general in the sense that they apply to many 

systems in the world and have many particular targets. Another sense is captured 

by models that are aimed at understanding the fundamental or underlying dynamics 

of a phenomenon, as opposed to how it manifests in each particular case. They have 

non-specific, i.e. generic targets. While both notions of generality and genericness 

are legitimate and correspond to different aspects of scientific practice, they must 

be distinguished. Failing to do so obscures the danger of overgeneralisation faced 

by general models and facilitates the illegitimate use of generic models as general 

models. This can lead to a reduction of the explanatory and predictive power of 

both.  
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1. Introduction 

A central question in modelling epistemology is: “in virtue of what do models provide us 

with knowledge about the world?”. This question is particularly interesting in cases where there 

is not a one-to-one mapping between a particular real-world system and a specific model 

designed to provide information about that system. One such case is that of general models. 

There are numerous conceptions of ‘generality’ with respect to models (Cooper, 1998; Evans 

et al., 2013; Kuorikoski & Lehtinen, 2009; Levy, 2018; Matthewson & Weisberg, 2009; 

Weisberg, 2013; Ylikoski & Aydinonat, 2014). In this paper, I will focus on two of these 

conceptions, generality and genericness, and argue that they should be kept distinct. At the 

conceptual level, this distinction helps us to understand the above question, as it sheds light on 

what general models are about. Yet this discussion also has practical implications, as it can 

help to elucidate two common problems in the practice of modelling.  

There is a consensus in the philosophical literature that models can be used for different 

purposes, including but not limited to explanation, prediction and intervention (Giere, 2004; 

Knuuttila & Loettgers, 2016a, 2016b; Morgan & Morisson, 1999; Weisberg, 2013). Scientists 

and philosophers often include a model’s intended use in their discussions of model-world 

relations, model success and a model’s source of value. For example, the logistic growth model 

in Ecology is used to explain and predict the size of many actual populations of plants and 

animals (Barlow, 1992; Brashares et al., 2010; Levins, 1966). One of its sources of value, 

perhaps the most important one, is that applies to many diverse actual systems in the world 

(Levins, 1966; Orzack & Sober, 1993). When discussing Schelling’s model of residential 

segregation, however, philosophers and social scientists identify a different use and source of 

value. This model is used to acquire an understanding of the fundamental or underlying 

dynamics of a phenomenon (segregation), as opposed to how it manifests in each particular 

case (Aydinonat, 2007; Kuorikoski & Lehtinen, 2009; Weisberg, 2013; Ylikoski & Aydinonat, 

2014). Moreover, its source of value is not that it provides information about how segregation 

actually comes about in real cities, but because it provides a possible explanation of how 

segregation could come about (Aydinonat, 2007; Kuorikoski & Lehtinen, 2009; Ylikoski & 

Aydinonat, 2014).  

Despite identifying these different uses and sources of value for models, philosophers of 

science use the term ‘general’ for both types of model use, routinely grouping both types 

together under a single characterisation, usually ‘general models’, sometimes also ‘minimal 

models’ or ‘toy models’ (Nguyen, 2020; Reutlinger et al., 2018; Weisberg, 2013). I believe 

that this undermines the importance of distinguishing between the two types of model use. In 
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what follows, I will argue that we should instead highlight the differences between these two 

types of model use, and that this can be achieved by distinguishing between the concepts of 

generality and genericness.  

I should point out that my argument pertains to model use rather than a model’s nature, 

i.e. what models are about rather that what they are.  I will not be arguing that a model itself is 

general or generic but will investigate what happens when it is used generally or generically in 

certain contexts. When, on occasion, I refer to a general or generic model, this is just shorthand 

for a model being used generally or generically. It may seem that framing the argument in 

terms of model use undermines the distinction between generality and genericness, but this is 

not the case (see section 3.2). Even if a model can be used generally and/or generically, this 

does not mean that it should. The point of the distinction is to provide the conceptual foundation 

for determining which model use is best suited to certain contexts and to explain why one use 

could be ill-advised in a certain context (see section 5).  

 Another common view in the literature is that models are about target systems (Frigg, 

2009; Giere, 2004; Knuuttila, 2005; Matthewson & Weisberg, 2009; Suárez, 2010; Weisberg 

2013). Target systems can also be understood in a number of different ways, e.g. as parts of 

real-world systems, abstract systems, or even hypothetical systems (Elliott-Graves 2020; 

Suárez, 2010; Weisberg, 2013). However, when discussing general models, philosophers view 

their targets as ‘generalised abstract systems’ (Aydinonat, 2007; Kuorikoski & Lehtinen, 2009; 

Weisberg, 2013; Ylikoski & Aydinonat, 2014). I will argue that the distinction between 

generality and genericness extends to target systems, while the concept of a ‘generalised 

abstract system’ does not fully capture either type of target. Furthermore, general models apply 

to many particular real-world targets, whereas generic models apply to generic targets.  

I start by examining a general model (the logistic growth model) and a generic model 

(Schelling’s segregation model) (section 2). I further clarify the distinction between generality 

and genericness (section 3), focusing on the concept of abstraction (3.1), the importance of 

model use and the possibility that a single model can be used both generally and generically 

(3.2), the case of model families or types (3.3), models’ source of value (3.4) and the distinction 

between a and p generality (3.5). I then examine the target systems of general and generic 

models, arguing that they are also distinct (section 4). I show, contra Weisberg (2013), that 

neither general nor generic models have ‘generalised target systems’. Instead, general models 

have many local targets while the targets of generic models are themselves generic. In the final 

section (5), I argue that two of the most important dangers in modelling, (i) overgeneralisation 
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and the (ii) illegitimate transformation of how-possibly to how-actually explanations, are 

facilitated by the failure to distinguish between general and generic model use. 

 
 

2. Two ‘General’ Models 
 
2.1. Logistic Growth 

One of the most significant models in the history of Ecology is the logistic growth model, 

invented independently by Pierre Verhulst and Raymond Pearl, to describe how populations 

grow (Kingsland, 1982). The model measures how the growth rate of a population (N) is limited 

by the density of the population itself (the differential form of the model description can be 

seen in Equation 1, below): 

 
Here, (r) is the intrinsic growth rate, the maximum possible growth rate of the population. It is 

roughly equivalent to the number of deaths in the population subtracted from the number of 

births in that population. (K) the carrying capacity of the environment, refers to the maximum 

number of individual organisms that a particular environment can support. The most important 

factors that affect (K) are resources, which can vary across environments and in terms of how 

they are used by different species. Populations displaying logistic growth have an initial phase 

of rapid growth, where the growth rate increases exponentially. As resources are used up, the 

growth rate slows, until the carrying capacity is reached, whereupon the growth rate stabilises.  

 From its inception, the logistic growth model was intended to be general –it was meant to 

apply to many different populations. Box 1 illustrates how Reed and Pearl demonstrated that 

the shape of uninstantiated version of the model was almost identical to four different 

instantiations, including three different human populations (New York, New Jersey and 

Connecticut), and a population of drosophila in a laboratory. The model was also applied to 

many other human populations, including those of Germany, Denmark and Japan (Kingsland, 

1982).  

 Generality as ‘applicability to many systems’ is the standard notion of generality in 

Ecology (Evans et al., 2013) and is also quite common in the philosophical accounts of 

scientific modelling, especially in the literature responding to and influenced by the work of 

Richard Levins (Cooper, 1998; Levins, 1966, 1993; Matthewson & Weisberg, 2009; 

Figure 1. Logistic Growth Model 

   
(N) is the number of organisms in population. (r) is the intrinsic growth rate of the population. (K) is the 
carrying capacity of the environment: the total number of organisms a particular environment can 
support.  

                                           dN                N                  !  = rN (1- ! )                        (1)                  dt                  K          



	 	 	
	

 5 

Odenbaugh, 2003; Orzack & Sober, 1993; Weisberg, 2013).1 Levins argued that generality is 

one of three desiderata for ecological models, the other two being realism and precision 

(Levins, 1966; 1993). Generality, in this sense, is valuable because it helps scientists make 

sense of seemingly disparate phenomena or systems. Showing that a particular phenomenon is 

an instance of a more general pattern because it is caused by a common set of rules or 

mechanisms can help scientists explain the phenomenon or predict how the system will behave 

in the future. This, in turn, allows scientists to transfer the knowledge they gain from 

investigating one system to the others, to use the model to predict the future behaviour of these 

systems and have quite high confidence that our predictions will be accurate. In fact, many 

accounts of scientific explanation have highlighted generalisability through theoretical unity 

as the hallmark of good scientific explanations (Hempel & Oppenheim, 1948; Kitcher, 1981). 

In the case of logistic growth, applying the model to many different populations was possible 

because its fundamental dynamic (exponential growth curbed by limiting resources) was 

thought to be the core factor of population growth, present in all real-world populations. In 

other words, generality helps to uncover the relevant similarities between seemingly disparate 

systems. In fact, the early success of the logistic growth model, led some of its proponents 

(mainly Pearl) to claim that the model described a general law of population growth (Cooper, 

1993). 

 So far, I have made liberal use of the phrase ‘applying to many systems’. But what exactly 

does ‘applying’ mean? For Levins (1993) and many philosophers of science (e.g. Godfrey-

Smith, 2008; Matthewson & Weisberg, 2009; Weisberg, 2013), a model applies to a target 

when it is used to understand, explain or predict the target system’s dynamics or behaviour. In 

other words, a model must be able to provide information about the aspects of the system that 

the scientist considers important for the purpose of the study. This constraint is intentionally 

weak, so as to allow scientists the freedom to use models in novel and creative ways. For 

example, it allows scientists to use models developed for quite different systems, such as using 

physical or chemical models in biology or biological models in economics (Knuuttila & 

Loettgers, 2016b; MacLeod & Nagatsu, 2016; Railsback & Grimm, 2011; Weisberg, 2007). 

This view is echoed by a number of philosophers of science, who believe that a model’s use is 

partly determined by the intentions of the modeller (Giere, 2004; Godfrey-Smith, 2008; 

	
1 It is also compatible with, and similar to the standard philosophical notion of generality in the context of laws, 
where general laws are those that describe general patterns, and are able to subsume many particular phenomena 
in the world (Kitcher, 1981; see discussion in Mitchell, 2009).  
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Knuuttila & Loettgers, 2016a; Weisberg, 2013). So, a model applies to a target system when a 

modeller uses it to investigate that target system.  

 Nonetheless, merely applying a model to a target system does not guarantee that the 

outcome will be successful. The success of a scientific investigation, whether this is 

understanding, explaining, predicting or intervening on the target system, also depends on how 

well the model applies to the target. This is where philosophical views begin to diverge, as 

there are many different accounts of what constitutes applying well to, or fitting, a target 

system, such as similarity (Weisberg, 2013), isomorphism (Van Fraassen, 1980), partial 

isomorphism (Costa & French, 2003), mediation (Morgan & Morisson, 1999), fictionalism 

(Frigg, 2009; Toon, 2012) etc. The aim of this paper is not to provide an argument for any of 

these accounts; the discussion of applicability and generality presented here is compatible with 

all views of model-target relations.  

 There are two aspects of ‘applicability’ that are relevant for this discussion. The first is 

being able to identify when a model has been applied well to a system and what factors reduce 

the applicability of models to targets. A common view in the scientific literature, is that we can 

test that a model applies well to a target, by whether it yields accurate predictions about the 

system’s behaviour (see for example Beckage et al., 2011; Dambacher et al., 2003; Kulmatiski 

et al., 2011; Levins, 1966, 1993; Stillman et al., 2015; Stockwell, 1999; Tompkins & Veltman, 

2006).  

 The second is that there is a tension between applying widely and applying well. That is, 

the more target systems a model is applied to, the less well it tends to apply to each particular 

target system. This is because in order to generalise, scientists must focus on factors that are 

common across different systems. In order to achieve this, they omit those factors that represent 

idiosyncratic features of particular target systems. So, the more general a model, the fewer 

factors it will have, so as to apply to more systems. The problem is that many systems where 

general models are used are complex and heterogeneous, so these idiosyncratic factors are 

actually relevant for the behaviour of each system.2 Models without these factors will often 

yield less accurate results for many particular systems (Berger et al., 2008; Elliott-Graves 2018; 

Phillips et al., 2016; Stillman et al., 2015; Travis et al., 2014).  

	
2 A system is complex when it has many interacting parts (Levins 1966; Matthewson 2011). A system is 
heterogeneous when these parts are themselves diverse (Elliott-Graves forthcoming, Matthewson 2011). A system 
is causally heterogeneous when the factors that affects its status or behaviour or the dynamics between these 
factors are idiosyncratic, i.e. particular to that system Elliott-Graves, forthcoming). Complexity, but especially 
causal heterogeneity, decrease the transferability of knowledge from one system to another, thus decreasing the 
scope and extent of generalisations.  
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Consider, for example, the exponential growth model. It describes the growth of a 

population in the absence of any factors limiting it, so it is simpler than the logistic growth 

model.3 It applies to all populations of organisms, because all populations have a growth rate, 

so it is very general. However, in most cases it does not apply very well to biological 

populations. As stated above, it describes a population’s growth in the absence of factors 

limiting it. Yet most biological populations have many factors limiting their growth, such as 

scarcity of resources, competition, predation etc. In fact, this model only applies ‘well’ to 

populations of bacteria in labs, and only for a limited amount of time, the “logarithmic phase” 

of bacterial growth (Levins, 1993).  

I will return to the implications of this tension between applying widely and applying 

well in section 5, in the discussion of overgeneralisation. In the meantime, I will explain the 

notion of genericness, exemplified by Schelling’s model of residential segregation.  

 
2.2. Segregation 

Thomas Schelling’s segregation model was intended as an example of how individual 

behaviour at the micro scale can have large-scale (macro) effects. It is relatively easy to explain 

segregation by appealing to strong discriminatory preferences (i.e. racism);  individuals of race 

A with strong discriminatory preferences will act so as to remove themselves from 

neighbourhoods populated by those of race B. But what if individuals of race A express only 

‘mild discriminatory preferences’ (i.e. wanting 30% of their neighbours to be like them)? In 

Schelling’s model, segregation arises even if agents express only mild discriminatory 

preferences (Schelling 1969).  

In the model, each agent (originally represented by a checker on a checkerboard) can either 

remain where they are (if their neighbours collectively conform to their preferences) or move 

to an adjacent square that is closer to their ideal percentage of ‘sameness’ ratio (neighbours 

like them). Figure 1 shows a typical NetLogo run of the Schelling model. Figure 1a shows the 

randomised setup of two populations and figure 1b shows the segregated neighbourhoods after 

the agents have interacted (segregation usually takes between 15 and 35 ‘ticks’, i.e. agents’ 

actions). 
 
 
 
 
 

	
3 The exponential growth equation in its differential form is the following: dN/dt = rN. Logistic growth is the 
exponential growth of a population (rN) modulated by the carrying capacity (K).  
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Figure 1. Typical NetLogo run of Schelling model for residential segregation 
 

 
Unlike the creators of the logistic growth model, Schelling did not base the model on any 

particular city, nor did he intend it to represent any particular real-world city (Aydinonat 2007). 

Rather, it seems that the model was born from Schelling’s need to find an intelligible way to 

represent an abstract phenomenon to his students:  
 
“I decided, if I am going to teach my students, I’ll have to make it all up. I wondered what to do, 
and decided maybe now was the time to begin playing around with these ideas … So, I drew a line 
on a sheet of paper, put down sort of a haphazard … x’s and 0’s, … And then I wanted to do it in 
two dimensions. In one dimension you can simply move an item and insert it between two others. 
But in two dimensions you have to have a more specific way of deciding where one can go. That is 
when I decided, well, I could use the checkerboard and leave blank squares so that the movement 
could get started. (I thought of hexagons, and decided squares were good enough.)”  

(Schelling, in Aydinonat 2005, p. 4)  
 

The model is not supposed to uncover the actual mechanism that gives rise to segregation in 

real-world cities, but an abstract mechanism, which does not provide ‘learning’ about real-

world segregation (Fumagalli, 2016). The question is, what is the value of a model that provides 

knowledge about abstract rather than actual mechanisms of segregation? 

 Many philosophers of science believe that the Schelling model provides a how-possibly 

explanation of the phenomenon of segregation, by describing a mechanism that could give rise 

to segregation in certain contexts (Aydinonat, 2005; Ylikoski & Aydinonat, 2014). How-

possibly explanations are valuable in the following ways: first and foremost, the knowledge 

that a certain behaviour or effect is possible is valuable irrespective of whether it actually 

occurs. That is, the model’s results ‘increase the menu of possible explanations’ i.e. bring to 

light a previously unknown or unexplored mechanism that can cause segregation (Ylikoski & 

The output of a typical run of Schelling’s segregation model in NetLogo using a virtual city that is 51 × 51 and two types of agents 
(red and green). All agents prefer to have at least 30% same-colored neighbors.

A. Setup B. Final
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Aydinonat 2014). This reduces the number of unconceived alternative mechanisms for the 

segregation, giving us greater confidence in our overall knowledge of the phenomenon.  

 Second, a how-possibly explanation could provide indirect knowledge for real-world 

phenomena. Even if the Schelling mechanism has hitherto not been a sufficient cause of 

segregation, this does not preclude it from constituting a sufficient cause in another time or 

place. Alternatively, the Schelling mechanism could seem to be absent from actual cases of 

segregation because it was overshadowed by other mechanisms. Yet knowledge of this 

mechanism could be important for interventions. For example, Schelling mechanisms could 

result in the persistence of segregation even if the overshadowing factors are eliminated.   

 Third, even though the Schelling model does not possess actual generality (a-generality), 

i.e. it does not apply to many actual systems in the world, it possesses possible generality (p-

generality), i.e. it applies well to many logically possible systems (Matthewson & Weisberg 

2009, Weisberg 2013). The Schelling mechanism that leads to segregation has been shown to 

be robust across many different modelling scenarios, such as differences in utility functions, 

neighbourhood sizes, spatial configurations and rules for updating (Weisberg, 2013 p. 119). P-

generality is valued for its explanatory power, as “exploration of the non-actual helps explain 

the actual, and the point of some explanatory models is not necessarily to resemble any real 

systems, but to canvas possibility space” (Matthewson & Weisberg 2009, p. 182). In the 

Schelling case, finding a mechanism that worked in many possible systems could help 

scientists to determine why it does or does not work in various actual systems.    

 To sum up, generic models are not meant to be applied to any real-world system, let alone 

many real-world systems. Their main value is that they generate how-possibly explanations 

which can yield information that is useful for real-world systems, but only indirectly.  

 

3. Clarifying the Distinction  

3.1 Generality, genericness and abstraction 

 With the examples in place, we can now delve deeper into the difference between 

generality and genericness. I will start with a short discussion of the term ‘generic’. I have 

chosen this particular term, because colloquially, ‘generic’ is often used to denote products that 

do not have a brand name, such as generic ‘cola’. When we say ‘get some cola for the party’, 

the implication is that we want a certain type of soft drink, but we are indifferent with respect 

to which brand of cola we want. In other words, the term ‘cola’ refers to an abstract type of 

soft drink, rather than particular real-world manifestations of it, i.e. actual cans of Coca Cola, 

Pepsi etc. Similarly, Schelling’s segregation model describes an abstract hypothetical 
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mechanism that could bring about segregation, rather than actual mechanisms that bring about 

segregation in many real-world cities.  

 My second reason for picking this term is that it captures one aspect of abstraction. The 

term ‘abstraction’ is notoriously ambiguous in every-day language and in philosophy, yet I 

believe that disentangling some of this ambiguity can help to elucidate the difference between 

generality and genericness. In the philosophical literature, abstraction can refer to refer to non-

concrete objects, concepts or ideas (Cartwright, 1989), generalizations (Levy, 2018; Strevens, 

2008), isolations (Mäki, 2009) or parts of a larger system (Jones, 2005). Whether or not all 

these terms are coextensive is a matter of ongoing debate (Godfrey-Smith, 2009; Humphreys, 

1995; Levy, 2018). A detailed analysis of the entire debate is beyond the scope of this paper, 

so I will focus on two views that are relevant for the purposes of this discussion, the view of 

abstraction as non-concreteness and the view of abstraction as generalisation.  

 Thinking of abstraction in opposition to concreteness has a long history in philosophy and 

psychology (Rosen, 2017). An important version of this view, in philosophy of science, is 

Nancy Cartwright’s. Following Aristotle, Cartwright states that in order to abstract, we start 

off with a concrete particular, an object or system in the world that has all its properties. Then, 

“we strip away, - in our imagination- all that is irrelevant to the concerns of the moment to 

focus on some single property or set of properties ‘as if they were separate’” (Cartwright 1989, 

197). That is, we identify the properties of the object, disentangle them (separate them from 

each other) and dismiss those that are considered unimportant or irrelevant for the particular 

model or experiment.4 An example of a concrete object is a triangle drawn on a slate. We can 

abstract by stripping away from the object various properties, such as the colour of the triangle, 

the chalk that it is drawn from “and other properties incidental to being a triangle” (p. 213). 

The now abstract system consists of the remaining properties, i.e. the geometrical properties of 

triangles. As the ‘stripping away’ is done in our imagination, the resulting product is not 

concrete.  

 Cartwright’s account of abstraction includes what is usually meant by the term ‘generic’. 

When we strip actual properties away from a triangle, the resulting imagined triangle ceases to 

have properties that are particular to actual triangles. The remaining properties could but need 

	
4 An important aspect of Cartwright’s view, though not relevant for this discussion, is that this process does not 
involve distortions. This is what distinguishes abstraction from idealization, where specific properties that are 
inconvenient are “mentally rearranged”, i.e. distorted (p. 187). Thus, while in the case of idealization a system is 
misrepresented, a description of an abstract system will contain only truths. It may not contain all the truths, but 
it will not contain any falsehoods. This point has generated some controversy, as some philosophers argue that 
abstraction also involves distortions, thus casting doubt on whether abstraction and idealisation are truly separate 
(e.g. Humphreys 1995, Weisberg 2007).  
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not be applied to any actual triangle. Thus, we could learn about these geometrical properties 

and their relations, without ever applying them to any concrete triangle. In other words, 

genericness is the absence of particularity.  

 I agree with Cartwright that genericness is the absence of particularity, yet I disagree with 

equating absence of particularity with non-concreteness. Even though stripping away 

properties in our imagination necessitates leaving the realm of the actual world (to non-

concreteness), it does not necessitate genericness. Keeping within the triangle theme, the west 

pediment of the Parthenon is a concrete triangular object that has a number of other properties: 

it is made of Pentelic marble, it depicts the contest between Athena and Poseidon for the 

patronage of Athens, it faces west, and so on. If we focus solely on the triangular aspect of the 

pediment, we are omitting all the other properties. Nonetheless, if we refer to that triangle, we 

are not referring to a generic triangle, we are referring to a non-concrete but particular triangle 

without some of its properties. In other words, stripping away is often a prerequisite of 

genericness but it does not necessarily entail it.  

 A similar argument can be made with respect to the relationship between abstraction and 

generality. On some views in philosophy of science, abstraction itself is synonymous with 

generalisation, because an abstracted system is understood as a general idea that refers to many 

particularizations of that idea. According to Strevens, for instance, abstraction and generality 

are one and the same: “of two explanatory models for the same explanandum, one is a better 

explanation than the other if it is more general, that is, more abstract” (2008, p. 134). On other 

views, including Cartwright’s, the process of abstraction (i.e. the omission of parts and 

properties from a system) is a prerequisite of generality. In order to identify what is common 

across a number of seemingly disparate systems, we must first leave out all the factors that are 

different. What remains is what is common across all systems. Identifying these common 

factors is the basis for the subsequent generalisation, i.e. the model applies to all the systems 

that share these common factors.  

 Yet even if we agree that the process of omission or simplification is a pre-requisite to 

generalisation, this does not mean that omission entails generalisation.5 We can omit or 

simplify without generalising. Making a statement about the imagined west pediment of the 

Parthenon, albeit without many of its properties, is not a statement about all triangles, or even 

	
5 In fact, omission is not always a prerequisite for generalization. There are instances where scientists start off 
with an abstract (often mathematical) idea and then apply it to actual systems in the world (see also discussion in 
section 3.3, and footnote 6). I would like to thank an anonymous reviewer for bringing up this point.  
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all the triangles in the Parthenon. It is a statement about a non-concrete single triangle. It is an 

extra step of extrapolation to make a statement about more (or even all) triangles.  

 Showing that genericness and generality are both distinct from non-concreteness also helps 

us avoid another conceptual misstep, namely the idea that only generic models are abstract (i.e. 

non-concrete). The concreteness of the model is an orthogonal issue. Non-concrete 

mathematical models can be general or generic.6 The point is what each model is about. 

Whether a model is used generally or generically is determined by what sort of system (or 

systems) it applies to. Abstraction, qua non-concreteness, is relevant here. General models are 

about many concrete systems, whereas generic models are about generic systems. In other 

words, it is the target systems of the models that differ in terms of concreteness, not the models 

themselves.   

 I will provide a more detailed examination of general and generic target systems in section 

4. For the remainder of this section, I will address some residual issues that will help to further 

clarify the difference between generality and genericness.  

 

3.2 Model Construction and Intended Use 

 As stated in the introduction, my argument places a lot of emphasis on a model’s intended 

use. In my discussion of the logistic growth and segregation models, I showed that the former 

was explicitly intended to apply to many real-world systems, whereas Schelling explicitly did 

not intend that his model be used to explain segregation in actual cities. The idea that modelers’ 

intentions are important aspects of model construction and use is far from controversial and 

well established in the literature (Giere, 2004; Knuuttila & Loettgers, 2016a, 2016b; Morgan 

& Morisson, 1999; Weisberg, 2013). Moreover, modelling is ‘outcome-oriented’: modelers 

construct models “keeping an eye on the behaviour they are supposed to exhibit and the results 

they are expected to produce” (Knuuttila & Loettgers, 2016a, p.1023). 

 However, model use is dynamic, in the sense that a model might be used for different 

purposes. In some cases, as outlined in section 2.1, models have been applied to systems in 

entirely different disciplines than the ones for which they were constructed. In other cases, 

different modelers have arrived at the same model but have had different intentions with respect 

to its use. For example, Knuttila & Loettgers (2016a) document the differences between 

	
6 Indeed, concrete models can also be particular, general or generic. For example, a picture of a plant cell is 
concrete but generic, when it is not intended to provide information about any actual plant cells. In contrast, a 
scale model of a particular type of airplane, for use in wind tunnel is general, as it applies to (and provides 
information about) many actual particular airplanes. Finally, the San Francisco Bay model is concrete and 
particular, as it is intended to provide information about the actual bay.  
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Lotka’s and Volterra’s construction of the predation model. On their view, Volterra’s 

construction proceeded through isolation and mathematical representation of factors that were 

present in the real-world system, whereas Lotka’s construction started from a generalised 

mathematical template that was not applied to real world systems (until later).7 This latter point 

is particularly salient, as Lotka’s construction of the predation model (which builds on the 

abstract exponential and logistic growth models) more closely mirrors Schelling’s approach in 

constructing the segregation model than Reed & Pearl’s approach to constructing the logistic 

growth model.  

 This issue seems to spell trouble for my account. On the one hand, if we are to distinguish 

between general and generic models, then how do we account for cases where models are used 

for different purposes, or where generic models become general and vice versa? If, on the other 

hand, we agree that models can be used for different purposes, then what is the point of making 

the distinction in the first place? 

 The short answer is that models are neither general or generic in isolation – they are used 

as general or as generic models. If models were always either general or generic, the distinction 

would be obvious, and could be easily demonstrated just by the two examples in section 2. The 

rest of this discussion would be unnecessary. The point is that the possibility of changing a 

model’s use does not mean that anything goes. In other words, just because it is possible to 

change a model’s use, this does not mean that all such changes are equally useful, worth 

implementing or will lead to successful results. Acknowledging and highlighting the 

distinction can help us understand when we can switch between genericness and generality and 

when we should not.  

 First, the switch from generality to genericness is less fraught with dangers than the 

opposite. This is because if we have already established that a model is general, we have 

identified a mechanism, dynamic, or set of causal factors that are shared across many real-

world systems. Once such a mechanism is known, then it is often worth to explore the space 

of theoretical possibilities so as to gain knowledge about hypothetical systems that are adjacent 

(in possibility space) to the actual systems we have already investigated. For example, a general 

model of sexual reproduction can be turned into a generic model of reproduction to examine 

how organisms with 3 or 4 sexes could reproduce (see sections 4, 5.1 and Weisberg 2013, for 

	
7 I should note that this point reveals a limitation of Cartwright’s account of abstraction, in the sense that it does 
not accurately capture the actual way in which all models are generated. While scientists sometimes start off with 
phenomena in the world and strip away properties to arrive at abstract models, in other cases scientists start off 
with abstract ideas or concepts and construct models without any reference to real-world phenomena. I would like 
to thank an anonymous reviewer for pointing this out.  
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a discussion of how to interpret Crow’s model of sexual reproduction in this context). In section 

5.1, I will show that the main danger for general models is not that they are (relatively) easily 

transformed into generic models, but that lumping together generality and genericness creates 

expectations of generality that are beyond the scope of many general models.  

 Second, there are differences in the type of system that models apply to, which facilitate 

the (relatively rare) cases where generic models can be used as general models. Some systems 

lend themselves to both generic and general model use. Often, these systems are physical or 

chemical systems, which are complex but homogeneous, i.e. the relevant causal factors are 

shared across systems, while any idiosyncratic features of a particular system or any differences 

between them are irrelevant and can therefore be safely ignored (Elliott-Graves 2018; Knuuttila 

& Loettgers 2016b; Weisberg 2013; see also footnote 1). A good example of this is the Ising 

model, which can be used both generally and generically. The Ising model describes phase 

transitions, where a system transitions from one state into another. It was originally developed 

to study phase transitions in ferromagnetic materials: when the temperature of a ferromagnetic 

system rises above a ‘critical’ point TC, the system becomes paramagnetic (Knuuttila & 

Loettgers 2016b). Knuuttila & Loettgers argue that the Ising model should be viewed as a 

model template, an abstract conceptual idea, expressed mathematically or computationally. 8 In 

this sense, the Ising model is being used generically, as it describes the abstract phenomenon 

of phase transition, without reference to particular (micro-level) properties of any actual 

system. However, it has since been shown to apply to many actual systems in physics and 

chemistry, in each case describing the phase transition of the system in question (ibid). It can 

also describe situations as mundane as boiling water, and its subsequent change from a liquid 

to a gaseous state.  

 What are we to make of cases like the Ising model? I believe that the correct response is 

to be very happy that it was possible for a generic model to become general. I believe scientists 

should rejoice in the insights that the Ising model generated. Nonetheless, I would also like to 

point out that we exercise caution, for two reasons. First, just because such examples are 

possible, does not mean that we should expect generic models to become generic often. It just 

so happens that in these physical and chemical systems, there is sufficient homogeneity within 

and across systems so that the generic idea manifests in sufficiently similar ways in many actual 

	
8 In fact, I believe that my distinction can allay the worry expressed by Batterman and Rice (2014), who point out 
that “common features accounts” do not fully capture the importance or source of value of models like the Ising 
model, as some of its value is due to its ability to explain the dynamics of a highly abstracted phenomenon. Though 
I believe that they underplay the importance of generality, I agree with them that genericness is valuable 
independent of its relation to generality.  
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systems so that the model can apply to them. We should not expect such transformations to be 

frequent or particularly useful, especially when the systems under investigation are complex 

and heterogeneous.9  

 This leads to the second reason to exercise caution.  Even though a generic model can 

apply to a homogeneous group of systems, this does not mean that it will apply to other types 

of systems. Socio-physicists (a small group of physicists who attempted to give physical 

explanations of socio-economic phenomena) recognised a “physical analogue” between the 

Ising model and the ‘clustering’ observed in Schelling’s segregation model (Vinković and 

Kirman 2006 in Knuuttila & Loettgers 2016b, p. 391). They argued that it is possible to 

conceptualise the abstract phenomenon of segregation a phase change where the “system is 

frozen into a solid” (ibid). In generic terms, this is both interesting and insightful. As Knuuttila 

& Loetgers point out, the Ising model shows “what happens if neighbourhood segregation … 

are understood as some kind of herding” (p. 397). Such a result is valuable because “much of 

economic modelling can be understood in terms of conceptual exploration”. However, 

assuming that this means the model will apply to actual cities is premature, as we should not 

expect that the Ising model applied to social systems will have “the same predictive value, and 

empirical and theoretical grounding as in physics” (ibid). I agree with this analysis, as I believe 

that it shows that the Ising model can be used generally within physics (and chemistry) yet is 

unlikely to yield useful information when applied to particular socio-economic systems. In 

these cases, it is better to use the model generically (see section 5).  

 To sum up the argument in this section, it is precisely because it is sometimes possible to 

change a model’s intended use that we should be careful, even cautious, in implementing such 

changes. I will return to the topic of intended use in section 4, where I show that it is also 

important in determining the target of a model and in section 5, where I show there are serious 

epistemic reasons to resist the use of the generic Schelling model as a general model, at least 

without additional empirical tests. 

 

3.3. Model families, types, templates & uninstantiated models.  

 Most models are not completely unique, but can be grouped together with other related 

models, in so-called ‘model families’. For example, the family of growth models (which 

include the logistic and exponential growth models) can be written as dN/dt = αN + βΝ1+α 

(Weisberg 2013, Evans et al., 2013). Another way to organise or classify similar models is in 

	
9 See footnote 2 and section 5.1 for a discussion of heterogeneity	
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terms of model types or templates. Model types can be thought of as sets, in which individual 

models are members, while a model template is “a mathematical structure that is coupled with 

a general conceptual idea that is capable of taking on various kinds of interpretations”, that is, 

an abstract conceptual idea that is associated with certain mathematical forms and 

computational methods (Knnuuttila & Loettgers 2016b p. 396).  

 Each of these terms correlates with certain intuitions. For instance, we might think of 

families of models as general, in the sense that they encompass many particular models. On 

the other hand, we might think of model templates as generic, because a template is an abstract 

(in the sense of non-specific) version of a number of models. To make matters worse, as 

outlined in the previous section, cases such as the Ising model can be thought of as general or 

generic. Do these cases undermine my distinction? 

 Again, the answer is no. I have argued that models themselves are neither general nor 

generic, but can be used in general or generic ways. The same point applies to model families, 

types, or templates. These model groupings can be used generally or generically: generally, if 

they are used to provide information for many particular systems and generically, if they are 

used to provide information about abstract or hypothetical systems. Still, I expect these model 

groupings to be used generically more often than they are used generally. We can think of 

model groupings as mapping a set of trajectory spaces, whereas each particular model describes 

the set of trajectories within a particular space. The information provided by the model 

groupings is useful for understanding the scope and features of the state space, whereas it is 

the individual models that provide information about the actual trajectories of real-world 

systems. In other words, the information yielded by the model grouping is morel likely to apply 

to abstract, hypothetical versions of real-world systems.  

 Similar points can also be made with respect to uninstantiated models, i.e. those that do 

not have specified values for their parameters. In their critique of Levins, Orzack & Sober 

(1993) argue that uninstantiated models are, by definition, more general than instantiated 

models. I should point out that this is a rather odd claim for them to make, since they 

subsequently point out that we should not compare instantiated and uninstantiated models: 

“Comparing apples with apples and oranges with oranges requires that the two both be treated 

consistently as uninstantiated or instantiated” (p. 536). Moreover, Orzack and Sober accept that 

generality is defined as applying to many actual systems, yet uninstantiated models can only 

apply to actual systems if they are first instantiated. Still, a more charitable interpretation of 

the argument is the following: a model with specified parameters describes a complete set of 

trajectories through a state space, where the dimensions are the variables of the equation. An 
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uninstantiated model corresponds to a set of trajectory spaces. Nonetheless, the problem is that 

this set of trajectory spaces does not pick out more systems in the world – it picks out more 

hypothetical systems. Thus, it provides direct information about the space of possibilities and 

only provides indirect information about actual systems. In short, a model that describes a set 

of trajectory spaces is generic rather than general.   

 

3.4. Source of Value  

 Another difference between general and generic model uses concerns the source of their 

value. Generality is valuable because it allows scientists to formulate expectations about a 

phenomenon or system even if they do not directly investigate or manipulate it. Thus, 

identifying that a particular phenomenon is a manifestation of a general pattern means that 

scientists can compare its behaviour to the other similar systems. It also allows scientists to 

make predictions about how the system will behave in the future, based on the behaviour of 

these other similar systems.  

 When models are used generically, they do not apply to any systems in the world, so 

generality cannot be the source of their value. Instead, it is their ‘genericness’ that makes them 

valuable as it provides scientists with hypothetical situations that can be used to explore 

possibilities, unencumbered by constraints imposed by the real world. Thus, scientists can 

determine how certain situations could come about, by exploring what conditions need to be 

in place for them to occur, and which conditions constitute limiting factors. Of course, this 

process also yields information about the actual world, indirectly, because it helps scientists 

gain understanding about how these factors and conditions function and interact with each 

other. Still, this is a secondary source of value. Using a model generically is valuable primarily 

because it allows scientists to explore the space of possibility, and this value remains unaffected 

by any subsequent discovery that they can be applied to real-world phenomena, or indeed by 

how many real-world phenomena they can be applied to. It is useful to know how a perpetual 

motion machine would work if it existed, or that entities can make flock-like shapes when 

flying, based on a single behavioural rule, or that a micro-behaviour can have a macro effect. 

How useful this knowledge is, compared to the knowledge gained by investigating other types 

of models, is beside the point (but see Weisberg 2013 for a discussion of this). The point is that 

it is useful, in itself.   
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3.5. A note on a- and p-generality 

 It may seem that the distinction between generality and genericness nothing more than the 

distinction between actual (a-) versus possible (p-) generality (Matthewson & Weisberg, 2009). 

After all, models used generally have high levels of a-generality (they apply to many actual 

systems) and models used generically have high levels of p-generality (they apply to many 

possible systems). However, there are three important differences between the two distinctions. 

The first is that the a- vs. p- distinction does not map on to the two kinds of models cleanly, as 

many models have high p-generality in addition to having high a-generality. The logistic 

growth model, applies to many actual and non-actual systems, including computer populations, 

populations that have yet to be developed in labs, populations of species that are extinct and 

populations of species that have yet to evolve.  

 Second, in the case of generic model use, having high p-generality is independent of and 

orthogonal to being generic. Possessing p-generality does not preclude models used generically 

from having other characteristics. Models can be applied to a generic phenomenon and many 

particular hypothetical phenomena. For example, the Schelling model explains the generic 

phenomenon of segregation, but it can also be applied to (and predict the outcome of) 

segregation in a hypothetical ‘neighbourhood’ in NetLogo. The subsequent application of the 

model to the hypothetical system does not negate or change the fact that the model was 

originally intended to represent an abstract phenomenon.  

 Third, possessing p-generality is also not the only reason to value models used generically. 

In the previous section I argued that the value of the Schelling mechanism is not affected by 

how many actual cities it applies to. Yet this also applies to p-generality. The value of the 

Schelling mechanism is not entirely determined by how robust it is across various hypothetical 

systems. Even if it only came about in some circumstances, or within certain parameters, that 

would still constitute an important insight for how micro-level behaviours can have macro-

level effects. In fact, high levels of p-generality can sometimes detract from the value of the 

model. In generic models, high p-generality can indicate that the model’s output is an artefact 

of the model’s design. For example, Muldoon et al., (2012) ran versions of Schelling’s model 

and found that segregation emerged even in cases where individual agents preferentially chose 

neighbours unlike themselves. Their analysis revealed that “as long as agents care about the 

characteristics of their wider community, they tend to end up in a segregated state” (p. 38), 

which implies that there is something about the setup of the model and the how agents process 

information that causes segregation in this case. The worry then is that these (or other) effects 

of the particular game might be affecting or even driving a particular output. Thus, focusing 
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exclusively on p-generality fails to recognize an important source of value for generic model 

use.  

 So far, I have argued that there are important differences in the intended use and source of 

value between general and generic model use. In the next section, I argue for a third difference 

between them, namely that general and generic model use involve different types of target 

systems.  

 

4. Targets of General Models 
 

If we are to understand what general models are about, then we need to examine their target 

systems. ‘Target systems’ are important components of model-world relations, and there is a 

consensus in the literature that they are what models represent. Yet ‘target systems’ can be 

understood in a number of different ways, e.g. as parts of real-world systems, abstract systems, 

or even hypothetical systems, depending on the types of models they are associated with and 

the use for which they are intended (Elliott-Graves 2020; Giere, 2004; Knuuttila, 2005; 

Weisberg 2013). Instead of going through all these accounts of targets, I will focus on 

Weisberg’s (2013) account, as it is the most comprehensive discussion of general models and 

their targets in the literature. 

For Weisberg, general models do not target any particular manifestation of a phenomenon 

in a real world-population, but apply to a generalised target, which is an abstraction over many 

particular targets (Weisberg 2013, p. 116). Weisberg illustrates his view with an example from 

biology, namely the evolution of sexual reproduction. He points out that the emergence of sex 

is a strange phenomenon and there is no real consensus on why it evolved. Our best bet for 

determining why sexual reproduction confers some evolutionary advantage, is constructing and 

analysing a generalized model of sexual reproduction. In other words, the point of studying sex 

in a general manner is not to discover facts about sexual reproduction in particular populations, 

but to understand larger issues such as the relative merits of sexual reproduction when 

compared to asexual reproduction. A “generalized model of sexual reproduction isn’t supposed 

to be about kangaroo sex or fungi sex, but about sex itself.” (p. 115). Consequently, on 

Weisberg’s view, the target of a model of ‘sex itself’ will also be generalised. 

 Yet Weisberg points out that there is no such thing as ‘sex itself’ in the world, only a 

collection of instances of sex in particular populations “kangaroo sex, Tasmanian devil sex, 

human sex, but not sex in general” (p. 116). Still, all these sexually reproducing species have 

certain properties in common. These shared properties are the core causal features of the 
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general phenomenon of sexual reproduction. So, if we find the intersection between the various 

instances of sex, we can create a system which the general model will represent. In other words, 

“sex in general is an abstraction over these more specific kinds of sex” (p.116). The general 

model targets this generalised system which is an abstraction over the many actual targets of 

sexual reproduction.  

 The problem with this picture, is that Weisberg lumps together aspects of modelling that 

ought to be kept distinct, which leads to a misrepresentation of both general and generic model 

use. Weisberg states that when scientists use general models, they are not interested in learning 

about particular manifestations a phenomenon, such as sexual reproduction, but about the 

phenomenon in general. Yet this seems to be at odds with actual scientific practice. There are 

numerous cases where scientists use models generally, i.e. with the explicit intent to learn about 

many real-world manifestations of that phenomenon. I documented at least one instance of 

such intentions in section 2.1, in my discussion of the logistic growth model. There are 

numerous other examples of models being used to learn about many different systems in the 

world. Just within biology, for example, niche models (Sobek-Swant et al., 2012; Wang & 

Jackson, 2014), loop analysis models (Dambacher et al., 2003; Puccia & Levins, 1986), 

individual-based models for a number of different dynamics (Berger et al., 2008; Railsback & 

Grimm, 2011) drought sensitivity models (Phillips et al., 2016), and fisheries models 

(Hollowed et al., 2000) are just some examples of models explicitly intended to apply to many 

real-world systems.  

 The notion of a ‘generalised target’ is also rather odd in the context of general models. 

Recall that this is an abstract generalisation of the intersection of many real-world targets. In 

Weisberg’s example, “the theorist takes the features common to all instances of sexual 

reproduction to be the target of her model.” (p. 116). But if a scientist can create an intersection 

from many real-world targets, then the generalized targets are dependent on specific targets. In 

other words, using the term ‘generalized target’ is simply shorthand for referring to a family of 

actual targets which share common properties, so the model is about kangaroo sex and fungi 

sex and Tasmanian devil sex and so on. If the intended use of the model is to apply to many 

real-world systems, then the whole process of finding the intersection is superfluous, so there 

is no need to invoke the notion of a ‘generalised target’. 

 Nor does the ‘generalised target’ accurately describe how targets of models intended to be 

generic are generated. As we saw in section 2.2 Schelling did not in fact assemble various 

instances of segregation in real cities, identify the intersection between them and create an 

abstract system of that intersection. He approached the issue from a different perspective, 
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coming up with a mechanism that led to segregation in an abstract, hypothetical system. He 

did not even test whether the model explained segregation in actual cities. So, it seems rather 

odd to attribute this bottom-up strategy intersection strategy to Schelling, or indeed any other 

instance of generic modelling. If scientists do not wish to learn about how a phenomenon 

manifests in the world, then why create a target that is constrained by how the phenomenon 

does manifest in the world?  

 Would it not be easier to approach the topic in a hypothetical, non-specific context? 

Indeed, Weisberg outlines exactly such a context in his discussion of hypothetical models, 

which are a much better description of Schelling’s approach (Weisberg 2013, pp. 121-122). 

Targets of hypothetical models, such as frictionless planes or perpetual motion machines do 

not or cannot exist. The similarities with models used generically are striking, as their value is 

to generate how-possibly explanations, these models and their hypothetical targets can inform 

us about the world, though they do so indirectly. For example, learning about the behaviour of 

a frictionless oscillator can help us to understand the movement of similar systems with 

friction, such as pendula.  

To sum up, models used generally have many local targets. Here, the notion of a 

generalized target is unnecessary, or at least merely shorthand, as it is just a way of referring 

to all the factors that are common across the many local targets. In contrast, in the context of 

generic model use, scientists construct a model that does not refer to any actual targets, but a 

generic target. This target will have the same ontological status as a hypothetical target and 

will have the features that bring about the phenomenon being investigated in a hypothetical 

system.  

 

5. (Mis)application of General Models 

In the previous sections, I distinguished between general and generic model use on largely 

theoretical grounds, i.e., by arguing that there is a conceptual difference between generality 

and genericness with respect to what models are about. Yet the importance of this distinction 

is not merely theoretical, as it has implications for how models are used in scientific practice. 

More specifically, failing to distinguish between the two conceptions of generality affects their 

success. That is, there are contexts in which models can be misapplied, leading to 

overgeneralisation or inappropriate application to actual systems.  
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5.1. Overgeneralisation  

In section 3.1., I argued that when used generally, models face a tradeoff between 

applying widely and applying well. Models attain generality by omitting factors that are 

idiosyncratic to particular systems, including only those factors that are common across 

different systems. However, in complex and heterogeneous systems the idiosyncrasies are real 

causal factors, not mere noise, so omitting them can lead to predictive inaccuracy. The problem 

is that in many disciplines there is motivation, even pressure, to produce generalisations 

(Elliott-Graves 2019).  

This pressure is supported by traditional views in philosophy of science, where 

generalisations formed the basis for scientific explanation and prediction, which in turn, 

constituted scientific theorising. On many influential accounts, to provide a scientific 

explanation was synonymous with demonstrating how a particular phenomenon is an instance 

of a more general pattern, while scientific theories were those that subsumed many disparate 

phenomena under one framework (Cartwright, 1989; Hempel & Oppenheim, 1948; Kitcher, 

1981). The simpler the theoretical framework (in terms of the number of explanatory principles 

and ‘brute facts’ it appealed to) and the greater the number of phenomena it could explain, the 

more explanatorily powerful it was.   

How extensive is overgeneralisation and what is its importance? The answer depends on 

the type of investigation or discipline, but there are some disciplines where overgeneralisation 

is quite extensive. A pertinent set of examples comes from history of ecology. The quest for 

generalisation in ecology is arguably as old as the discipline itself. For some, ecology only 

became a truly scientific discipline when it applied simple models from physics to ecological 

populations (Kingsland, 1995). Before these models were incorporated into the field, ecology 

was simply a collection of observations of nature (Shrader-Frechette & McCoy, 1993). The 

quest for generalisation continues as researchers search for general theories that will unify 

disparate ecological phenomena (Borer et al., 2014; Loreau, 2009; Scheiner & Willig, 2008). 

However, ecological research is also riddled with exceptions, surprises and unpredictability 

(Beckage et. al., 2011; Kaunisto et al., 2016; Peters, 1991). The cause of this, to a large extent, 

is the fact that models (used generally) do not take into account the idiosyncrasies of particular 

systems, so their results are often inaccurate (see Elliott-Graves 2018; forthcoming for an 

extended discussion of this point and Phillips et al., 2016, for a particular example).  

Some ecologists are highlighting the idiosyncratic nature of ecological systems and 

advocating a more modest approach to generalisations (see for example, Beckage et al., 2011; 

Kaunisto et al., 2016; Phillips et al., 2016). However, these attempts are often criticised 
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(sometimes in high-ranking journals), for focusing too much on data-rich models and failing 

to see the bigger picture, i.e. how seemingly disparate phenomena can be subsumed under 

general patterns or laws (Houlahan et al., 2017; Ward et al., 2014).  

The problem of overgeneralization applies to models when they are used generally, 

because this is the context in which there is a tradeoff between applying widely and applying 

well. Generic model use does not incur a tradeoff. However, failing to distinguish between 

generality and genericness can lead researchers to underestimate the importance of the tradeoff 

and overestimate the scope of generalizability in the context of general model use. This is 

exacerbated if we think that models used generally have generic targets. Recall Weisberg’s 

account of the model of sexual reproduction, which “isn’t supposed to be about kangaroo sex 

or fungi sex, but about sex itself. “This is why Crow’s model of the origin of sexual 

reproduction has no detail about any specific species in it” (p. 116, my emphasis). The 

assumption is that the particularities of each system are mere details that need not be included 

in the model’s target. When all the idiosyncrasies are left out, each local target is identical to 

the generic target. This can lead researchers to expect that when a model applies to the generic 

target, it will apply equally well to many local targets. Yet as we have seen, this assumption 

cannot be made when a model is applied to many complex and heterogenous systems.  

 

5.2. The danger of moving from genericness to generality. 

This leads to the second issue, namely the dangers of moving from genericness to 

generality. That is, when models that are not meant to be about any systems in the world are 

applied to particular systems in the world, because of their perceived generality. As we saw in 

section 3.3, this movement is possible in specific cases (such as the Ising model), yet even 

these cases are limited. The Schelling model is an example of a model that should not be used 

generally, though as we shall see, it is quite easy to succumb to this temptation.  

Weisberg’s analysis shows exactly how easy it is. Weisberg claims that “one way to use 

Schelling’s model is to try to account for the patterns of segregation in a real city” (p. 118). He 

starts by observing that the Schelling model’s results have been shown to be robust over a 

number of different modelling scenarios, including different “utility functions, different rules 

for updating, differing neighbourhood sizes, and different spatial configurations” and that “[i]n 

fact, it is extremely hard to avoid segregation when agents have some preference for like 

neighbors” (Weisberg 2013, p. 118). Then, he looks at:  
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For example, in Figure 7.1 [reprinted here as Figure 2], I show the population density of African 
Americans in Philadelphia’s census tracts next to an example output of a Schelling model. Both 
have a 75% exposure index, meaning that 75% of neighbors are of the same race. This use of 
Schelling’s model is an example of target-directed modeling.” (p. 118, my emphasis) 

 
 
 
 
 
 
Figure 2. Schelling’s model applied to Philadelphia (reprinted from Weisberg 2013 p. 119)  

 

 

While Weisberg does not explicitly state that this is an actual explanation of segregation 

in Philadelphia, his analysis implies that the application of the Schelling model to actual 

systems is a legitimate instance of target-directed modelling. But is it legitimate? What we 

know is that the Schelling mechanism could cause segregation, and that the segregation 

outcome is robust in various modelling scenarios. We also know that Philadelphia 

neighbourhoods have a similar segregation ratio. Is this enough to infer that the actual cause 

of segregation in Philadelphia was the Schelling mechanism? I do not believe that it is. The 

Schelling model provides information about a mechanism of segregation, yet in order to 

determine whether this is the actual mechanism that explains segregation in Philadelphia, we 

must first consider and rule out alternative causes or mechanisms of segregation.10  

	
10 Another interpretation of Weisberg’s claim could be that the Schelling mechanism applies to Philadelphia, 
though it only provides a how-possibly explanation of the mechanism of segregation in that city. While it is true 
that the Schelling mechanism provides a how-possibly explanation of segregation in Philadelphia, we do not need 
to apply the model to the actual city to gain this information. The model provides a how-possibly explanation 

The output of a typical run of Schelling’s segregation model 
using a virtual city that is 51 × 51 and two types of agents 
(gray and white). All agents prefer to have at least 30% 
same-colored neighbors. 

Patterns of racial segregation in Philadelphia from the 2010 
census. Darker areas correspond to higher percentages of 
African-Americans 
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Figure7.1Left:PatternsofracialsegregationinPhiladelphiafromthe2010census.
DarkerareascorrespondtohigherpercentagesofAfrican-Americans.Right:The
outputofatypicalrunofSchelling’ssegregationmodelusingavirtualcitythatis
51×51andtwotypesofagents(grayandwhite).Allagentsprefertohaveatleast30%
same-coloredneighbors.

withoutcollectivepreferencesforsegregation?Theansweristhatthisispossi-
blewheneveryindividualhasasmallpreferenceforsimilarneighborsandtries
tosatisfythispreference.Alongthesamelines,populationgeneticistswondered
ifitwaspossibleforanalleletobecomefixedinapopulationwithnoselection.
Theyshowedthatamongothermechanisms,geneticdriftalonecanleadtofix-
ation(Ewens,1963;Kimura&Ohta,1969).Theseareexamplesofgeneralized
modelingtoanswerhow-possiblyquestions.

Generalizedmodelingcanalsoprovidecounterexamplestolong-established
how-possiblyexplanations.Insuchcases,thetheoristtriestoshowthatahow-
possiblyexplanationwehadpreviouslyacceptedwasmistaken,orthatthe
mechanismwepreviouslybelievedtoexplainaphenomenoncouldn’tpossi-
blyexplainthatphenomenon.Forexample,May’sfamousworkoncomplexity
andstabilityinmodelecosystemsshowedthat,contrarytoreceivedwisdom,
greatercomplexityinecosystemsdidnotalwaysleadtostability.Rather,sys-
temswithgreaternumbersofspeciescanbecomeunstableinsomeconditions
(May,2001).Mayreachedtheseconclusionsnotbystudyingmodelsofspecific
targets,butbystudyingextremelyabstractmodelsofpopulationdynamics.

7.1.2MinimalModelsandFirst-OrderCausalStructures

Asecondwaythattheoristscanlearnfromgeneralizedmodelsisbyinvestigat-
ingwhatRoughgardencallsminimalmodelsforanidea.Suchmodelscombinea
numberofcausalfactorstoinvestigatewhatkindofbehaviorthesefactorsgen-
erate.Atheoriststartsfromanideaabouthowsomephenomenonworks.She
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These alternative causes/mechanisms exist and are well known! In Sociology, segregation 

is explained through alternative mechanisms, i.e., deliberate and sustained governmental 

policies such as redlining (Rothstein, 2017; Sampson, 2018). For example, some scholars 

believe that individual preferences could not have caused the type of segregation that exists in 

Philadelphia: “Today’s residential segregation … is not the unintended consequence of 

individual choices and of otherwise well-meaning law or regulation but of unhidden public 

policy that explicitly segregated every metropolitan area in the United States. The policy was 

so systematic and forceful that its effects endure to the present time.” (Rothstein 2017 p. viii, 

my emphasis).  

 What should we make of this? At the very least, I believe that it shows that the Schelling 

mechanism cannot be assumed to explain segregation in real cities, without further 

investigation. That is, before we can claim that the Schelling mechanism is what caused 

segregation in Philadelphia, we must determine that the alternative factors did not cause it. It 

may turn out that the Schelling mechanism did cause segregation, that it did not, or that it 

contributed to segregation in actual cities. The point is that these outcomes are yet to be 

determined. In fact, Fumagalli (2016), argued that the output of the Schelling model should not 

be taken to undermine or reduce confidence in the belief that segregation is caused by explicitly 

racial preferences. It could provide learning about real-world instances of segregation, if 

supplemented with “information or presuppositions regarding those real-world situations” (p. 

449), but then, as Fumagalli points out, it would cease to be an abstract model.   

The point can be illustrated further by contrasting the generic target system with a group 

of local target systems. As shown in section 2.2., Schelling did not intend his model to apply 

to any real-world systems, but to a non-specific, aka generic system. It could be the case that 

the generic target bears some similarity to many local targets. That is, it could be the case that 

mild discriminatory preferences are present in real-world cities and that these preferences 

induce people to move in and out of neighbourhoods. It could even be the case that these mild 

discriminatory preferences are the only common factor across all the local targets. Yet even if 

this is the case, this causal factor might not be sufficient to cause segregation. We must 

determine that the other causal factors are not the actual cause of segregation, even if they are 

idiosyncratic (i.e. only present in one or a few real-world systems).  

	
because it is generic, i.e. it explains how segregation comes about in hypothetical cities. The problem is, however, 
that it is more likely than not that alternative mechanisms are the actual cause of segregation in Philadelphia. 
Thus, applying the generic model to the actual city will either give us information that we already have or 
information that is probably false.    
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Consider again the case of exponential growth. It applies to all populations, as they all 

would grow exponentially in the absence of factors limiting them. Yet all populations do have 

other factors limiting them, hence actual population growth is explained by the exponential 

dynamic and the various limiting factors. These factors can be different in each case (e.g. 

density dependence, competition, predation, pathogens etc). While the exponential dynamic is 

part of the explanation or prediction, the inclusion of other factors is essential for the model’s 

results to be accurate. Yet the limitations of the exponential growth model are well known. 

Scientists do not use the exponential growth model to explain or predict the growth of actual 

populations.   

The same caution should be employed when applying the Schelling model to actual cities. 

Even if it turns out that mild discriminatory preferences exist in actual populations, they might 

be overshadowed by a number of other causal factors. Those causal factors (possibly in 

addition to the Schelling mechanism) will explain the phenomenon of segregation in actual 

cities. In other words, in order for the generic target to be sufficiently similar to many local 

targets (so that the model can be used generally rather than generically) the local targets must 

include no other causal factors that overshadow the Schelling mechanism. While this is 

theoretically possible, I believe it is unlikely.  

In fact, the Schelling case is an especially good example of how dangerous it can be to use 

models meant for generic targets as though they apply to many actual target systems. One of 

the implications of the Schelling mechanism is that segregation emerges even when people are 

not explicitly racist, as ‘mild discriminatory preferences’ are contrasted to ‘strong 

discriminatory preferences’ and only the latter constitute true racism  (see for example 

Aydinonat, 2007; Weisberg, 2013; Ylikoski & Aydinonat, 2014).11 It would be nice if 

segregation was not anyone’s fault, but just happened to emerge in actual cities from 

mechanisms that are mild (aka understandable, or at least, not overly blameworthy). However, 

it would also be wrong to explain actual instances of segregation in this way if it is in fact 

caused by explicit racism, at the individual or institutional level. I am not accusing any of the 

authors mentioned in this paper of doing anything wrong. However, I believe that more 

attention should be paid to the alternative causes of segregation identified by sociologists and 

economists. It would be very interesting to actually test whether the Schelling mechanism has 

caused or contributed to segregation in actual cities. Until these tests are performed, however, 

	
11 My view is that the term ‘racism’ is applicable to both types of discriminatory preference, i.e. stronger or milder 
racism, but that is an issue for another paper.  
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philosophers should employ even more care not to imply that the Schelling model applies to 

actual cities.  
 
 
6. Conclusion 

Scientists can use models for a number of different purposes, such as explaining and 

predicting particular phenomena in the world or acquiring knowledge about generic 

phenomena that do not manifest in the world in the same way. Both these purposes are 

legitimate and important, yet they should be kept distinct. Moreover, while models can 

sometimes be used for both purposes, we should be cognisant of the limitations and difficulties 

associate with each purpose. Thus, when used generally, models face a tradeoff between 

applying widely and applying well, so their generality is limited. This is especially important 

when applying a model intended for generic use to explain or predict one or more phenomena 

in the real-world.  
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7. Appendix 
 
Box 1. Original illustrations of logistic growth – reprinted from (Reed & Pearl 1927) 

  

A B

C D E

Original illustrations of the logistic growth model from Reed & Pearl (1927), showing: the uninstantiated curves (A), an experimental 
population of Drosophila (B), the population of New Jersey (C), the population of Connecticut (D) and the population of New York (E)
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