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Abstract

The meaning of the wave function is an important unresolved issue
in Bohmian mechanics. On the one hand, according to the nomological
view, the wave function of the universe or the universal wave function is
not ontic but nomological, like a law of nature. On the other hand, the
PBR theorem proves that the wave function in quantum mechanics or
the effective wave function in Bohmian mechanics is ontic, represent-
ing the ontic state of a physical system in the universe. It is usually
thought that the nomological view of the universal wave function is
compatible with the ontic view of the effective wave function, and thus
the PBR theorem has no implications for the nomological view. In this
paper, I argue that this is not the case, and these two views are in fact
incompatible. This means that if the effective wave function is ontic
as the PBR theorem proves, then the universal wave function cannot
be nomological, and the ontology of Bohmian mechanics cannot con-
sist only in particles. Moreover, I argue that although the nomological
view can be held by rejecting one key assumption of the PBR theorem,
the rejection will lead to serious problems, such as that the results of
measurements and their probabilities cannot be explained in ontology
in Bohmian mechanics.

1 Introduction

Bohmian mechanics or the pilot-wave theory of de Broglie and Bohm pro-
vides an ontology of quantum mechanics in terms of particles and their
trajectories in space and time (de Broglie, 1928; Bohm, 1952). One impor-
tant unresolved issue in this theory is the meaning of the wave function.
Is the wave function of the universe ontic, representing a concrete physical


mailto:gaoshan2017@sxu.edu.cn

entity, or nomological, like a law of nature? In recent years, the nomological
view of the wave function becomes more and more popular (Diirr, Gold-
stein and Zanghi, 1997; Allori et al, 2008; Esfeld et al, 2014; Goldstein,
2021). On this view, there are only particles in three-dimensional space in
Bohmian mechanics. At the same time, a general and rigorous approach
called ontological models framework has been proposed to determine the
relation between the wave function and the ontic state of a physical sys-
tem (Harrigan and Spekkens, 2010), and several i-ontology theorems have
been proved in the framework (Pusey, Barrett and Rudolph, 2012; Colbeck
and Renner, 2012, 2017; Hardy, 2013). In particular, the Pusey-Barrett-
Rudolph theorem or the PBR theorem proves that the wave function in
quantum mechanics or the effective wave function in Bohmian mechanics
is ontic, representing the ontic state of a physical system in the universe
(Pusey, Barrett and Rudolph, 2012). An interesting question then arises: is
the nomological view of the universal wave function is compatible with the
ontic view of the effective wave function?

This issue has not received much attention in the literature. For example,
Goldstein’s (2021) comprehensive review of Bohmian mechanics does not
mention the PBR theorem, and Esfeld et al’s (2014) insightful paper about
the ontology of Bohmian mechanics refers to the theorem once but without
discussion. Presumably it is thought that the two views of the wave function
are obviously compatible. They both say that the wave function is real
for single physical systems after all. Moreover, according to Esfeld et al
(2014), although Bohmian mechanics says that the universal wave function
is nomological, it regards the effective wave function of a subsystem in the
universe as ontic, representing “an objective, physical degree of freedom
belonging to the subsystem”, and thus the nomological view is compatible
with the ontic view. In this paper, I will argue that this received view
is debatable, and a careful analysis of the (in)compatibility between the
nomological view and the ontic view will deepen our understandings of the
meaning of the wave function in Bohmian mechanics.

The rest of this paper is organized as follows. In Section 2, I first in-
troduce Bohmian mechanics and the nomological view of the wave function.
According to the nomological view, the wave function of the universe or the
universal wave function is not ontic but nomological, like a law of nature,
and the ontology of Bohmian mechanics consists only in particles. In Section
3, I then introduce the ontological models framework and the PBR. theorem
based on the framework. The PBR theorem proves that the wave function
in quantum mechanics or the effective wave function in Bohmian mechanics
is ontic, representing the ontic state of a physical system in the universe.
In Section 4, I argue that the nomological view of the universal wave func-
tion is incompatible with the ontic view of the effective wave functions. This
means that if the effective wave function is ontic as the PBR theorem proves,
then the universal wave function cannot be nomological, and the ontology



of Bohmian mechanics cannot consist only in particles. In Section 5, I point
out that the nomological view can be held by rejecting one key assumption of
the PBR theorem. But the rejection will arguably lead to serious problems,
such as that the results of measurements and their probabilities cannot be
explained in ontology in Bohmian mechanics. Conclusions are given in the
last section.

2 Bohmian mechanics and the nomological view

Bohmian mechanics or the pilot-wave theory of de Broglie and Bohm pro-
vides an ontology of quantum mechanics in terms of particles and their
trajectories in space and time (de Broglie, 1928; Bohm, 1952). In Bohmian
mechanics, a complete realistic description of a quantum system is provided
by the configuration defined by the positions of its particles together with
its wave function. The law of motion is expressed by two equations: a guid-
ing equation for the configuration of particles and the Schrédinger equation,
describing the time evolution of the wave function which enters the guiding
equation. The law of motion can be formulated as follows:
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where Q(t) denotes the spatial configuration of particles, ¥(¢) is the wave
function of the particle configuration at time ¢, and v equals to the ve-
locity of probability density in standard quantum mechanics. Moreover, it
is postulated that at some initial instant ¢y, the epistemic probability of
the configuration, p(to), is given by the Born rule: p(ty) = |¥(to)[?. This
is called quantum equilibrium hypothesis, which, together with the law of
motion, ensures the empirical equivalence between Bohmian mechanics and
standard quantum mechanics.

The status of the above equations is different, depending on whether one
considers the physical description of the universe as a whole or of a subsystem
thereof. Bohmian mechanics starts from the concept of a universal wave
function (i.e. the wave function of the universe), figuring in the fundamental
law of motion for all the particles in the universe. That is, Q(t) describes
the configuration of all the particles in the universe at time ¢, and ¥(¢) is the
wave function of the universe at time ¢, guiding the motion of all particles
taken together. To describe subsystems of the universe, the appropriate
concept is the effective wave function in Bohmian mechanics.

The effective wave function is the Bohmian analogue of the usual wave
function in standard quantum mechanics. It is not primitive, but derived
from the universal wave function and the actual spatial configuration of all



the particles ignored in the description of the respective subsystem (Diirr,
Goldstein and Zanghi, 1992). The effective wave function of a subsystem
can be defined as follows. Let A be a subsystem of the universe including N
particles with position variables = (21, %9, ...,zn). Let y = (y1,92, ..., ymr)
be the position variables of all other particles not belonging to A. Then the
subsystem A’s conditional wave function at time t is defined as the universal
wave function U (z,y) evaluated at y = Y (¢):

Ui (2) = Ve, y)ly=y 1) (3)

If the universal wave function can be decomposed in the following form:

Vi(2,y) = ()i (y) + Oz, y), (4)

where ¢;(y) and ©;(z,y) are functions with macroscopically disjoint sup-
ports, and Y (¢) lies within the support of ¢;(y), then 1 (x) = () (up to
a multiplicative constant) is A’s effective wave function at ¢. It can be seen
that the temporal evolution of A’s particles is given in terms of A’s condi-
tional wave function in the usual Bohmian way, and when the conditional
wave function is A’s effective wave function, it also obeys a Schrédinger dy-
namics of its own. This means that the effective descriptions of subsystems
are of the same form of the law of motion as given above.

Bohmian mechanics raises the question of the status of the wave func-
tion that figures in the law. According to the nomological view of the wave
function, the relationship between the universal wave function and the mo-
tion of the particles should be conceived as a nomic one, instead of a causal
one in terms of one physical entity acting on the other (Diirr, Goldstein
and Zanghi, 1997; Goldstein and Teufel, 2001; Goldstein and Zanghi, 2013;
Esfeld et al, 2014). In the words of Diirr, Goldstein and Zanghi (1997),

The wave function of the universe is not an element of physi-
cal reality. We propose that the wave function belongs to an
altogether different category of existence than that of substan-
tive physical entities, and that its existence is nomological rather
than material. We propose, in other words, that the wave func-
tion is a component of a physical law rather than of the reality
described by the law. (p. 10)

The reasons to adopt this nomological view of the wave function come
from the unusual kind of way in which Bohmian mechanics is formulated,
and the unusual kind of behavior that the wave function undergoes in the
theory. First of all, although the wave function affects the behavior of the
configuration of the particles, which is expressed by the guiding equation
, there is no back action of the configuration upon the wave function.
The evolution of the wave function is governed by the Schrodinger equation



(2), in which the actual configuration Q(t) does not appear. Since a physical
entity is supposed to satisfy the action-reaction principle, the wave function
cannot describe a physical entity in Bohmian mechanics.

Next, the wave function of a many-particle system, ¥ (qi, ..., qn), is de-
fined not in our ordinary three-dimensional space, but in the 3N-dimensional
configuration space, the set of all hypothetical configurations of the system.
Thus it seems untenable to view the wave function as directly describing a
real physical field. In fact, the sort of physical field the wave function is
supposed to describe is even more abstract. Since two wave functions such
that one is a (nonzero) scalar multiple of the other are physically equivalent,
what the wave function describes is not even a physical field at all, but an
equivalence class of physical fields. Moreover, Bohmian mechanics regards
identical particles such as electrons as unlabelled, so that the configuration
space of N such particles is not the familiar high dimensional space, like
R3N | but is the unfamiliar high-dimensional space ¥V R? of N-point subsets
of R3. This space has a nontrivial topology, which may naturally lead to
the possibilities of bosons and fermions. But it seems odd as a fundamental
space in which a physical field exists.

Thirdly, the wave function in Bohmian mechanics plays a role that is
analogous to that of the Hamiltonian in classical Hamiltonian mechanics
(Goldstein and Zanghi, 2013). To begin with, both the classical Hamiltonian
and the wave function live on a high dimensional space. The wave function
is defined in configuration space, while the classical Hamiltonian is defined
in phase space: a space that has twice as many dimensions as configuration
space. Next, there is a striking analogy between the guiding equation in
Bohmian mechanics and the Hamiltonian equations in classical mechanics.
The guiding equation can be written as:

% = der(logv), (5)

where the symbol der denotes some sort of derivative. Similarly, the Hamil-
tonian equations can be written is a compact way as:

5 = der(H), (6)
where der(H) is a suitable derivative of the Hamiltonian. Moreover, it
is also true that both logy and H are normally regarded as defined only
up to an additive constant. Adding a constant to H doesn’t change the
equations of motion. Similarly, when multiplying the wave function by a
scalar, which amounts to adding a constant to its log, the new wave function
is physically equivalent to the original one, and they define the same velocity
for the configuration in the equations of motion in Bohmian mechanics.
Since the classical Hamiltonian is regarded not as a description of some
physical entity, but as the generator of time evolution in classical mechanics,



by the above analogy it seems natural to assume that the wave function is
not a description of some physical entity either, but a similar generator of
the equations of motion in Bohmian mechanics.

However, it seems that there is a serious problem with the nomological
view of the wave function. The wave function of a quantum system typically
changes with time, but laws are supposed not to change with time. More-
over, we can prepare the wave function of a quantum system and control
its evolution, but laws are not supposed to be things that we can prepare
and control. This problem indeed exists for the effective wave function of
a subsystem of the universe, but it may not exist for the wave function of
the universe, only which deserves to be interpreted nomologically (Goldstein
and Zanghi, 2013). The wave function of the universe is certainly not con-
trollable. And it may not be dynamical either. This can be illustrated by
the Wheeler-DeWitt equation, which is the fundamental equation for the
wave function of the universe in canonical quantum cosmology:

HU(q) =0, (7)

where ¥(q) is the wave function of the universe, ¢ refers to 3-geometries, and
H is the Hamiltonian constraint which involves no explicit time-dependence.
Unlike the Schrodinger equation, the Wheeler-DeWitt equation has on one
side, instead of a time derivative of ¥, simply 0, and thus its natural solutions
are time-independent. Moreover, the wave function of the universe may be
unique. Although the Wheeler-DeWitt equation presumably has a great
many solutions, when supplemented with additional natural conditions such
as the Hartle-Hawking boundary condition, the solution may become unique.
Such uniqueness also fits nicely with the conception of the wave function as
law.

The above analyses suggest that the wave function is nomological, de-
scribing a law and not describing some sort of concrete physical entity in
Bohmian mechanics. A law of motion tells us what happens in space and
time given the specification of initial conditions, but it is not itself a physical
entity existing in space and time. The exact meaning of the wave function
then depends on what exactly a law is. There are two main views about
laws of nature in the literature, namely Humeanism and dispositionalism,
and both of them can be drawn upon for developing the nomological inter-
pretation of the wave function in Bohmian mechanics (Esfeld et al, 2014).
By Humeanism about laws, there are only particles’ positions in the on-
tology, while dispositionalism admits more in the ontology than particles’
positions, namely the holistic disposition of all the particles in the universeﬂ

!Note that Bohmian mechanics is also compatible with a primitivism about laws as
suggested by Maudlin (2007). It has been argued that primitivism about laws faces a
dilemma: “either it has to bite the bullet of conceiving the law as developing itself in time
and as including differences that correspond to different initial wave-functions, or it has



My following analysis of Bohmian mechanics and the nomological view of
the wave function is independent of how to understand laws of nature.

3 The PBR theorem

Although there are various reasons to adopt the nomological view of the
universal wave function in Bohmian mechanics, we in fact know little about
the universal wave function itself, since the final theory of quantum gravity
is not yet available. A more feasible approach is to analyze the meaning of
the effective wave function of a subsystem in the universe, such as whether
the effective wave function has a tenable physical explanation under the
nomological view of the universal wave function. In recent years, there
appear several rigorous arguments supporting the ontic view of the wave
function in quantum mechanics or the effective wave function in Bohmian
mechanics, which has been called -ontology theorems. In this section, I will
introduce the ontological models framework and an important -ontology
theorem proved in the framework, the PBR theorem.

Quantum mechanics, in its minimum formulation, is an algorithm for
calculating probabilities of measurement results. The theory assigns a math-
ematical object, the wave function, to a physical system appropriately pre-
pared at a given instant, and specifies how the wave function evolves with
time. The time evolution of the wave function is governed by the Schrédinger
equation, and the connection of the wave function with the results of mea-
surements on the system is specified by the Born rule. At first sight, quan-
tum mechanics as an algorithm says nothing about the actual ontic state of
a physical system. However, it has been known that this is not true due to
the recent advances in the research of the foundations of quantum mechanics
(see Leifer, 2014 for a helpful review).

First of all, a general and rigorous approach called ontological models
framework has been proposed to determine the relation between the wave
function and the ontic state of a physical system (Harrigan and Spekkens
2010). The framework has two fundamental assumptions. The first assump-
tion is about the existence of the underlying state of reality. It says that if a
physical system is prepared such that the quantum algorithm assigns a wave
function to it, then after preparation the system has a well-defined set of
physical properties or an underlying ontic state, which is usually represented
by a mathematical object, A. In general, for an ensemble of identically pre-
pared systems to which the same wave function 1 is assigned, the ontic
states of different systems in the ensemble may be different, and the wave
function 1 corresponds to a probability distribution p(A|i) over all possible
ontic states, where [ dAp(A|¢) = 1.

to conceive the universal wave-function as a physical entity.” (Dorato and Esfeld, 2015)



There are two possible types of models in the ontological models frame-
work, namely ¥-ontic models and 1-epistemic models. In a -ontic model,
the ontic state of a physical system uniquely determines its wave function,
and the probability distributions corresponding to two different wave func-
tions do not overlap. In this case, the wave function directly represents the
ontic state of the systemﬂ While in a 1-epistemic model, the probability
distributions corresponding to two different wave functions may overlap, and
there are at least two wave functions which are compatible with the same
ontic state of a physical system. In this case, the wave function merely
represents a state of incomplete knowledge - an epistemic state - about the
actual ontic state of the system.

In order to investigate whether an ontological model is consistent with
the quantum algorithm, we also need a rule of connecting the underlying
ontic states with measurement results. This is the second assumption of
the ontological models framework, which says that when a measurement is
performed, the behaviour of the measuring device is determined by the ontic
state of the system, along with the physical properties of the measuring
device. Concretely speaking, for a projective measurement M, the ontic
state A of a physical system determines the probability p(k|A, M) of different
results k for the measurement M on the system. The consistency with the
quantum algorithm then requires the following relation:

/ dAp(EIA, M)p(A[) = p(k|M, ), (8)

where p(k|M,v) = |(k|1))|? is the Born probability of k given M and the
wave function .

Second, several important i-ontology theorems have been proved in the
ontological models framework (Pusey, Barrett and Rudolph, 2012; Colbeck
and Renner, 2012, 2017; Hardy, 2013), one of which is the PBR theorem
(Pusey, Barrett and Rudolph, 2012). The PBR theorem shows that in the
ontological models framework, when assuming independently prepared sys-
tems have independent ontic states, the ontic state of a physical system
uniquely determines its wave function, or the wave function of a physical
system directly represents the ontic state of the system. This auxiliary as-
sumption is called preparation independence assumption.

The basic proof strategy of the PBR theorem is as follows. Assume there
are N nonorthogonal quantum states ¢; (i=1, ... , N), which are compatible
with the same ontic state )\E| The ontic state A determines the probability
p(k|A, M) of different results k for the measurement M. Moreover, there is a
normalization relation for any N result measurement: Zf\i 1 p(kil A, M) = 1.

ZNote that the wave function is not necessarily complete, i.e. it does not necessarily
represent the complete ontic state of a system.

3Tt can be readily shown that different orthogonal states correspond to different ontic
states. Thus the proof given here concerns only nonorthogonal states.



Now if an N result measurement satisfies the condition that the first state
gives zero Born probability to the first result and the second state gives zero
Born probability to the second result and so on, then there will be a relation
p(ki|A, M) = 0 for any 4, which leads to a contradiction.

The task is then to find whether there are such nonorthogonal states and
the corresponding measurement. Obviously there is no such a measurement
for two nonorthogonal states of a physical system, since this will permit them
to be perfectly distinguished, which is prohibited by quantum mechanics.
However, such a measurement does exist for four nonorthogonal states of
two copies of a physical system. The four nonorthogonal states are the
following product states: |0) ® |0), |0) ® |+),|+) ® |0) and |+) ® |+), where
|+) = %(|0> +11)). The corresponding measurement is a joint measurement
of the two systems, which projects onto the following four orthogonal states:

o = (0@ 1)+ 1) @]0),
¢2 = Z(0)®[-)+1)®[+)),
93 = ()@ +]|-)®]0)),
¢ = Z(He-)+1-)e+), (9)

where |—) = %(|O> —|1)). This proves that the four nonorthogonal states
are ontologically distinct. In order to further prove the two nonorthogonal
states |0) and |+) for one system are ontologically distinct, the preparation
independence assumption is needed. Under this assumption, a similar proof
for every pair of nonorthogonal states can also be found, which requires more
than two copies of a physical system (see Pusey, Barrett and Rudolph, 2012
for the complete proof).

To sum up, the PBR theorem shows that quantum mechanics as an
algorithm may also say something about the ontic state of a physical system.
It is that under the preparation independence assumption, the wave function
assigned to a physical system, which is used for calculating probabilities of
results of measurements on the system, is a mathematical representation of
the ontic state of the system in the ontological models framework.

4 Is the nomological view compatible with the on-
tic view?

The proof of the PBR theorem raises an intriguing question: if the effective
wave function is ontic as the PBR theorem proves, can the universal wave
function be nomological? or is the nomological view of the universal wave
function compatible with the ontic view of the effective wave function? The
received view seems to be that these two views are obviously compatible,



and thus the PBR theorem has no implications for the nomological view of
the universal wave function. In the following, I will argue that this is not
the case.

Before my analysis, it is worth pointing out that if the PBR theorem
applies not only to the subsystems of the universe, but also to the universe
as a whole, then it is obvious that the ontic view and the nomological view
are two different views of the universal wave function, and thus they are
incompatible. According to the ontic view, the universal wave function is
ontic, representing the ontic state of the universe or a concrete physical
entity, while according to the nomological view, the universal wave function
is not ontic but nomological, and it does not represent a concrete physical
entity. However, it is arguable that the PBR theorem may not apply to the
universe as a whole, since the proof of the theorem concerns measurements
and copies of a single physical system, while there is only one universe and
no measurements can be made on the universe as a whole either.

Now consider the effective wave function of a subsystem in the universe.
On the one hand, the PBR theorem proves that the effective wave function
of a subsystem is ontic, representing the ontic state or a physical property
of the subsystem. On the other hand, according to the nomological view,
the universal wave function is not ontic but nomological, and the ontology
of Bohmian mechanics consists only in particles. This means that in order
that the nomological view of the universal wave function is compatible with
the ontic view of the effective wave function, the effective wave function
of a subsystem must represent a physical property of these particles. If
the effective wave function of a subsystem represents a physical property of
another physical entity different from these particles, then the nomological
view of the universal wave function, which requires that the ontology of
Bohmian mechanics consists only in particles, cannot be true.

Let’s see if the effective wave function of a subsystem represents a phys-
ical property of the Bohmian particles. First of all, as Esfeld et al (2014)
have already pointed out, it is impossible to interpret the effective wave
function of a subsystem as an intrinsic property of the particles of the sub-
system. The reasons are that (1) one can assign a wave function only to
the subsystem as a whole but not to each particle individually in general,
and (2) the effective wave function depends on the universal wave function
and the configuration of all the other particles in the universe (Esfeld et al,
2014).

Then, the only possibility is that the effective wave function of a subsys-
tem represents a physical property of the particles in the environment of the
subsystem. Since the effective wave function of a subsystem influences the
motion of the particles of the subsystem by the guiding equation, this phys-
ical property of the particles in the environment must have the efficiency of
influencing the particles of the subsystem. Moreover, since the particles in
the environment and the particles of the subsystem are spacelike separated
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at each instant, the influence, if it exists, must be nonlocal.

This is the view supported by Esfeld et al (2014). According to these
authors, the effective wave function of a subsystem encodes the nonlocal
influence of other particles on the subsystem via the nonlocal law of Bohmian
mechanics. For example, in the double-slit experiment with one particle at
a time, the particle goes through exactly one of the two slits, and that is
all there is in the physical world. There is no real physical field that guides
the motion of the particle and propagates through both slits and undergoes
interference. The development of the position of the particle (its velocity
and thus its trajectory) is determined by the positions of other particles
in the universe, including the particles composing the experimental setup,
and the nonlocal law of Bohmian mechanics can account for the observed
particle position on the screen (Esfeld et al, 2014). If this view is true, then
one can say that the nomological view of the universal wave function regards
the effective wave function as ontic, and thus it is consistent with the ontic
view of the effective wave function.

However, it can be argued that the effective wave function of a subsystem
does not represent a physical property of the particles in the environment,
such as encoding the nonlocal influence of these particles on the subsystem
(see also Gao, 2017). Let’s first consider the simplest case in which the
universal wave function factorizes so that

\Ijt(‘rvy) = got(m)gét(y), (10)

where = (21,9, ...,xN) is the position variables of N particles of a sub-
system A of the universe, and y = (y1,¥2, ..., yn) is the position variables
of all other particles not belonging to A. Then ;' (z) = @;(x) is subsystem
A’s effective wave function at ¢. In this case, subsystem A and its environ-
ment, which are in a product state, are independent of each other. Thus,
the effective wave function of subsystem A is independent of the particles
in the environment, and it does not represent a physical property of these
particles. Moreover, since subsystem A and its environment are in a product
state, the particles in the environment do not have nonlocal influence on the
particles of subsystem A, and thus the effective wave function of subsystem
A cannot encode such a non-existent nonlocal influence either.

Next, consider the general case in which there is an extra term in the
factorization of the universal wave function:

Vi(x,y) = o1(x)de(y) + Oz, y), (11)

In this case, the effective wave function of subsystem A is determined by
both the universal wave function W (z, y) and the positions of the particles in
its environment Y (¢). If Y (¢) lies within the support of ¢.(y), A’s effective
wave function at ¢ will be @y(z). If Y(¢) does not lie within the support
of ¢(y), A’s effective wave function at ¢ will be not ¢¢(z). For example,
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suppose O (z,y) = >, fn(x)gn(y), where g;(y) and g;(y) are functions with
macroscopically disjoint supports for any ¢ # j, then if Y (¢) lies within the
support of g;(y), A’s effective wave function at ¢ will be f;(z).

First of all, it can be seen that the role played by the particles in the
environment is only selecting which function the effective wave function of
subsystem A is, while each selected function is completely determined by the
universal wave function. Thus the effective wave function of subsystem A, as
part of the universal wave function, will only represent a physical property
of the part of something represented by the universal wave function (if there
is any), and it does not represent a physical property of the particles in the
environment. This is like the parable of blind men touching an elephant. If
a blind man touches the tail of an elephant, he would say that the elephant
is like a rope. The property of being like a rope is a property of one part of
the elephant, and it is not the property of the blind man.

Next, even if the effective wave function of subsystem A represents a
physical property of the particles in the environment, this property has no
efficiency of influencing the particles of the subsystem nonlocally. According
to the Bohmian law of motion, when the effective wave function of subsys-
tem A has been selected (via a measurement-like process), the particles in
the environment have no nonlocal influence on the particles of subsystem A;
these particles reside in an effective product state such as ¢i(z)¢i(y). For
example, in the double-slit experiment with one particle at a time, the de-
velopment of the position of the particle will not depend on the positions of
other particles in the universe (if only the positions of these particles select
the same effective wave function of the particle during the experiment, e.g.
Y (t) has been within the support of ¢:(y) during the experiment).

Finally, it is worth noting that even if the effective wave function of
subsystem A encodes the nonlocal influence of the particles in the environ-
ment on the subsystem, it does not imply that the whole effective wave
function is a property of these particles. The reason is that the nonlocal
influence, which determines the velocities of the particles of the subsystem,
is determined only by the phase of the effective wave function, and not by
the amplitude of the effective wave function. Thus, if there exists such non-
local influence, it only indicates that the phase of the effective wave function
of subsystem A represents a property of the particles in the environment,
and it does not imply that the amplitude of the effective wave function of
subsystem A also represents a property of these particles.

To sum up, I have argued that the effective wave function of a subsystem
represents neither a physical property of the particles of the subsystem nor a
physical property of the particles in the environment, such as encoding their
nonlocal influence on the subsystem. In short, the effective wave function of
a subsystem does not represent a physical property of the Bohmian particles.
This means that the nomological view of the universal wave function is not
compatible with the ontic view of the effective wave function. If the effective

12



wave function is ontic as the PBR theorem proves, then it must represent a
property of another physical entity different from the Bohmian particles, and
thus the universal wave function cannot be nomological, and the ontology
of Bohmian mechanics cannot consist only in particles.

5 A possible way out

Based on the above analysis, it can be seen that the only way to hold the
nomological view of the universal wave function in Bohmian mechanics is to
avoid the result of the PBR theorem by rejecting one or more assumptions
of the theorem. Let’s see if this is possible.

As we have seen, the PBR theorem is proved based on three precondi-
tions: (1) the quantum algorithm; (2) the ontological models framework; and
(3) the preparation independence assumption. Bohmian mechanics is con-
sistent with the quantum algorithm. Moreover, it also accepts the prepara-
tion independence assumption, since two unentangled systems (whose wave
function is a product state) have independent ontic states in the theoryﬁ
The crux is whether Bohmian mechanics also accepts the ontological mod-
els framework when assuming the nomological view of the universal wave
function

The ontological models framework has two fundamental assumptions.
The first assumption is a realist assumption, which says that if a physical
system is prepared such that quantum mechanics assigns a wave function
to it, then after preparation the system has a well-defined set of physical
properties or an underlying ontic state. This assumption is accepted by
Bohmian mechanics. According to the nomological view, a subsystem of
the universe which has an effective wave function is composed of particles,
and the positions of these particles are the ontic state of this subsystem.
Note that the ontic state of a subsystem also includes the disposition of its
particles which determines their velocities via the guiding equation according
to the dispositionalism about laws of nature (Esfeld et al, 2014).

The second assumption of the ontological models framework says that
when a measurement is performed, the behaviour of the measuring device
is determined by the ontic state of the measured system, along with the
physical properties of the measuring device. For a projective measurement

4Note that the result that different orthogonal states correspond to different ontic states
can be derived in the ontological models framework without resorting to the preparation
independence assumption or other auxiliary assumptions. Thus, even if Bohmian mechan-
ics rejects the auxiliary assumptions such as the preparation independence assumption,
there is still the question of whether it is consistent with the ontological models framework.

5The question of whether Bohmian mechanics is consistent with the ontological models
framework has been discussed by several authors (Feintzeig, 2014; Leifer, 2014; Drezet,
2015). Here I will focus on the issue of whether the nomological view of the wave function
is consistent with the ontological models framework.
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M, this means that the ontic state A of a physical system determines the
probability p(k|A, M) of different results k for the measurement M on the
system. Then, in order that the nomological view of the universal wave func-
tion is valid in Bohmian mechanics, the theory must reject this assumption.
Concretely speaking, the revised assumption will be that when a measure-
ment is performed, the behaviour of the measuring device is determined not
only by the ontic state of the measured system and the measuring device,
but also by something else not in the ontology, a nomological component
represented by the effective wave function of the system. In particular, for a
projective measurement M, the complete ontic state A of a physical system
and its effective wave function ¢ both determine the probability of different
results k for the measurement M on the system, which may be denoted by
p(kIA, 4, M) [

It can be seen that the proof of the PBR theorem cannot go through
based on this revised assumption. Let’s remind the basic proof strategy of
the PBR theorem. Assume there are N nonorthogonal quantum states ;
(i=1, ... , N), which are compatible with the same ontic state A. According
to the second assumption of the ontological models framework, the ontic
state A determines the probability p(k|\, M) of different results k for a mea-
surement M. Moreover, there is a normalization relation for any N result
measurement: Efi 1 P(ks| A\, M) = 1. Since there is an N result measurement
that satisfies the condition that the first state gives zero Born probability
to the first result and the second state gives zero Born probability to the
second result and so on, there will be a relation p(k;|\, M) = 0 for any 4,
which contradicts the normalization relation.

Now if the second assumption of the ontological models framework is
replaced by the revised assumption, namely that the probability of different
results k for a measurement M on a physical system is determined not only
by the ontic state A of the system, but also by its wave function v, i.e.
p(k|\, M) is replaced by p(k|\, v, M), then the above contradiction cannot
be derived. The reason is as follows. Under the revised assumption, the origi-
nal normalization relation for an N result measurement Zfi L (k| \, M) =1
holds true only for systems with the same wave function, and for systems
with different wave functions v; (j = 1,...,N), the normalization relation
should be Zjvzl Zfilp(lﬁp\,d)j,M) = 1. Then, even if there is an N re-
sult measurement that satisfies the condition that the first state gives zero
Born probability to the first result and the second state gives zero Born
probability to the second result and so on, it will only lead to the relation
p(k;i| A\, i, M) = 0 for any i. But this relation does not contradict the new
normalization relation.

5Note that when the effective wave function is not nomological but related to the
state of reality, the second assumption of the ontological models framework should not be
revised this way but keep unchanged, since the complete ontic state A already includes all
parts of the state of reality (see also Leifer, 2014; Drezet, 2015).
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Although the above revised assumption can help the nomological view
of the universal wave function avoid the result of the PBR theorem, it has
several issues. First of all, the revised assumption already admits that the
wave function is real for a single system. According to the revised assump-
tion, the probability of different results k for a measurement M on a physical
system is determined not only by the ontic state A of the system, but also by
its effective wave function 1, i.e. it replaces the response function p(k|\, M)
with p(k|A, ¢, M). If the wave function is not real for a single system, then
the response function for a single system should not explicitly depend on
the effective wave function of the system. However, it is arguable that the
wave function being real for a single system should not be assumed before
our analysis; rather, it should be a possible result obtained at the end of our
analysis. For it directly excludes the possibility that the wave function is not
real for a single system (e.g. the t-epistemic view). This is unsatisfactory.

Next, and more seriously for a realist view, the results of measurements
and their probabilities cannot be explained in ontology under the revised
assumption. According to the original assumption of the ontological models
framework, when a measurement is performed, the behaviour of the measur-
ing device is fully determined by the complete ontic state of the measured
system and the measuring device. But according to the revised assumption,
the behaviour of the measuring device is not fully determined by the com-
plete ontic state of the measured system and the measuring device. Then,
the results of measurements and their probabilities will be unexplainable in
ontology.

Let me give a simple example. Consider a measurement of an observable
(other than position) on a system being in an eigenstate of the observable
such as a measurement of the energy of a particle in one of its energy eigen-
states in a box. The measurement will always yield a definite result, the
corresponding energy eigenvalue. According to the ontic view of the effec-
tive wave function, this measurement result is determined by the ontic state
of the measured system represented by its wave function, and thus it is
explainable in ontology. This is consistent with the original assumption of
the ontological models framework. But according to the nomological view
of the universal wave function, the ontic state of the measured system is
only the position of its particle which is at rest in the box, and it does not
include the energy eigenstate of the system. Since the particle may be in the
same position in the box for different energy eigenstates, the ontic state of
the measured system cannot determine the measurement result, which are
different for different energy eigenstates. This is just what the revised as-
sumption says. Thus, when assuming the nomological view of the universal
wave function or according to the revised assumption, the definite results of
certain measurements will be unexplainable in ontology.

Finally, it seems that one can argue that the revised assumption cannot
be true in some cases. Consider two measurement situations in which the
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initial ontic states of the measured system and the measuring device are the
same but the effective wave functions of the measured system are dif’ferentm
Since two identical ontic states cannot be distinguished, the law of motion
must be the same for them. Then, the behaviours of the measuring device
will be the same for the two measurements, and thus they cannot depend
on the effective wave functions of the measured system, which are different
for the two measurements. This means that the revised assumption cannot
be true. Conversely, in order to make the revised assumption true, the be-
haviour of the measuring device must depend on the effective wave function
of the measured system, while this requires that two identical ontic states
can be distinguished. This seems to be an impossible task.

6 Conclusions

It is widely thought that the nomological view of the wave function in
Bohmian mechanics, which says that the universal wave function is not ontic
but nomological, is consistent with the PBR theorem, which proves that the
effective wave function in Bohmian mechanics is ontic. In this paper, I ar-
gue that this is not the case, and the nomological view of the universal wave
function is not compatible with the ontic view of the effective wave function.
This means that if the effective wave function is ontic as the PBR theorem
proves, then the universal wave function cannot be nomological. Moreover,
I argue that although the nomological view can be held by rejecting one key
assumption of the PBR theorem, the rejection will lead to serious problems,
such as that the results of measurements and their probabilities cannot be
explained in ontology in Bohmian mechanics.
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