
How Haag-tied is QFT, really?

David Freeborn∗

Marian Gilton†

Chris Mitsch‡§

December 13, 2022

Abstract

Haag’s theorem cries out for explanation and critical assessment: it sounds the
alarm that something is (perhaps) not right in one of the standard way of construct-
ing interacting fields to be used in generating predictions for scattering experiments.
Viewpoints as to the precise nature of the problem, the appropriate solution, and
subsequently-called-for developments in areas of physics, mathematics, and philosophy
differ widely. In this paper, we develop and deploy a conceptual framework for critically
assessing these disparate responses to Haag’s theorem. Doing so reveals the driving
force of more general questions as to the nature and purpose of foundational work in
physics.

1 Introduction

The edifice of science is not raised like a dwelling, in which the foundations
are first firmly laid and only then one proceeds to construct and to enlarge the
rooms. Science prefers to secure as soon as possible comfortable spaces to wander
around and only subsequently, when signs appear here and there that the loose
foundations are not able to sustain the expansion of the rooms, it sets about
supporting and fortifying them. This is not a weakness, but rather the right and
healthy path of development.

[Hilbert 1905, 102; translation by Corry 2004, 127]

Proven over six decades ago, Haag’s theorem appears to present a problem for particle
physics. The theorem seems to block a key technique—namely, the interaction picture
and its attendant calculational methods—that has been widely used to generate successful
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predictions. It is clear that the theorem points to some sort of problem, driven by the
empirical success of the calculations employing the interaction picture on the one hand and
the logical force of the theorem on the other. Thus, while particle physics has secured for
itself a “comfortable space” around which to wander, Haag’s theorem appears as a sign that
the foundation are too loose “to sustain the expansion of the rooms.”

This paper aims to provide a framework for possible answers to a single, if double-
faced, question: What does Haag’s theorem tell us about quantum field theory, present and
future? Several divergent answers have been given already. Indeed, these will shape the
paper’s framework substantially. Nevertheless, the shape the framework should take is less
straightforward than it may at first seem. Even before getting to the nitty-gritty analysis of
Haag’s theorem, a framework must grapple with the problem of viewpoint, as the following
exercise makes clear:

Regardless of your actual field, take whatever career stage you are at—early graduate
student, doctoral candidate, early-, middle- or late-career researcher—and imagine yourself
instead as a particle physicist. You may imagine yourself as an experimentalist or a theoreti-
cian, expert in QED or QCD—whatever comes to mind. Regardless, several things are true
of you. First, you are committed to the development of particle physics (no matter what
this means in practice). Second, you are steeped in, and reliant on, the interaction picture
for your research in and teaching. And third, you have just learned of Haag’s theorem and
the trouble that it spells for the interaction picture. How might you respond?

Set the exercise up again, except now you are a mathematician committed to contributing
to the development of QFT (no matter what this means in practice). Second, you are steeped
in the implications of Haag’s theorem, and you are intimately familiar with the axiomatic or
algebraic approach to quantum field theory. And third, you believe that a full, conceptually
coherent physically realistic replacement for the interaction picture is (presently) unavailable.

Set it up one last time, except now you are a philosopher of science. You may consider
yourself a realist or an instrumentalist, interested in metaphysics or methodology—whatever
comes to mind. Regardless, several things are true of you. First, you are committed to
understanding the foundations of QFT (no matter what this means in practice). Second,
you are familiar both with the major advances in conventional (Lagrangian) QFT that use
the interaction picture as well as those based on algebraic QFT (AQFT).1 But third, it is
unclear to you if, or how, these advances can form a consistent whole.

It is not a given that your physicist, mathematician, and philosopher selves will share
a single outlook on RQFT, even before considering Haag’s theorem. Nor is it clear that
they should. Inevitably, this will affect your reaction to our guiding question. Thus, a major
contribution of our framework will be to highlight the influence these extra-Haagian outlooks
have on understanding Haag’s theorem and on assessing its implications for philosophy and
for theoretical physics. As we show in section 4, many (but not all) of the disagreements
about Haag’s theorem derive ultimately from different extra-Haagian outlooks, such that the
disagreement is far less about Haag’s theorem itself than it is about how to do (foundations
of) physics.

This work also aims to contribute to a larger discussion in philosophy of physics. As
a quintessential and live example of work at the foundations of physics, the discussions

1See [Fraser, 2011] and [Wallace, 2011] for the classic debate over these two formulations of QFT.
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of Haag’s theorem draw our attention to important methodological questions: What role
does (should) foundational work play in progress in physics? How is foundational work
coordinated with non-foundational work, or how should it be? And, what does (should)
foundational work even look like? These are undoubtedly heady questions, and we feign
no complete answers. Nevertheless, our framework will reveal some of the answers that are
being given by the authors under survey, and in so doing these answers open themselves to
investigation. As we conclude the paper, we suggest several investigations we expect will
sober up future discussions of these heady methodological questions.

The remainder of the paper is structured as follows. In section 2 we provide a synopsis
of a standard proof of Haag’s theorem and discuss the sense in which it raises an alarm
that something is not right with the interaction picture. In section 3 we motivate the
need for a framework for understanding the literature on Haag’s theorem. The framework
itself is given in section 4. The framework employs and extends Hilbert’s construction
analogy: the framework understands each author as something like a contractor giving their
assessment of the problem in the foundations of physics heralded by Haag’s theorem, their
recommendation for repair work on the foundations, and their expectations of the needed
long-term maintenance or future renovations to QFT’s area of the edifice of science.
This section applies the framework to seven leading contemporary viewpoints on Haag’s
theorem; the key results of this application are given in table 1. Section 5 demonstrates the
framework’s judicious balance of conceptual structure and flexibility in order to bring clarity
to the space of responses to Haag’s theorem; it further argues that, at the end of the day,
the most important lesson for philosophers to take from Haag’s theorem is that we need to
put our own energies into clearly answering meta-level questions regarding the nature and
purpose of foundational work in physics. Concluding remarks are given in section 6.

2 Haag’s Theorem

2.1 History of Haag’s Theorem

Haag’s theorem is the culmination of two approaches in early quantum field theory. On
the one hand, there had arisen a practical approach to calculating the results of scatter-
ing experiments in relativistic quantum field theory. This approach relied on the so-called
interaction picture to model interactions [Schwinger, 1948b]. The approach was wildly suc-
cessful, in particular in its use to calculate the anomalous magnetic moment of the electron
[Schwinger, 1948a]. On the other hand, spurred by Wigner’s precise characterization of spe-
cial relativity’s implications for quantum theory [Wigner, 1939], there had arisen a more
mathematical approach to understanding the structure of relativistic quantum field theo-
ries. Naturally, relativistic QFT’s mathematical structure was made transparent on this
approach, characterized by a number of basic assumptions. However, this was not true of
the interaction picture. Haag, in his lecture series given at CERN in 1953–4,2 began by
recounting the basic assumptions necessary for relativistic QFT (irreducible Hilbert space
representation of the Poincaré group, etc.). Then, Haag used the mathematical tools at

2See [Haag, 2010] for his recollections of this aspect of the history. Note that Haag’s placing of the lecture
series in 1953–4 conflicts with [Lupher, 2005], who places it in 1952–3.
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his disposal to characterize the interaction picture (Fock space, unitary intertwiner). The
problem (Haag’s theorem) was that the interaction picture, thus characterized, could not be
used to represent non-trivial interactions.

Haag’s theorem exists in several versions, notably [Haag, 1955] and [Hall and Wightman, 1957].
Opinions differ widely on its precise implications. However, loosely, the theorem states that
any suitable representation for an interacting quantum field must be unitarily equivalent to
a Fock representation for a free field. This means that any quantum field that is unitar-
ily equivalent to a free field must also be a free field. Obviously, a field with a nontrivial
interaction cannot be unitarily equivalent to a free field. Thus, Haag’s theorem seems to
show that if the interaction picture is mathematically consistent, it can only describe trivial
interactions, in which the interacting field is in fact free.

2.2 The Interaction Picture

Haag’s theorem is often construed as a no-go theorem for the use of what’s called the in-
teraction picture. This picture has been widely used for the calculation of many physical
quantities that have matched experimental results to a high degree of accuracy, for example
the celebrated computation of the anomalous magnetic dipole moment of the electron by
[Schwinger, 1948a], and is a mainstay of undergraduate and graduate textbooks and has fa-
cilitated the calculation of many physical quantities that have matched experimental results
to a high degree of accuracy. 3 As its name suggests, the interaction picture is one way
to model interacting fields in conventional quantum field theory. Let us suppose we have
a field, φ, with conjugate momentum π, generally taken (either explicitly or implicitly) to
obey the equal time canonical commutation relations and the Wightman axioms.

The interaction picture is intermediate between the Schrödinger and Heisenberg pictures.
In the Schrödinger picture of quantum mechanics, states evolve in time under the full Hamil-
tonian, whilst operators are stationary. In the Heisenberg picture of quantum mechanics,
the operators evolve under the full Hamiltonian, whilst states are stationary. To form the
interaction picture, we split the full Hamiltonian into a free and a (time-dependent) inter-
action part, H = HF +HI . The evolution of operators is governed by the free Hamiltonian,
HF , so the fields are free. The evolution of states is governed by the interaction part, HI .

3 As one crude measure of how salient the interaction picture is for actual physics, a search for
the exact phrase “interaction picture” in Physics Reviews conducted on Nov 4, 2021 returned 4,377
hits. The interaction picture forms the basis of calculations using time-dependent perturbation theory.
Crucially, the Gell-Mann and Low theorem makes use of the interaction picture. The original paper
[Gell-Mann and Low, 1951] presenting this formula has (as of Nov 4, 2021) 1544 citations recorded on
google scholar. This is likely a rather low estimate of how widely the formula is in fact used since the
formula is now at the level of common knowledge among physicists, and thus in many cases it might be
used without citation. For instance, the Gell-Mann and Low theorem was used to rigorously derive the
Bethe–Salpeter equation, which describes the bound states of a system of two fermions in a relativistic
formalism [Salpeter and Bethe, 1951]. This equation was used in subsequent quantum electrodynamics cal-
culations of the fine structure of Hydrogen-like atoms [Salpeter, 1952], Helium [Douglas and Kroll, 1974] and
heavy atoms [Mohr et al., 1998] and contemporary precision calculations of the electron magnetic moment
[Aoyama et al., 2015]. Likewise, the equations have been utilized in the calculation of nucleon-nucleon po-
tentials [Partovi and Lomon, 1969, Partovi and Lomon, 1972, Lomon, 1976, Partovi, 1978] and the deriva-
tion of scaling laws for interactions with large momentum transfer, confirmed by scattering experiments
[Brodsky and Farrar, 1975], among many other examples.
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We stipulate that the operator fields coincide with those of the Heisenberg picture at
some time, t0. Let V (t2, t1) represent the unitary evolution of the interaction picture states
from time t1 to t2, generated by the interacting part of the Hamiltonian, HI ,

(1) V (t2, t1) = e−iHI(t2−t1) = e+iHF (t2−t1)e−iH(t2−t1).

We call this operator the intertwiner, or Dyson operator. Then, at all times, t, the Heisenberg
(subscript F ) and interaction (subscript I) operators are related by the intertwiner as follows,

φI(x, t) = V −1(t, t0)φHV (t, t0),(2)

πI(x, t) = V −1(t, t0)πHV (t, t0).(3)

As we will see, it is central to Haag’s theorem that the relation of the interaction field, φI ,
to the free field, φF is characterized by a unitary map.

Generally, we seek to calculate physical amplitudes, taken in the limit in which the fields
are free at times t → ±∞. This is meant to capture the intuition that in an interaction,
particles begin infinitely far apart (and hence not interacting) and then separate again in-
finitely far apart after an interaction. The interaction picture may be useful if we can treat
the effects of HI as a small, time-dependent perturbation on the evolution under HF . In
perturbation theory we perform approximate calculations by expanding the desired physical
quantities in powers of the small interaction, HI .

2.3 Proof of Haag’s Theorem for Spin-free, Neutral, Scalar Fields

The proof of Haag’s theorem assumes the Wightman Axioms. For convenience we number
the axioms according to the convention of [Seidewitz, 2017].4

2.3.1 Wightman Axioms

Axiom 0. States. We have a physical Hilbert Space, H, for which the states, |φ〉, are rays,
such that,

1. The states transform according to a continuous unitary representation of the Poincare
group, U(∆x,Λ), under Poincare transformations, {∆x,Λ}.

2. There is a unique, invariant vaccum state, |0〉, inH, invariant under U : U(∆x,Λ) |0〉 =
|0〉.

3. Let U(∆x,Λ) = eiP
µ∆xµ. Then, P µPµ = −m2. We interpret P µ as an energy-

momentum operator and m as a mass. The eigenvalues of P µ lie in the future lightcone.

4This proof largely follows the proof of [Hall and Wightman, 1957], using some of the notation and
conventions of [Seidewitz, 2017] and [Earman and Fraser, 2006] in order to make the role of each assumption
transparent.
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Axiom 1. Domain and continuity of fields. The field φ(x) and its adjoint φ†(x) are
defined on a domain D of states dense in H containing the vacuum state |0〉. The U(∆x,Λ),
φ(x) and φ†(x) all transform vectors in D to vectors in D.

Axiom 2. Field transformation law. The fields transform under Poincare transforma-
tions as,

(4) U(∆x,Λ)φ(x)U−1(∆x,Λ) = φ(Λx+ ∆x).

Axiom 3. Local commutativity. If x and x′ are two spacetime positions,

(5) [φ(x), φ(x′)] = [φ†(x), φ†(x′)] = 0

Furthermore, if x and x′ are space-like separated,

(6) [φ(x), φ†(x′)] = 0.

Axiom 4. Cyclicity of the vacuum. The vacuum state |0〉 is cyclic for the fields, φ(x).
That is, polynomials in the fields and their adjoints, when applied to the vacuum state, yield
a set D0 dense in H.

2.3.2 Proof of Haag’s theorem

Haag’s theorem follows from the results of two other theorems. For clarity of exposition,
here we only prove the theorem for neutral, scalar fields; the generalization for other types of
fields follows in a straightforward manner. From here on, it is convenient to decompose four-
vectors as x = (t,x), where the right hand side are the temporal and spatial components,
respectively.

Theorem 1. Equality of equal-time vacuum expectation values. Let φ1 and φ2

be two field operators, with associated conjugate momentum operators, π1 and π2, defined
in respective Hilbert spaces H1 and H2, satisfying the Wightman axioms listed above, and
satisfying the equal time commutation relations,

[φi(t,x), πi(t,x
′)] = iδ(x− x′),(7)

[φi(t,x), φi(t,x
′)] = [πi(t,x), πi(t,x

′)] = 0.(8)

Suppose that there exists a unitary operator G such that, at some specific time t0,

φ2(t0,x) = Gφ1(t0,x)G−1,(9)

π2(t0,x) = Gπ1(t0,x)G−1.(10)

We call G an intertwiner for the fields φ1 and φ2. Then the equal-time vacuum expectation
values of the fields coincide. (Note that so far, this holds only at the particular time, t0.)

6



Proof. Let Ui(∆x,R) be a continuous, unitary representation of the inhomogeneous Eu-
clidean group of translations, ∆x, and three-dimensional rotations R, defined on each Hi,
i = 1, 2. Let us further suppose that transformations Ui(∆x,R) induce Euclidean transfor-
mations of the field

Ui(∆x,R)φi(t0,x)U−1i (∆x,R) = φ(t0,Rx + ∆x),(11)

Ui(∆x,R)πi(t0,x)U−1i (∆x,R) = π(t0,Rx + ∆x),(12)

as in axiom 0.1. From our supposition (equations 9 and 10), it follows that

(13) U2(∆x,R) = GU1(∆x,R)G−1.

But since the representations possess unique invariant vacuum states |0〉i such that Ui(∆x,Λ) |0〉i =
|0〉i, as in axiom 0.2.,

(14) c |0〉2 = G |0〉1 ,

where c is a complex number of absolute value 1, |c| = 1. In other words, up to a phase
factor, G |0〉1 is the vacuum state for field φ2 at time t0.

It further follows that the equal-time vacuum expectation values (Wightman functions,
also known as correlation functions) of the two fields are the same,

(15) 1〈0|φ1(t0,x1), . . . φ1(t0,xn) |0〉1 = 2〈0|φ2(t0,x1), . . . φ2(t0,xn) |0〉2 ,

for x1,x2 up to at most x4, all at the same fixed time, t0.
5

Theorem 2. Jost-Schroer theorem. For any free scalar field φ, the two-point vacuum
expectation values are given by

(16) 〈0|φ(x)φ†(x0) |0〉 = ∆+(x− x0),

where ∆+ is the advanced Feynman propagator6,

(17) ∆+(x− x0) = (2π)−3
∫
d3p

ei[−ωp(x0−x00)+p·(x−x0)]

2ωp

,

and ωp =
√

p2 +m2.
If, for any arbitrary field, the vacuum expectation values are given by equation 16, then

that field is a free field.

5If at least one of φ1 or φ2 is a free field, then this can be proven to hold for all Wightman functions,
i.e. for x1,x2 up to any xn.

6For example, see [Duncan, 2012, pages 209-210 and 256]
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This result was first proved by Jost [Jost, 1961] for fields of positive mass, and extended
to fields of zero mass by Pohlmeyer [Pohlmeyer, 1969].

Theorem 3. Haag’s theorem for scalar fields. Let φ1 be a free, scalar field, which
therefore satisfies equation 16. Let φ2 be a second, locally Lorentz-covariant scalar field. Let
us assume that φ2 is unitarily related to φ1 at time t0, as in equations 9 and 10. Further
let us assume that the conjugate momenta fields (written as adjoints φ†1 and φ†2) satisfy the
hypotheses of Theorem 1. Then φ2(x) is also a free field.

Proof. Theorem 1 tells us that the equal time vacuum expectation values of the two fields,
φ1 and φ2 must coincide at t0, i.e.,

(18) 1〈0|φ1(t0,x1)φ1(t0,xn) |0〉1 = 2〈0|φ2(t0,x1)φ2(t0,xn) |0〉2 .

Since the field φ1 is free, it follows from Theorem 2 (equation 16) and equation 20 that the
two-point vacuum expectation values for the two fields coincide at t0, i.e.,

(19) 2〈0|φ2(t0,x1)φ
†
2(t0,xn) |0〉2 = 1〈0|φ1(t0,x1)φ

†
1(t0,xn) |0〉1 .

So far, this holds only at t0. However, any two spacelike separated position vectors,
(t1, x1) and (t2, x2), can be brought into the equal time plane t1 = t2 by a Lorentz transfor-
mation. Thus, the Lorentz-covariance of φ2 allows us to extend the satisfaction of equation
19 to any two spacelike positions, and then, by analytic continuation, to any two positions:

(20) 2〈0|φ2(x1)φ
†
2(xn) |0〉2 = ∆+(x− x0).

Therefore, by Theorem 2, φ2(x) must be a free field.

2.4 Implications of Haag’s Theorem

By the criteria used by particle physicists, the interaction picture has undoubtedly produced
numerous notable successes (see note 3). However, the interaction picture is generally taken
to depend upon all of the assumptions needed for Haag’s theorem, including Poincaré invari-
ance and the existence of a unitary operator relating the two fields, that is, that the fields are
unitarily equivalent. The apparent clash between the interaction picture and Haag’s theorem
arises as follows. If the fields, φF and φI , obey the Wightman axioms, and we have a unitary
operator intertwining the two fields at even a single time (as in equations 9 and 10), and φF
is free, then according to Haag’s theorem φI must also be free. So the interaction must be
trivial.

So Haag’s Theorem appears to be a no-go theorem for calculations that use the interaction
picture. At a glance, it would be mathematically inconsistent to use the interaction picture
for calculations involving any of the non-trivial interactions that we care about in particle
physics. However, a closer look reveals a whole labyrinth of philosophical, mathematical,
and physical issues at stake in understanding the full significance of Haag’s theorem. We
take that closer look in the next section.
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3 What the Haag Is Going on?

There are a few points on which all parties generally agree. First, judged by its own particular
standards of success, particle physics –including the interaction picture– is highly successful.

Second, there is a consensus that Haag’s theorem poses a bona fide problem for the
standard presentation of the interaction picture, pre-renormalization. The theorem itself is
mathematically correct: as Klaczynski puts it, “it is a mathematical theorem in the truest
sense of the word; it brings with it the ‘hardness of the logical must’.” [Klaczynski, 2016].
Further, it is not disputed that the assumptions of Haag’s theorem hold in the case of the
standard textbook presentations of the interaction picture.7 No one, to our knowledge,
argues that the problem posed by Haag’s theorem is illusory.8 It is, rather, the severity and
appropriate remedy of the problem that is subject to debate.

However, the severity of the problem raised by Haag’s theorem clearly stops short of
spelling the demise of that research program predicated on the application of quantum
theories of fields to scattering experiments, commonly called particle physics.9 Even the
practitioners of AQFT, while operating far afield from the details of the Standard Model’s
phenomenology, still conceive of their work as contributing to the scientific enterprise whose
primary goal is to develop the quantum theory of fields as the appropriate theoretical ap-
paratus for understanding scattering experiments. So, then, what is going on with Haag’s
theorem such that these two stances —the interaction picture has been used successfully,
and Haag’s theorem poses a substantive problem for the interaction picture—can be held
together? This central tension is widely recognized as a point of agreement. As Teller
succinctly puts it,

Everyone must agree that as a piece of mathematics Haag’s theorem is a valid
result that at least appears to call into question the mathematical foundation
of interacting quantum field theory, and agree that at the same time the the-
ory has proved astonishingly successful in application to experimental results.
[Teller, 1995, 115]

And yet, despite this initial agreement, extant responses to Haag’s theorem form a con-
fusing lot. The literature on Haag’s theorem reflects a number of different assessments of

7For example, standard presentations assume, either implicitly or explicitly, a Poincaré invariant theory,
and that there are distinct free and interacting fields, related by a unitary operator.

8It may very well be that many practicing physicists hold such a view, and that, precisely because they
see the problem posed by Haag’s theorem as at most rooted in an unrealistic idealization of non-interacting
states at temporal infinity, they therefore choose not to address Haag’s theorem in their textbooks, lecture
notes, or research articles. We can do little more than speculate that such an unspoken consensus fully
explains the dearth of references to Haag’s theorem in standard accounts of QFT—simple ignorance of the
theorem may be just as strong of a causal factor. David Tong’s lecture notes on QFT, for instance, do not
explicitly mention Haag’s theorem; but they do say that the assumption of non-interacting states in the
interaction picture is wrong and should be replaced by the interactions-are-always-on interpretation of the
LSZ reduction formula [Tong, 2012] p. 54-55, 79-80. Thus, while it is possible that this dismissive response
to Haag’s theorem is widespread, too little of it exists in print to be extensively covered in the remainder of
this paper.

9Though see the discussion of Kastner (section 4.6) and Seidewitz (section 4.7) below for genuine pro-
posals of new physical theories, each drawing some motivation from Haag’s theorem.

9



the import of the theorem for both (mathematical) physics and philosophy. Moreover, the
extent to which these different assessments make meaningful contact with each other is often
unclear. In this section, we briefly illustrate the nature of the confusion in this literature.
First, the confusion is not about the status of Haag’s theorem as a mathematical result. All
parties agree that the original theorem, and its several generalizations, have valid proofs.
The confusion enters when trying to trace out the ramifications of Haag’s theorem for the
foundations of QFT. [Earman and Fraser, 2006] put it well, saying that “the theorem pro-
vides an entry point into a labyrinth of issues that must be confronted in any satisfactory
account of the foundations of QFT” (p. 334). Once we have entered into this labyrinth
via Haag’s theorem, we encounter a host of conceptual and interpretive issues, enmeshed
in technical issues of mathematics and physics, making even the range of options for a way
forward through the labyrinth unclear, much less which one may be the best.

A reader interested in Haag’s theorem and its implications for the use of the interac-
tion picture in physics may first look for insight from Earman’s and Fraser’s seminal pa-
per, “Haag’s theorem and its implications for the foundations of quantum field theory.”
They conclude, “On any reading Haag’s theorem undermines the interaction picture and the
attendant approach to scattering theory” [Earman and Fraser, 2006, 333]. So, the reader
naturally thinks, the interaction picture is no good. And yet for Duncan, “the proper re-
sponse to Haag’s theorem is simply a frank admission that the same regularizations needed
to make proper mathematical sense of the dynamics of an interacting field theory at each
stage of a perturbative calculation will do double duty in restoring the applicability of the
interaction picture at intermediate stages of the calculation” [Duncan, 2012, 370]—the in-
teraction picture survives! Miller concurs, adding that the success of calculations delivered
from regularized and renormalized theories is explained by the conjecture that “perturbative
expansions are asymptotic to exact solutions of a theory that generates them” [Miller, 2018,
818]. So, the reader concludes triumphantly, the interaction picture works !

Still more paths begin to emerge, however. According to Klaczynski, these renormal-
ized theories evade Haag’s theorem precisely by denying that the interaction picture ex-
ists [Klaczynski, 2016]. Maiezza and Vasquez agree, arguing that “due to Haag’s theo-
rem, it is impossible to define QFT starting from the interaction picture with free fields”
[Maiezza and Vasquez, 2020, 10] (italics in original); indeed, they seem to argue that the
interaction picture fails precisely because of the failure of the conjecture Miller relies on to
save it. Yet confusingly, Maiezza and Vasquez also disagree with Klaczynski on what saves
perturbative calculations from Haag’s theorem.

The paths so far, while many, nevertheless seem to turn on what to say about the
mathematical coherence of the interaction picture. Thus, a labyrinth though it may be, the
reader thinks, I can at least see its basic structure. The reader has judged too soon, however,
for it is not only the interaction picture per se that is at stake, but the metaphysics: “either
the assumptions of Haag’s theorem do not hold, in which case there is no particle notion
applicable to a scattering experiment at intermediate times, or they do, in which case the
particle notion applicable at intermediate times is incommensurable with the ingoing/outgoing
particle notions, if the interaction is non-trivial” [Ruetsche, 2011, 252] (italics in original).
So, the reader thinks, the path out of the Haagian labyrinth requires the banishment of
particles and the embracing of fields ! Not so, says Kastner: particles exist, and fields must
be banished [Kastner, 2015].

10



The reader is thus confronted with paths out of the Haagian labyrinth diverging on both
metaphysical and mathematical grounds and, worse still, she can’t tell from her place in the
labyrinth whether or where these paths coincide. As if this weren’t bad enough, a fog sets
in. Are we even trapped at all?, the reader asks, [Seidewitz, 2017, 356] in hand, for Haag’s
theorem arises in traditional QFT only because time is not “treated comparably to the three
space coordinates, rather than as an evolution parameter.” Thus, the Haagian labyrinth
could have been entirely avoided had time been treated in a relativistically sensible manner
at the outset.

How should the reader react to this? Is there a Haagian labyrinth? And if so, which
path will lead us out? The framework given in the next section gives a fixed structure for
organizing and assessing this confusing network of responses to Haag’s theorem, thereby
creating several distinct mappings of the Haagian labyrinth. More general lessons from
studying these maps are given in section 5.

4 The Framework: Assessment, Repair, and Renova-

tion and Maintenance

Before presenting the framework, we should carefully consider its goal. The purpose of this
framework, as we said in the introduction, is to fruitfully structure and organize answers
to the question “What does Haag’s theorem tell us about quantum field theory, present
and future?” Two desiderata for such a framework are fairly obvious. First, it should
sensibly organize the answers that have already been given to this question. As such, we
will apply the framework to prominent answers in the literature. Second, the framework
should leave significant room for future developments. Given the interdisciplinary nature
of the study of Haag’s theorem, and given the recent increase of interest from physicists
([Klaczynski, 2016], [Maiezza and Vasquez, 2020], and [Seidewitz, 2017]), we expect there is
much more to be said on this topic. A good framework for organization, therefore, must
have space to accommodate these expected future developments.

There are additional desiderata, which are less obvious but of no lesser importance. These
arise principally from the interdisciplinary nature of the research on Haag’s theorem. Third,
the framework should organize various extant and possible responses to Haag’s theorem
without itself providing a judgement as to which response is best. Thus, while a successful
framework should assist the scholarly community in evaluating the success or failure of a
given response to Haag’s theorem with respect to or along a given criterial axis, it should in
no way bias one axis as more or less important than any other axis. In particular, the criteria
should not mark out one outlook as more important or relevant to a given criteria simply
in virtue of that outlook being more interested or invested in that criteria. For example,
“which assumption(s) of Haag’s theorem must we give up?” is not unbiased insofar as it
is of preeminent interest to axiomatic investigators; likewise, “what notion of particle, if
any, is circumscribed by QFT?” is not agnostic insofar as it is of preeminent interest to
the metaphysically-inclined philosopher. The importance of this desideratum is born of
this framework’s goal to organize, but not finalize, answers as to the significance of Haag’s
theorem. Nevertheless, for proper subsets of responses that coincide on at least one axis,
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sub-frameworks biased along that axis can provide further helpful organization (see section
5).

Fourth and finally, the framework should force the various extra-Haagian outlooks to
be more explicitly acknowledged. In particular, it should illuminate what is at stake in
discussion of Haag’s theorem separately for mathematicians, physicists, and philosophers.
This last desideratum is meant to draw attention away from products of miscommunication
and toward more honest and fruitful dialogue.

Our framework consists of the following three criterial axes along which responses to
Haag’s theorem can be assessed, categorized, and critically compared. These axes have been
chosen to expand upon Hilbert’s leading construction analogy, namely, as the assessment
and diagnosis, immediate repair, and longer-term renovation or maintenance of a building
(the “edifice of science”) that is continually under construction. Following the analogy, the
authors surveyed here may be thought of as subcontractors brought in to assess and diagnose
the building’s status in light of Haag’s theorem. Thus, in our capacity as organizers of the
varied responses to Haag’s theorem, we the authors may be thought of as something like
the general contractor whose job is to arrange and make comparable the subcontractors’
assessments and provide expert advice to the building’s owner as to how to proceed with the
construction. We accomplish this first aim in section 4 and the second aim in section 5.

• Assessment: What precisely is the problem posed by Haag’s theorem, if any? For
what objective(s) is this a problem?

• Repair: How should this problem be remediated?

• Maintenance or Renovation: Where should resources (time, attention, grant fund-
ing, conference and journal platforms, etc.) for the next (relevant) phase of research
be allocated?

We now turn to applying this framework to organize seven major responses to Haag’s
theorem from several different perspectives. The results of applying our framework are sum-
marized in table 1. Each result is discussed in detail in the following subsections. For clarity,
each subsection begins with a discussion of the extra-Haagian outlook at play; however,
note that the content of these discussions has been determined through application of our
framework.

4.1 Earman and Fraser

Extra-Haagian outlooks. For Earman and Fraser, the most pressing question is, what
is QFT? As they see it, answering this question requires an honest and complete marriage of
SR with QM. As such, QFT cannot settle for the weakening of any fundamental postulates
of either theory—dishonest or partial marriages of SR with QM are, by definition, not QFT.

This requirement of a complete and honest marriage is a significant departure from ortho-
doxy. For one, it immediately rules out the two most dominant approaches to constructing
QFTs. On the one hand, renormalized canonical QFT is ruled out, according to Fraser,
because the theory is so mathematically ill-defined that we cannot check if it has honestly
married SR with QM. On the other hand, the introduction of cutoffs in canonical QFTs,
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Name Assessment Repair Renovation or
Maintenance

Earman & Fraser interaction picture
(IP) rests on a set

of inconsistent
assumptions

Abandon the
interaction picture

Interpret and assess
AQFT and

constructive QFT

Fundamental Inter-
preters

Standard particle
notion inconsistent

with axioms of QFT

Abandon standard
particle

interpretation

Develop univocal
interpretation of
axioms of QFT

Duncan & Miller pre-renormalization
IP is inconsistent

Renormalization
(breaks Poincaré

invariance)

Continue studying
renormalization and
EFTs, don’t worry

Klaczynski IP is inconsistent Renormalization
leads us to abandon

the IP

replace the IP’s
unitary intertwiner

Maiezza & Vasquez The full
perturbative series

has renormalon
divergences

Resummation
methods (but these

are ambiguous)

New resummation
methods and

physical insights are
needed

Kastner Physics is non-local Abandon notion of
an independent field

Develop
direct-action

theories
Seidewitz Use of time as the

evolution parameter
is at fault

Revise axioms to
introduce new

evolution parameter

Extend
parameterized QFT

to gauge theories
and non-Abelian

interactions

Table 1: Framework application summary

while mathematically acceptable, means that the marriage is incomplete—SR concerns in-
finite, continuous space, not finite lattices. But for another, such a requirement is born of
an attitude toward theory development that is unorthodox in contemporary science (if not
philosophy of physics). Rather than demand full unification up front, the average theoretical
particle physicist contents themselves with combining SR and QM to the best of their current
ability. At least for now, our current best practice gives up the strict Poincaré invariance
demanded by SR. Arguably, the ‘best of their ability’ has improved over the decades such
that, the average theoretical particle physicist could claim, we will inevitably find such a
complete and honest marriage if one is forthcoming. In the meantime, we have inarguably
successful partial (resp. dishonest) marriages of SR with QM with which we can keep exper-
imental and theoretical particle physics going. While it is likewise a live option for Fraser
(and presumably Earman) that an honest and complete marriage of QFT is not possible,
this is a question of logic, not practical or empirical feasibility. This leaves only AQFT as a
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means for characterizing QFT.10

Assessment. As discussed above, the goal for Earman and Fraser is to determine what
QFT is, i.e., to completely and honestly unify SR and QM. A successful unification, if it is
possible, will at least be able to model interacting systems. Thus, according to Earman and
Fraser, Haag’s theorem is a demonstration of the logical impossibility of modeling interactions
using the interaction picture in our would-be QFT (assumed to obey the Wightman axioms).
All that the interaction picture is capable of modeling is, provably, free fields—a spectacular
failure. As such, Haag’s theorem is perhaps the first of many signs that SR and QM are, in
the end, irreconcilable.

Repair. The repair work needed is in the task of modeling interactions in QFT. This
might proceed either by abandoning the interaction picture altogether (e.g. with Haag-
Ruelle scattering), or else by substantially revising it through giving up one or more of its
assumptions. While assessing this second possible response, Earman and Fraser find the
robustness of Haag’s theorem, and its generalizations, to be significant: “Subsequent no-go
results do not show that field theorists do not have to worry about Haag’s theorem because
some of its assumptions do not hold in all cases of interest; rather, what the subsequent
results show [is] that even more assumptions have to be abandoned in order to obtain well-
defined Hilbert space descriptions of interacting fields” (318). Thus, Earman’s and Fraser’s
preferred remedy for Haag’s theorem is to abandon the interaction picture altogether in favor
of alternative ways of modeling interactions in QFT.

Note that this accords with Earman and Fraser’s stated goal of unifying SR and QM.
Regularization and renormalization techniques are not options available to them as they
change the game or execute the unification dishonestly, respectively. Thus, the only option
is to give up the interaction picture: Haag’s theorem does not pose a problem for QFT
per se, but it “does pose problems for some of the techniques used in textbook physics for
extracting physical prediction from the theory” [Earman and Fraser, 2006](p. 306). QFT,
therefore, is not to be identified with textbook physics. The textbook physics is one attempt
at doing QFT, and Haag’s theorem exposes serious problems in that particular attempt. The
immediate technical moral of Haag’s theorem is that (better attempts at) QFT must embrace
the use of unitarily inequivalent representations of the CCR.11 The philosophical insight from

10Fraser seems optimistic that, with more time, the as-of-yet unfinished project of constructing a fully
rigorous (according to AQFT standards) interacting QFT in four spacetime dimensions could be completed.
But she is clear that this has not happened yet, and that in principle it could be shown to be impossible.
Fraser writes, “consistency is also a relevant criterion because quantum field theory is, by definition, the
theory that integrates quantum theory and the special theory of relativity. Consistency is relevant to QFT for
theoretical reasons—not for practical reasons (e.g., the derivation of predictions). As a result, it is necessary
to either formulate a consistent theory or else show that this criterion cannot be satisfied (i.e., that there is
no consistent theory with both quantum and special relativistic principles).. . . The formal variant is the only
variant that satisfies the criterion; its set of theoretical principles are both consistent and well motivated.
Neither the infinitely renormalized nor cutoff variant furnishes an argument that a consistent formulation of
QFT is impossible; such an argument would require making the case that the axiomatic program cannot be
completed.” [Fraser, 2009] (p. 563).

11“[A] single, universal Hilbert space representation does not suffice for describing both free and interacting
fields; instead, unitarily inequivalent representation of the CCR must be employed” (p. 333).
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this technical result is that it designates the role of unitarily inequivalent representations as
a distinctive feature of QFT in contrast to QM.12

Renovation. As a consequence of this logical diagnosis and logical remedy, Earman and
Fraser advocate for future philosophical work and resources to be deployed in philosophi-
cal projects about AQFT and its attendant non-interaction-picture approaches to interac-
tions. There are at least two such broad philosophical projects that benefit from the ways
in which AQFT-practicing mathematicians have “digested the lesson of Haag’s theorem”
[Earman and Fraser, 2006] (p. 334). First there is the project of interpreting the mathemat-
ical structures used in AQFT and in constructive QFT. Second, and relatedly, there is the
subtle matter of assessing the implications of theorems of AQFT for the philosophy of those
areas of fundamental physics that make use of QFT.

4.2 The Particle Problem

There is a segment of the philosophical literature addressing Haag’s theorem that is primarily
motivated by the question, as put by Laura Ruetsche, ‘Is particle physics particle physics?’
[Ruetsche, 2011, 190]. In this context, Haag’s theorem is most often taken to be a no-go the-
orem for a particle interpretation of QFT (most notably [Halvorson and Clifton, 2002] and
[Fraser, 2008]). Others disagree with this assessment (e.g. [Wallace, 2011] and [Bain, 2011]).

Extra-Haagian outlooks. In this literature, the primary extra-Haagian divide is between
those adhering to what [Ruetsche, 2011] calls the ideal of pristine interpretation and those
that do not. As she noted when coining the phrase, this ideal is rarely explicitly stated. Nev-
ertheless, sympathy for the ideal of pristine interpretation appears widespread, particularly
in the philosophy of QFT.13 [Halvorson and Clifton, 2002], [Fraser, 2008], and [Bain, 2011]14,
for example, approach the particle problem from a methodological stance of pristine inter-
pretation. What binds pristine interpreters in the philosophy of QFT together is a desire for
a unimodal interpretation of the theory of quantum fields. These authors demand that an
interpretation specify what metaphysical entities are fundamental, in the sense that they are
present across all applications (models) of the theory of quantum fields.15 Implicit in this is

12“Haag’s theorem was instrumental in convincing physicists that inequivalent representation of the CCR
are not mere mathematical playthings but are essential in the description of quantum fields” (p. 319).

13See [Arageorgis, 1995, 119–125] for an early interpretation-focused discussion of Haag’s theorem. We
do not discuss this work here because his status as pristine or not is unclear.

14Bain’s precise view on the ideal of pristine interpretation is less clear, but we include him here because of
the fundamentality of his notion of particle and its perspicuity in the LSZ formalism. See, e.g., [Bain, 2013]
for work suggesting this classification is incorrect.

15Ruetsche characterizes the pristine interpreter as one who believes that “a theory’s laws on their own—or
even in concert with “a few general principles” in the form of duly abstract mathematical, metaphysical,
methodological, etc., considerations—delimit what worlds are possible according to that theory”; in particu-
lar, “those worlds should [not] be characterized in different ways for different extranomic (factual or material
or explanatory or maybe even practical) circumstances” [Ruetsche, 2011, 4]. For simplicity, here we prefer to
talk of interpretations that are fundamental or not rather than of physical possibility being determined by a
theory’s laws on their own or not. A fundamental interpretation is one whose generalizations are determined
solely by the theory’s laws (with the same caveat given by Ruetsche).
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the requirement that all representations be specifiable uniformly and precisely enough that
a single, mathematically-precise interpretive schema is available throughout.

Despite widespread sympathy for pristine interpretation in the philosophy of QFT lit-
erature, there remain dissenters. In [Wallace, 2011, 124] and [Wallace, 2001], for example,
scale-variant and emergent concepts, respectively, are given pride-of-place in interpretation.
Likewise, Ruetsche herself argues at length that “[w]hat set of possible worlds we associate
with a theory of QM∞ can depend on what we’d like to do with that theory” [Ruetsche, 2011,
352]. Both authors champion non-pristine, non-fundamental interpretations of QFT, and
they thereby approach the particle problem and Haag’s theorem with a very different out-
look. While this difference in outlook is often implicit, Fraser (in response to [Wallace, 2001])
is transparently skeptical of even the cogency of an ontology with non-fundamental entities
or which is not built on an exact similarity relation with the mathematical model at hand
[Fraser, 2008, 857–8]. This difference in outlook clearly informs reactions to the particle
problem.

More generally, the pristine interpreters of QFT share an understanding of how no-
go theorems should be addressed. On the one hand, they care almost exclusively about
the fundamental-interpretive implications of Haag’s theorem—its implications for scattering
theory and calculations therein deemed irrelevant. Thus, this group fits uneasily alongside
the other authors here discussed—with the possible exception of Earman and Fraser and
Seidewitz—insofar as use or application of QFT plays no role in the discussion nor, in-
deed, motivation for discussion of no-go theorems. They furthermore expect a response to
no-go results like Haag’s theorem to apply for all theories of quantum fields. Whereas Dun-
can and Miller satisfy themselves with identifying violations of the assumptions of Haag’s
theorem in particular settings, thus potentially making available in those settings a classic
(non-fundamental) particle interpretation, here a satisfactory response must apply across all
settings. This feeds directly into the resource allocations proposed by pristine interpreters:
since a response must work across all settings, axiomatic approaches to inquiry are naturally
preferred. For this reason, satisfying responses are typically sought from AQFT; the effec-
tive field theory approach, in particular, cannot provide a satisfying response to the pristine
interpreter because it makes no pretense of applying one set of concepts across all settings.

Assessment. For pristine interpreters, Haag’s theorem is a diagnostic no-go result con-
cerning interpretation: QFT cannot be interpreted as fundamentally about particles. For
instance, in their [Halvorson and Clifton, 2002, 24], Halvorson and Clifton blame Haag’s the-
orem, among other no-go results, when they conclude that the theory of quantum fields “does
not permit an ontology of localizable particles; and so, strictly speaking, our talk about lo-
calizable particles is a fiction.” Similarly, as Ruetsche summarizes the thinking of pristine in-
terpreters, it is due to Haag’s theorem that “within the confines of the interaction picture, no
fundamental particle interpretation can frame explanations of particle physics phenomenol-
ogy and its compliance with calculations mediated by Feynman diagrams” [Ruetsche, 2011,
253]. Fraser, too, comes to this conclusion on the basis of Haag’s theorem [Fraser, 2008].
Thus, for these authors, Haag’s theorem sits alongside results like the Reeh–Schlieder the-
orem [Reeh and Schlieder, 1961], the Unruh effect [Crispino et al., 2008] [Earman, 2011], or
the Hegerfeldt [Hegerfeldt, 1998a] [Hegerfeldt, 1998b] and Malament [Malament, 1996] theo-
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rems (and extensions thereof [Halvorson and Clifton, 2002]) as evidence against the existence
of a fundamental particle interpretation for RQFT. Indeed, canon seems to dictate—even
for non-fundamental interpreters —that these results be discussed together when addressing
the particle problem (e.g., [Bain, 2000, 380] [Halvorson and Clifton, 2002, 20] [Fraser, 2008,
842] [Ruetsche, 2011, Chs. 9–11] [Wallace, 2001, §2.4]

The most obvious path to a fundamental particle interpretation—relying on what we call
the standard particle notion—is blocked by Haag’s theorem in the following way. This path
relies on a representation of the Weyl relations having a (global) number operator, which can
be understood physically as counting the number of particles. Since number operators only
exist for representations unitarily equivalent to a free-field Fock representation (theorem 3.3
of [Chaiken, 1968]), and since Haag’s theorem implies that the latter cannot represent an
interacting field, a particle interpretation for interacting fields cannot rely on the existence
of (global) number operators.16 But the situation is even worse, it would seem: violating any
one of the assumptions of Haag’s theorem would seem to undermine any notion of particle
that could do the work we demand of a fundamental interpretation [Ruetsche, 2011, 253].
Thus, Haag’s theorem seems to rule out fundamental particle interpretations of RQFT.

Crucially, the existence of a global number operator is necessary for the standard fun-
damental particle interpretation. That is, the existence of a global number operator is
necessary for a particle interpretation to meet the fundamental interpreter’s demand for a
single, mathematically-precise interpretive schema applicable everywhere. This condition is
meant to ensure both that would-be particles are like particles—i.e., are sufficiently localiz-
able and countable—as well as that they are so in the same way throughout an interaction.
Put so crudely, it is this latter aspect of the criterion that most directly rules out emergence-
and coalescence-type particle notions like that found in [Wallace, 2001].17

Repair. Pristine interpreters have proposed two kinds of responses to the problems posed
by Haag’s theorem (and other no-go theorems) for a fundamental particle interpretation.
Because of the strictures of the ideal of pristine interpretation, each is, in a sense, revisionary.

On the one hand, some bite the bullet and accept that there are no fundamental particles.
Doing so entails providing an alternative fundamental ontology and, consequently, alterna-
tive explanations of erstwhile “particle” physics phenomena. This is the more typical repair
proposal. For instance, Halvorson and Clifton conclude that “relativistic quantum field the-
ory does permit talk about particles—albeit, if we understand this talk as really being about
the properties of, and interactions among, quantized fields” [Halvorson and Clifton, 2002,
24]. Similarly, albeit with less patience for the talk of particles, Fraser concludes that special
relativity and the non-linearity of the field equation for an interacting system—key ingredi-
ents for Haag’s theorem—conspire against a quanta interpretation, i.e., “there is no quanta
interpretation and there are no quanta” [Fraser, 2008, 858]. However, it should be noted that
the most obvious way of constructing a field ontology appears to run into the same problems

16See references in [Fraser, 2008, 847] for further detail. See also [Heathcote, 1989] pp. 91-97 for a
discussion of the consequences of Haag’s theorem for Fock space representations and axiomatic approaches
to modeling interactions (and see [Earman and Fraser, 2006] section 7 for their critical assessment thereof).

17See also [Feintzeig et al., 2021] for recent work on accounting for emergent particle phenomena using
the classical limit of QFT.
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as the particle ontology [Baker, 2009].18 In each case, a revision of our ontology—or at least,
ontological speech—is proposed.

On the other hand, some propose revision of the notion of particle required for a funda-
mental particle interpretation. Doing so entails revising the relevant definitions at play in the
no-go on particles, e.g., the approach to scattering theory (Haag–Ruelle) [Reed and Simon, 1980],
the condition for localizability and state equivalence (LSZ formalism) [Bain, 2000], or the
definition of particle itself19, in order to “save” the talk of fundamental particles, especially
the explanatory work done by this talk. This repair proposal is less typical. Though each
proposal may save (some of) the talk of fundamental particles, each nevertheless proposes
revision of QFT or the standard definition of particle.

For non-pristine interpreters, Haag’s theorem alone does not demand any repair. Instead
of proposing repairs to either our ontology or QFT, it suffices for [Wallace, 2001] to show
that a concept of particle can be recovered from a field-theoretic description. Given Wallace’s
background presumption that approximate concepts are legitimate in physics, it does not
matter that the particle concept he deploys is vaguely defined and applies only to bosonic,
massive QFTs; likewise, the satisfaction with approximate concepts removes the sting of
Haag’s theorem for a fundamental particle notion. For Ruetsche, Haag’s theorem is only one
chapter (namely, Ch. 9) in the story of particles [Ruetsche, 2011, Chs. 9–11], and that it
rules out the standard particle interpretation in general is unremarkable in the larger story.
Indeed, she concludes, “[s]ometimes particle physics is, adulteratedly, particle physics, and
that’s a good thing” [Ruetsche, 2011, 260].

Renovation. The long-term desire of the pristine interpreter group—including each of the
above repairs—is to develop a pristine interpretation of QFT. Given this group’s expectations
for how one should be developed, a mathematically precise, general, and consistent formula-
tion of QFT is a goal. Thus, expected renovations for this group are largely mathematical.
We should note some reason for pessimism about the attainment of this goal, however. While
the pristine interpreters have worked from the Wightman axioms for over half a century now,
sufficiently realistic models of these axioms have not been forthcoming. In particular, these
models must be able to represent interactions. This has proven especially challenging, and
there is no guarantee that such models are even possible. One noteworthy recent development
on what kinds of field theories can be rigorously constructed in four space-time dimensions
is [Aizenman and Duminil-Copin, 2021]. Likewise, revisions of the relevant definitions (e.g.,
Bain’s re-definition of ‘particle’) have led to difficulties [Fraser, 2008]. Long term renovations
in this area will likely require deep conceptual work rather than mathematical advancement.
Finally, the non-pristine interpreter does not see Haag’s theorem itself as reason for any
renovation.

18However this argument relies on the restriction that the field wave functionals are square-integrable.
If we relax this restriction, then the space of wave functionals will be larger than the space of particle
wave functions (see [Jackiw, 1990] and [Sebens, 2022], but see [Wallace, 2006] for a defense of the square-
integrability restriction).

19After arguing that the Received View’s notion of particle, which is inconsistent with relativistic quantum
field theories, relies implicitly on the existence of an absolute temporal metric, [Bain, 2011] concludes by
pointing to several potential modifications of the definition of particle.
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4.3 Duncan and Miller

Tony Duncan [Duncan, 2012] and Michael Miller [Miller, 2018] argue that at least one of the
assumptions needed to prove Haag’s theorem is violated at some point in the actual process of
calculating scattering theory results in perturbative QFT. Thus, in Duncan’s words, we can
“stop worrying” about Haag’s theorem. These calculational processes include the methods
of regularization and renormalization.

A similar view on Haag’s theorem is given in [Fraser, 2017]. Here, James Fraser is pri-
marily concerned with the much broader question of the status of perturbative QFT and
diagnosing the ‘real problem’ with this area of physics. He argues that perturbative QFT
is “a method for producing approximations without addressing the project of constructing
interacting QFT models” (4). As a consequence of this view, the threat of inconsistency
posed by Haag’s theorem is defused for much the same reasons as given by Duncan and
Miller. Fraser concludes section 4, “The perturbative method simply does not assert the
set of claims shown to be inconsistent by Haag’s theorem” (18). We set aside [Fraser, 2017]
for the remainder of this section since Haag’s theorem is not the primary target of that
article; but readers interested in the broader question of how to assess perturbative QFT are
encouraged to look there for an important contribution on that topic.

Extra-Haagian outlooks. For Duncan and Miller, it is a given that the interaction picture
has been consistently applied in calculating various specific theoretical predictions. For
Duncan, QFT as it is used in particle physics—including its use of the interaction picture—
is “the most powerful, beautiful, and effective theoretical edifice ever constructed in the
physical sciences” [Duncan, 2012, iv]. His goal, therefore, cannot coincide exactly with
Earman and Fraser’s of strictly unifying SR with QM. Rather, Duncan’s broader goal for
the book is to provide a “deep and satisfying comprehension” of QFT by addressing the
important conceptual issues for which the traditional, “utilitarian” texts fail to provide
careful explanations (pp. iii–iv).

Likewise, Miller is focused on understanding the QFT noted for its empirical successes
[Miller, 2018, 802], hence not the QFT of Earman and Fraser. Ultimately, Miller’s aim is to
address “a general tension that exists in much of the literature engaged in the philosophical
appraisal of the foundations of quantum field theory” (p. 803). This tension is essentially
that between Earman and Fraser and the fundamental interpreters’ approach to QFT on the
one hand and the empirically-tractable QFT on the other: while the former is mathematically
rigorous and hence (relatively) easy to interpret using standard philosophical tools, it has
yet to produce a realistic model, so it is unclear how it could inform claims about the actual
world; conversely, while the latter has generated wildly successful empirical predictions, it
has done so through changes to the mathematical formalism whose interpretive significance
is far from obvious (p. 803).

For both authors, then, the preferred approach seems to be to bring the philosopher’s
penchant for logical and conceptual clarity to bear on QFT as it is actually used. Given
that both are sure (up to fallibility) that QFT is being applied consistently, questions about
its foundations will naturally not concern whether they are consistent or correct but rather
how they are so.
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Assessment. Called in to assess the status of our QFT building in light of Haag’s theorem,
what Duncan and Miller are assessing is not whether QFT is consistently using the interaction
picture, but how. Both Duncan and Miller recognize the logical nature of the problem
posed by Haag’s theorem—i.e., as the conflict between the interaction picture and free-field
representation assumptions—and they take consistency to be a requirement for a viable
theory. Indeed, they recognize that a response to Haag’s theorem must come from negating
at least one of its assumptions. However, unlike Earman and Fraser, their goal is to “explain
why theoretical predictions for realistic experimental observables give empirically adequate
results” [Miller, 2018, 803]. These predictions in fact use the interaction picture, so they
cannot just jettison the interaction picture. Rather, they aim to identify where within the
practical calculational techniques such violations of the assumptions must already take place
for reasons entirely independent of Haag’s theorem.

[Duncan, 2012, pages 359-370] and [Miller, 2018] each argue that we circumvent Haag’s
theorem in the messy calculational details of how the interaction picture is used in practice.
This takes place in a two-step process. In the first step, regularization evades Haag’s theorem
at the price of also breaking the Poincaré invariance (and generally the unitarity) of the
S-matrix, which we generally consider to be desirable. In the second step, renormalization
allows us to remove the regularization, thus restoring the Poincaré invariance and unitarity of
the theory. According to [Duncan, 2012, page 370], “the proper response to Haag’s theorem is
simply a frank admission that the same regularizations needed to make proper mathematical
sense of the dynamics of an interacting field theory at each stage of a perturbative calculation
will do double duty in restoring the applicability of the interaction picture at intermediate
stages of the calculation.” Thus, in their assessment, Haag’s theorem poses no problem to
our QFT building’s integrity.

Repair. The interaction picture in practice makes use of renormalization and regularization
techniques that, in pulling “double duty”, both produce finite perturbative results and defuse
the assumptions of Haag’s theorem. The renormalization and regularization ‘repairs’ also
evade Haag’s theorem as a positive side effect. No additional repair is needed.

Maintenance. Maintenance is straightforward: maintain current practices of proper use of
renormalization and regularization20 techniques. For the conceptually and logically curious,
following in Duncan and Miller’s footsteps, this maintenance will likely also involve identify-
ing precisely which assumptions have been violated, and where. While it remains to be shown
that the perturbative power-series converge and thus correspond to exact non-perturbative
objects post-regularization and -renormalization, [Miller, 2018, page 815] contends that this
problem is unrelated to Haag’s theorem.

20However, some methods of regularization do not break Poincaré invariance. This raises the question as
to how this story should apply in such cases. [Miller, 2018, pages 814-815] suggests that the basic structure
of the argument still stands. Any such regularization technique must provide a means for controlling infrared
divergences. In so doing, one expects that one or more of the assumptions of Haag’s theorem must have
been violated through the regularization process.
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4.4 Klaczynski

Extra-Haagian outlooks. Like the authors above, Klaczynski recognizes a bifurcation
in QFT research. On the one hand there is canonical QFT. Canonical QFT has been spec-
tacularly successful not only for making precise predictions but, as Klaczynski emphasizes,
“predict[ing] the existence of hitherto unknown particles [Klaczynski, 2016, 2]. Nevertheless,
canonical QFT is mathematically ill-defined: “canonical QFT presents itself as a stupendous
and intricate jigsaw puzzle. While some massive chunks are for themselves coherent, we
shall see that some connecting pieces are still only tenuously locked, though simply taken for
granted by many practising physicists, both of phenomenological and of theoretical creed”
[Klaczynski, 2016, 2]. One major contributor to this ill-definedness is owed to the use of
renormalization.

On the other hand is constructive QFT, which use operator theory and stochastic anal-
ysis to attempt to construct models of quantum fields in a mathematically well-defined
manner. A number of important results have been obtained by this research program,
including many triviality results that can be seen as calling into question basic features ex-
pected of any rigorous QFT. Nevertheless, the construction of a renormalizable theory in
4 dimensions—i.e., realistic—has neither been achieved nor seems achievable using current
methods [Klaczynski, 2016, 3]. That is, no rigorous and realistic model exists. Klaczynski’s
aim is to reconcile canonical and constructive QFT by elucidating the coherence brought
about by renormalization.

Assessment. Given the above, Klaczynski approaches Haag’s theorem intent on under-
standing what it says about canonical QFT. At first blush, the result appears to be negative.
For instance, the Gell-Mann-Low formula, relating the ground states of the interacting and
non-interacting fields, is built on the assumption that the time-evolution operator in the
interaction picture, which relates the two fields, is unitary; this is exactly what Haag’s the-
orem rules out (recall note 3 on the significance and wide-spread use of the Gell-Mann-Low
formula.). However, on closer inspection, the contradiction is resolved, if nevertheless unfa-
vorably: like Fraser and Duncan, Klaczynski blames Haag’s theorem for the divergence of the
perturbative expansion of the Gell-Mann-Low formula. This leads Klaczynski to conclude
that the interaction picture is ill-defined and trivial [Klaczynski, 2016, 59].

While he points to similar symptoms as Duncan and Miller, Klaczynski’s conclusion is
more severe. In his final assessment, the interaction picture itself, relying as it does on a
unitary intertwiner, is flawed—even renormalization does not save the interaction picture.
While standard regularization methods may break Poincaré invariance, this is physically
unacceptable; moreover, Poincaré invariance broken by regularization is restored when we
take the adiabatic limit. This means that Haag’s theorem again applies, albeit now to the
renormalized theory [Klaczynski, 2016, 62–3].

Repair. Like Duncan and Miller, Klaczynski thinks that renormalization procedure still
repairs the problem, but it works for a different reason. When we renormalize our theo-
ries, we replace the bare quantities with their renormalised counterparts. This process of
renormalization does not merely cancel the divergences, but also fundamentally changes the
theory, by bringing about a coupling-dependent mass shift. As a result, the renormalized free
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and interacting fields now have different masses. Two quantum fields of different mass are
overwhelmingly likely to be unitarily inequivalent21. As such, the renormalized interacting
and free theories are almost certainly unitarily inequivalent, and so the conditions for Haag’s
theorem do not apply in our renormalized theories.

Nevertheless, the un-renormalized and renormalized theories are still related—just not
by a unitary transformation, as physicists still believe. Thus, we are working with something
like the interaction picture insofar as the two theories are still related by an intertwiner of
sorts, but unlike the interaction picture insofar as this intertwiner is manifestly non-unitary.
So whilst renormalization is the correct treatment, physicists have not fully grasped how it
allows us to evade Haag’s theorem. By using renormalization to fix the divergences, physicists
have “muddled our way through to successfully applying perturbation theory” [Klaczynski,
personal communication, Sept. 8, 2021].

Renovation. Given that the interaction-picture presentation of canonical QFT still dom-
inates, renovation is necessary. This has two parts. First, physicists have misunderstood, or
at least mis-described, the tools they are using when performing scattering calculations with
renormalized fields. While Haag’s theorem says this tool cannot be the interaction picture,
that does not mean renormalization is unconstrained or incoherent. Rather, renormalization
“follows rules which have a neat underlying algebraic structure [the Hopf algebra] and are
not those of a random whack-a-mole game” [Klaczynski, 2016, page 4].

Second, this program of identifying the structure of renormalization must continue. First
and foremost, there are some mathematical lacunae in this process, as well as procedures
that are not defined wholly rigorously; these should be addressed. However, at the end
of the day, Klaczynski believes that renormalized quantum field theory “provides us with
peepholes through which we are allowed to glimpse at least some parts of that ‘true’ theory”
[Klaczynski, 2016, page 4]. As such, the ultimate goal here would be to glimpse what we
can of the ‘true’ theory through the peepholes this work affords.

4.5 Maiezza and Vasquez

Extra-Haagian outlooks. Like Klaczynski, Maiezza and Vasquez are interested in deter-
mining the precise mathematical structure of canonical QFT. However, they seek a “consis-
tent and generic (non-perturbative) formulation of QFT” [Maiezza and Vasquez, 2020, 2],
in contrast to the perturbative formulation of canonical QFT. Given the centrality of the
interaction picture to canonical QFT, the natural starting point for finding such a consis-
tent and generic formulation of QFT would be to use the interaction picture, starting with
free fields. But, Maiezza and Vasquez ask, is it possible to build such a non-perturbative
formulation from the interaction picture and perturbative renormalization? Or, rather, is
something new needed?

21The mathematical ill-definedness of the renormalized terms makes it hard to prove that renormal-
ized free and interacting fields will be unitarily inequivalent in general. However, theorem X.46 of
[Reed and Simon, 1980] is used to argue that it is “plausible beyond doubt” [Klaczynski, 2016, page 68].
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Assessment. In Maiezza and Vasquez’s assessment, Haag’s theorem reveals a central prob-
lem when we try to improve upon the standard methods of perturbatively renormalized
canonical QFT. We see this problem clearly when we consider the entire perturbative expan-
sion series. The problem stems from vacuum polarization: because of vacuum polarization,
the full power-series expansion diverges22. Maiezza and Vasquez prove that renormalon sin-
gularities arise in the total perturbative series, and trace these back to Haag’s theorem.
These renormalon singularities “are the concrete manifestation” of the impossibility of gen-
erating an unambiguous finite result in such cases [Maiezza and Vasquez, 2020, page 10].
23 Attempts to generate a finite result for the whole series through analytic continuation
methods (such as using a Borel-Laplace transformation) necessarily rely on a choice of arbi-
trary constants. Maiezza and Vasquez describe these dependencies on an arbitrary choice as
“renormalization ambiguities.” Thus, because of these ambiguities, ultimately arising from
Haag’s theorem, the interaction picture with perturbative renormalization cannot lead to
their desired non-perturbative QFT.

Repair. According to Maiezza and Vasquez, there is no repair we can make at this time
to address this problem. There remains a concerning flaw in perturbative renormaliza-
tion, namely, the renormalized series’ dependence on an arbitrary choice of constant. As
Maiezza and Vasquez put it, perturbative renormalization “cannot be a self-consistent cure,
because perturbative renormalization needs to be completed, or in practice resummed”
[Maiezza and Vasquez, 2020, page 10].

In particular, they argue that the repair suggested by Klaczynski—essentially, to replace
the interaction picture’s unitary intertwiner with a non-unitary one—cannot work. The
Dyson operator relating the free and interacting fields is unitary by construction, in such a
way that simply undoing the time-ordered product present in its definition (as suggested by
[Klaczynski, 2016]) does not therefore make it non-unitary [Maiezza and Vasquez, 2020, 5].
Something more is needed to repair the interaction picture, in particular to make it suitable
for calculations using non-perturbative QFT.

That said, Maiezza and Vasquez are quick to note that the practical uses made of the
interaction picture with perturbative renormalization need no repair: they evade Haag’s the-
orem. Haag’s theorem is, after all, a non-perturbative result, in that it applies to the entire
power-series expansion, not just the perturbative expansion at some finite order. Because
the power-series expansion is asymptotic, truncating at finite orders can give meaningful
approximations, while also missing out on the non-perturbative effects that lead to the com-
plete series’ divergence. Thus, while regularization and renormalization do not ‘fix’ the
problem posed by the divergences tracked by Haag’s theorem, this is essentially because
Haag’s theorem does not apply in cases where the series is truncated. Perturbative renor-
malization fixes the divergences of individual terms within the series, but it does not address
the non-perturbative divergences of Haag’s theorem.

22This was first noted in [Dyson, 1952] concerning QED.
23Renormalons are singularities that arise as a function of the complex transform parameter when a

formally divergent series is summed using Borel summation, see [Beneke, 1999] for a review.
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Renovation. They suggest two forms of renovation. First, in the short run, research efforts
should aim at improving our understanding of the non-perturbative singularities that arise,
such as renormalons. Further research should be directed into mathematical techniques to
better understand neglected non-perturbative effects (for example [Maiezza and Vasquez, 2021b,
Maiezza and Vasquez, 2021a]). These include resurgence, a method for reading off certain
non-perturbative effects from the perturbative expansions (for a review, see [Dunne and Ünsal, 2016]).

Second, further work is needed work within canonical QFT to account for non-perturbative
effects. Ultimately, new physical insights are needed to complete quantum field theory. These
must move beyond simply reformulating the perturbative quantum field theory framework
[Maiezza and Vasquez, personal communication, Sept. 8, 2021].

4.6 Kastner

Extra-Haagian outlooks. [Kastner, 2015]’s outlook differs from the previous authors.
Insofar as she seeks the correct formulation of our theory of quantum phenomena, she sits
with the physicists above. However, insofar as she thinks this correct formulation requires
a fundamental reinterpretation of quantum phenomena, she sits with the fundamental in-
terpreters, who are overwhelmingly philosophers. Crucially, she has already given up on
mediating interactions locally in favor of nonlocal, direct interactions between field sources.
This is a profound departure from QFT.

Assessment. Naturally, given her prior commitment to abandoning QFT, Kastner’s as-
sessment of QFT in the light of Haag’s theorem is grim: “QFT is not the correct model;
a different, yet empirically equivalent, model is needed” (57). This goes beyond others’ as-
sessments locating the problem specifically with the interaction picture. Rather, Kastner
locates the problem ‘further back’ conceptually. For her, QFT is wrong from outset: the
foundational assumption of QFT—namely, that we use fields as mediators between particles
(crudely, as “a ‘bucket brigade’ that is invoked in order to restrict causal influence to a local,
continuous conveyance from spacetime point to spacetime point” (59))—is the problem. The
revival of direct-action theories (DATs) is the natural solution for that problem. Thus, for
DAT advocates such as Kastner, Haag’s theorem “simply tells us what we already know:
the interaction picture of quantized fields does not really exist” [Kastner, 2015, 58]. Haag’s
theorem is therefore an additional motivation for abandoning QFT in favor of DATs.

Repair. The treatment for such a deep problem is a major change in the modeling pro-
cedure for this area of physics. If we accept that Haag’s theorem shows us that it simply
does not work to model interactions by field operators creating and destroying Fock space
states, then, Kastner urges, we are to instead model interactions through a direct, nonlocal
interaction between sources of the field [Kastner, 2015, 57]. On this direct-action approach,
one does away with fields as mediators of interactions, replacing them with non-local direct
actions between charge sources. The key ingredient for avoiding Haag’s theorem, according
to Kastner, is that real and virtual particle propagation be treated distinctly. In particular,
this means that virtual processes should not be assigned statehood, as they are in traditional
QFT.
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Kastner believes that this is a viable repair because she is convinced that DATs—which
differ radically from QFTs—are empirically equivalent to QFTs. This places significant
weight on (purported) demonstrations of the equivalence of direct-action theories and QFT
(e.g., [Narlikar, 1968]). If the demonstrations are sound, and they extend such that all
currently-used QFTs are approximations to some DAT, then they would go some way towards
explaining how calculations in renormalized quantum field theories are able to generate
successful predictions: QFT’s “mathematical inconsistencies can be rendered inconsequential
since they can be understood as arising from its ‘makeshift,’ nonfundamental character”
[63].24

Kastner further invokes the abandonment of the idea of the ether due to the Michelson-
Morley experiment to justify abandoning QFT, saying that abandoning interactions through
local quantum fields in response to Haag’s theorem would have an analogous “interpretive
elegance” (58). She also quotes Wheeler (who co-developed with Feynman a direct-action
theory of electromagnetism) and Wesley, who liken Haag’s theorem to the EPR experiment
insofar as it presents a serious challenge to the assumption that the laws of nature are entirely
local. We repair all these problems, including those raised by Haag’s theorem, by abandoning
locality in favor of DATs.

Renovation. The prescribed renovation, on Kastner’s view, is to develop a research pro-
gram for DATs. This research program includes the rejection of alternative responses to
Haag’s theorem such as Haag-Ruelle scattering and constructive QFT; Kastner views these
workarounds as “ad hoc, approximate, or partial measures” (63). Future work in the re-
search program would need to assess the question of the calculational, pragmatic viability
of DATs as well as the crucial need to check thoroughly for empirical equivalence with all
of the accepted theoretical results of ordinary QFT. Kastner cites work from Narlikar and
Davies developing a DAT empirically equivalent to QED; more work is needed to determine
if other sectors of the Standard Model of particle physics can be recovered in the DAT ap-
proach. Furhter rennovation efforts should also explore the possibility that a DAT approach
would lead to novel, empirically testable predictions, as much of theoretical particle physics
is currently disappointed with the lack of direction from particle accelerator experiments for
new lines of research.

Given the wide extent of Kastner’s proposed work—not least, replacing the entire Stan-
dard Model with DATs—it would perhaps be more appropriate to describe the proposal as
an entirely new foundation than as a renovation of the one that exists.

4.7 Seidewitz

Extra-Haagian outlook. Seidewitz’s outlook is interesting in that it substantially coin-
cides with several of the others already discussed, while at the same time departing from
them. First, he seems to think of theory interpretation in a way similar to Earman and Fraser
and the fundamental interpreters. Like the latter, he appears to take mathematical rigor as

24However, this is a non-trivial ‘if’, especially given the recent results suggesting that ‘empirical equiva-
lence’ is a less straightforward concept than philosophers often presume. See [Weatherall, 2019] and references
therein for more detail.
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a precondition for providing a satisfactory interpretation [Seidewitz, 2017, 369]. However,
unlike Earman and Fraser, Seidewitz is not satisfied taking the axioms of AQFT as gospel;
indeed, his theory substantially revises these axioms in light of his conviction that the former
axioms are an incorrect marriage of special relativity with quantum theory. This departs
from Earman and Fraser insofar as Seidewitz is not merely marrying special relativity and
quantum theory as they were traditionally understood. Rather, Seidewitz shares with the
physicists a willingness to revise our theories in an effort to find the correct unification of
them. Seidewitz also departs from the fundamental interpreters insofar as a univocal char-
acterization of particle-ness is not forthcoming. This is because particles now come in two
varieties—virtual and real—and a new definition of ‘particle’ will have to account for the
significant mathematical distinction between the two.25 While a univocal characterization
of each variety of particle may still be forthcoming, nevertheless this is a departure from the
expectations of fundamental interpreters.

Second, Seidewitz’s outlook coincides with Kastner’s. On the one hand, processes can
evolve in a space-like way. That is, physics is non-local. Specifically, virtual processes need
not evolve in a local fashion. On the other hand, particles come in two varieties—virtual and
real. Indeed, the two agree on how these varieties are constituted with respect to locality.
However, Seidewitz disagrees with Kastner that the non-locality of physics is a reason to
abandon field theories. Rather, he suggests an alternative formulation of quantum field
theory.

Assessment. Thus, [Seidewitz, 2017]’s assessment of Haag’s theorem is that it is the symp-
tom of a larger problem, namely the inconsistent treatment of time in traditional QFT.
Seidewitz reads Haag’s theorem as a corollary of two previous results, where these previous
results are the more significant. First, let ψ̂1(x, t) and ψ̂2(x, t) be field operators defined in
Hilbert spaces H1 and H2, respectively, and suppose there exists a unitary operator Ĝ such
that, at a specific time t, ψ̂2(x, t) = Ĝψ̂1(x, t)Ĝ−1. Then (Theorem 1) the equal-time vacuum
expectation values of the fields at time t are the same. Second (Theorem 2), a given field’s
two-point expectation values satisfy a certain equation (Eq. (3) in Seidewitz) iff that field is
free. Letting ψ̂1 be a free field and ψ̂2 a field related to the former as in Theorem 1, Haag’s
theorem merely observes that ψ̂2 also satisfies Theorem 2’s equation for spacetime points
at time t (by Theorem 1) and, by the Lorentz-covariance of ψ̂2 and analytic continuation,
extends ψ̂2’s satisfaction of the equation to any two positions.

As Seidewitz sees it, Haag’s theorem “essentially relies on a conflict between the pre-
sumption that the fields are Lorentz-covariant and the special identification of time in the
assumptions of Theorem 1” [Seidewitz, 2017, 360]. This special identification is apparent
in that the time-evolution is given by the (frame-dependent) Hamiltonian. This requires
particles to evolve on time-like trajectories. Essentially, the (frame-dependent) Hamilto-
nian operator is playing double-duty as the generator of time translation, in addition to
the generator of state evolution, with t as the evolution parameter for each. However, be-
cause of this, the translation group of t—the unitary operators Ĝ(t)—coincides with the

25In particular, we should expect (an analog of) the (global) number operator characterization to hold
only for real particles, given that the space-like evolution possible for virtual particles prevents their char-
acterization as Fock space states to be created or destroyed (where this is done by operators used to define
number operators).
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group of Lorentz transformations, which guarantees that one can extend the coincidence
ψ̂2(x, t) = Ĝψ̂1(x, t)Ĝ−1 at a specific time t to all times t.

Repair. The immediate repair is to break the identification of the Hamiltonian with the
generator of time translation and the energy observable. Seidewitz proposes we do so by
dropping (i) the requirement that there is a unique Poincaré-invariant vacuum state and (ii)
the spectral condition, i.e., the requirement that states are on shell. Essentially, this involves
dropping the assumption that states transform according to an irreducible representation of
the Poincaré group. This frees us up to define vacuum states as relative to the choice of a
Hamiltonian operator, where the Hamiltonian is no longer equated with the time-translation
generator. Instead, a Hamiltonian is required only to be Hermitian, commute with all
spacetime translations, and have a unique null eigenstate. Then, one can consider the one-
dimensional group generated by each Hamiltonian, where λ (instead of t) is the (now frame-
independent!) evolution parameter. (Physically, λ can be thought of as the parameterization
of a particle’s path in spacetime—now unburdened from the constraint that the path be
timelike.) Haag’s theorem is evaded by limiting the equality of vacuum expectation values
(Theorem 1) to equal values of λ, which is neither surprising—each Hamiltonian has a
unique Poincaré invariant vacuum state—nor problematic—one can no longer use Lorentz
transformations to extend the equality any farther. In particular, one cannot demonstrate
that the fields coincide (Haag’s theorem). Thus, interacting fields need not coincide with
free fields, and yet a version of the interaction picture is reinstated since interacting fields
can be related to free fields by a unitary intertwiner [Seidewitz, 2017, 369].

Renovation. Like Kastner, the renovation Seidewitz proposes is far-reaching. Most im-
portantly, it will involve expanding the reach of parameterized QFT. As it stands, the theory
does not cover gauge theories or non-Abelian interactions, nor does it resolve all of the prob-
lems with standard QFT. As such, significant work is required before this approach is of
practical use. Nevertheless, insofar as it is conceptually closer to constructive QFT, one
might reasonably suspect that the renovations required will be less thorough-going than
those proposed by Kastner.

4.8 Framework Results Summary

Our framework accomplishes two main objectives. First, it maps out an otherwise wild jungle
of scholarship on Haag’s theorem. This organization is especially helpful as groundwork for
making the interdisciplinary exchanges of ideas on Haag’s theorem more efficient: it is not
always easy for physicists, philosophers, and mathematicians to communicate. This is in part
due to appropriately different aims, as well as differences in how these separate communities
have developed their own forms of discourse, vocabulary, and standards of rigour.

Second, our framework goes beyond the organization of viewpoints on Haag’s theorem by
pulling each viewpoint’s underlying disciplinary and methodological values to the foreground
(see again table 2). How one diagnoses and treats Haag’s theorem is profoundly influenced
by what one expects of QFT, and of the interaction picture in particular, as well as one’s ex-
pectations of theoretical physics in general. One’s expectations for the mathematician’s and
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the philosopher’s appropriate relationship to theoretical physics also has an influence. Each
response discussed here is shaped by the authors’ background commitments, research pur-
poses, and expectations of theoretical physics—what we have called Extra-Haagian outlooks.
A breakdown summary of these Extra-Haagian outlooks is given in table 2.

Each viewpoint surveyed and assessed above has a distinctive purpose. Duncan and
Miller are both concerned with executing a very specific explanatory task concerning the
successful implementation of the interaction picture despite Haag’s theorem, in the current
practice of physics. Klaczynski is nearby doing a similar explanatory task of physical practice,
but does not see the result as having saved the interaction picture. In contrast, Kastner
and Seidewitz are interested in developing genuinely new physical theories. Maiezza and
Vasquez are somewhere in between these previous two, seeking to explain how Haag’s theorem
eventually leads to renormalon divergences. They use this explanation to suggest further
avenues for mathematical research that can make progress on the foundations of this area of
physics. In this sense, their research aims at developing valuable technical groundwork for
new physical theories, while stopping short of offering a new theory as Kastner and Seidewitz
do. Finally, Earman and Fraser and the fundamental interpreters are doing the distinctly
philosophical work of sorting out the downstream interpretive implications of Haag’s theorem
in conversation with the wider goals and conceptual foundations of QFT. Bringing these
separate research aims to the surface helps to address the confusions described in section 3.

Finally, in bringing these background values and guiding aims to the forefront, our frame-
work exposes, for general methodological consideration, several desiderata for any satisfac-
tory theory of scattering experiments. First, we must be able to generate a consistent
system for modeling interactions, that is, we must escape the inconsistency threat to the
interaction picture demonstrated by Haag’s theorem. Beyond that, we require the abil-
ity to consider interactions with either massive or massless particles (an issue raised in
[Earman and Fraser, 2006], [Klaczynski, 2016], and [Kastner, 2015]), as well as a modeling
procedure that is can be implemented in a realistic number of spacetime dimensions—the
longstanding obstacle for constructive program within AQFT. Some in the philosophy com-
munity also require of QFT that it be formulated in a way amenable to traditional interpre-
tive methods (e.g [Fraser, 2011] and [Halvorson and Clifton, 2002]). Finally, amongst those
who take Haag’s theorem as additional fuel on the fire of theory change, more far afield
concerns over the desire to solve seemingly unrelated problems become relevant, such as
doing away with gauge arbitrariness and the potential of a new formulation of QFT to lead
to unification with gravity. [Kastner, 2015] and [Seidewitz, 2017] seem to have these con-
siderations in the forefront of their thinking, and [Maiezza and Vasquez, 2020] perhaps have
them in the background. And all of this is, of course, in addition to the basic requirement
of empirical adequacy.

5 Cartography of the QFT Foundations Labyrinth

From what has been said so far, one may be drawn towards ordering the different viewpoints
surveyed here, perhaps along a scale of radical-ness of treatment or concern for mathematical
rigor or some other axis. We want to emphasize that it is a feature of our framework that it is
sufficiently flexible to allow for multiple different orderings on this space of viewpoints. Our
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Name Extra-Haagian Outlooks

Earman &
Fraser

QFT is, by definition, the unification of SR and QM. Therefore,
giving up any postulate from either theory in order to defuse Haag’s
theorem is not an acceptable response.

Fundamental
Interpreters

The larger project is one of fundamental theory interpretation.
Hence, a satisfying interpretation must apply across all models of
QFT. AQFT’s axiomatic structure makes it the preferred formula-
tion for interpretive work.

Duncan &
Miller

The question of focus is: How can it be that actual calculations
in theoretical physics, based on the interaction picture, have been
successful despite Haag’s theorem? This is a specific question for
explaining the success of current practices, to be contrasted with
more foundational questions in QFT.

Klaczynski

The question is how can we reconcile the success of scattering calcu-
lations with the consequences Haag’s theorem? If we are committed
to keeping the axioms of QFT, then all that is left to revise is the
interaction picture itself.

Maiezza &
Vasquez

We need to understand the implications of Haag’s theorem for phys-
ically realistic quantum field theories. A perturbative procedure
cannot give a complete answer to the problems posed by Haag’s
theorem. We must also attempt to trace the implications of Haag’s
theorem for non-perturbative methods.

Kastner

Kastner has a background commitment to the existence of non-local
interactions. More generally, Kastner has a background expectation
that much of mainstream formulations and interpretations of QFT
are misguided. In this light, Haag’s theorem becomes one more
piece of evidence that the foundations of this area of physics need
major revisions.

Seidewitz

QFT incorrectly treats time as an evolution parameter. This can
be fixed by adding an evolution parameter, resulting in a new and
improved field theory: parameterized QFT. The theory is mathe-
matically rigorous, hence is suitable for interpretation. In particular,
the theory is non-local.

Table 2: Extra-Haagian outlooks summary.
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framework gives structure and clarity to the literature on Haag’s theorem, but it intentionally
does not fix any one line of debate as the most important issue, nor does it settle any one of
the many lines of debate to be drawn. The framework thus makes it possible to draw these
lines of debate clearly, as if it were producing competing maps of the labyrinth of conceptual
issues at the foundations of QFT. In this section we give three such maps.

In table 3, we map viewpoints in terms of their response to the bare logical problem
posed by the contradiction between Haag’s theorem and the interaction picture: Which
assumptions should be abandoned in order to escape the contradiction? On this mapping,
some authors locate the problem in the QFT axioms while others point to key assumptions
in the interaction picture. Within these two branches, viewpoints further diverge. Note, too,
that some respondents’ viewpoints are left out, in virtue of not responding to Haag’s theorem
in this way. In particular, neither Maiezza and Vasquez nor the fundamental interpreters
have tended to respond to Haag’s theorem by considering the rejection of (some of) its
assumptions.

While the bare logical problem raised by Haag’s theorem is widely agreed upon, it is not
the only illuminating way to survey the terrain of the literature on Haag’s theorem. In figure
1 we give an alternative mapping according to the driving motivation in each response: some
authors are primarily motivated by questions about conceptual foundations/interpretation,
whereas others are motivated by a desire to explain and assess physics practice. Authors
further diverge according to which issue at the foundations or within physics practice is most
pressing. Extra-Haagian outlooks play a key role in this mapping.

Figure 2 shows a third option for mapping out the different positions in terms of which
disciplinary speciality is best suited for the kind of repair and maintenance work needed.
Loosely, we can conceive of three general areas where energy could be directed in response
to Haag’s theorem. First, energy could be put into developing new mathematical techniques.
This could include new mathematical models, renormalization methods, and methods such
as regularization and resurgence to better deal with the asymptotic series. Second, energy
could be put into theoretical physics, such as studying cutoff invariance, beta functions, or
more generally seeking out new physical insights. Third is philosophical work readdressing
how we interpret quantum field theory (or whatever theory should replace it). However,
none of these areas are clear cut and all overlap somewhat.

These three mappings are likely not exhaustive. They are meant to illustrate the value
of our framework in simultaneously giving a fixed structure for understanding each response
(the structure of assessment/repair/maintenance & renovation), while also leaving enough
conceptual room to accommodate these various further cartographic options.

The mapping in figure 1 is particularly helpful in that it reveals where there are points of
genuine disagreement. Moving upwards through the diagram, the first disagreement is about
whether, and how, regularization and perturbative renormalization allow us to circumvent
Haag’s theorem. Here, Duncan and Miller, Klaczynski, and Maiezza and Vasquez each come
to contradicting conclusions. According to Duncan and Miller, the regularization process
allows us to circumvent Haag’s theorem by temporarily breaking the Poincare invariance of
the theory. However, Klaczynski argues that Haag’s theorem cannot be circumvented in this
way. Instead, he argues that the fault lies with the interaction picture: once we have fully
renormalized our theory, there is no longer a unitary intertwiner. Maiezza and Vasquez assert
that the intertwiner is unitary by definition, thus Haag’s theorem cannot be fully evaded by
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a perturbative procedure like renormalization. The problems of Haag’s theorem still appear
as divergences when we consider the entire perturbative series of our renormalized theory.
These three views cannot all be correct.

A second clear disagreement emerges with regards to the status of conventional quantum
field theory. Both Kastner and Seidewitz propose alternatives to conventional QFT. Seide-
witz proposes modifying the axioms of QFT, in which we drop the requirement that states
transform according to an irreducible representation of the Poincaré group. In Kastner’s
proposal, we replace quantum field theory with a direct action theory, in which interactions
take place non-locally between charge-sources. Even if both approaches can recapture our
empirical data, they are fundamentally different theories, built on different assumptions.
They cannot both be right.

Having now thoroughly and multiply mapped out the Haagian labyrinth, the question
remains: how do we get out? The foregoing suggests that this is not so simple. Each proposed
path is sensible enough on its own. However, as the last two paragraphs emphasize, the paths
cannot all overlap—a non-trivial choice must still be made. To make this choice, we require
further information. We have highlighted the extra-Haagian outlooks throughout this section
because they together provide a glimpse of where that further information should come from.

The central lesson of our framework is this: charting a way out of the Haagian labyrinth
will require us to answer meta-level questions of what foundational work is, and about what
it does for physics. We highlight the following three as central:

1. What role does (should) foundational work play in progress in physics?

2. How does (should) foundational work coordinate with non-foundational
work?

3. And, what does (should) foundational work even look like?

All those who are lost in the Haagian labyrinth would agree that they are doing work at
the foundations of physics. Doing this work inevitably involves taking a stand on these
meta-level questions. Nevertheless, these questions are rarely addressed head-on. However,
doing so is necessary in order to adjudicate between different escape routes from the Haagian
labyrinth.

We can phrase this in terms of our general contractor metaphor, too. You have received
all of your subcontractors’ assessments, proposed repairs, and any renovation plans they
recommend for your QFT building in response to Haag’s theorem. Each has even toured the
building with you to evidence their assessment and lobby for their proposal. Nevertheless,
you remain unsure of how to proceed: you want to ensure the building’s integrity as its rooms
continue to expand, but precisely how the building will evolve is beyond you. Our advice as
to how to make an informed decision is to reconsider the fundamental design principles that
inform the relationship of the building and its rooms to its foundation. Indeed, you may also
investigate that relationship in similar buildings, past and present.

26There are several different ways of doing this. For instance, Haag–Ruelle scattering gives up the idea
of building out from free-field representation. Alternatively, LSZ formalism. [Earman and Fraser, 2006],
[Duncan, 2012, pages 268-281]
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Name Problem Source We should give up on. . .

Duncan & Miller QFT Axioms exact Poincaré invariance.
Kastner QFT Axioms independent fields.
Seidewitz QFT Axioms time as evolution parameter.
Klaczynski Interaction Picture a unitary intertwiner.
Earman & Fraser Interaction Picture the entire IP. 26

Table 3: Diagnoses of those who take the import of Haag’s theorem to be the identification
of a contradiction in the foundations of physics, specifically between the axioms of QFT and
the assumptions of the interaction picture.

For our own part, we plan to carry out the following investigations. First, how should we
think about the relationship between (foundational) no-go theorems and non-foundational
physics? We believe there is a more constructive way of construing no-go theorems that would
more closely and more fruitfully connect foundational and non-foundational work. Second,
what distinguishes fruitful uses of axiomatization from unfruitful uses in physics? Here we
plan to investigate the origins of, and expectations for, the Wightman axioms and Haag’s
theorem. Finally, how precisely are the assumptions of Haag’s theorem undermined using
the various regularization, renormalization, and resummation methods? Duncan and Miller
offer good reason to believe that at least one assumption is undermined at some point during
many calculations, but they neither verify this for all methods nor characterize precisely
where in a given calculation the assumptions are undermined. Both have implications for
the significance of Haag’s theorem.
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In most general sense, what
“game” are we playing?

Investigate the union
of SR and NRQM

Explain/assess/improve
theoretical physics in practice

What is the logical
structure of the

foundations of QFT?

What is the funda-
mental ontology of
‘particle’ physics?

Earman & Fraser fundamental interpreters

Does Haag’s theorem call for
radical revisions to QFT?

Yes No

Seidewitz Kastner

Do current perturbative renor-
malization techniques cir-
cumvent Haag’s theorem?

Yes: Regularization
breaks Poincaré invariance

Existing practice
with IP is salvaged

Duncan & Miller

Yes: Renormalization entails
a non-unitarity intertwiner

We need to replace the IP

Klaczynski

No: Need to consider the
whole perturbative expansion

Will require new physical insight

Maiezza & Vasquez

Figure 1: A mapping of the responses to Haag’s theorem according to the driving motivations.
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What kind of work do
the repairs, maintenance

and/or renovations call for?

Mathematics

Physics

Philosophy

Renormalization

Models

Effective Field Theory Physical Insight

Cutoff Invariance New Theoretical Commitments

Fundamental Interpretation

New Interpretive Methods

Seidewitz

Earman & Fraser

Maiezza & Vasquez

Klaczynski

Duncan

Duncan & Miller Maiezz & Vasquez

Earman & Fraser

Wallace

Ruetsche

Bain

Kastner

Figure 2: What kind of work do the repairs, maintenance and/or renovations call for?

6 Conclusion

Haag’s theorem cries out for explanation and critical assessment: it sounds the alarm that
something is (perhaps) not right in one of the standard way of constructing interacting fields
to be used in generating predictions for scattering experiments. Viewpoints as to the pre-
cise nature of the problem (assessment), the appropriate solution (repair), and subsequently
called-for developments in areas of physics, mathematics, and philosophy (maintenance or
renovation) differ widely. Moreover, the extant literature presenting these differing views
constitutes a complex mix of arguments at cross-purposes, generating substantive confusion
as to the precise issues to be addressed. In this paper, we have worked to address this
confusion by cataloging and comparing a number of these viewpoints, and we have devel-
oped and applied a framework for understanding these distinct viewpoints. The application
of our framework reveals each authors’ background disciplinary and methodological com-
mitments and expectations of QFT—what we have termed ‘extra-Haagian’ outlooks. While
regimenting and structuring the literature, our framework does not fix any one line of debate
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regarding viable or preferable responses to Haag’s theorem. Rather, within our framework
we have mapped out three distinct ways of drawing the possible lines of debate, and we hope
that these maps will prove useful for future work on many issues within the labyrinth of the
foundations of QFT.

Finally, in light of these maps of the Haaging labyrinth, charting a way out requires that
we turn our attention to meta-level questions regarding the nature of foundational work in
physics. What role does (should) foundation work play in the progress in physics? How does
(should) foundational work coordinate with non-foundational work? What does (should)
foundational work even look like? Each practitioner, be they physicist, mathematician, or
philosopher, must have at least some implicit answer to these questions in order to find
a path out. It is perhaps more seriously incumbent upon the philosopher to develop and
debate explicit answers to these questions.
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