
Ergo JOURNAL OF PHILOSOPHY
AN OPEN ACCESS

Medium Independence and the

Failure of the Mechanistic

Account of Computation

COREY J. MALEY
University of Kansas

Current orthodoxy takes representation to be essential to computation. However, a
philosophical account of computation that does not appeal to representation would
be useful, given the difficulties involved in successfully theorizing representation.
Piccinini’s recent mechanistic account of computation proposes to do just that: it
couches computation in terms of what certain mechanisms do without requiring the
manipulation or processing of representations whatsoever (Piccinini, 2015). Most
crucially, mechanisms must process medium-independent vehicles. There are two
ways to understand what “medium-independence” means on this account; however, on
either understanding, the account fails. Either too many things end up being counted
as computational, or purportedly natural computations (e.g., neural computations)
cannot be counted at all. In the end, illustrating this failure sheds some light on the
way to revise the orthodoxy in the hope of a better account of computation.

The orthodox view of computation has it that “there is no computation without
representation,” (Fodor, 1981: 122). Of course, it is far from sufficient:

representations need to be manipulated, processed, or something along those
lines, but representation is necessary. Thus, if an account of computation is to be
complete, we would seem to need an accompanying account of representation.
Despite some progress, nobody has yet come up with a complete account of
representation—the orthodoxy remains incomplete.

One way forward is to divorce computation from representation entirely. If
we can characterize computation without relying on representation, then we
ought to prefer such an account: why rely on the frustratingly elusive notion of
representation if we don’t need to? There have been some attempts at projects

Contact: Corey J. Maley <cmaley@ku.edu>

https://doi.org/--- 1

https://doi.org/---


2 · Corey J. Maley

along these lines. For example, Egan (2010) has proposed that computation
need only involve mathematical representation, rather than representation more
generally. While not a complete separation, the idea is that a relatively thin
notion of representation can do the job (a criticism of this view can be found in
(Sprevak, 2010)). More radically, Piccinini and Bahar (2013) take the view that
computation can be divorced from representation completely.1 In his monograph
on the topic, Piccinini (2015) develops the mechanistic account of computation
(henceforth, MAC), which is then further deployed in (Piccinini, 2020).2 The
central claim of the MAC is that, while computation often involves manipulating
representations, representation is never a necessary element of computation. All
that is needed to fully characterize computation is that a system have a mechanism
of a particular kind. Thus, if the MAC is successful, we have a promising way
to understand computation without having to worry about whether a successful
theory of representation will ever show up to do the heavy lifting required of the
orthodoxy.

Unfortunately, the MAC does not work as an account of computation. To
show this, I will first review some conditions that any philosophical account of
computation must satisfy, which most parties to these debates agree upon. Next,
I will argue that the MAC faces a serious dilemma. It either counts too many
things as computational (by the MAC’s own lights), or it cannot characterize
purportedly natural systems (e.g., neural systems) as computational without
presupposing that these systems already are computational. This hinges on the
notion of “medium independence" deployed in the MAC; we will have to carefully
unpack the elements of the account to see the problem. Afterwards, I will offer
some remarks toward a way to revise the orthodox account, combining some of
Piccinini’s insights with a representational account of computation that solves
these problems.

1. Elements of an account of computation

Different authors have presented different desiderata for an account of compu-
tation; most disagreement is not about what is desired, but which account of
computation gets us what we want. In order to motivate further discussion, I will
mention just a few reasonable and (mostly) uncontroversial criteria, which will
then serve as points of departure for further discussion.

Let us start by accepting that not everything is computational, and that there

1. This idea was originally proposed in (Piccinini, 2008).
2. There are other mechanistic accounts of computation that attempt to divorce computation

from representation; examples include (Miłkowski, 2018), (Fresco, 2014), and (Dewhurst, 2018).
I will focus here on Piccinini’s version, simply because it is the most well-developed, but the
criticisms offered here will likely apply to these accounts as well.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 3

is some fact of the matter about whether something is computational or not.3

Not everyone agrees with these assumptions, of course: Putnam (1988) argues for
the view that everything is a computer (i.e., pancomputationalism), and Dennett
(2008) argues that everything can be viewed as a computer if one so chooses (i.e.,
computational perspectivalism). These views will not be considered here; they
are nonstarters if (like me) you take computational explanation seriously.

Briefly, computational explanation is the practice of explaining a phenomenon
by appealing to the computations some system (literally) performs (Piccinini,
2007). Nearly everything can be simulated computationally: for virtually all
sciences S, one can find a journal, department, or lab doing work in computational
S, which very often means developing and running computational simulations
of the phenomena in S.4 In contrast, a small number of things can be explained
via their ability to literally perform computations. Computer simulations of
weather systems, galaxies, and rock strata erosion patterns are matters of course in
contemporary science, but scientists do not describe these systems as doing what
they do in terms of the computations those systems literally perform. On the other
hand, scientists do explain neural systems and psychological systems in terms of
the computations those systems perform. Without rejecting pancomputationalism
and computational perspectivalism, these distinctions do not get off the ground.
So, let’s assume that some things compute, some do not, and how to determine
which is which is something we require of an account of computation.

One might wonder: is it really not clear what makes something computational
or not? The computer industry surely knows what a computational system is,
plus there is an entire discipline known as “theoretical computer science." True
on both counts! But this is not enough. Let us start with the second point. The
theory of computation is wholly mathematical, and as such has nothing to say
about physical objects at all, including which ones compute. What the theory
of computation does tell us is that, once we have decided that something is a
physical implementation of a certain automaton by independent means (e.g., a
restricted Turing Machine,5 a finite-state machine, or a pushdown automata), there
are certain limitations to what that machine can do qua physically-implemented
automaton. In other words, if you give me what has already been determined to
be a physically-realized automaton (including a specification of which physical

3. I will use the term “computational” to refer to something that performs computations.
Yes, “computer” would be simpler, but I would like to avoid any artifactual connotations that
many have associated with that term.

4. Examples include computational astrophysics, computational geology, and computa-
tional biology. Sometimes the “computational” prefix means other things, such as that big data
techniques are used.

5. Standard Turing Machines cannot be physically realized because their “tapes” are un-
bounded, so we must physically realize only certain classes of restricted models of computation,
such as linear-bounded automata.

Ergo · vol. X, no. X · 2023



4 · Corey J. Maley

states correspond to computational states), then I may be able to use the theory of
computation to tell you some things about that physical system qua computational
system. But I cannot use the theory of computation to tell you whether a given
physical system is a computer in the first place. That is simply not the purview of
the theory of computation.

An analogy may help. One might wonder how many clouds are in a particular
part of the sky, or if there is a prime number of individual stones in some
part of a metamorphic rock layer. Why can’t we simply appeal to the part of
mathematics that deals with numbers (i.e., number theory) to provide answers to
these questions? Simply put, questions about how to count certain physical things
(and if they can be counted at all—clouds likely cannot) are not the purview
of number theory, because they are not mathematical questions. Once we have
decided—by some independent means—what to count and how to count it (or
them), then we can deploy the resources of number theory. On their own, however,
mathematical theories—including the theory of computation—have nothing to
say (and cannot have anything to say) about things in the physical world.

The second problem is that what we know about artifactual computational
systems is not much help in determining which natural systems (if any) are compu-
tational. In principle, computational systems can be made of all kinds of physical
media; there is no in-principle barrier to a neural computational system. However,
the computational systems we create are computational precisely because we
have designed and created them as such. Again, if we are to take computational
explanation seriously, then we need a principled way to determine which natural
systems legitimately, literally compute. As before, we cannot look to the mathe-
matical theory of computation; yet we also cannot look to the engineering and
design practices that go into constructing computers. It is simply not the purview
of these practices to tell us what does and does not compute.

Hence, we find ourselves in need of a philosophical account of computation.
Which systems are computational cannot be read off the mathematical theory of
computation. And if there are natural computational systems—systems that we
have not explicitly created and designed to be computers—computer engineering
is no help in determining which these are. A satisfactory account of computation
should provide criteria that can be used to make judgments about which natural
systems are computational, while also explaining what makes artificial systems
computational. Suppose Joe and Rita are two neuroscientists; Joe believes that
neural systems are computational, but Rita does not. Further, suppose we have a
complete philosophical account of computation that characterizes neural systems
as computational. Depending on why Joe believes neural systems are computa-
tional, this account may help make explicit why Joe makes the judgment he does.
At the same time, the account should give Rita reasons to change her mind about
neural systems, showing her why they are, in fact, computational.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 5

Now that the stage has been set, we will move on to evaluate what I take to
be one of the most well-developed accounts of computation on the market today:
Piccinini’s mechanistic account of computation. Although this account tackles the
problems mentioned above head-on, it fails to solve those problems. To be clear,
many good things can be said about this account, and there is much I agree with.
However, disagreement is where much of the research happens in philosophy, so
let’s get to it.

2. Unpacking the mechanistic account

The crux of the mechanistic account of computation (again, MAC) is that computa-
tion essentially involves the processing of vehicles in a medium-independent way,
dispensing entirely with the need for representations. Although computations
may involve representations, we can understand computation qua computation
without referring to representations whatsoever. Thus, according to the MAC,
the representations or representational capacities of a system are irrelevant to
whether or not it is computational; it need not have them at all.

To evaluate the MAC, we must examine the individual elements of the ac-
count, which is what I will do in this section. Along the way, I will point out its
problematic aspects. Before this, a bit of context will situate the discussion. The
“mechanistic" aspect of the MAC comes from the neo-mechanistic framework de-
veloped in works such as (Bechtel & Abrahamsen, 2005: Glennan, 2002: Machamer
et al., 2000), and subsequently widely adopted in contemporary philosophy of
science. The development and refinement of the mechanistic view of scientific
explanation is easily one of the most important things to happen in the philosophy
of science in the last few decades. The briefest of overviews is enough for what
follows.

Consider all of the the various phenomena that are candidates for scientific
study. According to the mechanistic view, a subset of these things are explained
by appealing to their underlying mechanisms, where a mechanism is a set of
entities organized in a particular way such that their activities give rise to a
phenomenon.6 For many sciences, especially the biological sciences, the discovery
and articulation of mechanisms plays an essential role in scientific explanation.

One subset of the mechanisms consists of those that have functions. This
is particularly important for understanding the MAC. All mechanisms have
functions in the thin sense of having a causal-role function (Cummins, 1975).
After all, mechanisms do things in particular ways. But not all mechanisms have
a teleological function: a purposeful function (roughly speaking). For example,

6. Various details about the correct account of mechanisms are debated in the literature,
but those details are irrelevant to the current discussion.

Ergo · vol. X, no. X · 2023



6 · Corey J. Maley

one might be interested in the mechanism responsible for eye color in humans.
Explaining why certain irises are green might involve appealing to the pigment
found in the stroma of the iris, or the particular alleles responsible for iris
coloration. This would involve a story about the causal-role functions of the
various entities and activities that give rise to the green color of the iris. However,
given that there is no purpose to having green eyes (or any other eye color), the
green color of the iris has no teleological function. The mechanisms involved in
eye color have functions only in the sense that they simply play various causal
roles. In contrast, the mechanisms involved in the beating of the human heart have
functions in the sense that the heart’s beating has a purpose: to pump blood.7

One subset of the mechanisms with functions consists of those that perform
computations (according to the MAC). The general idea is that certain teleological
functional mechanisms operate on “vehicles" in a “medium-independent" way (the
scare-quoted terms will be defined shortly). This particular kind of processing on
these particular kinds of vehicles is all that’s required for something to compute:
no further requirement about the presence of information, representations, or
algorithms is needed.

We can now turn to the precise formulation of the account. The centerpiece of
the MAC is an account of physical computing systems; the official specification
(slightly condensed) is given in Figure 1, adapted from (Piccinini, 2015: 120–121).
Elements will be further analyzed are boxed, with arrows to Piccinini’s initial
characterization of each.

Two quick examples will help illustrate the way that the MAC is supposed
to work. First, consider a basic calculator. Why does this count as a physical
computing system? Well, a calculator is a mechanism, and it has teleological
functions. One of those teleological functions is to perform calculations. Are
calculations instances of generic computation? Yes, because there are mappings
from inputs to outputs via internal states that follow a rule, sensitive only to
differences between voltage levels in circuit elements. So how does it perform
these computations? In a typical electronic calculator, this is done8 by appealing
to the Boolean operations performed on circuits with binary values. At this level,
the functional mechanism is only sensitive to differences between two voltage

7. There is another large literature focusing on the proper account (or accounts) of func-
tions. However, we need not—and cannot—settle that matter here, but only acknowledge the
difference between causal-role functions and richer notions of function.

8. A real explanation of a real calculator would require traversing a few more layers of
abstraction involving how the calculator is programmed, how that program is stored either in
memory or hardwired into the circuitry, and so on, down to the level of the digital logic design.
At this level, the explanation would “bottom out,” because further explanation of how, say, a
single logic gate works would appeal to explanations of electrical current, which are below the
level of explaining something qua computational mechanism. Presently, all we need to do is get
a feel for how the story is supposed to go, so we can set all of these details aside.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 7

Generic Computation:
vehicles rulesmedium-independentprocessing by a functional mechanism according to 

Medium Independence:
Sensitivity only to differences between spatiotemporal
parts of vehicles along specific dimensions of variation

Rule:

Mapping from inputs I (and possibly
internal states S) to outputs O given 
by mathematical function f 

Vehicles:
Determinate or determinable physical
states (possibly hypothetical)

Physical Computing System: 
computationsA mechanism with a teleological function to perform

Figure 1. Elements of MAC.

levels of the circuits, and follows rules that map inputs (and internal states) to
outputs.

A second example is neural firing. When a neuron’s voltage rises above a
certain threshold (due to, for example, input from other neurons, or experimental
intervention), it will generate a spike, or action potential. Neural spikes are the
basis of much communication between neurons: when a spike reaches the end
of a neuron, it causes neurotransmitters to be released, which in turn serve to
generate electrical inputs to subsequent “downstream” neurons. Why does this
count as a physical computing system? Well, a neuron is a mechanism, and it
has teleological functions. One of those teleological functions is (we assume) to
transmit spikes. Is spike transmission an instance of generic computation? Yes,
according to the MAC, because spike transmission is only a matter of the right
kinds of change in voltage levels, neurotransmitter release is a response to these
voltage changes, and so on. Thus, the relevant functional mechanism is only
sensitive to voltage differences, and it follows rules that map inputs (and internal
states) to outputs.

This is how it is supposed to work. Unfortunately, it does not. Either too many
things end up being counted as computational, or we cannot characterize neural

Ergo · vol. X, no. X · 2023



8 · Corey J. Maley

systems (or any other natural system) as computational by appealing to the MAC.
To see why, we need to go through the details of the MAC more carefully. Let’s
start from the bottom and work our way up.

2.1. Rules

According to the MAC, a rule is simply “a map from inputs (and possibly internal
states) to outputs," (Piccinini, 2015: 121). Importantly, the mapping need not be
explicitly represented by the system (either as an algorithm to be followed, or as
a set of ordered input-output pairs). However, “it may be given by specifying the
relation that ought to obtain between inputs (and possibly internal states) and
outputs,” and “it can be defined in terms of any appropriate kind of vehicle,”
(Piccinini, 2015: 122). This is a very broad construal of what counts as a rule,
applying to every system that we would generally count as computational, as
well as many other systems.

Figure 2. An impact rotor sprinkler.

For example, consider the impact rotor sprinkler shown in Figure 2, commonly
used to water lawns. This device follows rules in Piccinini’s sense. In particular,
it maps inputs and internal states to outputs. The input is liquid at a certain
pressure, the internal state is the current position of the nozzle, and the output is
liquid at a certain pressure and velocity. The output of this particular sprinkler is

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 9

(approximately) a periodic step function (in angular degrees) for a given input
pressure. Thus, the sprinkler unambiguously satisfies the MAC construal of a
rule. Furthermore, it is defined in terms of a kind of vehicle, namely, fluids of
a certain viscosity, usually water.9 The fact that the sprinkler follows a rule (as
do many other things) should not surprising, nor concerning to the MAC, given
such a broad conception of what counts as a rule.

Now, there is a subtle problem in the MAC regarding vehicles. Despite how
broadly rules are construed, it seems that they must nevertheless be defined in
terms of physical quantities or physical properties. It will not do for a rule to be
given in terms of unit-free abstractions, such as “low” or “high,” or symbols (even
uninterpreted ones) such as “1” and “0.” Rather, the rules have to be defined
on something physical, like “five volts" or “in the range of 4.5 and 5.5 volts.”
Why? Because rules that are not specified in such a way cannot be processed by a
physical, functional mechanism. To do so, we would need an additional ingredient
in the MAC, namely, a mapping from the abstract rules to the physically-specified
rules (or from abstractly-specified vehicles to physically-specified vehicles), and
that additional ingredient is not on offer (and for good reason, given the attention
to physical computation). Piccinini does acknowledge that rules specified by
non-physical digits or symbols can be understood as abstractions from physical
properties. An example would be specifying that the abstract rule “change a 1

to a 0” can be understood as the concrete rule “change a voltage in the range of
4.5–5.5 V to a voltage in the range of -0.5–0.5 V.”

Despite Piccinini’s claim to the contrary, this elision is quite problematic,
which we will see in more detail soon. For now, note that when it comes to
natural systems, we want to know whether a system computes, and the MAC is
supposed to help us decide (remember Joe and Rita?). One desideratum of the
MAC is “objectivity”: as characterized by the MAC, whether a system computes
or not is supposed to be as objective a matter as the sound a heart makes (Piccinini,
2015: 141). As such, although we can say that a system designed and built to be a
computer may have rules that are “defined” according to abstract vehicles, such
as “high” versus “low,” there are no such definitions when it comes to natural
systems. We can, of course, ascribe or stipulate mappings between abstractions and
physical states however we want; but that is not the road to objectivity.10 This
point becomes clearest when we consider medium-independence.

9. Of course, other fluids can be used in certain contexts: fire extinguishing chemicals as
part of a fire suppression system in an industrial context, or Brawndo as part of an electrolyte
delivery system in an agricultural context.

10. A point Shagrir (2001) notes (and elsewhere in later writing).

Ergo · vol. X, no. X · 2023



10 · Corey J. Maley

2.2. Medium-independent vehicles

According to the MAC, the core ingredient of computation is the processing of
vehicles. So what is a vehicle? A vehicle is either a variable or a value of a
variable, which can be understood either purely mathematically or as a physical
state (Piccinini, 2015: 121). While this may seem ambiguous, Piccinini points
out that the sense in which “vehicle” is to be understood can be made clear
from the context. However, we must be clear about the commitments in place.
Looking again at the definition of Generic Computation, it must be the case that
vehicles are the kinds of things that can have spatiotemporal parts, implying that
they themselves are spatiotemporal. In a footnote, Piccinini mentions that he
takes “mathematical” in this context to refer to “a (possibly hypothetical) physical
variable” (Piccinini, 2015: 121). Thus, vehicles must be either determinable (i.e., a
variable) or determinate (i.e., a value of a variable) physical states.

Next, we must know what counts as a medium-independent vehicle, or the
medium-independent processing of a vehicle.11 According to Piccinini:

a vehicle is medium-independent just in case the rule (i.e., the input-output
map) that defines a computation is sensitive only to differences between
portions (i.e., spatiotemporal parts) of the vehicles along specific dimen-
sions of variation—it is insensitive to any other physical properties of the
vehicles. Put yet another way, the rules are functions of state variables
associated with certain degrees of freedom, which can be implemented
differently in different physical media. Thus, a given computation can
be implemented in multiple physical media (e.g., mechanical, electro-
mechanical, electronic, magnetic, etc.), provided that the media possess
a sufficient number of dimensions of variation (or degrees of freedom)
that can be appropriately accessed and manipulated and that the compo-
nents of the mechanism are functionally organized in the appropriate way.
(Piccinini, 2015: 122, first emphasis added)

So, consider some system that transforms inputs to outputs according to a
rule in the general sense. Again, because of the MAC’s very broad construal of
rules, very many things will do this. But suppose we want to know whether this
system has medium-independent vehicles or not. If the rule is sensitive to only some
spatiotemporal parts, but not others, then the vehicles are medium-independent.
The idea is motivated by what we find in an electronic digital computer. A circuit
element will take an input and produce an output based solely on the voltage

11. In the text, Piccinini mentions both medium-independent vehicles, medium-independent
computational descriptions, and medium-independent processes (which include computations
more generally). It is not clear whether all of these things are medium-independent in the same
way or not, but we can set that aside for now.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 11

levels of the input (and possibly internal states). The other properties of those
physical elements, such as their mass, temperature, or color, are irrelevant: the
rule is insensitive to those differences. Moreover, digital computation is defined in
a medium-independent way. “The rules defining digital computations are defined
in terms of strings of digits and internal states of the system, which are simply
states that the physical system can distinguish from one another. No further
physical properties of a physical medium are relevant to whether they implement
digital computations. Thus, digital computations can be implemented by any
physical medium with the right degrees of freedom,” (Piccinini, 2015: 123)

Things become quite murky when it comes to examples of natural systems
that are supposed to count as physical computing systems. First we will look at
some of the arguments given in (Piccinini & Bahar, 2013), and see how those fail.
Then we will turn to the structure of the MAC itself.

Sequences of neural spikes are supposed to be medium independent according
to the MAC. At first glance, this is puzzling, because neural spike trains have
to do with a very specific physical medium: voltage changes along the axons of
neurons. Polger and Shapiro (2016: 164) put the point nicely: “[T]he frequency of
the spike train of a neuron or neural assembly is part of the first-order description
of neurons. It is a property of neurons as neurons, not just as implementers of
some supraneural process." Nevertheless, here is why we are to believe that spike
trains are medium-independent to begin with:

The functionally relevant aspects of spike trains, such as spike rates and
spike timing, are similar throughout the nervous system regardless of the
physical properties of the stimuli (i.e., auditory, visual, and somatosensory)
and may be implemented either by neural tissue or by some other physical
medium, such as a silicon-based circuit. Thus, spike trains—sequences
of spikes such as those produced by neurons in real time—appear to be
medium-independent vehicles, thereby qualifying as proper vehicles for
generic computation. Analogous considerations apply to other vehicles
manipulated by neurons, such as voltage changes in dendrites, neurotrans-
mitters, and hormones (Piccinini & Bahar, 2013: 462).

Although supposedly support for the idea that neural spikes are medium-
independent, this is all irrelevant. According to Piccinini and Bahar, the first
reason we are to count neural spike trains as medium-independent is that they
are “similar throughout the nervous system regardless of the physical properties
of the stimuli (i.e., auditory, visual, and somatosensory).” This is true: sensory
input from different types of stimuli can result in similar neural firing patterns.
For example, neurons in one part of the brain might fire rapidly when a bright
visual stimulus is seen, while neurons in a different part of the brain might fire
rapidly when a loud noise is heard. In each case, the neuron increases its firing

Ergo · vol. X, no. X · 2023



12 · Corey J. Maley

rate as a result of increasing stimulus intensity, even though the stimuli come
from very different sensory modalities. One might even be unable to determine,
in isolation, whether a neuron is firing rapidly because it has received input from
the visual system or the auditory system.

However, nothing about medium-independence follows from this. Remember,
the MAC’s take on medium-independence has to do with the rules and their
sensitivity to certain differences in properties of the vehicles in question (and
insensitivity to other properties). But in the neuron example that Piccinini and
Bahar give, we have a case where the cause or source of the stimuli varies while the
neural response does not. Neural firing caused by visual stimuli in one part of
the brain looks (indistinguishably, at times) like neural firing caused by auditory
stimuli in a different part of the brain. But this has nothing to do with the rules
governing neural firing nor with the properties to which neural firing is or is not
sensitive. By the MAC’s own lights, this is irrelevant to medium-independence.

The second reason we are to count neural spike trains as medium-independent
is that spike trains “may be implemented either by neural tissue or by some other
physical medium, such as a silicon-based circuit.” Again, it is true that a silicon-
based circuit can instantiate the same rapid voltage changes (i.e., spike trains) that
a given neuron produces; but nothing about medium-independence follows from
this. Rather, this fact simply entails that neural circuitry is multiply-realizable.
Although medium-independence entails multiple-realizability, it doesn’t go the
other way around. A clear example is supposed to be the corkscrew, which
Piccinini cites as an example of something that is medium-dependent. Importantly,
bottle openers and corkscrews are (somewhat famously) paradigmatic examples
of multiply-realizable objects (Aizawa, 2009: Gillett, 2003: Polger, 2008: Shapiro,
2000). Like spike trains, bottle openers can be implemented by many different
types of physical media, even though they are medium-dependent. So, even by
the lights of the MAC, the possibility of implementation by another physical
mechanism—which just is multiple realization—is not sufficient for medium-
independence (Piccinini, 2015: 123).

Justifying the claim that neural firing is medium-independent on the MAC
should be much simpler than all this, however. For neural firing to be medium-
independent, all that is required is that the mapping (i.e., the rule) from inputs
to outputs is sensitive only to changes in voltage levels, and no other properties.
This is just what the official specification of the MAC states. And it seems that the
rule from inputs to outputs is, indeed, only sensitive to changes in voltage levels:
the Hodgkin-Huxley equations are the perfect example (Hodgkin & Huxley, 1952).
So, by the lights of the MAC, neural firing is medium-independent.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 13

2.3. A dilemma

Here is where the MAC faces a dilemma. Recall that the heart of the MAC is
the “processing of vehicles by a functional mechanism according to medium-
independent rules.” When we carefully look at the relationship between rules
and medium-independence, it becomes unclear which is prior.

On one hand, it might work like this. Suppose we have a system governed by
rules; given the liberal construal of rules on the MAC, this is an easy step. Next,
we discover that those rules display the right kind of sensitivity (i.e., sensitivity
with respect to the relevant vehicles). From this, we are to infer that those rules
are, in fact, medium-independent. This seems to be the right way to characterize
natural systems as computational.

On the other hand, it might work like this. Suppose we already have rules that
are defined in a medium-independent way, as is the case with the rules given
in various abstract automata. From this, it follows that the rules governing the
physical system must have the right kind of sensitivity (again, with respect to the
relevant vehicles). This seems to be the right way to characterize artificial systems
as computational

Unfortunately, for the MAC to apply to all physical computational systems (as
it purports to do), we have to choose which way to understand the relationship
between medium-independence and the relevant rules. In short: do the rules
give us medium-independence, or does medium-independence give us the rules?
Unfortunately, neither option is appealing. On the first option, too many things
end up being characterized as computation, by the MAC’s own lights. But on the
second option, natural systems can never be characterized as computational by
the MAC.

This is a subtle point, and one that goes unrecognized in the exegesis of the
MAC. We will go through each prong of this dilemma in more detail, walking
through an example of the problem for each. For convenience, let us give labels
to each prong of the dilemma:

Rules-First From the observed sensitivity of the rules governing a physi-
cal system, infer medium-independence.

MI-First Medium-independence is provided by definition, implying that
rules must have sensitivity of the right kind as they apply to the physical
system.

Let us start with Rules-First. We saw in the previous section some attempts
to justify the claim that neural spikes are medium-independent, and that neural
systems are thus computational. Now, neural systems do not come with defini-
tions of the rules they follow (neuroscience would be so much easier if they did),

Ergo · vol. X, no. X · 2023



14 · Corey J. Maley

much less definitions that dictate that those rules are medium-independent. The
rules followed by the system are determined by empirical investigation, and then
we can infer medium-independence if the rules have the right kind of sensitivity.
This is the idea suggested in the quotations above from (Piccinini & Bahar, 2013:
462), which just is Rules-First. So far, so good.

Figure 3. A cylinder lock.

Consider now a cylinder lock, illustrated in Figure 3. These locks work by
preventing the cylinder from turning (i.e., being locked) unless all of the pins
are in a particular alignment. What puts them in that alignment is the pattern
of different heights of a key. The right heights, in the right order, move the
pins so that they are in line with the cylinder, allowing it to turn, which allows
the lock to open (or to be locked if it is already open). We can take the input
to be a pattern of heights, the internal state to be the setting of the pins, and
the output to be a binary, lock-or-unlock state.12 We have rules; are the vehicles
medium-independent?

Yes, clearly, because the rule from inputs to outputs is sensitive only to
differences in key-height, and not to any other property (remember the broad

12. If we wanted to get fancy, we could say that the relevant mapping is the characteristic
function of sequences of heights: the output is one thing when the input is a member of the
right set, and something else when the input is not a member of the right set.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 15

construal of “rule”). Keys can be made of different materials, with different
colors, with different temperatures. . . all that matters is that the sequence of
heights.13 Key-heights are definitely vehicles (i.e., physical states), and cylinder
locks have the teleological function to process these vehicles. Putting it all together,
cylinder locks are mechanisms with the teleological function to process these
vehicles according to this medium-independent rule. Therefore, cylinder locks
are physical computing systems.

An immediate objection might be that locks do not have the teleological
function to perform computations, so obviously they are not computational! This
is true in an everyday sense (which is why it’s being used as a counterexample),
but not according to the MAC. Remember, the MAC does not simply stop at
saying that physical computing systems are those systems with the function of
computing—to do no more than that would be rather vacuous. Instead, the MAC
goes on to precisely specify what computation is, and say that physical computing
systems are the systems that have the function to do that. Thus, the reply to
this objection is simply to note that when we follow the MAC’s specification of
computation, it turns out that cylinder locks do have the function of computing.

Now, if cylinder locks process medium-independent vehicles, so do very
many other artifacts and natural systems. Not all of them, to be sure, but
many, including gear-shifting mechanisms on bicycles, elevators, torque wrenches,
pistols, and the sprinkler mentioned earlier. In each case, there is a rule that
is sensitive only to differences between spatiotemporal parts of vehicles along
specific dimensions of variation; this is enough for medium-independence, and it
follows that the system is computational. This characterization does allow that
digital computers and neural systems are also computational, but that is not very
interesting if so many other things are, too. By Piccinini’s own lights, this is not
an acceptable result: the MAC should not count the wrong things as computing,
and this is a lot of wrong things (Piccinini, 2015: 145).

The way to escape this result is to go with the other prong of the dilemma:
MI-First. Piccinini mentions rules that are “defined” by a computation at various
points in the discussion of the MAC, which we saw above. This works perfectly
when trying to correctly capture artificial physical computing systems, such as
digital computers. In these cases, we need not rely only on empirical investigation
to know what the relevant rules are. We know what they are by the definition
of those rules; following those rules is the raison d’être of such systems in the
first place. By definition, the rules given in computational descriptions make no

13. To be sure, there are various background conditions and ceteris paribus issues that can
arise here. The material must be rigid, not too fragile, maybe non-magnetic, not sticky, etc.
A detailed discussion of background conditions would take us too far from the main point,
however. Thanks to an anonymous referee for this point.

Ergo · vol. X, no. X · 2023



16 · Corey J. Maley

reference to anything physical at all:14 insofar as computational descriptions are
taken to be abstract automata, they cannot refer to anything physical, or else they
would not be abstract automata. Because digital computers are implementations of
abstract automata, and the rules are medium-independent by definition, we know
that any implementation must use rules with only a certain kind of sensitivity
with respect to the vehicles being processed. And here we have MI-First.

The problem is one we already saw: natural systems do not come with
definitions of the rules they follow, and certainly not whether they are medium-
independent or not. Neural systems do what they do, and through extraordinary
amounts of scientific work, we have a variety of ways to characterize the voltage
changes in various parts of different neurons; those characterizations show how
neural spikes are rapid changes in voltage, how patterns of neural spikes are
produced, and so on. But at no point do we discover a rule, equation, or anything
else with a definition attached, such that neuron process medium-independent
vehicles because of that definition. It seems that there is no way a natural system
could ever count as a physical computing system, because natural systems never
come with rules that have definitions, and are thus never medium-independent.

Of course, we can simply stipulate that a neural system is behaving in a way
that corresponds to a medium-independent rule. But that was not the point of the
MAC. We were supposed to be able to use the MAC to decide if those behaviors
are, in fact, medium-independent, and thus whether the system literally computes
(at least on the MI-First interpretation of this part of the MAC). If we can simply
stipulate medium independence, then the hard work is done: where we stipulate
medium independence, computations are being performed; when we do not, they
are not (recall again the example of Joe and Rita: it will not do to tell Rita that she
simply needs to stipulate that there are medium-independent rules by definition).
But then the MAC has not done the job is was supposed to do: we are simply
giving computational descriptions, and not determining whether physical systems
literally perform computations.

The point here is subtle, and is worth repeating. Remember, we are not just
trying to use the MAC to justify why a system that we have already decided, via
independent reasons (including mere stipulation), is computational. Rather, the
MAC is meant to provide criteria that allow us to make the determination that is a
system is (or is not) computational in the first place. Moreover, we are not trying
to determine whether a system can be given a mere computational description,
but whether a system literally computes. Very many systems that do not literally
perform computations can be given computational descriptions, a point to which
Piccinini (and all other parties to these discussions) agree.

In the end, neither Rules-First nor MI-First is acceptable. On Rules-First, too

14. There may be exceptions to this for certain types of computational systems, such as
analog computational systems (Maley, 2021).

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 17

many things count as a computational; on MI-First, natural systems can never
count as computational. Given the centrality of medium-independence to the
MAC, it is unclear how the MAC can be salvaged from this dilemma.

3. Objections and replies

How might the proponent of the mechanistic account of computation reply to
these examples, and perhaps try to amend the account? Let us look at several
options that are not on the table. First, the account is supposed to be general
enough that it includes digital computation, analog computation, and possibly
other, sui generis species of computation. In order to maintain this generality, we
cannot add restrictions on the kinds of vehicles that are allowable. One might
think, for example, that a sprinkler does not compute because the fluids that are
“processed" by a sprinkler are neither discrete nor digital,15 but continuous. But
continuous vehicles are explicitly allowed on the MAC in order to accompany
“analog” computers.16 So we cannot restrict vehicles in this way.

Second, it might seem that we would want to restrict computational systems
to those that explicitly follow rules, rather than merely act in accordance with
them. However, that would exclude many natural systems that we might want
to count as computational—another desideratum of any reasonable account of
computation. Neural systems, for example, may well act in accordance with
rules, even though these rules are not explicitly represented “in” the neurons.17

Furthermore, many examples of both digital and analog computers are not stored-
program computers, but in a sense “hard-wired” to do what they do, and thus fall
on the side of being rule governed rather than rule following. Nevertheless, these
are paradigmatic computational systems. We cannot use rule following versus
governance as a mark of the computational.

Third, we cannot lift the restriction that computational systems are only those
systems that have a particular function (namely, the function of computing).
Again, as Piccinini rightly notes, we can give a computational description of vir-
tually anything we want; hence the utility of computational simulations of, say,
hurricanes and galaxies. However, the fact that a system can be computation-
ally described or simulated does not warrant any claims about the simulated
system literally performing computations. Hurricanes and galaxies do not have
the function of computing, so they are not supposed to count as computers.

15. “Discrete” and “digital” are not synonymous, as argued in (Maley, 2011).
16. Maley (2023) provides examples of discontinuous analog computers, arguing that

analog computation need not be continuous.
17. Depending on one’s point of view, it may be difficult to provide an account of rule-

following that allows for anything other than rational agents to follow rules (à la Wittgenstein).
About this point I cannot speak further, therefore I will be silent.

Ergo · vol. X, no. X · 2023



18 · Corey J. Maley

Without the restriction that a system has the function of computing—and not just
that the system is computationally describable—too many things will count as
computational.

The only thing left is to object to the claim that the rules that things like
sprinklers and cylinder locks follow (and the vehicles they operate on) really
count as medium-independent. Note first that there is something right about the
importance of medium-independence to computation: it is true that computation
is, in some sense, medium-independent.18. A single computational system can be
implemented in many different physical media. Conversely, there is something
right about the incompatibility of medium-dependence and computation: it is
true that the specification of a particular chemical reaction is medium-dependent,
and no reasonable account of computation should count the burning of methane
(CH4 + 2 O2 → CO2 + 2 H2O) as a computation. So, perhaps the MAC propo-
nent can argue that the movement of a fluid is not an instance of the medium-
independent processing of a medium-independent vehicle, as would be required
if the sprinkler is indeed a physical computing system.

But here’s the problem. Medium-independence is a property of computation
when it comes to computer science and mathematics, because the way that
computation is characterized in these fields is necessarily abstract. The subject
matter of theoretical computer science includes only abstract mathematical entities,
including Turing Machines and various other automata. Furthermore, the various
results of theoretical computer science are similarly abstract. That the time
complexity of a particular algorithm is O(Nlog(N)) tells us nothing about the
actual time that the algorithm will take. Rather, this tells us it will take a certain
number of abstract “steps” as a function of the size of the input, where steps are
understood as a series of individual members of a set. Of course, we can use this
information to determine the time an algorithm will take to run relative to the
actual amount of time a single step takes.19 The entire theory of computation is
simply a branch of mathematics, and like all mathematics, it is devoid of physical
content.

However, when we move to a physical computing systems, it is difficult to
see how to rule out certain physical processes (like the sprinkler and cylinder
lock) while ruling in certain other physical processes (like neural systems and
digital computers) when it comes to medium-independence. A genuine physical
computing system is always dependent on some particular medium in some partic-
ular way. In other words, complete medium-independence is possible when we
are talking about abstract computational processes, but when we move to actual

18. But not in all instances, as argued in (Maley, 2021)
19. In extreme cases, we know that algorithms with certain time complexities are absolutely

intractable, given large enough inputs and coupled with certain assumptions about the lower
physical limits a “step" can take.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 19

physical systems, we have to weaken what medium-independence could mean.
That, of course, is precisely what Piccinini’s account of medium-independence
attempts to do. However, by specifying that dependence on only some (but
not all) spatiotemporal—thus, physical—properties is what counts as medium-
independence, many things count as medium-independent, as we have seen in the
Rules-First prong of the dilemma above. We can, of course, simply stipulate that
some processes are medium-independent and others are not, perhaps because of
independently-given definitions of computation. However, we then get the result
of the MI-First prong of the dilemma.

Here is yet another way to put this point. The MAC needs to be able to
characterize neural systems as computational, but characterize cylinder locks as
non-computational. In order to do that, the vehicles processed by neural systems
need to be medium-independent, but the vehicles processed by cylinder locks need
to be medium-dependent. But remember: medium-independence just requires
that not all of the properties of the vehicles are relevant to their processing: for
neural systems (by hypothesis), the relevant property is voltage, but not color,
temperature, etc. However, this is also true of the cylinder locks: the relevant
property is height, but not color, temperature, etc.

A more interesting example (at least given the extant dialectic of what does
and does not count as a computing system) is the Watt governor, made famous
by van Gelder (1995). According to the MAC, this device is an example of
something that is not computational, but simply a control system. The reason
given is (again) puzzling, because it has to do at least in part with transduction:
“a system may exert feedback control functions without ever transducing the
signals into an internal medium solely devoted to computing—that is, without
any medium-independent processing," (Piccinini & Bahar, 2013: 458).

We will set aside the issue of transduction for now, because that is not part
of the official, explicated version of the MAC.20 Does the Watt governor follow
rules in the generic sense of the mechanistic account of computation? Yes, and
that much is easy, as we have seen. Are the vehicles medium-independent? Yes,
because the rule that maps inputs to outputs only has to do with the rotational
speed or angle of the different components of the mechanism, and not their
temperature, color, or chemical composition. If the claim that neural systems are
medium-independent is justified by appealing to the Hodgkin-Huxley equations
describing voltage change (where it is, specifically, voltage that is supposed

20. There may be some sense in which transduction turns out to be important for the
account of medium-independence on the mechanistic account of computation. However,
granting that transduction is necessary for computation seems dangerously close to admitting
that representations are necessary for computation, the rejection of which is crucial to the MAC.
Perhaps an account of why transduction is necessary for computation such that transduction
does not amount to a representation of inputs or outputs can be given, but I will leave that task
(and the subsequently necessary amendment to the official story) to the defender of the MAC.

Ergo · vol. X, no. X · 2023



20 · Corey J. Maley

to be the medium-independent vehicle), then the claim that the Watt governor
is medium-independent is justified by appealing to the equations describing
its angle and rotation (where it is, specifically, angle and rotation that are the
medium-independent vehicles).

Perhaps the way to defend the MAC is to focus on the function of the mecha-
nism in question. The work of restricting which rules count is, it seems, supposed
to be done by the requirement that the system in question has a particular func-
tion. Raindrops collected in a pothole may also follow a medium-independent
rule, but there is no computation in sight because potholes collecting rain do not
have teleological functions.21

Unfortunately for the MAC, however, the sprinkler and the Watt governor do
have the function of processing their (according to the MAC) medium-independent
vehicles according to rules. Although rule-following is easy, satisfying the func-
tional requirement is more difficult, because many physical processes are not the
result of the action of a functional mechanism. However, many functional mecha-
nisms act on vehicles in such a way that only some spatiotemporal properties of
those vehicles (and not others) are relevant to the input-output behavior of the
mechanism. It would be too much to say that everything does (e.g., specific chemi-
cal reactions are probably counterexamples). But many functional mechanisms
are medium-independent in just the way the MAC requires (e.g. torque wrenches,
lamps, sprinklers, cylinder locks, and a whole host of other artifacts), and thus
count as physical computing systems.

Finally, a proponent of the MAC might argue that some physical compu-
tational systems (or at least some programs), such as compilers, parsers, and
sorters, do not process representations, which would be a plus for the MAC, but a
minus for other accounts.22 However, upon closer inspection, these programs must
process representations, or else they would not be compilers, parsers, or sorters.

Consider a compiler. At a very abstract level, compilers simply take a set
of strings as input and produce as output another set of strings (this is what
all software does, considered abstractly enough). More concretely, however,
compilers take code written in a high-level language and produce assembly code:
crucially, however, those strings are representations. An input string, such as

printf(“Hello, world!\n”)

represents an instruction in C++; the corresponding lines of assembly code pro-
duced as output represent instructions for the relevant instruction set architecture.
If the input and output did not represent instructions, then this would simply not

21. Of course, a pothole collecting rain could be used as a rain gauge, and thus might, in
some loose sense, be assigned a function. But this is beside the present point.

22. Thanks to an anonymous referee for raising this point.

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 21

be a compiler.23

Now one might worry that these are not representations of the right type,
because they represent states or commands internal to the system in question,
rather than something external. Considered very loosely, even abstract automata
have states that “represent,” because they must refer to other states within the
system, and the MAC allows for this minimal type of representation. But this
would be a misunderstanding of how compilers (and similar programs) work. A
compiler running on computer A can take as input code written on computer B,
and produce assembly code for computer C. There is nothing that requires the
input to represent anything within any particular system. The output must refer
to states and instructions in some type of system, but nothing requires that those
states and instructions are the very ones on which a compiler is running.

Space prohibits further elaboration, but similar points can be made about
parsers and sorters as well. In the main, however, even if we assume that there
are a few cases that the MAC correctly classifies where other accounts might fail,
there are still many other cases (torque wrenches, sprinklers, cylinder locks, etc.)
that the MAC fails where others get it right. Until the latter problems are solved,
this is not a point at which the MAC’s benefits outweigh its detriments.

4. Sketching a way forward

It may well be that a successful philosophical account of computation counts—or
does not count—certain things as computational systems in unintuitive ways. If
the account is otherwise satisfactory, then the occasional clash with intuition is
the price we pay for progress. However, the price to pay for adopting the MAC
is much too high, because of the dilemma mentioned in Section 2.3. My own
view is that the orthodoxy is largely correct, but needs some additional work.
In short, a version of the orthodox view—that representation is necessary for
computation—allows us to articulate exactly why the sprinkler is not a physical
computing system: it is not a computing system because it does not process
representations. However, in the right context, this kind of mechanism could be a
computing system, if its vehicles were, in fact, representations. In fact, Piccinini
is correct to focus on mechanisms; we simply need to couple a version of the
mechanistic view with a version of the orthodox view. Fully developing this
account will have to wait for another day, and Shagrir (2022) has offered an
excellent defense of a version of the orthodox view in light of challenges from
competitors (including Piccinini). Here I will mention a few of my own points
that I hope to develop in future work.

23. Note that any compiler worth its salt will produce an error message as output if it is
given input that is not a well-defined set of instructions.

Ergo · vol. X, no. X · 2023



22 · Corey J. Maley

What unifies physical computing systems of all kinds is that they are mech-
anisms: Piccinini has done the field a great service by articulating this point.
Although we cannot characterize computational systems correctly without ap-
pealing to representations, we can couple the mechanistic view with a version of
a semantic view to yield what I will call (for now) the representational view. On
this view, physical computing systems are those systems with mechanisms that
process physical representations, where the mechanism is sensitive only to the
properties of the representations that are responsible for doing the representing.
In digital computers, for example, it is the voltage of circuit elements that does
the representing, so the mechanism doing the processing must be only sensitive
to voltage (and not temperature, color, mass, etc.). In a neural system, the mecha-
nism must be sensitive only to whatever the relevant property happens to be (e.g.,
voltage change).

This view will face many of the challenges that semantic views face. One chal-
lenge is to provide a satisfactory account of representation, given the heavy lifting
that representation does in the account. On the other hand, some version of the
semantic view of computation is the one that many psychologists, neuroscientists,
and other cognitive scientists take as a starting point. For example, Von Eckardt
(1993) takes the manipulation of representations to be one of the basic capacities of
computation as understood by cognitive science. Koch (1999: 1) states that, when
the brain computes, he means that it “takes the incoming sensory data, encodes
them into various biophysical variables, such as the membrane potential or neu-
ronal firing rates, and subsequently performs a very large number of ill-specified
operations, frequently termed computations, on these variables to extract relevant
features from the input.” Perhaps one can interpret the encoding of data in such
a way that it does not result in a representation, but I do not see how. A final
example is London and Häusser (2005: 504), who state “Brains compute. This
means that they process information, creating abstract representations of physical
entities and performing operations on this information in order to execute tasks.”
Obviously the fact that a variety of researchers endorse a representational view is
not a knock-down reason to accept it. But in the absence of a compelling reason
to adopt an alternative view, it is prima facie evidence in its favor.

Another challenge is that some things that are supposed to be examples of
computational systems do not appear to traffic in representations at all. We
mentioned compilers and parsers above, but those are not good examples. Better
examples include the many computable functions defined with respect only to an
alphabet that has no associated representation; showing that a given function is
computable using such an alphabet, relative to some particular type of automaton,
is standard fare in virtually every computability theory textbook. As such, there
are many abstract automata that do nothing more than turn a meaningless (but
well-defined) string of symbols into some other meaningless (but well-defined)

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 23

string of symbols. If such a system is physically implemented, mechanistic
accounts would count it as computational, whereas semantic accounts would
not. In fact, Piccinini uses the Turing Machine as a paradigm example of a
computational system. The vast majority of Turing Machines do not traffic in
anything representational; they simply compute a computable function. Although
classifying Turing Machines as computational seems to be a point in favor of
the MAC (and against semantic views, which does not classify them as such),
this is a mistake, due to a subtle confusion between computability and (physical)
computation.

There is enough to say about this point to fill at least another essay; a sketch
will have to do for now. To put it simply, my own solution, as well as that offered
by Shagrir (2022), is to bite the bullet and claim that not everything that is a
physical implementation of an abstract automaton (such as a Turing Machine)
is, in fact, a computational system. Rather, only those physical systems that
process representations are candidates for computational systems (and only those
systems that process representations in the right way actually are computational
systems). Moreover, it is simply a category mistake to think that Turing Machines
themselves are computational systems; Turing Machines (and all other abstract
automata) are abstract mathematical objects that cannot do anything at all, let
alone compute. Setting that aside, physically implementing an abstract automaton
does not guarantee that you get a computational system: for that, you need the
system to traffic in representations, too (Shagrir, 2022).

In brief, the reason for this is that I take it to be a conceptual fact about
computation that every computation is a computation of something, where the
“of something” is defined in terms of representations and how they are processed.
Historically, this is what was meant by computation as performed by human com-
puters, the very people whose activity the Turing Machine was meant to model.
Interestingly, the Turing Machine does many things which are “computable,” but,
if done by a human, would never have counted as computations (or the result of
computations). For example, although a person could systematically manipulate
meaningless strings of meaningless symbols into different meaningless strings of
meaningless symbols—similar to how many computable functions are defined—
there is nothing that this activity would be a computation of. A person engaged in
this activity would not be computing anything at all. Computing machines—both
digital and analog, from abaci and the Antikythera mechanism to contemporary
digital computers—were explicitly created to manipulate representations. Using
a computing machine just meant using a machine to manipulate representations
in ways that are faster and more accurate than what a person could do alone.

As it turned out, studying Turing’s mathematical model of what a human
computer could do (as well as other models of computation, such as the work
of Church (1936), Post (1936), and many others) became quite interesting in its

Ergo · vol. X, no. X · 2023



24 · Corey J. Maley

own right as a branch of mathematics. In a real sense, the class of things that a
Turing Machine could “compute" (i.e., the computable functions) outstrips the
class of things that would count as performing a computation were a human
to do them. In short, there are many computable functions that, if physically
implemented, would not be computations. This is not as absurd as it sounds, given
that “computable” is a mathematical predicate, applicable to certain mathematical
functions, and “computation” is an activity that existed long before any particular
mathematical model of that activity, including Turing Machines or any other
automata. Again, however, the full view must wait for another time.

At the same time, certain types of computation, such as analog computation,
are simply not amenable to analysis via Turing Machine (or other abstract au-
tomata). The MAC is intended to capture analog computation, but fails to do
so. Like most discussions of analog computation, Piccinini (2015) takes analog
computers to be distinguished by their use of continuous variables; however,
analog computers often used discrete variables, yet were distinct from digital
computers (Maley, 2023). The right way to characterize analog computers is via
their use of analog representation; a distinction between continuous and discrete
is not sufficient (Maley, 2011). Of course, appealing to representational types is
not an option for the MAC. But for the representational account sketched here,
this is quite straightforward.

Even worse for the MAC is that many analog computing elements are function-
ally identical to other mechanical and electronic components in non-computing
systems, but are distinguished by the fact that in one context they manipulate
representations, and in another they do not. For example, differential gears have
been used in virtually all automobiles for more than a century, as well as in many
industrial contexts. In cars and trucks, these gears allow drive wheels on opposite
sides of the vehicle to rotate at different speeds while the vehicle turns. But in
analog computers, these devices were used to perform arithmetic operations on
variables.

The MAC does not have the resources to correctly characterize this part of a
mechanical analog computer while not simultaneously counting all mechanical
differential gears as computing, unless we have already independently stipulated
that one is a computer and one is not (i.e., the MI-First prong of the dilemma).
Just as with the example of the cylinder lock, this device is a mechanism that
is sensitive to only one property of its vehicles (thus medium-independent),
operating according to a rule, and it has the function of doing exactly that.
Similarly for analog computers. The only difference is that in analog computers,
the rotation represents the value of a variable, but in other applications, the
rotation does not represent anything at all. Again, this is a simple matter to
capture on the representational account.

More generally, the representational account classifies types of computation

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 25

according to types of representation. Digital computers are digital because they
use digital representations; analog because they use analog; and perhaps other
types of computers are something else entirely because they use entirely different
types of representation.

Now, one might worry, as articulated in (Piccinini, 2004: 377), that accounts
of computation that rely on representations must have a non-representational
way of individuating computational states. The concern is that without such a
non-representational individuation procedure, there is a circularity: the contents
of mental representations are explained by computational relations among those
representations, but computational relations are individuated by the contents of
computational states.24 However, Shagrir (2022: 197) notes that this circularity
is only a problem if the contents of computational states are individuated the
same across all computational systems, and one need not be committed to that
view. Shagrir and I agree on the general point that we should be pluralists about
semantic content or representation: neuroscientists may have one view of what
counts as a representation and what gives them their content, computer scientists
another, psychologists another, and so on. Even researchers within those fields
may have differing standards, depending on their interests.

Although the MAC does not work as an account of physical computation,
it succeeds insofar as it points out the necessity of functional mechanisms for
such an account. What unifies computation in natural and artificial systems,
and in digital and analog systems, is the presence of mechanisms. However,
without appealing to the manipulation of representations, the MAC counts as
computational very many things that it should not. The way to fix the account may
be to marry the MAC with some kind of semantic account of computation, along
the lines of that developed by Shagrir (2022). Developing this representational
account of computation, only briefly sketched here, is a task for future work.

5. Conclusion

The mechanistic account of computation fails as a unified philosophical account
of computation because of a dilemma having to do with medium-independence
at the heart of the account. Either too many things (by Piccinini’s own lights) are
characterized as computational, or it cannot count natural systems as computa-
tional without some separate, independent attribution of (and justification for)
medium-independence already in place. Nevertheless, the mechanistic account
of computation makes significant progress toward articulating an important and
necessary feature of physical computational systems; namely, the presence of
the right kind of mechanism. By coupling this part of the mechanistic account

24. Thanks to Gualtiero Piccinini for raising this concern.

Ergo · vol. X, no. X · 2023



26 · Corey J. Maley

with a version of a semantic account, we can develop a new account of physical
computation that prioritizes physical representations. But that story is a longer
one to tell, and must wait for another day.

References

Aizawa, K. (2009). Neuroscience and multiple realization: A reply to Bechtel and
Mundale. Synthese, 167(3):493–510.

Bechtel, W. and Abrahamsen, A. (2005). Explanation: A mechanist alternative.
Studies in History and Philosophy of BIological and Biomedical Sciences, 36:421–441.

Church, A. (1936). An Unsolvable Problem of Elementary Number Theory. Amer-
ican Journal of Mathematics, 58(2):345.

Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72(20):741–765.
Dennett, D. C. (2008). Fun and Games in Fantasyland. Mind and Language,

23(1):25–31.
Dewhurst, J. (2018). Computing Mechanisms Without Proper Functions. Minds

and Machines, 28(3):569–588.
Egan, F. (2010). Computational models: A modest role for content. Studies In

History and Philosophy of Science Part A, 41(3):253–259.
Fodor, J. A. (1981). The Mind-Body Problem. Scientific American, 244(1):114–123.
Fresco, N. (2014). Physical Computation and Cognitive Science. Springer, New York,

NY.
Gillett, C. (2003). The metaphysics of realization, multiple realizability, and the

special sciences. The Journal of Philosophy, 100(11):591–603.
Glennan, S. (2002). Rethinking Mechanistic Explanation. Synthese, 69(S3):S342–

S353.
Hodgkin, A. L. and Huxley, A. F. (1952). A Quantitative Description of Membrane

Current and Its Application to Conduction and Excitation in Nerve. Journal of
Physiology, 117(1-2):500–544.

Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons.
Oxford University Press, Oxford, UK.

London, M. and Häusser, M. (2005). Dendritic computation. Annual Review of
Neuroscience, 28.

Machamer, P., Darden, L., and Craver, C. F. (2000). Thinking about Mechanisms.
Synthese, 67(1):1–25.

Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical
Studies, 155(1):117–131.

Maley, C. J. (2021). The physicality of representation. Synthese, 199:14725–14750.
Maley, C. J. (2023). Analog computation and representation. The British Journal

for the Philosophy of Science.
Miłkowski, M. (2018). From Computer Metaphor to Computational Modeling:

Ergo · vol. X, no. X · 2023



Medium Independence and the Failure of the Mechanistic Account of Computation · 27

The Evolution of Computationalism. Minds & Machines, 28(3):515–541.
Piccinini, G. (2004). Functionalism, Computationalism, and Mental Contents.

Canadian Journal of Philosophy, 34(3):375–410.
Piccinini, G. (2007). Computational modelling vs. Computational explanation: Is

everything a Turing Machine, and does it matter to the philosophy of mind?
Australasian Journal of Philosophy, 85(1):93–115.

Piccinini, G. (2008). Computation without representation. Philosophical Studies,
137(2):205–241.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford Univer-
sity Press, Oxford, UK.

Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition.
Oxford University Press.

Piccinini, G. and Bahar, S. (2013). Neural Computation and the Computational
Theory of Cognition. Cognitive Science, 34:453–488.

Polger, T. W. (2008). Evaluating the evidence for multiple realization. Synthese,
167(3):457–472.

Polger, T. W. and Shapiro, L. A. (2016). The Multiple Realization Book. Oxford
University Press, Oxford, UK.

Post, E. L. (1936). Finite combinatory processes—formulation 1. The Journal of
Symbolic Logic, 1(3):103–105.

Putnam, H. (1988). Representation and Reality. MIT Press, Cambridge, MA.
Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438):369.
Shagrir, O. (2022). The Nature of Physical Computation. Oxford University Press,

Oxford, UK.
Shapiro, L. A. (2000). Multiple Realizations. The Journal of Philosophy, 97(12):635–

654.
Sprevak, M. (2010). Computation and cognitive science. Studies in History and

Philosophy of Science, 41(3):223–226.
van Gelder, T. (1995). What Might Cognition Be, If Not Computation? The Journal

of Philosophy, 92(7):345–381.
Von Eckardt, B. (1993). What Is Cognitive Science? MIT Press, Cambridge, MA.

Ergo · vol. X, no. X · 2023


	Elements of an account of computation
	Unpacking the mechanistic account
	Rules
	Medium-independent vehicles
	A dilemma

	Objections and replies
	Sketching a way forward
	Conclusion

