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Abstract

This paper argues that a successful philosophical analysis of models
and simulations must accommodate an account of mathematically rigor-
ous results. Such rigorous results may be thought of as genuinely model-
specific contributions, which can neither be deduced from fundamental
theory nor inferred from empirical data. Rigorous results provide new
indirect ways of assessing the success of models and simulations and are
crucial to understanding the connections between different models. This
is most obvious in cases where rigorous results map different models on
to one another. Not only does this put constraints on the extent to which
performance in specific empirical contexts may be regarded as the main
touchstone of success in scientific modelling, it also allows for the trans-
fer of warrant across different models. Mathematically rigorous results
can thus come to be seen as not only strengthening the cohesion between
scientific strategies of modelling and simulation, but also as offering new
ways of indirect confirmation.

1

axel
This is a preprint version of an article that has been published in the journal Synthese (2008). The final and definitive version is available at www.springerlink.com (SpringerLink Date: 9 November 2008 ; DOI  10.1007/s11229-008-9431-6 ).



1 Introduction
This paper argues that the philosophical analysis of models and simulations can
be advanced by reconsidering the role of mathematically rigorous results in their
evaluation and confirmation. It focuses on a class of models intended to describe
the physical behaviour of systems that consist of a large number of interacting
particles. Such many-body models are typically employed in order to account
for a range of complex phenomena such as magnetism, superconductivity, and
other phase transitions. Because of the dual role of many-body models as mod-
els of physical systems (with specific empirical phenomena as their explananda)
and as mathematical structures, they form a sub-class of scientific models, from
which one can arrive at general conclusions about the role of mathematical re-
lationships in constructing and assessing models. Since many-body models lend
themselves to computational evaluation via a range of techniques (e.g., Monte
Carlo simulations, Green’s function techniques, etc.), they are of special signifi-
cance when it comes to analysing the relation between mathematical rigour and
computer simulations.
The structure of the paper is as follows: First, an attempt is made to clarify

the relation between models and simulations by drawing on recent work in the
philosophy of models. While models have rightly earned their place in philosoph-
ical analyses of science, philosophical work on simulations is still in its relative
infancy. It is argued (Section 2) that a proper appreciation of simulations in
science requires a shift in focus from questions of representation to analyses of
how science generates results. The question of how models can be used to gener-
ate specific results has sometimes been overlooked; in the case of mathematical
models, it has often been regarded as unproblematic. This calls for an analysis
of the role of mathematics in models and simulations more generally (Section
3). Section 4 argues that, beyond qualitative results and numerical outcomes,
there exists the important class of mathematically rigorous results and relations,
which often play a vital role as ‘benchmarks’ even when they lack an empirical
interpretation. At a descriptive level, it may be noted that such ‘benchmarking’
often makes up the better part of research in computational physics (Section
5). However, as argued in Section 6, rigorous results and relations also allow for
specific ways of indirect confirmation and transfer of empirical warrant. This
point is elaborated on, both by engaging with the contemporary philosophical
debate about indirect confirmation and epistemic coherence, and by drawing on
an example from the recent history of physics, known as the Mott transition.

2 Simulating Models: From Representation to
Results

While scientific models have enjoyed a long history as objects of philosophical
inquiry, simulations have only recently begun to garner serious interest from
philosophers of science. (See, for example, refs. (38), (20) and works quoted
therein.) The relationship between models and simulations is by no means self-
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evident; within science, too, there is considerable vacillation as to the order
of dependency between models and simulations. Scientists frequently speak of
‘simulating a model’ (in the sense of running a computer simulation of the dy-
namic behaviour of a model given a certain input, e.g. consisting in parameter
values and boundary conditions), but they also profess to engage in ‘modelling
a simulation’: that is, using numerical techniques to construct a computational
model whose only raison d’être is its ability to generate sets of simulated data.
Whether a ‘model’ is being ‘simulated’, or a ‘simulation’ is being ‘modelled’,
is — at least in actual scientific usage — often not so much a question of logi-
cal order as of temporal order: new computational techniques may be applied
to well-established theoretical models, and vice versa. To complicate matters
further, there exists some ambiguity in the term ‘simulation’, which may be
understood as referring either to the process of applying a set of (usually nu-
merical) techniques, or to the output generated by such a procedure. Given
that actual scientific usage offers no clear verdict on the matter, a first task of
any prospective philosophical analysis of simulation will have to be the clarifi-
cation of the logical order and the conceptual relationship between models and
simulations; this, or at least one step in this direction, is the task of the present
section.
Recent philosophical interest in the use of models in science is in large part

due to an approach, pioneered by Margaret Morrison and Mary Morgan, which
views models as ‘mediating instruments’ (25, p. 10). As I shall argue later, the
‘models as mediators’ view, while by no means the only well-developed view of
scientific models, has special affinities with the topic of simulation. Therefore, in
the present context, it will serve to set the agenda for the discussion of scientific
models. According to the mediator approach, models are to be regarded as more
than mere unavoidable intermediary steps in applying our best scientific theories
to specific situations. Rather, as ‘mediators’ between our theories and the world,
models inform the interpretation of our theories just as much as they allow for
the application of these theories to empirical phenomena. Models, it is claimed,
‘are not situated in the middle of an hierarchical structure between theory and
the world’, but operate outside the hierarchical ‘theory-world axis’. (25, p.
17f.) Traditionally, unless their role was seen as merely heuristic, models were
to be judged by how well they fit with the fundamental theory and the empirical
data, or, more specifically, how well they explain the data by the standards of the
fundamental theory : ideally, a model should display a tight fit both with theory
and with empirical data. Indeed, on certain accounts of the formal relation
between theory and data, any application of a theory to empirical phenomena
— that is, any use of a theory that goes beyond the mere deduction of further
theoretical statements — must necessarily happen via models embedded in the
semantic structure of a theory. Without taking a stance on this issue, it seems
obvious that such a view places a rather heavy theoretical load on the concept
of ‘model’ — more, perhaps, than the notion of a scientific model (as employed
in scientific strategies of modelling and simulation) can bear.
The ‘models as mediators’ approach, by contrast, insists that any scientific

account of specific processes and phenomena necessarily depends on consider-
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ations that are extraneous to fundamental theory. In this respect, Morrison
and Morgan argue, the role of scientific models is similar to that of tools and
scientific instruments; indeed, it is a crucial assumption of the mediator view
that model building involves an element of creativity and skill — it is ‘not only a
craft but also an art, and thus not susceptible to rules’ (25, p. 12). By focusing
more on the process of model construction than on the logical relations into
which models can enter with other abstract structures, such as theories, one
might argue that the mediator view already displays a natural affinity towards
questions of simulation. One of the mediator view’s fundamental tenets is the
thesis that models ‘are made up from a mixture of elements, including those
from outside the domain of investigation’(25, p. 23). Of these varied elements,
some will typically derive from theory, whereas others may originate from extra-
theoretical considerations: ‘model construction involves a complex activity of
integration’ (24, p. 44). More often than not, this integration is neither perfect
nor complete. When certain elements of a model are incompatible, the inte-
gration cannot be perfect. This, for example, is the case in the Bohr model’s
conflicting demands that the electrons in an atom should be conceived of as
orbiting the nucleus on circular paths without losing energy, while at the same
time viewing them as objects of classical electrodynamics. Integration may also
remain incomplete for the simple reason that not all features of a system are
eventually reflected in the model. As Daniela Bailer-Jones argues, ‘selection of
aspects for the purposes of modelling is an accepted and well-practised creative
strategy’ (1, p. 66). Which aspects are deemed relevant may depend on a range
of criteria, including such factors as computational accessibility or explanatory
interest, which themselves are determined less by theoretical first principles than
by contingent facts of scientific practice. This conception of scientific models has
sometimes been characterised as being fuelled by anti-theoretical sentiments, as
in Nancy Cartwright’s emblematic pronouncement that ‘theories in physics do
not generally represent what happens in the world — only models represent in
this way’ (7, p. 180); this view is seconded by Morrison who writes that ‘the
proof or legitimacy of the representation arises as a result of the model’s perfor-
mance in experimental, engineering and other kinds of interventionist contexts’
— not by reference to theory. (23, p. 81) It is noteworthy, though, that nei-
ther Cartwright nor Morrison call into question the overall epistemic goal of all
modelling and theorising: namely, to represent. Indeed, their claim is not that
representation itself is unattainable, but rather that it can only be attained by
means of models, not theories.
However, there remains a gap between, on the one hand, the aspirations of

the mediator view to solve the problem of scientific representation and, on the
other hand, the way it assesses the success of scientific models. Merely assert-
ing that models are instruments for intervening in the world, and that their
representational success is to be assessed by their performance in ‘intervention-
ist contexts’ leaves open how we derive knowledge from their application. As
Bailer-Jones puts it, ‘[i]f one chooses to interpret “representation” in the way
Morrison does, then there still remains a gap between good performance “in ex-
perimental, engineering and other kinds of interventionist contexts” and “giving
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useful information”.’ (1, p. 67) The gap is not closed by simply insisting that
models are ‘inherently intended for specific phenomena’ (33, p. 75), and that
models are superior to theories because ‘they provide the kinds of details about
specific mechanisms that allow us to intervene in the world’ (23, p. 83).
If one holds that models derive their justification exclusively from instrumen-

tal success in specific empirical phenomena, then what is needed is a measure
for empirical success, which typically will hinge on comparison of the model’s
predictions with empirical measurements, both at the quantitative level of nu-
merical results and at the qualitative level of system behaviour. An uninter-
preted model, however, does not in and of itself, without numerical evaluation,
deliver quantitative or qualitative predictions about specific empirical phenom-
ena. This is why one might say that, at least across much of the so-called ‘hard’
sciences, ‘the proper object of epistemic evaluation is a model in conjunction
with a numerical method’ (14, p. 736). Scientifically important questions of ac-
curacy and prediction are not exhausted by a philosophical analysis of whether
or not a model stands in a representational relationship to certain aspects of
reality. Primarily for this reason, what is needed in addition to an epistemology
focused on representation, which has long been at the heart of the philosophical
debate about models, is an ‘epistemology of results’, as it were. It is at this
level that simulation gains significance: often, especially in the case of com-
plex models, it is via the use of simulation techniques that specific numerical
results and predictions are being derived from models. Somewhat similar to the
way observation and measurement techniques furnish empirical data, simulation
techniques generate specific instances of simulated data. Lest it be blind to this
analogy, the philosophy of models, with its emphasis on representation, needs
to be complemented by a philosophy of simulation, which takes due account
of the non-trivial nature of generating results from models. As Eric Winsberg
puts it, ‘we need an epistemology of simulation because simulation modeling
is a set of scientific techniques that produces results.’ (37, p. 276) Quantita-
tive agreement between simulated results and empirical data, though, may not
be the most important criterion for assessing the adequacy of a model (or of
simulation techniques, for that matter). As Sang Wook Yi points out, such
quantitative agreement is usually ‘taken to be an extra virtue’, but is ‘not con-
sidered a necessary feature of model-based understanding’ — nor, one might add,
of simulation-based understanding. (39, p. 84)
To the extent that one purpose of models is to enhance our scientific un-

derstanding of a phenomenon, numerical exactness and quantitative predictive
success may thus become secondary considerations — though, no doubt, they
will often be of independent interest, not least to those carrying out actual ex-
periments on the kind of physical systems that are being simulated. As Robert
Batterman has argued, in the case of models there may even be a direct tradeoff
between quantitative exactness and explanatory value: ‘[T]he more one builds
into one’s model — the more “exactly” it represents the phenomenon — the more
likely it will be that solutions to the equations [of the mathematical model]
will require methods of approximation’. On Batterman’s account, ‘what one
would like is a good minimal model’ — one that captures the essential physics
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rather than the ‘fine details’, even if this means that the model is a caricature
of the ‘full’ system. Once such a model has been found, ‘[t]he adding of de-
tails with the goal of “improving” the minimal model is self-defeating — such
improvement is illusory’. (3, p. 22) This calls for new ways of assessing and
comparing the relative standing of models and simulations in general, beyond
the criterion of quantitative accuracy. How, then, is one to evaluate models on
the basis of their performance in simulations, given that agreement between sim-
ulated results and empirical data is at best one consideration amongst others?
In Section 4, I shall discuss one important factor which, I want to suggest, no
complete account of models and simulations can afford to neglect, namely the
existence of benchmarks — more specifically, of mathematically rigorous results
and relations (which, more often than not, may lack a straightforward empir-
ical interpretation) — which allow for distinctive ways of assessing models and
simulations across different contexts. Given the nature of such mathematically
rigorous results and relations, let us first turn briefly to the role of mathematics
in modelling and simulations more generally.

3 Mathematical and Computational Models
Mathematical models can take different forms and serve different purposes.
They may be limiting cases of a more fundamental, analytically intractable
theory, for example in the case of modelling planetary orbits as if planets were
independent mass-points revolving around an infinitely massive sun. Sometimes,
models connect different theoretical domains, as is the case in hydrodynamics,
where Prandtl’s boundary layer model interpolates between the frictionless ‘clas-
sical’ domain and the Navier-Stokes domain of viscous flows. (See ref. (24).)
In both cases, models allow for good quantitative predictions despite the in-
tractability of the full theory. Even where a fundamental theory is lacking,
mathematical models may be constructed, for example by fitting certain dy-
namical equations to empirically observed causal regularities (as in population
cycles of predator-prey systems in ecology) or by analysing statistical correla-
tions (as in models of stock-market behaviour).
This diversity of examples of scientific models notwithstanding, one can

nonetheless single out a number of characteristic features of mathematical mod-
els. The mere fact that a model is expressed in mathematical form is clearly not
enough. After all, a model is not merely a set of (uninterpreted) mathematical
equations, theorems and definitions, as this would deprive it of its representa-
tional power: a set of equations cannot properly be said to ‘model’ anything,
neither a specific phenomenon nor a class of phenomena, unless one gives some
of the variables an interpretation that connects them with (some aspects of)
empirically observable phenomena. After all, one of the key motivations for
constructing a model, at least in cases where a ‘full’ theory is presumed to hold
‘in principle’, is the recognition that theories are about idealized objects (e.g.,
‘mass points’) rather than real objects (e.g., planets).1 In any case, it is impor-

1Cf. Ronald Giere, who argues that there are good reasons to regard ‘Newton’s laws as
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tant to acknowledge that mathematical models cannot merely be uninterpreted
mathematical equations if they are to function as mediators of any sort; that
is, if they are to model a case that, for whatever reason, cannot be calculated
or described in terms of theoretical first principles.
The fact that mathematical models, like other kinds of models, require back-

ground assumptions for their interpretation, of course, does not rule out that in
each case there may be a core set of mathematical relationships that model users
regard as definitive of the mathematical model in question. In fact, where these
mathematical features are not merely ‘inherited’ from an underlying fundamen-
tal theory, they may provide a mathematical model with precisely the autonomy
and independence (from theory and data) that its role as mediator requires.
Such autonomy differs from other, more radical kinds of independence from
theory, which can sometimes be found in numerical modelling, at least when
this involves fitting a set of — sometimes quite arbitrary — equations to empiri-
cal data. In cases with considerable uncertainty about the causal processes and
dynamics laws governing a system (e.g., in analyses of the stock market), such
mathematically informed ‘curve-fitting’ may be the theoretician’s last resort. It
does, however, lie at the extreme end of possible ways of constructing math-
ematical models and, importantly, differs radically from simulation. Whereas
‘curve-fitting’ typically accommodates existing (past) data to an, often crude,
mathematical model, simulation is essentially about the generation of new ‘data-
like’ material — that is, of simulated data that were not antecedently available,
neither via empirical observation nor via theoretical derivation.
Furthermore, though it may be true that, as Giere puts it, ‘[m]uch math-

ematical modeling proceeds in the absence of general principles to be used in
constructing models’ (15, p. 52), it makes good sense to speak of a mathemat-
ical model of a phenomenon (or a class of phenomena) only if the mathematics
employed (i.e., the kind of mathematical techniques and concepts) is in some
way sensitive to the kind of phenomenon in question. For example, while it may
be possible, if only retrospectively, to approximate the stochastic trajectory of
a Brownian particle by a highly complex deterministic single-particle function,
for example a Fourier series of perfectly periodic functions, this would hardly
count as a good mathematical model: there is something about the phenom-
enon, namely its stochasticity, that would not be adequately reflected by a set
of deterministic single-particle equations; such a set of equations would quite
simply not be a mathematical model of Brownian motion.2

In addition to the requirement that the core mathematical techniques and
concepts be sensitive to the kind of phenomenon that is being modelled, a fur-
ther condition can be imposed on what should count as a mathematical model.
Loosely speaking, the mathematics of the model should do some work in in-
tegrating the model’s various other elements; after all, it follows from the dis-

defining idealized abstract objects rather than as describing real objects’ (15, p. 52)
2Classical Brownian motion can, of course, occur in globally deterministic systems; how-

ever, at the single-particle level, the influence of the environment on a given particle P can
only be included in the particle’s equation of motion in the form of an effectively random force
acting on P .
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cussion in the previous section that, for a mathematical construct to count as
a model of a phenomenon or process, it must extend beyond its formal math-
ematical representation as a set of uninterpreted equations. Extra-theoretical
considerations as well as background assumptions that do not lend themselves
to formalisation must all be in place for a model to be a tool of scientific inquiry.
A bare mathematical structure alone does not lend itself to application to in-
dividual cases. The perhaps vague demand that the mathematical aspects of a
model should contribute to the integration of all, or at least a wide range, of the
model’s elements, can be given a concrete interpretation by way of example. If,
say, a mathematical model employs the calculus of partial differential equations,
then it should also indicate which (classes of) initial and boundary conditions
need to be distinguished. Through specifying dynamic equations and their initial
and boundary conditions, mathematical models can efficiently subsume differ-
ent domains under the same basic structure. Consider, for instance, Prandtl’s
boundary-layer model of fluid dynamics, which, by specifying boundary condi-
tions along with the model equations, succeeds in integrating not only different
spatial domains (the boundary layer surrounding an object, and the infinite
flow into which it is immersed), but also different domains of dynamic behav-
iour (laminar versus turbulent flow), as well as various background assumptions
(Bernoulli’s ‘no-slip’ condition, Helmholtz’s principles etc.). Prandtl’s model,
it has been argued, is successful precisely because of its capacity to integrate
different elements: ‘[I]f unification is taken to mean a close relationship among
the elements used — which one could call structural coherence — then “unifi-
cation” would indeed be the right expression to characterize Prandtl’s advance
over the rational mathematicians and especially over his predecessor Helmholtz.’
(17, p. 58) Other authors have referred to this capacity of mathematical mod-
els to successfully integrate different elements, or different aspects of the same
phenomenon, as ‘mathematical moulding’:

Mathematical moulding is shaping the ingredients in such a mathe-
matical form that integration is possible, and contains two dominant
elements. The first element is moulding the ingredient of mathemat-
ical formalism in such a way that it allows the other elements to be
integrated. The second element is calibration, the choice of the para-
meter values, again for the purpose of integrating all the ingredients.
(6, p. 90)

Calibration is essential to the function and functioning of models. However,
as will be argued in the next section, it should not be understood in the narrow
sense of fixing the parameter values of a given model; rather, calibration may
also take place across different models, by inquiring into their quantitative and
qualitative behaviour as well as into the non-empirical relationships that hold
between them. Such calibration, as the example of mathematically rigorous re-
sults and relations in the following sections will show, is complementary to, yet
nonetheless distinct from, say, the issue of validation in the case of computa-
tional models. Computational models are typically implemented in the form of
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an algorithm, either on a computer or on a network of computers. Their main
structural and computational features are determined by such factors as net-
work topology, numerical methods and algorithms used, computing power etc.
In this regard, they differ from mathematical models, which are typically repre-
sented in an analytically closed form by a set of equations and whose structural
characteristics are determined by mathematical constraints, not by constraints
of realising a technological implementation. While computational models are
often a crucial step in the actual implementation of computer simulations, it
makes sense not to conflate them with simulations either. As R.I.G. Hughes
has urged, one ought to distinguish between ‘the use of computer techniques to
perform calculations, on the one hand, and computer simulation, on the other’.
(19, p. 128)

4 Rigorous Results as Benchmarks for Simula-
tions

The present section aims to apply the general framework outlined above to a
particular class of mathematical models intended to describe and explain the
physical behaviour of systems that consist of a large number of interacting parti-
cles. Such models, usually characterised by a specific Hamiltonian (energy oper-
ator), are frequently employed in condensed matter physics in order to account
for phenomena such as magnetism, superconductivity, and phase transitions.
Many-body models are particularly suitable as an example in the present con-
text, since they form a class of models that, on the one hand, picks out a wide,
yet well-defined range of physical phenomena as their explananda and, on the
other hand, can be characterised mathematically by a narrow range of repre-
sentational techniques (e.g., the formalism of second quantization). Many-body
systems are also among the systems most widely studied using computer simu-
lation, and it is the use of certain mathematical features of many-body models
as benchmarks for the simulation of many-body systems, which will serve as
a tool by which to analyse the interplay between models, and simulations of
mathematical models, more generally.
Recall the idea of ‘mathematical moulding’ mentioned in the previous sec-

tion: namely, the capacity of mathematical models to integrate, in drawing on
certain mathematical techniques, diverse elements — some deriving from funda-
mental theory, others of non-theoretical origin — and subsume them under one
mathematical structure. This capacity is essential for the applicability of math-
ematical models to specific scientific problems. The mathematics of a model,
however, does not merely serve the ‘sanitary’ purpose of integrating already
existing elements into a coherent formal structure; it also contributes new ele-
ments. By virtue of their mathematical structure, mathematical models possess
stable features and intrinsic characteristics which may be independent of the
model’s function of representing a physical system. Importantly, they can stand
in a formal relation to other mathematical models, even when these are mod-
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els of different physical systems. Thus, a mathematical model may contribute
new elements to the theoretical description of the physical system, or class of
systems, under consideration — elements which are not themselves part of the
fundamental theory, but which may, in turn, take on an interpretative or oth-
erwise explanatorily valuable role.
One important class of examples of such newly contributed elements are rig-

orous results and relations in statistical physics and many-body physics. Over
the years, these have attracted considerable attention and have even given rise
to a special branch of theoretical physics that concerns itself with rigorous re-
sults. (For a summary of some groundbreaking earlier developments, see Baxter
1982 and Griffiths 1972; for a philosophical case study see Gelfert 2005.) The
term ‘rigorous result’ calls for some clarification. What makes a result ‘rigorous’
is not its qualitative or numerical accuracy as measured against experiments.
In fact, the kind of ‘result’ in question will often have no immediate connection
with the empirical phenomenon (or class of phenomena) the model or theory is
supposed to explain. (In this regard, the derivation of rigorous results is un-
like, say, the simulation-aided generation of [data-like] results discussed towards
the end of section 2.) Rather, it concerns an exact mathematical relationship
between certain mathematical variables or structural components of the mathe-
matical model, which may or may not reflect an empirical feature of the system
that is being modelled. An extreme example would be an ‘exact solution’ to
a model, in which a complete evaluation of every variable would be possible
for all parameter values. Other examples of rigorous results include, but are
not limited to, conditions on the asymptotic behaviour in special limiting cases
(some of which may be ‘unphysical’ in the sense that they do not correspond
to actual physical scenarios — such as the limit of ‘infinitely strong’ interaction
among particles in a system), symmetry requirements for particular mathemat-
ical elements of a model, ‘impossibility theorems’ that rule out certain kinds of
macroscopic or dynamic behaviour of a model, and so forth.
The ‘active’ contribution of the model — that is, its contributing new ele-

ments rather than merely integrating theoretical and experimental (as well as
further, external) elements — is not only relevant to interpretative issues, but
also has direct consequences for assessing the techniques used to evaluate the
model in specific circumstances, either by computing observable quantities or
by simulating possible scenarios using a range of techniques. This is partic-
ularly salient in the case of the rigorous results mentioned in the preceding
paragraph. Rigorous results are exact results that are true of a model (or a
class of models) rather than of a theory. They often take the form either of
exact relations holding between two or more quantities, or of lower and upper
bounds to certain observables. If, for example in a model of a magnetic phase
transition, the order parameter in question is the magnetization, then rigorous
results — within a given model — may obtain, dictating the maximum (or min-
imum) value of the magnetization or the magnetic susceptibility permitted by
the model. Frequently, rigorous results and relations provide a partial mapping
of a model’s mathematical structure onto relationships between observables. By
checking the results of computer simulations against those relationships, one can

10



then hope to find out whether a given simulation technique respects the model’s
fundamental features.
The partial independence of rigorous results from fundamental theory, and

the fact that they are model-specific, makes them interesting ‘benchmarks’ for
the numerical and analytical techniques of calculating observable quantities from
the model. R.I.G. Hughes notes this, albeit only in passing, in his case study
of one of the first computer simulations of the Ising model: ‘In this way the
verisimilitude of the simulation could be checked by comparing the performance
of the machine against the exactly known behaviour of the Ising model.’ (19, p.
123) The significance of ‘benchmarks’ for the purposes of simulations can hardly
be overestimated. As Winsberg emphasises, simulations are often performed to
investigate systems for which data are sparse; hence, ‘comparison with real
data can never be the autonomous criterion by which simulation results can be
judged’ (37, p. 287). If empirical data are not available, other reliable means of
calibration must be found as a substitute. This is where rigorous results play an
important role, and indeed may be crucial to the assessment of a simulation’s
success, given that ‘[t]he first criterion that a simulation must meet is to be
able to reproduce known analytical results’ (37, p. 288). Rigorous results thus
can be seen to play an essential role in the verification of a simulation, where
verification ‘is taken to mean the testing of the model in relation to existing
analytical solutions [...] as a benchmark’ (as opposed to a simulation’s validation
against empirical data). (17, p. 59)

5 The Cohesion of Simulative Practice: A De-
scriptive Perspective

Strategies of modelling and simulating physical systems raise a number of jus-
tificational questions. Are the methods that are being used reliable? Does the
outcome successfully describe reality? Do models and simulations enhance our
understanding of the phenomena that are being studied? As discussed above,
such questions have typically been discussed in terms of whether or not the
model in question is a faithful representation of the physical system. However,
it is by no means obvious how, in practice, the representational relationship
between a model and reality could be assessed globally. At best, one can hope
to probe this relationship locally and test the model’s performance in specific
circumstances. The mediator view of models argues that it is a model’s per-
formance in specific ‘interventionist contexts’, in connection with ‘specific phe-
nomena’, which is the main source of justification and determines the model’s
validity. On this account, the specific outcomes in different instances of em-
ploying a model determine its instrumental value which, in turn, is considered
a measure of the model’s justification. However, in the present section I want
to suggest that, from a descriptive perspective, such a purely ‘outcome-based’
perspective does not exhaust the range of actual sources of justification in our
modelling and simulation practices.
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It should be emphasized that the outcome-based approach is not limited to
comparison with empirical data. As the more and more widespread use of sim-
ulation techniques suggests, the data-like results of computer simulations can
take on a similar role for the purposes of assessing a model’s performance. At
a descriptive level, it is by no means clear that the main activity of researchers
consists in assessing the model’s performance in experimental or other empirical
contexts. At least an equal amount of work goes into comparing and calibrating
different methods of numerical evaluation against each other. That is, the cali-
bration often takes place not between models and empirical data, but amongst
different methods of numerical evaluation, irrespective of their empirical accu-
racy. This can be made particularly salient in the case of the many-body systems
referred to earlier. When it comes to the use of many-body models in solid-state
and condensed matter physics, it is not uncommon to come across whole papers
on, say, the problem of ‘magnetism in the Hubbard model’, which do not make
a single reference to empirical data. (As an example, see Tusch, Szczech, Lo-
gan 1996.) Even in cases where quasi-exact numerical results are obtainable for
physical observables (for example by Quantum Monte Carlo simulations), these
will often be compared not to empirical data but instead to other results arrived
at by other numerical methods. As the authors of an early (1976) review of sim-
ulation techniques in condensed-matter physics put it, computer simulation ‘has
served to take the place of experimental measurements in many a theoretical pa-
per discussing properties where the experiments had not been performed, were
not possible to perform, had been performed on systems not corresponding to
the theoretical Hamiltonian, or simply had not been performed to the accuracy
and definition of the computations’ (32, p. 169). Rather than adjust the para-
meters of the model to see whether the behaviour of a specific physical system
can be modelled with empirical accuracy, the parameters will be held fixed to
allow for better comparison of the different evaluative techniques with one an-
other, often singling out one set of numerical outcomes (e.g., those calculated by
Monte Carlo simulations) as authoritative. However, such comparison between
different numerical methods, rather than with actual empirical data, does not
yet constitute an extra source of justification for the model or simulation in
question — it has merely replaced empirical with simulated outcomes.
The existence of rigorous results and relations as benchmarks, as discussed

in the previous section, adds to the use of computer simulation a host of new
considerations that go beyond mere comparison with empirical data obtained
from actual measurements. For example, it is standard practice to run simula-
tions for special limiting cases and compare the numerical results thus obtained
with mathematically known exact results — even when these involve ‘unphysical’
assumptions, such as letting a (finite) physical variable mathematically diverge
to infinity. While the capacity to numerically reproduce such exact results in
limiting cases is no direct indicator of a model’s empirical validity, it points to
the robustness and stability of the numerical method that is being employed.
Other bench-marking techniques involve reproducing exact solutions of a model
(which are typically obtainable only for restricted model systems consisting of
a small number of interacting particles, or systems that are confined to low
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dimensions, such as a one-dimensional ‘chain’ of atoms as opposed to a fully
extended three-dimensional lump of material), or they may require demonstrat-
ing that a simulation is invariant with respect to simple transformations (e.g.,
of coordinate systems). Scientists typically refer to benchmarks of this kind as
a way of ‘testing’ a numerical technique, and as way of ‘improving our under-
standing’ of the corresponding model.3 If a numerical technique meets a large
number of benchmarks associated with rigorous results about a model, then one
may say that, in a loose sense of the word, both the model and the simulation
technique display a significant degree of ‘cohesion’, irrespective of the empirical
significance of the model.4

Given that cohesion between rigorous results about a mathematical model
and the numerical methods applied to it, does not guarantee that a model is an
empirically adequate representation of a real system, one might be tempted to
doubt the significance of this weak kind of ‘cohesion’. One might insist that,
while it may be true that a good deal of preliminary benchmarking and cross-
checking has to happen before a model’s predictions can be compared with
empirical data, nonetheless empirical success is the ultimate goal. The view has
some legitimacy, though it hinges on a rather narrow interpretation of scien-
tific modelling: In many cases it is precisely the activity of cross-checking and
‘benchmarking’ that drives research and makes up the better part of it. At the
very least, it must be acknowledged that some of the most heavily researched
models typically are not being assessed by their performance in specific empir-
ical contexts. In part, this is because many models never were intended for
specific phenomena in the first place, but for a qualitative understanding of a
range of physical systems.5 In many areas of research, as R.I.G. Hughes points
out with respect to the physics of critical phenomena, ‘a good model acts as an
exemplar of a universality class, rather than as a faithful representation of any
one of its members’ (19, p. 115). The notion of ‘universality class’ in particular,
which makes it possible to give a comprehensive classification of models inde-
pendent of the dynamical details of the physical systems in question, is directly
associated with rigorous results and relations (concerning the critical exponents
in the vicinity of a phase transition). (See ref. (9) for a detailed survey.) The
mathematical framework of renormalization group theory, too, has given rise
to exact mappings of certain kinds of mathematical models on to one another,
whereby, as Cyril Domb puts it, certain models ‘ceased to be an odd man out,
and could be fitted into a general framework’ (9, p. 244-5.). It is this process of
fitting prima facie disparate models into a general framework, typically with the
aid of rigorous results and relations among models, whereby cohesion of simula-
tive practice is achieved and model-based understanding in science is deepened.

3See refs. (34) and (11), the latter of which makes use of all of the afore-mentioned
benchmarking strategies.

4Here, as in the title of this section, the term ‘cohesion’ is chosen, in line with standard
usage in English, to indicate a weaker kind of ‘sticking-together’ than would be implied by
(epistemic) ‘coherence’. For a somewhat different distinction between ‘cohesion’ and ‘coher-
ence’, see Olsson (2005), Chapter 5.

5On this point, see also Yi (2002).
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However, as I shall argue in the next section, such apparent cohesion at the
descriptive level of scientific practice is underpinned by a more specific kind of
(epistemic) cross-model justification.

6 Coherence and Cross-Model Justification
In the previous section, I argued that the way in which scientists employ, and
numerically evaluate models, is characterised by a high degree of cohesion in
the sense that the activity of cross-checking and benchmarking allows for the
comparison between known exact results and the outcomes of different numerical
methods across a range of models. To paraphrase Domb (1996), individual
models may thus be tied into a general methodological framework, whereby they
become part of a more general fabric of mathematical and numerical techniques,
rather than being considered in isolation. This sense of ‘cohesion’, however,
while no doubt suggestive, may be considered too weak to sanction any specific
appeal to individual rigorous results as a source of justification. In the present
section, I shall make a significantly stronger point regarding the epistemic role of
mathematically exact relations between models. In particular, I shall argue that
epistemic warrant may flow from one model to another in virtue of their being
linked by an appropriate, mathematically rigorous relation. Not just any kind
of rigorous relation will do, but by way of example I intend to show that, given
certain general conditions, there is a straightforward way in which the empirical
success of one model warrants belief in the adequacy of another, quite different
model, provided both are linked by an appropriate mathematically rigorous
relation. First, however, I shall contrast the kind of cross-model justification
proposed here with more established versions of indirect justification.
On standard accounts, indirect justification is a matter of a piece of evidence

E confirming one hypothesis H? by way of confirming another hypothesis H,
which is more directly related to E than is H? (for example because E is logi-
cally entailed by H, but not by H?). If H and H? are related in such a way that
any epistemic support for H may be taken as boosting confidence in H?, then
it is plausible, following the aforementioned terminology, to speak of a relation
of indirect confirmation between E and H?.6 A historical example is discussed
by Laudan and Leplin (1991), who describe how empirical evidence of mag-
netic striping in magmatic material on ocean floors was regarded as providing
indirect confirmation of the hypothesis that continents had undergone signifi-
cant climate changes throughout geological history. The two propositions, at
first sight, seem to have little to do with each other, but they can be linked
by Alfred Wegener’s continental drift thesis and the theory of plate tectonics:
If continental shelves do indeed move relative to one another along suboceanic
faults where new geological material is constantly being formed, then one would

6 It must be noted, however, that speaking of indirect confirmation as a relation may be
misleading in some contexts, since the term ‘indirect confirmation’ does not refer to a logical
relation between propositions expressed by evidential statements and hypotheses, but instead
merely expresses a methodological connection.
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expect to find both magnetic striping on ocean floors (caused by the — inde-
pendently known — multiple reversals the Earth’s magnetic field has undergone
in the past) and variation in a continent’s climate as it moves across different
latitudes. The tectonic drift theory thus both accounts for the formation of new
geological material and predicts that continents move across different climate
zones. The evidence of magnetic striping, E, directly confirms the hypothesis
(H) that geological material is being formed in an ongoing process. By iden-
tifying a possible mechanism underlying continental drift, it also lends support
to tectonic drift theory as a whole and, by entailment, to the thesis (H?) that
continents have undergone major climate changes in the past. The example
at hand instantiates what is perhaps the most elementary formal account of
indirect confirmation: if two hypotheses, H and H?, are entailed by a compre-
hensive theory — in the present case, the theory of plate tectonics — and if a given
empirical finding E confirms H, then E also confirms H?. While this picture
appears intuitive, not least thanks to the choice of historical example, Okasha
(1997) has convincingly argued that it runs into trouble as a formal account of
indirect confirmation, since it gives rise to a version of Hempel’s paradox. This
suggests that more than merely attending to the logical relations between evi-
dential statements, hypotheses, and theories is needed in order to make sense of
indirect confirmation.7 For example, one might try to find a way of restricting
indirect confirmation in such a way that a given hypothesis may receive indirect
support only from a subset of other hypotheses and empirical findings, and not
from just any evidential statement. This might help to avoid Hempel’s paradox,
but it requires an account of when indirect confirmation is possible in principle.
The possibility of indirect confirmation, as a relationship between a piece

of evidence and different hypotheses (or conjunctions of hypotheses), has re-
cently been elaborated on, and has been given a formal underpinning, by work
on the (purported) truth-conduciveness of coherence. (See refs. (22) and (8).)
As Franz Dietrich and Luca Moretti (2005) point out, while it is doubtful that
coherence is truth-conducive in general (in the sense that, given certain non-
arbitrary background assumptions, a set of hypotheses S that is more coherent
is always more probable), it is nonetheless possible to specify conditions un-
der which coherence is confirmation-conducive. These conditions can be made
mathematically precise on any coherence measure that satisfies certain non-
trivial confirmation transmission properties. More specifically, it can be shown
rigorously that, given an appropriate coherence measure (typically defined rela-
tive to a probability function, as a mapping of sets of statements onto real num-
bers indicating the degree of coherence among the set’s members), there exist
finite (non-trivial) coherence thresholds, such that, for any set S that meets the
threshold, the following principles hold:8 (i) evidence for any one member of S

7 Indeed, this observation may provide additional motivation for the project, to be pur-
sued later in this section, of shifting attention from relations between scientific theories and
hypotheses to relations between scientific models.

8The condition of ‘non-triviality’ in relation to the coherence threshold c demands that, for
a given coherence measure C, the value of c be less than the maximal coherence level across
all permissible sets S of statements (that is, of finite, nonempty sets S containing statements
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also confirms each member of S, and (ii) evidence for any one member of S also
confirms the logical conjunction of all members of S.9 More recently, Moretti
(2007) has exploited the formal symmetry between evidential statements and
hypotheses to construct two analogous ‘evidence-gathering properties’, to stand
alongside the confirmation transmission properties associated with (i) and (ii).
The upshot of these findings is the vindication of two standard practices of sci-
entific confirmation: the confirmation of a theory (regarded as a conjunction
of statements) by confirmation of its parts, and the method of indirect confir-
mation of one hypothesis H? by evidence for another, related hypothesis H.
Provided that the two general confirmation-transmission properties are satis-
fied, if H and H? are sufficiently strongly coherent (in the sense specified by
the coherence threshold for the set S comprising H and H? as its members),
then evidence for H flows to H?, as well as to the conjunction H ∧H?. Note
that, unlike the elementary formal account of indirect confirmation derived from
Laudan and Leplin (1991), the present account does not suffer from Hempel’s
paradox. By making the possibility of indirect confirmation conditional on the
existence of strong coherence between two hypotheses, the account places limits
on which hypotheses can lend support to each other, thus avoiding the other-
wise paradoxical conclusion that every contingent statement would appear to
confirm every other.
The significance of these findings is considerable, not least since they pro-

vide a clear sense in which coherence is epistemically advantageous. There does,
however, remain the question of what coherence amounts to: what do we mean
when we say that one belief (hypothesis, statement, proposition) coheres with
another, or indeed coheres better with one belief (or hypothesis, etc.) than with
another. Intuitively, two beliefs are coherent if they ‘hang together’ sufficiently
well.10 Different proposals are available as to how best to cash out this intuitive
understanding of coherence. Thus, Olsson (2002: 249) defines coherence of a
set of beliefs as proportional to the degree to which the contents of those beliefs
agree and proposes a coherence measure based on this idea. By contrast, Fitel-
son (2003) regards coherence as an extension of the notion of (deductive) logical
coherence of sets of statements; hence, he introduces a coherence measure which
essentially averages over all reciprocal relations of support (confirmation) that
hold between any statement of a given set and any subset of other statements
of that set. Different analyses of our pre-theoretical understanding of coher-
ence may be pursued, and a number of other proposals have by now been for-
malised. Interestingly, the confirmation-transmission properties discussed above
have been shown to hold for several of these formal coherence measures (includ-
ing those proposed by Olsson and Fitelson), and one might even speculate that

H with p(H) > 0), where the maximal coherence level will be the one assigned by C to any
set of pairwise equivalent statements or formulae. (See Dietrich and Moretti 2001, p. 413.)

9The former principle may also be weakened to allow for the pairwise consideration of
scientific hypotheses, i.e. by considering binary subsets S? containing hypotheses H and H?

instead of the full set S.; see (Moretti 2007).
10This locution is due to (Tomoji 1999) and has recently been elaborated on by (Moretti

2007).
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the satisfaction of the conditions associated with the possibility of confirmation
transmission is itself a strong desideratum for any viable coherence measure.
Unlike (some forms of) traditional coherentism, there is no suggestion in any of
these proposals that coherence alone can somehow guarantee the likely truth of a
set of propositions — that it can generate justification ‘from scratch’, as it were11

— but instead what is shown is how empirical confirmation may be transmitted
across different (sets of) statements. This observation is of direct relevance to
the study of models and simulations, since it serves as a reminder that more
than mere ‘cohesion’ of scientific practice alone (in the loose sense discussed in
the previous section) is required, or at least desirable, in order to warrant trust
in the results of modelling and simulation techniques. It also makes plain why
it is useful and important to study empirical cases of transfer of warrant across
models, especially in such instances where, as I claim, mathematically rigorous
formal relations between models suffice to enable such cross-model justification.
By way of example, it may be possible to test the suggestion that one possible
way in which mathematical models can be seen to be coherent is by analysing
those mathematically rigorous relations that hold between them and link them
together. Indeed, given that certain mathematical relations, such as mappings
from one domain to another, simultaneously connect a large number of ele-
ments to each other, it appears plausible that mathematically rigorous results
may provide an extra dimension along which models can ‘hang together well’.
Before considering a detailed example, it is important to point out some

of the distinctive features of models and to consider what, specifically, trans-
mission of confirmation would amount to in this case. In the historical scenario
discussed by Laudan and Leplin, where geological evidence of magnetic striping,
E, indirectly confirms (H?), the climate change hypothesis, by confirming (H)
the existence of ongoing formation of geological material (and thereby iden-
tifying a possible mechanism underlying the tectonic drift theory), there is a
clear sense in which both H and H? are part of, or deducible from, a more
general theory. It is against the backdrop of such a theory, in conjunction with
independently established auxiliaries, that one can, for example, draw on the
background knowledge that there have been multiple reversals of the Earth’s
magnetic field throughout geological history.12 The existence of an overarch-
ing theory, which not only comprises the hypotheses to be confirmed but also
places constraints on which empirical findings constitute confirming evidence,
is a feature of most examples of indirect confirmation that are discussed in the
literature. Typically, then, indirect confirmation of a hypothesis H? is the re-
sult of identifying evidence in support of one of the more central tenets H of
a scientific theory, and recognising that H and H? are sufficiently coherent for
the evidence to also confirm H?.13 In the case of models, however, this account
11On this point, see also (Shogenji 2001, p. 98).
12 It is noteworthy in this context that Laudan and Leplin’s concern with indirect confir-

mation is only secondary, insofar as their main concern is with individuating, and choosing
between, empirically equivalent theories. For criticism see Okasha (1997).
13That confirmation of more central tenets of a theory precedes the testing of more pe-

ripheral hypotheses, if true, is merely a historically contingent fact; nothing in the present
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needs to be modified, for several reasons. First, models often include simplify-
ing assumptions and idealizations which may or may not be limiting cases of
an underlying fundamental theory. Demanding that two models be subsumable
under the same general theory may be too restrictive and may exclude legiti-
mate instances of cross-model support. Second, the notion of confirmation is
not as straightforward for models as it is for individual hypotheses. On the
standard picture in terms of conditional probabilities, a given piece of evidence
E confirms a hypothesis H iff p (H|E) > p(H). For models, the relationship
between empirical evidence and confirmation will often be more tentative, in-
sofar as a model is typically only intended to explain certain empirical aspects
of a phenomenon; hence, which empirical data are considered relevant may be
subject to revision. However, this by no means invalidates the idea of empirical
confirmation broadly construed ; it merely cautions against reducing a model’s
empirical success to, say, the quantitative accuracy of its predictions. This ap-
plies in particular to areas where models are employed in order to make sense of
the qualitative features of a system, as in the study of complex phenomena such
as phase transitions. In such cases, a model may be considered well-confirmed if,
for example, it helps to identify a (possible) microscopic mechanism that would
explain a certain (observed) macroscopic behaviour, and if further empirical
evidence supports the existence of the postulated microdynamics. Whether a
model is considered successful or not is not so much a matter of quantitative
precision, or of reproducing particular empirical data (and certainly not just
any empirical data!), but of whether it stands in an adequate representational
relation to a physical system or class of physical systems. As Batterman points
out, a model may well be considered successful when it gives a ‘caricature’ of
a physical system rather than an accurate portrayal of all its details. Despite
these differences between the appraisal of models and confirmation of (ordinary)
hypotheses, it is nonetheless possible to press the analogy with the standard pic-
ture of confirmation of a hypothesis H by evidence E, as long as one recognises
that what should properly take the place of H is a hypothesis about the model —
namely, the hypothesis that it is an adequate representation of a physical system
— rather than just any statement that has been derived from the model, whether
predictive or otherwise.14 An interesting corollary of this account concerns the
possibility of a transfer of empirical warrant from one model to another, namely
when a well-confirmed model M is related to another model M? in such a way
that the very fact of M ’s being an empirically successful representation of a
physical system at the same time guarantees the (likely) representational suc-
cess of M? as a model of another, not necessarily similar physical system. In
this case, it appears perfectly legitimate to speak of a case of indirect confir-
mation of one model, M?, by (the empirical success of) another, M, given that
the relation between the two furnishes extra reasons for the hypothesis thatM?

argument hinges on this temporal sequence.
14This is not so far-fetched a construal as it may seem: after all, in Bayesian epistemology

too, it is not the objective probability of a hypothesis given certain evidence that is at stake,
but ‘roughly’, as Ellery Eells and Branden Fitelson put it, ‘the degree of belief the agent would
have in H were the agent to learn that E’. (10, p. 663)
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is indeed a representation of a physical system, when previously this may have
been a matter of mere stipulation. Such a case may well turn out to conform
to the criteria of confirmation-transmission reported earlier, and indeed, as we
shall see, appears prima facie vindicated by the example to be discussed in the
remainder of this section.
In support of this general picture of indirect confirmation between models,

I shall develop in detail a case study from the recent history of physics. In
particular, I intend to show how empirical warrant may flow from one model to
another, quite different model in virtue of their being linked by an appropriate,
mathematically rigorous relation. This will substantiate the point, made above,
that rigorous results and relations may give rise to a specific kind of (epistemic)
cross-model justification that goes beyond mere cohesion of scientific practice.
The case to be discussed concerns the so-called Mott metal-insulator transition.
(For a review see ref. (13).) As it will turn out, attempts to explain this phe-
nomenon (more about which shortly) with the aid of many-body models, rely
heavily on the empirical success of other, quite dissimilar models as a source of
justification. In particular, the many-body model now most widely believed to
be capable of explaining the Mott transition — the Hubbard model — was his-
torically recognised to be able to fill this role, only because of its standing in an
adequate, mathematically rigorous relation to another widely discussed many-
body model, the Heisenberg model. Before discussing in detail the character
of the models involved in the example, and how the mathematically rigorous
relation between them can function as a channel of empirical warrant, a brief
description of the phenomenon and its history is in order. Its first description
dates back to the 1930s, when experimental research on the properties of metals
and semiconductors flourished, not least thanks to the successful band theory
of electronic semiconductors, proposed by A.H. Wilson in 1931. In 1937, two
Dutch industrial scientists, J.H. de Boer and E.J.W. Verwey, called attention to
an anomaly of the conduction properties of certain transition metal oxides, such
as nickel oxide. As De Boer and Verwey pointed out, its incomplete 3d band of
electrons means that nickel oxide should be an excellent conductor instead of
the extreme high-resistance insulator it actually is. According to Wilson’s band
theory of conduction, even the smallest amount of energy should be enough
to excite electrons into conducting states, whereas experiments showed nickel
oxide to display a high electric resistivity. Nevill Mott (1937), replying to De
Boer and Verwey’s conference paper, suggested that the unexpected insulating
behaviour of nickel oxide and similar transition metal oxides might be caused
by the repulsive interactions among the electrons themselves, thus rendering
them unable to carry electricity. The suggestion was speculative at the time,
but one of the predictions that followed for such ‘Mott insulators’, as they be-
came known, was a sharp transition from insulating to conducting behaviour
as the interaction strength between the electrons is being manipulated (e.g., by
‘doping’ nickel oxide with lithium impurities). Experimental evidence for the
occurence of such metal-insulator transitions was found soon thereafter, yet for
a long time no adequate theoretical model of how such transitions come about
could be identified.
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In parallel to the study of the electric properties of metals and semiconduc-
tors, significant research efforts were also expended on the study of magnetic
properties, both of insulators and of ferromagnetic materials. Two models are
especially significant in this context: the Heisenberg model and the Hubbard
model. Werner Heisenberg, in 1928, proposed a model on the basis of the emerg-
ing quantum mechanics, which aimed to describe magnetic behaviour in systems
with fixed spins. Some 35 years later, John Hubbard employed the by then far
more sophisticated formalism of second quantisation, to propose a model of
magnetism for the radically different case of systems with itinerant (electron)
spins. The physical interpretations of the two models differ starkly: In the for-
mer case, spins — the ‘elementary magnets’, so to speak — are spatially located
at atoms in a crystal lattice, whereas in the latter case they are associated with
freely moving, delocalized electrons. The Heisenberg model, in particular, was
highly successful in explaining a number of empirical laws and phenomena for
insulators with localized magnetic moments, such as Bloch’s T 3/2 law, the Curie-
Weiß law, the occurrence of spin waves, and critical phenomena in the vicinity
of phase transitions. The model’s empirical success was helped partly by its
amenability to techniques of analytical approximation and numerical computa-
tion; indeed, the various results and predictions of the Heisenberg model are
generally regarded as ‘so convincing that one does not expect very much addi-
tional information from [its] unknown exact solution’ (27, p. 126). The Hubbard
model’s empirical success in modelling the ferromagnetic behaviour of metals
is somewhat more ambiguous, mainly due to its more complex mathematical
structure (which results from a mathematical term representing the collective
electron-electron interaction), which makes the derivation of quantitative pre-
dictions and relationships (such as the various empirical laws mentioned in the
case of the Heisenberg model) more difficult. Hubbard himself was able to show
that a ferromagnetic phase transition was not ruled out by the model and that
certain (qualitative) conditions would be favourable for ferromagnetism. It was
not until the advent of quasi-exact simulation techniques, however, that the
Hubbard model was vindicated as indeed capable of representing ferromagnetic
behaviour.
That two many-body models may differ in their empirical success is of course

to be expected, especially when their target phenomena are different. In the
present example, the Heisenberg model had acquired considerable empirical con-
firmation as a model of the magnetic properties of insulators, long before the
Hubbard model was shown to be capable of representing ferromagnetic behav-
iour in metals. However, as discussed earlier, comparison with empirical data
alone does not exhaust the ways in which mathematical models may be studied:
insight may also be gained from studying the formal relations that hold between
models, qua their status as mathematical objects. In the case of the Heisenberg
and the Hubbard model, the mathematically rigorous relations between them
are especially intimate. For example, it can be shown that, under certain con-
ditions (at half-filling — i.e., when half of the quantum states in the conduction
band are occupied — and in the strong-coupling limit, when the parameter rep-
resenting the relative strength U of the electron-electron interaction diverges)
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the Hubbard model can be mapped fully on to one version of the Heisenberg
model (namely, the spin-1/2 antiferromagnetic Heisenberg model). Under the
specified conditions, the two models, despite their different physical interpre-
tations, are de facto isomorphic and display the same dynamic behaviour. In
addition to such rigorous relations between models, there also exist rigorous
results for certain limiting cases of each individual model. For example, in the
case of vanishing electron-electron interaction (U = 0), the Hubbard model sim-
plifies considerably and is mathematically equivalent to the much older, exactly
solvable Fermi gas model (proposed by Enrico Fermi in 1935), which describes
the statistics and conduction properties of an ideal metal in terms of a perfect
electron gas.
As it turns out, when considered in conjunction, these mathematically rigor-

ous findings combine to allow for the kind of transfer of empirical warrant that, I
suggested earlier, could take place across models, even when these describe very
different physical systems. In order to complete the example, what needs to be
shown is how the Hubbard-Heisenberg mapping and the identity between the
Hubbard model at U = 0 and the Fermi electron gas model combine to channel
empirical warrant from the Heisenberg model to the Hubbard model. Inter-
estingly, this transfer of warrant extends beyond the Hubbard model’s original
purpose of representing ferromagnetism, and instead applies to the Hubbard
model as a model for the Mott metal-insulator transition: what will be vindi-
cated is the hypothesis — which previously had only been stipulated — that the
Hubbard model stands in a representational relation to a class of real phys-
ical systems (including compounds involving ferromagnets such as nickel), in
this case comprising those substances that are Mott insulators. In order to see
how the indirect confirmation of a representational relationship comes about,
one needs to consider the rigorous results and relations discussed earlier. Re-
call that, at U = 0 (zero electron-electron interaction), the Hubbard model
has been rigorously shown to describe a perfect conductor (ideal Fermi electron
gas), whereas in the limit of U → ∞ (diverging interaction strength) it maps
exactly onto the antiferromagnetic Heisenberg model. The latter, in virtue of its
empirical success, had long become ‘the “standard model” for the description
of magnetic insulators’ (13, p. 75). One is thus faced with a model which, for
vanishing parameter value U = 0, describes a conductor and, towards the other
end of the spectrum of possible parameter values of U , describes an insulator.
The former is a direct rigorous result about the Hubbard model considered in
isolation, whereas the latter follows from the rigorous relation that maps the
Hubbard model onto the Heisenberg model, coupled with the body of empirical
evidence supporting the adequacy of the Heisenberg model as a model of antifer-
romagnetic insulators. Given these properties of the Hubbard models in the two
limits of weak (U = 0) and strong (U →∞) electron-electron interaction, there
are good grounds to believe that, at some finite intermediate level Uc a tran-
sition in the model’s behaviour occurs from conductor to insulator — precisely
what happens in the case of the Mott metal-insulator transition. Hence, as one
leading physicist summarises the consensus of his peers, ‘we are confident that
the model is indeed capable of describing a Mott transition at a critical interac-
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tion strength Uc’ (13, p. 75). Given that the Hubbard model is formulated in
terms of operators representing electronic behaviour only, this may be taken as a
confirmation of Mott’s original hypothesis that the repulsive interaction among
otherwise free electrons may be responsible for the unexpected insulating be-
haviour. Note, however, that, in this case, whatever confirmation is conferred to
Mott’s original hypothesis is dependent on the evidence for the Hubbard model’s
success as a representation of a class of physical systems, where such evidence of
representational success is itself partly constituted by mathematically rigorous
results that allow for the flow of warrant from the empirically well-confirmed
Heisenberg model to the initially more stipulative Hubbard model. In other
words, in the example just discussed, empirical warrant first flows from one
model to another, in virtue of their standing in an appropriate mathematically
rigorous relation, from which it may then ‘trickle down’ to the level of individual
hypotheses. Rigorous results and relations may thus come to be seen as playing
an essential role in conferring cross-model justification.
Before concluding, I wish to briefly address two concerns that might stand

in the way of recognising the capacity of rigorous results and relations to confer
justification from one model to another. First, one might worry whether purely
formal results can indeed confer justification. How can the mere fact that one
model is related to another through a set of mathematically rigorous relations
in itself be a source of justification? This worry is misplaced, however, in that it
conflates two very different aspects of justification: its generation and transmis-
sion. The present account of cross-model justification only concerns the latter;
that is, it proposes a novel way of how empirical warrant may flow from one
model to another, and need not be committed to the more radical claim that
formal results can somehow create justification ‘from scratch’. Indeed, in this
regard the situation is the same as in recent research into the epistemic role
of coherence, reported earlier in this section, according to which one can save
many of the intuitions concerning the epistemic utility of coherence without
having to resort to the dubious claim that coherence is in itself always truth-
conducive. A second worry concerns the status of those mathematically rigorous
results and relations that hold only in ‘unphysical’ limiting cases. Consider the
example discussed above, of the Hubbard-Heisenberg mapping in the limiting
case of diverging interaction strength U → ∞. Such a case cannot, strictly
speaking, purport to describe any actual physical system, where the interaction
is necessarily finite. However, the fact that certain mathematical limiting cases
are empirically vacuous need not undermine their relevance, given that the va-
lidity of mathematically rigorous results and relations does not hinge on their
empirical confirmation.15 Furthermore, given that the construction of models
is itself heavily dependent on techniques of idealization, limiting procedures
and ‘asymptotic reasoning’ (see Batterman 2001), there is no principled reason
why the same techniques should not be used in comparing and evaluating such
models. Indeed, if one takes one’s lead from actual scientific practices of mod-
15This is not to say that one cannot often give an entirely reasonable empirical interpreta-

tion of such limiting cases, for example by specifying which orders of magnitudes are to be
considered relevant.
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elling and confirmation, and from the historical example of the Mott transition
in particular, there seems little reason to doubt that cross-model justification
is possible and that rigorous results and relations need not themselves be im-
bued with direct empirical significance in order to serve their auxiliary role of
conferring empirical warrant from one model to another.

7 Conclusion
In this paper, I have argued that mathematically rigorous results and relations
play a crucial role in many areas of scientific modelling. Not only do they serve
as a means of coordinating and calibrating the numerical techniques and approx-
imations employed in actual scientific practice; they also give rise to a specific
kind of cross-model justification, in that they allow for the transfer of empirical
warrant between models, by virtue of their standing in an appropriate, math-
ematically rigorous relation. Importantly, rigorous results are genuinely new
contributions of a model: they are neither entailed by theoretical ‘first prin-
ciples’, nor can they be inferred from empirical data. In this sense, rigorous
results are internal to a model, or class of models, and cannot be assimilated to
either theory or data. As such, they illustrate the capacity of models to take
on roles beyond both fundamental theory and performance in specific empirical
and interventionist contexts. It is such rigorous results, I claim, which guide
much of research by providing the focus for modelling strategies and attempted
refinements of evaluative techniques, whether by numerical means, analytical
evaluation, or computer simulation. Characteristically, rigorous results provide
non-empirical constraints, which may serve as general ‘benchmarks’ for model
construction and computer simulation; it is such constraints and benchmarks
which guide the process of model refinement. Since rigorous results generally are
validated by a model’s formal features as a mathematical object, they can also
relate different models in quite unexpected ways. This allows for the transfer of
empirical warrant from one model to another, even in cases where both represent
different classes of physical systems, as in the mapping of the Hubbard model at
half-filling onto the Heisenberg model. It is only in virtue of this mathematically
rigorous mapping, coupled with the empirical success of the Heisenberg model,
that the Hubbard model has been recognised as successfully representing a class
of real physical systems, known as Mott insulators. By vindicating a model’s
representational success, based on the empirical success of another, quite dif-
ferent model, rigorous results and relations allow for a specific kind of indirect
confirmation. This phenomenon of (epistemic) cross-model justification, I have
argued, is not merely another form of ‘moulding’ a mathematical model to con-
crete empirical situations, nor is it exhausted by the merely descriptive cohesion
of actual scientific practices of modelling and simulation. Rather, rigorous re-
sults and relations are novel contributions at the level of mathematical models
and, as such, deserve closer philosophical analysis and attention.
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