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The Old Evidence Problem and the Inference to the Best Explanation 

 

Abstract  

The Problem of Old Evidence (POE) states that Bayesian confirmation theory cannot explain 

why a theory H can be confirmed by a piece of evidence E already known. Different 

dimensions of POE have been highlighted. Here, I consider the dynamic and static 

dimension. In the former, we want to explain how the discovery that H accounts for E 

confirms H. In the latter, we want to understand why E is and will be a reason to prefer H 

over its competitors. The aim of the paper is twofold. Firstly, I stress that two recent solutions 

to the dynamic dimension, recently proposed by Eva and Hartmann, can be read in terms of 

Inference to the Best Explanation (IBE). On this basis, I gauge the weaknesses and strengths 

of the two models by showing that the two authors endorse a particular formulation of IBE, 

and that it is still unsure if it is the one descriptively used. Moreover, I contend that, while 

one condition of their first model is not expression of this formulation, the only condition of 

their second model is. Secondly, I focus on the static dimension of POE which, now, has to 

be expressed in IBE terms. To solve it, I rely on the counterfactual approach, and on a version 

of IBE in which explanatory considerations help to evaluate the terms in Bayes’ theorem. 

However, it turns out that the problems of the counterfactual approach recur even when it is 

used to solve the static POE in IBE terms. 
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1. Introduction  

Since Glymour (1980) first described it, the Problem of Old Evidence (POE) has been 

bedevilling the Bayesian theory of confirmation. It has been seen as a major descriptive flaw 

of such a theory, which struggles to account for a shared intuition of scientific reasoning 

according to which a theory H can be confirmed by a piece of evidence already known, i.e. 

by an old piece of evidence. 

Different dimensions of POE have been highlighted (Eells, 1985; 1990), and, accordingly, 

different solutions have been proposed for them. Here, I will consider only two dimensions, 

i.e. the dynamic and static one. In the former, we want to explain how the discovery that H 

accounts for the old evidence confirms hypothesis H in the sense that it raises the subject’s 

degree of belief in H. In the latter, instead, we want to understand why the old evidence is 

and will be a reason to prefer H over its competitors.  
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The aim of the paper is twofold. Firstly, I will highlight that two recent solutions to the 

dynamic dimension of POE, proposed by Eva and Hartmann (2020), can be read in terms of 

Inference to the Best Explanation (IBE). In fact, by using a different formal apparatus, both 

models show that learning that H is the only available hypothesis that adequately explains 

the old evidence confirms H.  

Moreover, by making such a reading explicit, I will gauge the weaknesses and strengths of 

the two models. More precisely, I will show that Eva and Hartmann have in mind a specific 

understanding of the core IBE idea that explanatory considerations have a confirmational 

import. On this basis, pending the question if this is indeed the formulation of IBE 

descriptively used, I will point out that, while one condition of their first model is not an 

expression of such a formulation, the only condition employed in their second model is.  

As for the second aim, I will highlight that the explicit realization that real cases of 

confirmation by old evidence are instances of IBE, sheds some light also on the static 

dimension of POE which now has to be expressed in IBE terms. To solve the static dimension 

of POE so expressed, I will rely on the counterfactual approach (Howson, 1984; 1985; 1991), 

and on the Bayesian IBE (Okasha, 2000; Lipton, 2001). The latter is a probabilistic version 

of IBE, according to which explanatory considerations help to evaluate the terms in Bayes’ 

theorem. However, we will see that the problems that haunt the counterfactual approach recur 

even when it is used to solve the static POE in IBE terms. 

To show my claims, I will follow this structure. In section 2, I will introduce the old evidence 

problem for Bayesian confirmation theory, its dynamic and static dimension, and the 

solutions proposed for them. In section 3, I will present Eva and Hartmann’s two novel 

solutions to the dynamic POE. And, after having made their connection with IBE explicit, I 

will assess these two models in light of such a connection. Finally, section 4 will focus on 

the static POE in IBE terms. After having introduced the Bayesian IBE, I will point out how 

the latter can be employed along with the counterfactual approach to solve the IBE’s reading 

of the static POE. Finally, I will explain how the problems of the counterfactual approach 

can also undermine the solution at hand. 
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2. The old evidence problem, and its dimensions  

As said in the introduction, the old evidence problem states that the Bayesian confirmation 

theory cannot account for the intuition according to which a theory can be confirmed by an 

old piece of evidence.  

The most famous instance of confirmation by old evidence is the one of Mercury’s perihelion 

shift (Glymour, 1980). The advance of Mercury’s perihelion was an anomalous piece of 

evidence, as it was not explained by the available scientific theories, like Newtonian 

mechanics. Then, Einstein realized that his General Theory of Relativity (GTR) accounted 

for this phenomenon. When such a relationship between the theory and the evidence was 

discovered, the evidence was already known: the nature of Mercury’s perihelion had been 

the object of intense study by astronomers for many decades. However, according to many 

physicists, Mercury’s perihelion shift confirms GTR because the latter resolves that 

observational anomaly.  

From this example, we can derive a general pattern (Hartmann & Sprenger, 2019, pp. 131-

132): 

1. we start with an anomalous piece of evidence E. 

2. At some point, it is discovered that theory H can account for E. 

3. E is an old piece of evidence: at the time in which the relationship between H and E 

is developed, the scientist is already certain or almost certain that E is real. 

4. E confirms H because the latter resolves the observational anomaly E. 

Now, if we formalize this schema in a Bayesian fashion, we obtain:  

 

P(H|E) =
P(H)P(E|H)

P(E)
= P(H)                                                                                                       (1) 

 

Indeed, since E is already known, the scientist’s degree of confidence in it is maximal, i.e. 

P(E) = 1. From this, it follows that also P(E|H) is equal to 1. To see why, note that the law of 

total probability implies that: 

 

 P(E) =  P(E|H)P(H) +  P(E|¬H)P(¬H)                                                                                    (2) 
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Thus P(E) = 1, for all P(H) ∈ (0; 1), implies that P(E|H) = P(E|¬H) = 1. 

Given that the posterior probability of the theory, P(H|E), is equal to its prior probability, 

P(H), E does not confirm H, according to the notion of ‘confirmation as increase in firmness’ 

(Hartmann & Sprenger, 2019, pp. 50-55). The latter, in fact, states that E confirms H if and 

only if P(H|E) > P(H). This is the relevant sense of confirmation in this example, as 

confirming evidence raises the rational agent’s degree of belief in the theory. Thus, as 

announced, Bayesian confirmation theory cannot explain the scientific intuition according to 

which a theory can be confirmed by a piece of evidence already known.  

Different dimensions of POE have been highlighted (Eells, 1985; 1990). Here, I will take into 

consideration only two of them, i.e. the dynamic and static dimension. 

 

2.1. The dynamic dimension of POE 

In the dynamic POE, we find ourselves in a moment in time in which H and its relationship 

with E are discovered. What we want to know is how the discovery that H accounts for E 

raises the subject’s degree of belief in H. 

To understand this better, let us take into consideration again the Mercury perihelion shift’s 

example. It took Einstein some time to find out that GTR (H) entailed the anomalous shift 

(E), i.e. X = H ⊢ E (Brush, 1989; Earman, 1992). By learning X, Einstein increased his degree 

of belief in H, as X was a surprising fact, in line with the scientific intuition that surprising 

evidence has more confirmational value. So, we can take the inequality P(H|X, E) > P(H|E) 

to represent Einstein’s actual degrees of belief respectively after and before learning X. How 

this inequality between actual degrees of belief is reached is precisely what we want to 

understand in the dynamic POE.  

Notice that the confirming evidence is not E itself, but learning the logical fact X. Modelling 

this situation in a Bayesian fashion implies an abandonment of the logical omniscience of the 

Bayesian agent who otherwise cannot learn the logical fact X, always part of her background 

knowledge. Indeed, the latter is the starting point of the ‘classical’ approaches to the dynamic 

POE, due to Garber (1983), Niiniluoto (1983), Jeffrey (1983), and Earman (1992). In fact, 

despite their differences, they all rely on the following: 

1. they abandon the logical omniscience of the Bayesian agent. 
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2. They add atomic sentences of the form X to the set of propositions about which the 

agent can have degrees of belief. 

3. They show that, under suitable assumptions, we have that P(H|X, E) > P(H|E). 

However, all in all, the classical approaches struggle to work. Garber and Niiniluoto’s ones 

only show the existence of probability functions that solve dynamic POE. But they do not 

say what we need to know, i.e. what conditions capture real cases of confirmation by old 

evidence and lead the scientist to conclude P(H|X, E) > P(H|E). This gap is filled by Jeffrey 

and Earman’s approaches, which, however, are based on very problematic assumptions (for 

a complete overview of the classical approaches, and their problems, see Hartmann & 

Sprenger, 2019, pp. 133-137).  

In addition to what we have just said, Hartmann and Fitelson (2015, p. 714) highlight another 

reason why the classical solutions are not adequate. That is, they do not allow for the natural 

possibility that explanatory facts that can also be non-deductive can provide the basis for 

confirmation by old evidence. Thus, they propose a new interpretation of X and Y. Namely: 

• X: H adequately explains E. 

• Y: H’s best competitor (H’) adequately explains E. 

Then, they derive P(H|X) > P(H) from the following qualitative constrains (assuming that 

P(E) = 1): 

HF1 P(H|X, ¬Y) > P(H|¬X, ¬Y). 

HF2 P(H|X, ¬Y) > P(H|¬X, Y). 

HF3 P(H|X, Y) > P(H|¬X, Y). 

HF4 P(H|X, Y) ≥ P(H|¬X, ¬Y). 

Prima facie, these conditions seem plausible. According to HF1 and HF2, H’s probability is 

higher supposing that it adequately explains E and H’ does not, than supposing that H does 

not adequately explain E, along with H’ (HF1), or when H’ adequately explains E (HF2). 

HF3 says that if H’ adequately explains E, then H is more probable if it adequately explains 

E than if it does not. Finally, HF4 is an exclusive conjunction of two claims: H’s probability 

is strictly higher, given that both H and H’ adequately explain E, than supposing that neither 

H nor H’ adequately explain E; H’s probability, given the supposition that both H and H’ 

adequately explain E, is equal to the one H would have supposing that neither H nor H’ 
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adequately explain E. Both of these claims seem to be compelling: one may be willing to 

rank P(H|X, Y) strictly higher than P(H|¬X, ¬Y), as X ∧ Y implies that H adequately explains 

the old evidence E, whereas ¬X ∧ ¬Y implies that H does not adequately explain E; on the 

other hand, it could be argued that in both suppositions there is no difference between H and 

H’ with respect to explaining E, and so there should not be a difference between the two in 

terms of probability. 

However, Eva and Hartmann (2020) point out that Hartmann and Fitelson’s proposal is 

incomplete, as its conditions (HF1-HF4) are jointly sufficient to guarantee P(H|X) > P(H), 

but they are not sufficient to guarantee P(H|X ∧ ¬Y) > P(H). That is, they allow for the 

possibility that X ∧ ¬Y can disconfirm H. And this is implausible: learning that H adequately 

explains E and H’s best competitor (H’) does not should always make us more confident in 

the truth of H. In fact, in this situation, I become more confident that H is the only way I can 

possibly account for the evidence and thereby become more confident that H has to be true.  

 

2.2. The static dimension of POE 

In the static dimension of POE, we find ourselves in a moment in time in which belief changes 

caused by the discovery of H and its relationship to E already happened. However, we want 

to say why E is and will be a reason to prefer H over its competitors.  

The standard approach to the static POE states that the confirmational relation between H 

and E has to be evaluated relying on a counterfactual degree of belief function where E is not 

taken for granted (Howson, 1984; 1985; 1991). So, we are giving up the actual degrees of 

belief in E.  

This means that the conditional probabilities, P(E|H) and P(E|¬H), are not equal to 1, as it 

would turn out if E is taken for granted, as seen before. Thus, P(E|±H) describes the degrees 

of belief we would have in E if we did not know that E and H were the case. Namely, they 

describe our degrees of belief in E supposing H and ¬H. This allows a meaningful 

comparison between the likelihoods to establish confirmation judgements. Let us see why. 

First of all, notice that the denominator of Bayes’ theorem can be neglected as it is the same 

for all the theories we are considering – remember, we want to say why evidence E confirms 

H more than other theories. Thus, we have that P(H|E) > P(¬H|E) if and only if P(H)P(E|H) 
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> P(¬H)P(E|¬H). Now, if P is an ‘impartial’ prior probability distribution, i.e. P(H) = P(¬H), 

then P(H|E) > P(¬H|E) if and only if P(E|H) > P(E|¬H). Going back to the Mercury perihelion 

shift’s example, we have the latter confirmation judgement. For, P(E|H) = 1 because GTR 

implies Mercury’s perihelion shift, whereas P(E|¬H) ≪ 1, as Newtonian mechanics and other 

theories do not make definite predictions about E.  

The main flaw of the counterfactual approach is that its novel interpretation of probability 

raises many philosophical and technical problems. As Eells (1990, pp. 207-208, emphases in 

the original) says: “Glymour and Garber both point out that there will not necessarily be any 

particular degrees of belief that we can say a person would have had in E, or in H1 given E, 

if this person’s degree of belief in E had been less than 1. Indeed, it seems plausible that in 

some cases H would not even have been formulated had E not been learned. And surely there 

also will be cases in which the person’s knowledge of E saved his life at some time in the 

past, so that had the individual’s degree of belief in E been less than 1, the person would be 

dead now. Also, there are of course the well-known difficulties attending the proper 

interpretation of counterfactual conditionals that would befall any such modification of 

Bayesian confirmation theory”. 

To better understand the two problematic cases Eells mentions to argue that we will not 

necessarily have any particular degree of belief in E or in H given E, had we not known E, it 

is useful to make some examples2.   

As for the first case, consider the following example borrowed from Schurz (2008, pp. 209-

210). Let us suppose that biologists discover marine fossil records, e.g. fish bones, in the 

ground of dry land (evidence Ga). To account for this piece of evidence, they introduce 

hypothesis Ha: ‘some geological time span ago, there was a sea here’. To test the hypothesis, 

they look for further empirical consequences, deducible from Ha and background 

 
1 Eells refers to hypotheses or, equivalently, theories, by using the capital letter T and not H. However, for 

consistency, I replaced T with H.       

2 The first problematic case is also considered by Glymour (1980, p. 89), who, however, does not provide any 

example. Moreover, Glymour (1980, pp. 87-91) makes other arguments in favour of the claim that it is 

problematic to have particular degrees of belief in E, or in H given E, had our degrees of belief in E been less 

than 1.    
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assumptions K, like, for instance, further geological indications such as calcium deposits, or 

marine shell fossils, and so on (let us call these pieces of evidence Ea).  

As Schurz observes, if the latter findings are observationally verified, the hypothesis is 

confirmed. Moreover, Schurz points out that if Ea is verified, then both Ga and Ea provide 

epistemic support to Ha, adding that the initial inference keeps its justificatory value. In other 

words, Ga confirmed Ha from the beginning, and now that Ea is verified, Ga keeps 

confirming Ha, along with Ea.  

Even if Schurz does not provide a Bayesian analysis of the example, from a Bayesian 

standpoint, we can surely say that: P(Ha|Ga) > P(Ha); and, once Ea is verified, P(Ha|Ga ∧ 

Ea) > P(Ha). So, in both instances, Ga confirms Ha. However, Ga is old evidence, as it is 

known before Ha is formulated. That is, we have an old evidence problem.  

If we try to solve it by using the counterfactual approach, namely by supposing that we had 

not known Ga, then we would not even have formulated Ha, because, as the example shows, 

Ha is advanced to account for Ga.  

Let us now consider the second problematic case considered by Eells, i.e., the one concerning 

the fact that knowledge of E saved the individual’s life at some time in the past, so that had 

the individual’s degree of belief in E been less than 1, the person would be dead now. 

An example of this circumstance could be the following. Let us suppose that a primitive man 

sees large footprints on the ground, of a kind he has never seen (evidence E). He conjectures 

that the footprints were left by a huge and dangerous animal (hypothesis H). Scared for his 

life, he decides to change path. Later on, he confirms his hypothesis by gaining direct 

evidence of it: he sees from a distance the animal pass by, and once it is gone, the primitive 

man checks its footprints. 

Schurz (2008, p. 209) considers cases like these, in which the hypothesis, advanced to explain 

a piece of evidence, is later on confirmed by direct evidence. And, he points out that the weak 

epistemic support which the initial inference conveys to the conjecture gets fully replaced by 

the strong epistemic support provided by the direct evidence. This means that, in our 

example, E confirms H, but only weakly, and, once the direct evidence is found, it is the latter 

that fully confirms H, and not E. Still, at the beginning, even if only weakly, E confirms H. 

So, in Bayesian terms we can surely say that P(H|E) > P(H).  
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For the same considerations as above, E is old evidence. Thus, if, before direct evidence is 

collected, we want to explain why P(H|E) > P(H) happens in a Bayesian fashion, we have to 

deal with an old evidence problem.  

Again, if we try to solve it by using the counterfactual approach, namely by supposing that 

we had not known E, then we would not even have formulated H, because, as the example 

shows, H is advanced to account for E.  

 

3. Eva and Hartmann’s two novel solutions to the dynamic POE: the Inference to 

the Best Explanation’s perspective  

In a recent article, Eva and Hartmann (2020) propose two novel solutions to the dynamic 

POE. Their common denominator is the observation that what typically happens in real cases 

of confirmation by old evidence is that hypothesis H receives strong confirmation by old 

evidence E because H is the only available hypothesis that adequately explains E. Indeed, 

both models show that learning such a fact confirms hypothesis H.  

Even if Eva and Hartmann never acknowledge this, a natural and intuitive way to express 

what the two models show is saying that learning that H is the best explanation of E confirms 

H. That is, the two models should be read in terms of inference to the best explanation. 

Accordingly, an explicit connection between them and IBE should be made, and the two 

models should be assessed in light of such a connection. 

Making such an assessment is the main purpose of this section (subsection 3.3). But, in order 

to do that, first, I will present the two models (subsection 3.1), and give a brief exposition of 

what IBE is (subsection 3.2).  

 

3.1. Eva and Hartmann’s two novel solutions 

The first model aims to overcome the incompleteness of Hartmann and Fitelson’s model (see 

end of subsection 2.1), by finding plausible extra conditions, consistent with HF1-HF4, 

under which X ∧ ¬Y does not disconfirm H.  

There is no need to go very far, as this condition is a slight strengthening of condition HF4, 

namely HF4*: P(H|X, Y) = P(H|¬X, ¬Y). According to Eva and Hartmann, this assumption 

captures the idea that, typically, hypotheses receive significant confirmation by old evidence 
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only when they are the only hypotheses that adequately explain the relevant evidence. It does 

so – I believe – by telling us that when H’s best competitor explains E as well as H does, H’s 

probability is equal to the probability H would receive if neither H nor H’ adequately explain 

E. And this latter probability does not confer a significant confirmation. 

Then, they prove that HF1-HF4* are jointly sufficient to guarantee: (1) P(H|X) > P(H); (2) 

P(H|¬Y) > P(H); (3) P(H|X ∧ ¬Y) > P(H). Thus we have the desired result: (3).  

More specifically, the aforementioned idea is justified by the observation that it is what 

happens in the real cases of confirmation by old evidence. Indeed, in the Mercury perihelion 

shift’s example, GTR received such a strong confirmation because it adequately explained E, 

and none of its competitors did. In fact, the competing hypotheses – Le Verrier’s unobserved 

planet ‘Vulcan’, and Von Seeliger’s ring of a particular matter around the sun (e.g. 

Crelinsten, 2013) – were not serious competitors to GTR when Einstein found out it implied 

E. If there are competing theories which are also capable of adequately explaining the old 

evidence, then the degree of confirmation conferred on the hypothesis by the old evidence 

would intuitively be far weaker, and possibly negligible. For instance, if H ∈ S, where S is a 

class of mutually incompatible theories, and it is showed that all the theories in S adequately 

explain the old evidence, this proof will not do much to increase our confidence in H, since 

it does nothing to distinguish H from its competitors. 

The point that has just been highlighted suggests that scientists are primarily concerned with 

the proposition A: ‘H is the only available hypothesis that adequately explains E’. 

Accordingly, we need to show that the agent increases her confidence in H because she 

becomes more confident in A, without necessarily becoming certain of the truth of any 

individual proposition, i.e. ‘H adequately explains E’ and ‘H is the only available hypothesis 

that adequately explains E’. Formally, by using Jeffrey’s conditionalization, we want to 

show:  

 

P∗(H) = P(H|A)P∗(A) + P(H|¬A)P∗(¬A)  > P(H)                                                                 (3) 
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In order to do this, Eva and Hartmann use only one minimal constraint A1: P(H|A) > P(H| 

¬A). That is, H is more likely to be true assuming that it is the only available hypothesis that 

adequately explains the old evidence than assuming that it is not. 

From A1, it straightforwardly follows that, when the scientist becomes more confident in A, 

i.e. P*(H) > P(H)3.  

When the scientist learns A for certain, then Jeffrey’s conditionalization reduces to strict 

conditionalization, and we need to prove: P*(H) = P(H|A) > P(H), which, again, 

straightforwardly follows from A1, since the latter is equivalent to P(H|A) > P(H).  

Thus, we see that both models show that learning the proposition ‘H is the only available 

hypothesis that adequately explains E’ confirms H. This proposition, in the first model, is 

expressed by X ∧ ¬Y, and, in the second model, by A.  

 

3.2. What is Inference to the Best Explanation? 

The core idea of Abduction or, as it is more commonly called nowadays, Inference to the 

Best Explanation is that explanatory considerations have a confirmational import. Such an 

idea can be cashed out in a variety of plausible ways. Here, following Douven (2017), I will 

consider three of them, which are all inference rules, starting with the formulation often 

encountered in textbooks of epistemology and philosophy of science:  

 

ABD1  

 

 

The main problem with ABD1 is that it does not appear to be normatively adequate as its 

reliability is based on conditions that are hard to justify. In fact, in order for ABD1 to be 

reliable, we need two necessary conditions: 

1. In most of the cases, the best explanation relative to the hypotheses we have 

considered must also be the best relative to the hypotheses we might have conceived. 

 
3 For the proof, see Eva and Hartmann (2020), footnote n. 4, p. 491 

 

Given evidence E and candidate explanations H1, . . ., Hn of E, infer the 

(probable) truth of that Hi which best explains E. 
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That is, the best absolute explanation of the evidence has to be among the candidate 

hypotheses we have come up with. Otherwise, ABD1 would lead us to consider 

probably true, and so to believe, “the best of a bad lot” (van Fraassen, 1989, p. 143). 

2. In most of the cases in which the best explanation of the evidence is also the best 

absolute explanation, the best explanation is probably true. 

However, 1 can be fulfilled only when we assume a predisposition of the agent to hit the best 

absolute explanation among the ones she has considered. But, as van Fraassen points out 

(ibid., p. 144), it is a priori implausible to suppose we have such a form of privilege. 

The most promising response to the ‘argument of the bad lot’ points out that the rule is 

asymmetric (e.g. Kuipers, 2000, p. 171). Namely, it has an absolute conclusion – the 

hypothesis is probably true – on the basis of a comparative premise – the best explanation of 

the data is relative to the available explanations of the data. This discrepancy can be avoided 

in two ways: either by making the premise absolute as well, or by making the conclusion 

comparative.  

According to the first path, the probable truth of the best explanation is not to be inferred 

only when the latter is the best explanation with respect to the candidate explanations, but 

also when it is a satisfactory (Musgrave, 1988) or good enough (Lipton, 1993) explanation. 

Thus:  

 

ABD2  

 

 

 

The main problem with ABD2 is that it relies on concepts, such as the satisfactoriness of an 

explanation or its being good enough, of which we lack a full understanding.  

Conversely, as announced before, the second option derives a comparative conclusion from 

a comparative premise: 

 

 

 

Given evidence E and candidate explanations H1, . . ., Hn of E, infer the 

(probable) truth of that Hi which best explains E, provided Hi is satisfactory/good 

enough qua explanation.  
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ABD3  

 

 

 

ABD3 requires, instead, an account of closeness to the truth. But many accounts of this kind 

are available today (e.g. Niiniluoto, 1998). 

The bright side of the latter two definitions is that, despite the shortcomings, their reliability 

is not based on an implausible form of privilege as ABD1’s reliability. 

 

3.3. Weaknesses and strengths of the two models from IBE’s point of view  

Armed with what we have just said in the previous two sections, it is now time to make 

explicit the connection between IBE and Eva and Hartmann’s two models, and to assess the 

latter in light of such a connection.  

In order to do that, the first thing we need to understand is which of the three formulations of 

IBE considered in subsection 3.2, if any, originates from Eva and Hartmann’s discussion. 

As pointed out in subsection 3.1, Eva and Hartmann’s two models rely on a key idea, namely: 

 

E&H Idea  

 

 

 

At a closer look, it can be seen that E&H Idea is endorsed by the two authors both in terms 

of confirmation as firmness, and in terms of confirmation as increase in firmness4.  

Let us start by seeing in which sense E&H Idea is expressed in terms of confirmation as 

firmness.  

 
4 To expand on the distinction between these two senses of confirmation, see Hartmann and Sprenger 2019, 

variation 1. 

In the real cases of confirmation by old evidence, hypothesis H receives 

strong confirmation by old evidence E, because H is the only available 

hypothesis that adequately explains E. 

 

Given evidence E and candidate explanations H1, . . ., Hn of E, if Hi explains E 

better than any of the other hypotheses, infer that Hi is closer to the truth than 

any of the other hypotheses.  
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In the literature (e.g., Hartmann and Sprenger, 2019, variation 1), confirmation as firmness 

is defined as follows: 

 

Confirmation as Firmness  

 

 

Thus, E&H Idea in terms of confirmation as firmness would say:  

 

learning that H is the only available hypothesis that adequately explains E (e.g., X∧¬Y) 

strongly confirms H because P(H|X ∧¬Y) = t, where t is a high value5.  

 

This is how E&H Idea is captured by condition HF4*: P(H|X,Y) = P(H|¬X,¬Y). Here is 

why. As we have seen in subsection 3.1, condition HF4* captures E&H Idea by, 

presumably, telling us the following: when H’s best competitor explains E as well as H does, 

H’s probability is equal to the probability H would receive if neither H nor H’ adequately 

explain E; and the latter probability does not confer a significant degree of confirmation. 

Thus, ultimately, HF4* captures E&H Idea by saying that learning X∧Y does not strongly 

confirm H, i.e., P(H|X,Y) = t, where t is not a significantly high number. In other words, X∧Y 

does not strongly confirm H according to the notion of confirmation as firmness. So, when 

E&H Idea is captured by HF4*, the sense of confirmation in E&H Idea is expressed in 

terms of confirmation as firmness. That is, P(H| X∧Y) = t, where t is high number.  

As for E&H Idea in terms of confirmation as increase in firmness, it is just what the two 

models show. More precisely, in the literature (e.g., Hartmann and Sprenger, 2019, variation 

1), the concept of confirmation as increase in firmness is defined by saying: 

 

Confirmation as increase in firmness  

 

 
5 I say that t is a high value because in E&H Idea, it is said that H receives strong confirmation.   

Evidence E confirms hypothesis H if and only if P(H|E) ≥ t 

for some – possibly context-dependent – t ∈ [0,1]. 

 

Evidence E confirms hypothesis H if and only if 

P(H|E) > P(H).  
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Accordingly, E&H Idea in terms of confirmation as increase in firmness would say:  

 

learning that H is the only available hypothesis that adequately explains E (X ∧¬Y ≡ A) 

strongly confirms H because P(H|X ∧¬Y ≡ A) > P(H). 

 

As we have seen in subsection 3.1, P(H|X ∧¬Y) > P(H) and P(H|A) > P(H) is what Eva and 

Hartmann’s two models respectively show.  

Now, the three formulations of IBE assign to explanatory considerations firm confirmation 

judgements (see subsection 3.2): the best explanation (and good enough explanation) is 

probably true (ABD1, ABD2); the best explanation is closer to the truth than any of the other  

hypotheses (ABD3). Thus, the best way to see if one of these formulations is implicitly 

endorsed by Eva and Hartmann is to stick to E&H Idea in terms of confirmation as firmness. 

E&H Idea in terms of confirmation as firmness can be read as saying that if H is the best 

explanation of E (where best explanation of E means the only available hypothesis that 

adequately explains E), then its probability is equal to a high value. From now on, I will refer 

to this inference rule as ‘Eva and Hartmann’s IBE’.  

At first glance, Eva and Hartmann’s IBE is very similar to ABD1: its premise is comparative 

(H is the best explanation of E among the explanations we have so far considered, since H is 

the best explanation of E in that it is the only available hypothesis that adequately explains 

E); and its conclusion is absolute.  

However, such a similarity holds only if ‘best explanation of E’ can be understood as ‘the 

only available hypothesis that adequately explains E’.  

It is often argued that the best explanation is a hypothesis that does best, on balance, on 

epistemic virtues like simplicity, generality, coherence with well-established theories, and so 

on (e.g. Thagard, 1978; McMullin, 1996). But, since Eva and Hartmann do not give an 

account of ‘adequate explanation’, it is unclear how to conciliate their understanding of best 

explanation with the common one.  

That said, the concept of best explanation does not have a straightforward interpretation 

(Douven, 2017, section 2). Thus, I believe that there is no harm in interpreting it as intuitively 
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meaning the only available hypothesis that adequately explains E, as Eva and Hartmann 

implicitly do, and therefore to state a similarity between Eva and Hartmann’s IBE and ABD1.   

Thus, summing up, the explicit connection between Eva and Hartmann’s novel contributions 

and IBE consists of two points: 

1. Eva and Hartmann’s IBE: learning that H is the best explanation of E confers to H a 

high probability.  

2. In real cases of confirmation by old evidence, learning that H is the best explanation 

of E increases H’s probability. 

Let us now see the assessment of the two models in light of such an explicit connection. As 

highlighted just now, they seem to rely on an inference rule which is very similar to ABD1. 

However, so far, it is still an open question which of the three formulations of IBE is 

descriptively used, or if some further rule is used or whether some version is used in some 

contexts and another version in others (Douven, 2017, section 2). So, a remark that can be 

made to Eva and Hartmann’s two models, as well as to any philosophical work which 

assumes a particular version of IBE, is that there is an empirical descriptive question that has 

yet to be answered: on which version of IBE do scientists rely?  

As for the first model alone, it seems to me that condition HF4* is not expression of IBE’s 

core idea that explanatory considerations have a confirmational import. Let us see why.  

Before, we have seen that Eva and Hartmann’s IBE is very similar to ABD1, in that it can be 

read as saying: if H is the best explanation of E in the sense that it is the only hypothesis that 

adequately explains E, then H receives a high probability. So, such a high probability is given 

to H because: (i) it is an adequate explanation itself; (ii) it is the only adequate explanation 

of E.  

Now, the first supposition of condition HF4*, i.e. X ∧ Y, tells us that H is an adequate 

explanation of E itself, but that it is not the only adequate explanation of E, as H’ is an 

explanation as adequate as H. The second supposition of HF4*, i.e. ¬X ∧ ¬Y, on the other 

hand, tells us that H is not an adequate explanation at all, and so it cannot be the only adequate 

explanation of E. Thus, in the first supposition, we have one of the two reasons why H 

receives a high probability, whereas, in the second one, none of them.  
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Consequently, the probability of H given the first supposition should be higher than its 

probability given the second one, namely: P(H|X, Y) > P(H|¬X, ¬Y). 

This is not to say that when H’s best competitor explains E as well as H does, H receives 

significant confirmation, but that the E&H Idea is not captured by condition HF4*.  

Regarding the second model, the situation is different. In fact, condition A1: P(H|A) > 

P(H|¬A) is expression of IBE’s core idea. Indeed, Eva and Hartmann’s IBE implies that when 

H is the best explanation of E, then H receives a high probability. Conversely, when H is not, 

it does not receive such a high probability.  

Therefore, we can conclude that, even if Eva and Hartmann’s IBE turns out to be the one 

used by scientists in the contexts of confirmation by old evidence, only their second model 

is appropriate to model them, as the crucial condition of their first one does not capture Eva 

and Hartmann’s IBE.  

 

4. Bayesian IBE and the Inference to the Best Explanation’s perspective on the 

static dimension of POE  

By focusing on the origin of confirmation by old evidence, i.e. on how H is confirmed at the 

moment in which H and its relationship to E are discovered, Eva and Hartmann tackle only 

the dynamic dimension of POE. However, the reading in IBE’s terms of Eva and Hartmann’s 

two novel solutions to the dynamic POE implies that the static POE should also be read in 

IBE’s terms. This is because the IBE’s character of the dynamic dimension is inherited by 

the static dimension: if, at the moment in which H and its relationship to E are discovered, 

we want to explain why learning that H is the best explanation enhances H’s probability, 

then, after that discovery, we want to explain why E confirms the best explanation more than 

the other hypotheses that are not the best explanations. Accordingly, the counter-factual 

approach should be assessed from an IBE’s perspective.  

But, before expanding on this point, let us consider a particular version of IBE, i.e. the 

Bayesian IBE, which will come in handy to solve the static POE from the IBE’s perspective. 

More specifically, the latter is the product of a response to an incompatibility between IBE 

and Bayesianism claimed by some philosophers. 
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4.1. Incompatibility between Bayesianism and IBE, and Bayesian IBE  

The confirmational role that IBE assigns to explanatory considerations (see subsection 3.2), 

directly suggests a comparison with Bayesian confirmation theory, the dominant view on 

confirmation. 

In this regard, some philosophers have stated an incompatibility between IBE and 

Bayesianism. For example, Salmon (2001) stresses that Bayesian confirmation theory is not 

guided by the concept of explanation. In fact, he concedes that the prior probability in Bayes’ 

theorem can be identified with the goodness, or “loveliness” (Lipton, 2001, p. 105), of an 

explanation, that is with the degree of understanding the explanation at hand provides. But, 

such a loveliness is a consequence of the prior probability of the hypothesis and not the other 

way around.  

The prior probability of the hypothesis is determined by considering how the latter relates to 

our background knowledge. This can contain all sorts of information: theories known at the 

time, frequencies of the data, the evidential record available. On this basis, one can determine 

the prior probability of the hypothesis considering, for example, its external consistency, or 

its ad hoc or non-ad hoc character.  

It may well be that such epistemic virtues – i.e. features of the theories that enhance the 

theories’ probability of being true or accepted – coincide with explanatory virtues – i.e.  

features of theories that enhance the degree of understanding the theories provide. But the 

prior probability of the hypotheses is evaluated relying on the epistemic character of the 

virtues, and not on their explanatory character. According to Salmon, we do not say that a 

given hypothesis deserves a low or high prior probability because it is a bad or good 

explanation in that it scores badly or well on the aforementioned virtues. Rather, we say that 

a given hypothesis deserves a low or high prior probability because it scores badly or well 

on the aforementioned virtues. And that is it.  

Moreover, Salmon continues, the prior probability is not enough to make a choice among 

hypotheses. We need the posterior probability of the hypotheses, of which prior probability 

is just a component, as Bayes’ theorem tells us. At least, he says, this is what scientists 

implicitly do when they choose their hypotheses.  
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On the normative side, there is van Fraassen’s criticism (1989), according to which a 

Bayesian agent that uses IBE as a rule, is liable to diachronic Dutch Book (Teller, 1973). In 

fact, such an agent adopts an explicit strategy that consists in adding bonus points to the 

hypotheses that explain the evidence particularly well after conditionalization. On this basis 

then, the bookie can construct a series of bets that leave the Bayesian agent with a certain 

loss.  

Reactions to these criticisms have come respectively from Lipton (2001; 2004) and Okasha 

(2000). They both endorse a ‘Bayesian IBE’, namely a probabilistic version of IBE, in which 

explanatory considerations may act as heuristics, which help to determine, even if roughly, 

the probabilities in Bayes’ theorem. 

More precisely, contra Salmon, Lipton (2001) makes different claims, all of which are 

directed to support his heuristic endeavour which he expresses by saying that “the Bayesian 

and the Explanationist should be friends” (p. 94). 

One step in this direction is to show that the epistemic character of the virtues used to estimate 

the prior probability of the theories is a symptom of their explanatory character. This is what 

Lipton calls “the guiding challenge” (pp. 107-109), which he resolves by saying that the best 

explanation of the match between epistemic and explanatory virtues is that scientists select 

hypotheses on the basis of their explanatory virtues.  

The second step consists of arguing that the loveliness is not related solely to the prior 

probability, but to all the components of Bayes’ theorem. For example, explanatory 

considerations might help to evaluate the likelihoods because lovelier explanations tend to 

make what they explain likelier. Moreover, they could help to determine the priors in 

different ways. Firstly, priors are generally determined by earlier conditionalization, where 

the assessment of the likelihood is essential. But, as pointed out just now, such an assessment 

might be aided by explanatory considerations. Secondly, explanatory virtues such as scope, 

mechanism, precision, unification, simplicity6, could be used by the Bayesian to estimate the 

 
6 Lipton (2001, p. 106) explains why each of these virtues is an explanatory virtue by saying, respectively: 

“better explanations explain more types of phenomena, explain them with greater precision, provide more 

information about underlying mechanisms, unify apparently disparate phenomena, or simplify our overall 

picture of the world”. 
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prior probability, taking for granted the success of the guiding challenge. Finally, explanatory 

considerations might help to determine why certain bits of evidence, and not others, are 

involved in the Bayesian process of conditionalization. In fact, we can come to see that a 

datum is relevant for the hypothesis precisely because the hypothesis would explain that 

datum.  

Contra van Fraassen, Okasha (2000), instead, highlights that van Fraassen’s way to represent 

IBE in probabilistic terms is idiosyncratic. For, it does not capture the phenomenology of 

IBE where there is no hint of a two-stage process. We do not first respond to the evidence, 

and take explanatory considerations into account at a later stage. Rather, we use explanatory 

considerations to decide how to respond to the evidence – just one process.  

This suggests that the best way to represent IBE in probabilistic terms is to use explanatory 

considerations in the process that realizes conditionalization. That is, the better the 

explanation, the higher its prior and/or likelihood, and, in any case, given the same body of 

evidence E, the better explanation of E will end up having the higher product of prior and 

likelihood. 

Indeed, like Lipton, Okasha underlines that explanatory considerations help to determine the 

likelihoods because better explanatory hypotheses tend to give a higher probability to the 

evidence. Contrastingly to Lipton, and agreeing with Salmon, Okasha argues that explanatory 

considerations help to determine the prior probability in the sense that the goodness of an 

explanation is a consequence of its plausibility, i.e. of its prior probability.  

 

4.2. The IBE’s perspective on the static dimension of POE  

As seen in subsection 2.2, in the static dimension of POE, we find ourselves in a moment in 

time in which belief changes caused by the discovery of H and its relationship to E already 

happened. Still, we want to say why E is and will be a reason to prefer H over its competitors.  

In IBE terms, we want to explain why E confirms the best explanation H more than the other 

theories that are not best explanations of E. Indeed, this is what happens: (i) if Eva and 

Hartmann’s IBE is descriptively accurate; (ii) given IBE’s “self-evidencing character” 
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(Lipton, 2001, p. 96). In fact, according to (i) when H is the best explanation of E in the sense 

that it is the only hypothesis that adequately explains E, then it receives a high probability. 

Conversely, the other explanations do not receive such a high probability. And according to 

(ii), the datum explained by the hypothesis, in turn, confirms the hypothesis precisely because 

it is explained by the hypothesis.  

In subsection 2.2, we also saw that the standard approach to the static POE urges us to give 

up the actual degrees of belief in E so to allow a meaningful comparison between the 

likelihoods to establish confirmation judgements. That is, P(H|E) > P(¬H|E) if and only if 

P(H)P(E|H) > P(¬H)P(E|¬H).  

As we have seen in subsection 4.1, the heuristic conciliatory approaches prove that better 

explanations are the ones with higher priors and/or likelihoods, and, in any case, the ones 

with the higher product of these two quantities. Thus, we have P(H|E) > P(¬H|E), i.e. E 

confirms the best explanation H more than the competing theories that are not the best 

explanations of H.  

That said, the problems connected with the counterfactual interpretation of probability are 

still present when the aforementioned approach is used to solve the static POE in IBE terms. 

For instance, in the Mercury perihelion shift’s example, it is unlikely that we could say which 

our degree of belief in ¬H given E would have been, if we had not known E.  

Indeed, Le Verrier’s unobserved planet ‘Vulcan’, and Von Seeliger’s ring of a particular 

matter around the sun were generated to account for the anomalous shift (see Crelinsten, 

2013, pp. 51-54). That is, these hypotheses would not have been formulated had E not been 

known. The same cannot be said for Einstein’s GTR. The latter, in fact, was not formulated 

to explain the anomalous shift, and derivation of the shift from GTR was surprising in that it 

was not expected beforehand (see subsection 2.1). Still, we would lack what we want to 

explain, i.e. P(H|E) > P(¬H|E), as we would miss the term of comparison P(¬H|E).  

 

5. Conclusion  

In the foregoing, I have made an explicit connection between Eva and Hartmann’s two novel 

solutions to the dynamic POE and the inference to the best explanation. 
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This has allowed me to evince that Eva and Hartmann have in mind a specific understanding 

of IBE’s core idea, which is very similar, although not equal, to ABD1, which I labelled Eva 

and Hartmann’s IBE. On this basis, I have assessed the two models. Specifically, I have 

shown that – taking for granted the open question regarding if Eva and Hartmann’s IBE is 

descriptively accurate – their first model is not adequate to solve the dynamic POE in IBE’s 

terms, while the second one is. The reason is that the crucial condition of the former, HF4*, 

is not expression of Eva and Hartmann’s IBE. Conversely, the only condition of the latter, 

A1, is.  

Finally, I have pointed out that the explicit realization that real cases of confirmation by old 

evidence are instances of IBE implies that the static dimension of POE has to be, now, 

expressed in IBE terms. I have attempted to solve the static dimension of POE so expressed 

by remaining inside the frame of the standard counterfactual approach. This has been possible 

by using the results of the heuristic conciliatory approaches which show that better 

explanations have higher prior and/or likelihood, and, in any case, that they are the ones with 

the higher product of these two quantities. However, I have stressed that the problems related 

to the counterfactual interpretation of probability are still present when the counterfactual 

approach is used to solve the static POE in IBE terms. For instance, I have pointed out that 

in the GTR’s example, if the old evidence E had not been known, we would have lost what 

we wanted to explain. 
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