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Abstract. Like Lewis, many philosophers hold reductionist accounts of chance (on which
claims about chance are to be understood as claims that certain patterns of events are
instantiated) and maintain that rationality requires that credence should defer to chance (in
the sense that under certain circumstances one’s credence in an event must coincide with the
chance of that event). It is a shortcoming of an account of chance if it implies that this norm
of rationality is unsatisfiable by computable agents. This shortcoming is more common than
one might have hoped.

1. Introduction

David Lewis was a reductionist about chance.1 He thought that a full description of the

pattern of instantiation of fundamental properties and relations at a possible world would

not mention any facts about chances. But Lewis suggested that our actual cognitive abilities

and limitations determine an ideal scientific theory for each possible world—the theory that

best balances (by our standards) simplicity with informativeness about the pattern of events

at that world.2 On his Best System Account of chance the true claims about chance at a

world are those that are implied by the ideal theory for that world.

Lewis also had an account of the relation between chance and rational credence: the Prin-

cipal Principle.3 Our primary interest here will be a consequence of the Principal Principle:

a credence function is rationally permitted only if, for any event E, when conditionalized on

the chance of E being x, c assigns credence x to E.

For Lewis, the Principal Principle tells us something about what it means to be rational

and at the same time encapsulates important truths about the concept of chance.4 I suggest
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the following as an example. The Principal Principle gives us possible grounds for criticizing

reductionist accounts of chance: if we are thinking of theories of chance as something like

summaries meant to be used by beings like us, there is something pathological about a theory

of chance relative to which no priors count as rationally permitted.

I aim here to explain why it is harder than one might expect to find a satisfying package

combining the Best System Account of chance and the Principal Principle.5 One can show

that for a certain prima facie attractive version of the Best System Account of chance, the

only priors that satisfy the Principal Principle are non-computable. So fans of the Lewisian

package must either find a more suitable version of the Best System Account, weaken the

Principal Principle, or maintain that rationality requires us to perform tasks beyond the

capability of any Turing machine.6

2. Mathematical Framework

A binary sequence is a map S : N+ → {0, 1}. We denote by 2ω the set of all binary

sequences. For any binary sequence S and natural number n, we write S�n for the binary

string consisting of the first n bits of S. If τ is a binary string, then we denote by JτK the set

of all binary sequences whose initial bits are given by τ. We call such JτK the basic subsets

of 2ω.

We will call a subset of 2ω an event if can be constructed out of basic subsets by taking

complements and unions a countable number of times in any order.7 A probability measure

on 2ω is a map ν that assigns numbers between 0 and 1 (inclusive) to events, that assigns 1

to 2ω, and which is countably additive (i.e., if E1, E2,. . . are pairwise disjoint events, then

ν(
⋃
Ek) =

∑
ν(Ek)). Any such map is completely determined by its behaviour on basic

subsets.8

5For (all too) full details, see Belot (2022).
6It is convenient here to focus on the Lewisian package because of its clarity and precision, but it is far from
being the only account of chance, credence, and their relation that faces this sort of problem.
7For this (transfinite) construction, see, e.g., Folland (1999, §1.6). The basic subsets generate the product
topology on 2ω. The family of events is the corresponding σ-algebra of Borel sets.
8Via the Carathéodory Extension Theorem—see, e.g., Tao (2010, Corollary 2.1.4).
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A binary sequence S is computable if there is a Turing machine that on input of any n ∈ N

gives as output S�n. A real number x is computable if there exists a Turing machine that on

input n returns the first n bits of a binary expansion of x. A probability measure ν on 2ω is

computable if there exists a Turing machine that on input of n and binary string τ returns

the first n bits of a binary expansion of ν(JτK).

If S is a binary sequence then the Dirac measure δS concentrated on S is the probability

measure that assigns probability 1 to event E if S ∈ E and assigns probability 0 to E

otherwise. A Dirac measure is computable if and only if the sequence it is concentrated on

is.

If r is a number (strictly) between zero and one, then the Bernoulli measure νr with

parameter r is the probability measure that, for any binary string τ containing ` 0’s and m

1’s, assigns the basic subset JτK probability r`(1− r)m. We call ν.5 the fair coin measure. A

Bernoulli measure is computable if and only if its parameter is.

3. Worlds

We will be concerned with simple worlds whose histories can be encoded in binary se-

quences: at each such world time has the structure of the natural numbers; and the history

of such a world just tells us, for each time, whether or not a single property is instantiated

at that time. We work with these worlds in order to have a precise and tractable framework

in which to interpret Lewis’s ideas about chance and credence. The lessons we learn can be

translated to richer settings (our ‘possible worlds’ could always be interpreted as subsystems

of more interesting worlds).

A probability measure ν on 2ω can be thought of as an instruction manual for building a

world. Nature is equipped with a set of coins with each possible bias. A probability measure

ν on 2ω tells Nature which coin to flip a coin with bias ν(J0K) to determine whether the first

bit is a 0. More generally, ν tells nature to flip a coin of bias ν(Jτ0K | JτK) to determine

whether the next bit will be 0, given that τ gives the history so far.9 A Dirac measure δS

9So a probability measure on 2ω gives the complete set of what Lewis (1986, 97) calls “history to chance
conditionals”—and hence gives what he calls “the complete theory of chance” for a world.
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instructs Nature to construct a history by flipping coins of maximal bias in a way guaranteed

to generate S. A Bernoulli measure νr tells Nature to generate each bit by flipping a coin of

bias r.

4. Chance and Credence

Reductionism about chance is the thesis that chance-y facts supervene on non-chance-y

facts. So in our context, a reductionist account of chance can be encoded in a map from

2ω to the space of probability measures over 2ω (this map will be merely partially defined if

there are lawless worlds without chance facts). We call a probability measure λ a chance law

of such an account if the relevant map assigns it to some world.

For present purposes, a Bayesian prior is a probability measure on 2ω that assigns positive

probability to each basic subset of 2ω.10

It has seemed to many that rationality requires credence to defer to chance in a certain

sense: in some situations, if you are rational, then your credence in an event must coincide

with the chance of that event.

Knowing only that the chance of drawing a red ball from an urn is 0.95,

everyone agrees, in accordance with the law of likelihood, that a guess of ‘red’

about some trial is much better supported than one of ‘not-red.’ But nearly

everyone will go further, and agree that 0.95 is a good measure of the degree

to which ‘red’ is supported by the limited data. (Hacking 1965, 136)

[T]he chancemaking pattern in the arrangement of qualities must be something

that would, if known, correspondingly constrain rational credence. Whatever

makes it true that the chance of decay is 50% must also, if known, make it

rational to believe to degree 50% that decay will occur. (Lewis 1994, 478)

Fix a reductionist account of chance (such as the Best System Account). Corresponding to

any chance law λ of the theory, there is the set of worlds Λ at which λ gives the chance facts.

10So we are forbidding rational agents to be certain a priori that any particular finite data set will never
arise. Note that the set of binary strings is countable.
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We call this set the chance hypothesis corresponding to that law. This is the chancemaking

proposition: the proposition that the chance facts are given by λ.

Definition 1 (Chance-Credence Principle). Relative to a given reductionist account of chance,

a prior µ on 2ω satisfies the Chance-Credence Principle if for any chance law λ with chance

hypothesis Λ and for any event A we have µ(A | Λ) = λ(A).

The requirement that rational priors should satisfy the Chance-Credence Principle for a given

reductionist theory of chance is a weak form of Lewis’s Principal Principle.11

A prior µ satisfies the Chance-Credence Principle for a given reductionist theory of chance if

and only if: (i) the theory of chance admits only countably many chance laws λ1, λ2,. . . (with

chance hypotheses Λ1, Λ2, . . . ); (ii) each chance law λk of the theory is proper, in the sense

that λk(Λk) = 1; and (iii) µ can be written as a weighted sum of probability measures in which

each λk appears with non-zero weight (and in which any other summands are concentrated

on the set of lawless worlds).

5. The Best System Account

Lewis (1994, §4) tells us a bit about the map that encodes his favoured reductionist theory

of chance. He works in the context of finite worlds that can be encoded in binary strings.

In this context, under a straightforward frequentist approach a world σ would be assigned

a Bernoulli measure νr as its chance law if and only if r gives the relative frequency of 0’s

at σ. Lewis emphasizes that his Best System Account departs in two ways from this sort of

frequentism.

i) Some worlds will not be assigned a Bernoulli measure as their Best-System chance law:

some worlds exhibit patterns that render it natural to think of Nature as generating

bits by following instructions that call for a coin of bias r1 to be flipped to generate the

first bit; a coin of bias r2 to be flipped to generate the second bit; and so on. As an

extreme case, Lewis mentions a world where history alternates between 0 and 1, which

is naturally thought of as generated by alternating between flipping coins with maximal

11On this point see Lewis (1986, 276 f.) and Pettigrew (2012, fn. 4).
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bias in favour of 0 and 1—in other words, the chance facts there are encoded in a Dirac

measure.

ii) On the other hand, Lewis thinks that in some cases the chance law at a world should be

a Bernoulli measure νr even though r does not give the relative frequency of 0’s at that

world (e.g., in a case where the relative frequency of 0’s at a world is given by a messy

number r∗ close to .5 then the fair coin measure may provide a better candidate than νr∗

to be the Best-System chance law of the world—although of course for long-lived worlds,

the chance of getting a relative frequency of 0’s differing even a little from .5 by tossing

a fair coin will be minuscule).

How does this look when transposed to the setting of worlds whose histories are coded in

infinite binary sequences? It is helpful to note two important features of the infinite context.

1) The idea behind the Best System Approach is that the chance facts at a world are given

by the best scientific summary of that world—where best means something like best by

our ordinary scientific standards. It is crucial to this picture, then, that the systems in

competition be finitarily specifiable objects—otherwise, the question which of them is best

according to ordinary scientific standards loses all sense. The specification of an arbitrary

real number is an infinitary task—requiring, in general, the specification of infinitely

many bits. So the specification of an arbitrary probability measure on 2ω is infinitary

twice over—requiring, in general, the assignment of a real number to each of the infinitely

many binary strings. Now, as Turing (1936, 236) tells us: “The ‘computable’ numbers

may be described briefly as the real numbers whose expressions as a decimal are calculable

by finite means.” In the same way, the finitarily specifiable probability measures are the

computable probability measures. So in the infinite context, only computable measures

should be eligible candidates to be chance laws under the Best System Approach.

2) In this setting there is a natural way to make precise the notion of a random-looking se-

quence: the notion of a Martin-Löf random sequence.12 If S is a binary sequence and µ is

12For an introductory treatment (focussed on the fair coin measure), see Dasgupta (2011). For full details,
see, e.g., Shen et al. (2017, Chapter 3). Here is the rough idea: a sequence is not Martin-Löf random relative
to a given computable measure µ just in case there is an effectively definable µ-nullset of 2ω to which it
belongs.
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a computable probability measure, then, roughly speaking, S is µ-Martin-Löf random just

in case S exhibits no finitarily specifiable patterns of behaviour that would be arbitrarily

surprising to an agent expecting to see a data stream generated by µ.13

Example 1. If a computable Bernoulli measure νr considers a binary sequence S to be Martin-

Löf random then: S is non-computable; the relative frequency of 0’s in S is r; each finite

string occurs infinitely often in S (and with the right relative frequency); as one looks at

longer and longer initial segments, one finds that the relative frequency of 0’s is greater

than r infinitely often (and less than r infinitely often); and, further, S satisfies every other

effectively specifiable criterion for a data stream to be sampled from νr.

I claim that any plausible version of the Best-System Analysis should conform to the

following constraints.

BS1. If S is assigned chance law λ, then S is Martin-Löf random relative to λ.

BS2. Each computable sequence is assigned a law of chance.

BS3. A sequence is assigned a computable Bernoulli measure νr as its law of chance if and

only if its is νr-Martin-Löf random.

Remark 1 (On BS1). Let S be a sequence and λ a computable measure. If S is not λ-Martin-

Löf random then a computable agent whose data consists of sufficiently long initial segments

of S will eventually be in a position to reject at any level of significance the hypothesis

that the data is being sampled from λ—which would appear to rule out the possibility that

the Best System Account ratifies λ as the chance law for S. Note that each computable

probability measure assigns measure one to the set of sequences that it considers Martin-Löf

random.14

13If µ = 10−6δ0̄ + (1− 10−6)δ1̄ (where 0̄ is the all-0’s sequence and 1̄ is the all-1’s sequence), then an agent
expecting to see data sampled from µ will be very surprised to see a data set beginning with an initial 0—but
no more surprised to see an all-0 data set of any larger size. An agent expecting to see data sampled from
the fair coin measure would not be very surprised by an initial 0—but would be arbitrarily surprised by
arbitrarily large all-0 data sets.
14Since there are only countably many Turing machines, there can be only countably many effective µ-
nullsets—and the union of countably many µ-nullsets is a µ-nullset. Note, further, that many sequences
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Remark 2 (On BS2). Let S be computable. Then δS is prima facie a very good candidate

to be a chance law for S: S is δS-Martin-Löf random; δS, being computable, is only finitely

complex; at the same time, it gives a maximally informative characterization of the infinite

object S. It may be that some simpler measure achieves a better balance of simplicity and

informativeness (maybe S begins with a long string that looks like it was generated by flipping

a fair coin before settling down to a regular pattern).15 So perhaps δS is not the Best-System

chance law of S—but given that δS is available as an option, it is implausible that our ordinary

standards would decree that S has no chance law whatsoever. Note that it then follows via

BS1 that the chance law λ of a computable sequence S must satisfy λ({S}) > 0.16

Remark 3 (On BS3). Suppose that S is Martin-Löf random relative to a computable Bernoulli

measure νr. Then there is a sense in which νr provides a maximally simple theory of S: if S is

also Martin-Löf random relative to µ, then as µ is conditionalized on longer and longer initial

segments of S, the probabilities that it gives for the next bit to be 0 must converge to r.17 It

is easy, however, to generate rivals to νr that are in a sense more informative than it: if τ is

any initial segment of S, then S will be Martin-Löf random relative to the measure ντr that

says that the initial bits of history are given by τ and the rest generated by tossing a coin

of bias r. So, intuitively, if S begins in some striking way—say with a hundred consecutive

0’s—but otherwise looks like it was generated by flipping a fair coin, then a measure of the

form ντ.5 would offer a better balance of informativeness and simplicity than ν.5 does. But I

think that this intuition is an artifact of our habitual attention to small data sets. Maybe

if the first three tosses of a coin come up Heads, we are a bit suspicious that the coin is

not fair—but this suspicion is washed away when we see enough data to be reassured that

each three-bit string occurs equally often (and in no special pattern). We should have the

same reaction to a random-looking binary sequence that begins with one hundred 0’s: by the

time you have seen the billionth block of a billion consecutive 0’s, that initial hundred will

are not Martin-Löf random relative to any computable measure—see, e.g., Shen et al. (2017, §5.9.2). BS1
implies that such sequences have no chance laws.
15Thanks to Cian Dorr for emphasizing this point to me.
16Since S is computable, {S} is an effectively definable λ-nullset if it is a λ-nullset.
17See Vovk (1987, Theorem 3).
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not look impressive anymore—because you will have seen that each one hundred-bit string

occurs (essentially) equally often (and in no special pattern).

6. Trouble

BS1–BS3 and the Chance–Credence Principle are mutually consistent. Consider the ver-

sion of the Best-System Account in which each computable sequence is assigned the cor-

responding Dirac measure as its chance law, each non-computable sequences is assigned a

computable Bernoulli measure as its chance law if and only if it is Martin-Löf random with

respect to it; and all other sequences are lawless. Then any prior that can be written as a

(nontrivial) weighted sum of each of the countably many computable Dirac measures and

computable Bernoulli measures will satisfy the Chance-Credence Principle.

But no computable prior can satisfy the Chance–Credence Principle for any reductionist

account of chance obeying BS1 and BS2. As noted above, BS1 and BS2 imply that each

computable sequence S is assigned a chance law that assigns {S} positive probability. It

follows that if a prior µ satisfies the Chance–Credence Principle for an account of chance

obeying BS1 and BS2, then it must be possible to write µ as a weighted sum of probability

measures in which each computable Dirac measure appears with positive weight. We will

show that no such prior can be computable.18 Recall that S�k is the binary string consisting

of the first k bits of S. So µ(JS�(n+ 1)K | JS�nK) is the probability that µ gives to seeing the

next bit of S after having been shown the first n bits of S. Let us say that prior µ learns

sequence S if after seeing sufficiently long initial segments of S, µ is always able to correctly

predict the next bit with credence exceeding some fixed cut-off.19 Consider any prior µ that

can be written in the form

µ := ν + c · δS,

18The following is a variant of the diagonalization argument of Putnam (1963).
19For what follows, we need to choose a computable cutoff C such that there is no string τ with µ(JτK) = C.
This is always possible (otherwise we could use µ to show that the computable sequences are uniformly
computable—which they are not).
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where S is a binary sequence, c > 0, and ν is a measure that considers {S} a nullset. Since

ν({S}) = 0, we can make ν(JS�nK)—and hence also ν(JS�(n + 1)K)—as small as we like by

choosing n sufficiently large.20 It follows that µ learns S. So, in particular, if µ satisfies the

Chance-Credence Principle for a Best System Account obeying BS1 and BS2, then µ must

learn each computable sequence. But given any computable prior µ, we can construct a

computable binary sequence S†µ that µ does not learn: S†µ consists of blocks of 0’s separated

from each other by individual 1’s; a 1 is called for whenever µ has just seen at least one 0

and thinks that it is more likely than not that the next bit will be a 0. So no computable

prior can satisfy the Chance-Credence Principle for a reductionist account of chance obeying

BS1 and BS1.

A variant of this argument shows that no computable probability measure can be written

as a weighted sum of probability measures in which each computable Bernoulli measure

appears with non-zero weight—from which it follows that no computable prior can satisfy

the Chance-Credence Principle for any reductionist account of chance obeying BS3.

7. Options

Roughly speaking, the problem we have run into is that on Lewis’s Best System Account,

the chance laws at a world are just good scientific summaries of the patterns of events at that

world; and his Principal Principle implies that if you are rational, then to the extent that

you are confident in a chance hypothesis it should guide your estimates of probability. Taken

together, the package seems to imply that in order to be rational, you need to be a certain

sort of universal learner: whatever the chance law at your world, if you are a good scientist

and you see enough data, you should become confident in something like that law and so you

should eventually mimic it in your estimates of probability. As Lewis (1986, 121) puts it:

“if we start with a reasonable initial credence function and do enough feasible investigation,

we may expect our credences to converge to the chances.” But this is a setting in which no

computable universal learner can exist.

20Because probability measures are continuous from above—see, e.g., Folland (1999, Theorem 1.8).
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I do not think we should rest content with an account of chance and credence that tells us

that rationality requires us to adopt a non-computable credence function—any more than we

would be satisfied with an account of rationality that required rational agents to be able to

solve the Halting Problem. So I think we ought to be interested in revising some part of the

framework used above, rejecting one or more of BS1–BS3, or weakening the Chance-Credence

Principle. I end with a few observations about these options.

1) Would countenancing rational credal states represented by merely finitely additive prob-

ability measures help? No. For suppose that a prior M of this kind exists such that: (i)

for any computable S, M({S}) > 0; and (ii) M(JτK) is defined for each binary string τ.

Then there must exist a countably additive µ such that µ(JτK) = M(JτK) for each string

τ and such that µ({S}) > 0 for each computable sequence S.21 Our diagonalization argu-

ment above then tells us that such an M cannot be computable even in the sense that its

restriction to basic sets is computable.

2) Our Chance-Credence Principle requires that each law of chance λ be proper, in the

sense that it assigns probability one to its own chance hypothesis Λ. We could relax this

restriction to allow λ(Λ) ∈ (0, 1]. In that case it would be natural to replace the Chance-

Credence Principle by the following.22

Definition 2 (New Chance-Credence Principle). Relative to a given reductionist account

of chance, a prior µ on 2ω satisfies the New Chance-Credence Principle if for any chance

law λ with chance hypothesis Λ, and for any event A we have µ(A | Λ) = λ(A | Λ).

But this turns out to be of no help with the problem we have run into above concerning

accounts of chance satisfying BS1 and BS2.

3) Some philosophers amend the Principal Principle to require priors to satisfy substantive

conditions relative to chance laws only if they assign the corresponding chance hypotheses

21See Propositions 3.2.7 and 3.3.1 of Bhaskara Rao and Bhaskara Rao (1983).
22This stands to the New Principle of Hall (1994) and Lewis (1994) as the Chance-Credence Principle stands
to the Principal Principle of Lewis (1986). For another direction in which one might generalize the Principal
Principle in the face of improper laws of chance, see Roberts (2001) and Ismael (2008). For critical discussion,
see Briggs (2009).

11



positive credence.23 I reject such approaches on the grounds that the amended princi-

ple is too weak to embody the requirement of learnability of chances by rational priors

that Lewis, rightly in my mind, built into the Principal Principle (consider, e.g., a prior

concentrated on the lawless worlds of a reductionist account of chance).

4) There is a way out for those willing to give up on probabilism (the thesis that rational

credal states are representable by probability measures). A semi-measure on 2ω is a

map m from basic sets to [0, 1] that satisfying m(2ω) = 1 and m(JτK) ≥ m(Jτ0K) +

m(Jτ1K). Such a semi-measure is semi-computable if there is a Turing machine such that

on input τ outputs a sequence of binary strings that approximate m(JτK) from below. If we

countenance such objects as representing credal states of rational agents then we can evade

the diagonalization arguments above: there exist semi-computable semi-measures that

admit decompositions in which each computable measure appears with positive weight.24

5) We could replace BS2 with the assumption that the set of computable sequences to be

assigned laws of chance is a set that is learnable in sense considered above (and proceed

analogously with BS3). There is a sense in which the sets of sequences so-learnable are

those that can be computed quickly.25 So in making this move, there is a sense in which the

computable sequences that we deem lawless are ones that exceed a certain complexity cut-

off—which might seem consonant with the spirit of the Best-System Approach. Maybe.

But there is always going to be a worry about arbitrariness here: if a set of computable

binary sequences is learnable in the relevant sense, then so is the result of enlarging that

set by adding any finite set of computable binary sequences to it; and if two sets of

computable sequences are learnable in this sense, then so is their union.

6) There are many notions of learning that one might substitute for the one implicit in the

Principal Principle—and thereby construct weaker alternatives to the Chance-Credence

Principle that may comport better with computability. One possibility would be to re-

quire that as a rational prior is conditionalized on longer and longer initial segments of

23For this approach, see, e.g., Pettigrew (2012).
24On this point see, e.g., Li and Vitányi (2019, §4.5). Note, however, that on this approach conditional
credence functions need not be even semi-computable—see Sterkenburg (2019).
25See Blum and Blum (1975, 127).
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a (typical) sequence associated with a given chance law, its probability estimates for the

next bit converge to those given by that chance law (conditional on the same data).26

An interesting feature of this requirement is that it consistent with BS3: the so-called

indifference (or Bayes-Laplace) prior meets the requisite condition with respect to each

computable Bernoulli measure. But problems remain with BS1 and BS2: a family of

Dirac measures is learnable in this weaker sense if and only if it is learnable in the sense

relevant to the Chance-Credence Principle.

The moral is: work remains to be done for anyone who is attracted to Lewis’s accounts of

chance and credence and who is also inclined to take computability to be a constraint on

rational priors.
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