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Abstract

I consider a problem for functional reductionism, based on the following
tension. Say that b is functionally reduced to a. On the one hand, a and b turn
out to be identical, and identity is a symmetric relation. On the other hand,
functional reductionism implies that a and b are asymmetrically related: if b
is functionally reduced to a, then a is not functionally reduced to b. Thus, we
ask: how can a and b be asymmetrically related if they are the same thing?
I propose a solution to this tension, by distinguishing between ontological
levels and levels of description.
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1 Introduction
Functional reductionism brings functionalism and reductionism together, making
reduction a matter of recovering the right behaviour. The goal of this paper is to
consider a problem for functional reductionism, and then propose a solution.

To begin with, let’s introduce the central notions of the debate. First, func-
tionalism is the view that ‘to be x is to play the role of x’. In this sense, x can
be deemed as functionally defined. This view has been the main position in the
philosophy of mind for a long time.1 For instance, a functionalist account of phe-
nomenal states would define ‘pain’ in terms of its causal roles, i.e. as ‘that state
that is caused by bodily injury, that cause the belief that there is something wrong
with the body’ and so on. Functionalism is now becoming increasingly promi-
nent in different areas within the philosophy of science as well, in particular in
the philosophy of physics.2 For example, according to Knox (2019) and Lam and
Wüthrich (2018), we should define spacetime in terms of its functional role, i.e.
as that thing that plays the theoretical role of spacetime, and not in terms of some
intrinsic features. In a slogan, ‘spacetime is as spacetime does’.

Second, reductionism about scientific theories is roughly the view that worse
or less detailed theories can be derived from better or more detailed theories. Ac-
cording to the mainstream view, i.e. Nagel’s (1962) model of reduction, a theory
can be reduced to another theory iff the laws of the reduced theory can be deduced
from the laws of the reducing one, with the addition of auxiliary assumptions and
bridge laws connecting the vocabularies of the two theories in case they do not
share their theoretical terms. More precisely, according to the refined version of
the view, since in most cases we cannot derive the exact laws of the reduced the-
ory, we should rather frame reduction as the deduction of a corrected version of
the to-be-reduced theory from the reducing theory, plus auxiliary assumptions and
bridge-laws.3

Then, there is functional reductionism. Versions of this view have been de-
fended in the philosophy of science by several authors, especially in recent years.4

1See e.g. Kim (1998, 2005), Levin (2021).
2See e.g. Wallace (2012), Albert (2013, 2015), Ney (2012), Knox (2019), Lam and Wüthrich

(2018).
3This is the essence of the refined version of Nagelian reduction developed by Schaffner

(1967). See also Butterfield (2011a, 2011b) and Dizadji-Bahmani et al. (2010).
4See Lewis (1970), Kim (2005), Morris (2020), Esfeld and Sachse (2007), Lam and Wüthrich

(2018, 2020), Butterfield and Gomes (2020b, 2020a), Robertson (2020), Lorenzetti (2022). More-
over, the functionalist account by Albert (2013, 2015) and Ney (2012) can be considered as a form
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The target of this paper is, in particular, the Lewisian formulation of functional
reductionism, which is the most developed version of the account to date. This
framework has been originally proposed by Lewis (1970, 1972), and recently de-
fended and improved by Butterfield and Gomes (2020b, 2020a). Summing up the
proposal, say that we have a top theory T expressed in a certain vocabulary and a
bottom theory T ∗ which is expressed in a new vocabulary and which can reduce
the former. Let’s say we adopt a functionalist account of theoretical terms, accord-
ing to which theoretical terms are defined in terms of the roles they play within a
given theory. Then we can draw bridge laws between terms of the two theories –
in the forms of identities – when they share the same functional profile. That is,
in this account bridge laws are obtained via functionalism. Furthermore, on the
assumption that theoretical terms designate actual entities or properties, we can
use this functionalist approach to define entities and properties as the occupants
of certain causal roles within a theory. Thus, if we find something in the bottom
theory that, in the right regime, plays the role that we attributed to a distinct entity
or property within the top theory, we can draw a theoretical identification of the
entities/properties across the two theories. In this case we can say that the func-
tionalised entity b is functionally reduced to its realiser a introduced by the bottom
theory. It is in this sense that one could say, e.g., that the spacetime of general rel-
ativity can be functionally reduced to non-spatiotemporal structures of quantum
gravity theories, as Lam and Wüthrich (2018) suggest. Section 2 presents the view
in more details. For now, the crucial point to highlight is that, within functional re-
ductionism, when a bottom entity a behaves as an upper entity b, b is functionally
reduced to a, and a and b turn out to be identical.

This essay considers a problem for functional reductionism – in the Lewis-
Butterfield-Gomes model – that I call ‘the puzzle of identity’, which is based on
the following tension. Say that b is functionally reduced to a. On the one hand,
as mentioned above, a and b are identical, and identity is a symmetric relation.
On the other hand, functional reductionism is expressed in terms of a distinction
between a top and a bottom level, and arguably implies that a and b are asymmet-
rically related: if b is functionally reduced to a, then a is not functionally reduced
to b. Thus, one may ask, how can a and b be asymmetrically related given that
they are the same thing?

This paper argues for a way to dissolve the tension, based on the following
idea: while the identity (and thus the symmetry) is ontological, the asymmetry

of functional reductionism too, as they closely follow Kim’s functionalist account which is a form
of functional reduction. Indeed, Allori (2021) classifies Albert’s view as functional reductionist.
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is descriptive. That is, the functional reductionist can maintain that a and b are
ontologically identical – i.e. they refer to the same thing, they are coextensive
– but, at the same time, say that the a-description is more fundamental than the
b-description. This paper shows how we can give a formal account of this claim
and of the idea that one description can be more fundamental than another, by ap-
pealing to the formal notion of levels of description, as introduced by List (2019).
According to this proposal, while a and b belong to the same ontological level, in
virtue of their identity, they also belong to different levels of description, that are
asymmetrically ordered. In other words, the fact that within functional reduction-
ism the world is not divided into higher-level entities and lower-level entities does
not entail that functional reductionism cannot make any room for asymmetry at
all – in this case, in terms of higher-level and lower-level descriptions.

This solution is important for two main reasons. First, without a strategy of
this kind, we would have to bite the bullet and accept that functional reductionism
cannot make room for any sense of asymmetry between the relata of the reduction.
This would clash with our intuitions about reduction, according to which asym-
metry is a constitutive feature of such relation, as the reduced is in some sense
‘dependent on’ or ‘less fundamental than’ the reducing element. This attitude can
be clearly found in the literature on functional reduction, where e.g. philosophers
broadly talk about spacetime being recovered from non-spatiotemporal structures,
and not vice-versa, and thus some kind of asymmetry is presupposed. This pro-
posal finds a way to satisfy this desideratum and accommodate the intuitions about
asymmetry within functional reductionism, expressed in the Lewisian way. Sec-
ond, there is also a reason why this specific solution to the puzzle is particularly
helpful. That is, the specific use of List’s framework in this context is motivated
by the fact that it provides a formal way of introducing a hierarchy of descriptions.
In fact, we are not merely saying that a and b are identical entities represented in
different ways, but rather we are employing List’s formal machinery to show that
the two descriptions are hierarchically ordered and thus that we can re-introduce
the asymmetry in that context. This is the novelty bestowed by List’s account of
levels.5

5I elaborate on this second point at the end of Section 4.
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2 Functional Reductionism
This section introduces functional reductionism as presented by Lewis (1970,
1972) and Butterfield and Gomes (2020a). In Section 2.1, I introduce the view
and highlight the features of the account that will be crucial for the topic of the
paper. In Section 2.2, I present an example of functional reduction in the Lewisian
model, in order to situate our discussion within a realistic case of reduction in sci-
ence.

2.1 Lewisian Functional Reductionism
Take a theory (this will be our ‘top’ theory) and call T -terms the theoretical terms
τ1, ...τn introduced by the theory, and call the rest of the terms in which the theory
is couched O-terms.6 Let’s then form the postulate of the theory T :

T (τ1, ...τn)

This is a sentence that contains all the theoretical postulates of the theory (e.g.
F⃗ = ma⃗), expressed as a long conjunction. If we replace the T -terms with open
variables, we obtain the realization formula of T :

T (x1, ...xn)

Any n-tuple of entities that satisfies this formula may be said to realize the theory
T . We can now introduce the Ramsey sentence, which says that T is realized:

∃x1, ...xnT (x1, ...xn)

Accordingly, we can also define a modified Ramsey sentence, which states that T
is uniquely realized, i.e. that there is just one set of entities that realize the theory:

∃y1, ...yn∀x1, ...xn(T [x1, ...xn]≡ .y1 = x1 ∧ ...∧ yn = xn)

Then, let’s introduce the Carnap sentence, whose role is to interpret the T -terms:

∃x1, ...xnT (x1, ...xn)→ T (τ1, ...τn)

6The theory can – but does not need to – be a physical theory. E.g. it can also be a theory
of mental states which describes how mental states relate with each other and with beliefs and
physical states.
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It says that if T is realized, then the n-tuple of entities named by τ1, ...τn is a
realization of T . Thus, assuming that T is uniquely realized,7 the Carnap sentence
is logically equivalent to a series of sentences which explicitly defines the T -terms,
purely by means of O-terms:

τ1
de f
= ıy1∃y2, ...yn∀x1, ...xn(T [x1, ...xn]≡ .y1 = x1 ∧ ...∧ yn = xn)

τn
de f
= ıyn∃y1, ...yn−1∀x1, ...xn(T [x1, ...xn]≡ .y1 = x1 ∧ ...∧ yn = xn)

That is, assuming that our theory is uniquely realized, once we write down the
postulate of the theory and we derive the realization formula, we can derive an
explicit definition for each of the theoretical terms in the theory. As Lewis claims:

This is what I have called functional definition. The T -terms have
been defined as the occupants of the causal roles specified by the the-
ory T ; as the entities, whatever those may be, that bear certain causal
relations to one another and to the referents of the O-terms. (Lewis,
1972, p. 255)

Thus, this is a formal way to functionally characterize the theoretical entities
postulated by a certain theory. But suppose now that a second theory T ∗ is intro-
duced. This will be our ‘bottom’ theory. T ∗ introduces a new set of theoretical
terms, which we can call O∗-terms. O∗-terms are either T ∗-terms or O-terms.
Suppose further that:

T * ⊢ T [ρ1...ρn]

where ρ1...ρn are O∗-terms, introduced independently from the terms τ1, ...τn.
T [ρ1...ρn] is called the weak reduction premise for T , and it does not contain T -
terms. It says that T is realized by a n-tuple of entities ρ1...ρn. Thus, T is realized
by a n-tuple of entities expressed in the vocabulary of the new theory. Now, Lewis
points out that the postulate T (τ1, ...τn) can be derived from the weak reduction
premise together with some bridge laws of the following form, which are usually
taken as separate empirical hypotheses:

7Unique realisability seems prima facie unattainable in the face of multiple realisability, which
is allegedly very widespread. For instance, pain seems to be multiply realised by human brains,
dog brains, and so on. To avoid the challenge and ensure unique realisability, Lewis (1970, 1972)
argues that we should focus on domain-relative functional roles. E.g. we should functionally
reduce human-pain to human-brain states, etc. Thus we secure unique realisability by making
theory T and its terms specific enough.
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ρ1 = τ1, . . . ,ρn = τn

Alternatively, the bridge laws can be derived from T ∗ alone. In the case in which
T is uniquely realized by a n-tuple of entities named by ρ1...ρn, we can accept the
following sentence, which we can call the strong reduction premise for T :

∀x1, ...xn(T [x1, ...xn]≡ .ρ1 = x1 ∧ ...∧ρn = xn)

This sentence logically implies the following definitions, which are O∗-sentences
and can be therefore theorems of T ∗:

ρ1 = ıy1∃y2, ...yn∀x1, ...xn(T [x1, ...xn]≡ .y1 = x1 ∧ ...∧ yn = xn)
ρn = ıyn∃y1, ...yn−1∀x1, ...xn(T [x1, ...xn]≡ .y1 = x1 ∧ ...∧ yn = xn)

Which entails the theoretical identifications ρ1 = τ1, . . . ,ρn = τn by transitivity
of identity. That is, the strong reduction premise entails the theoretical identifi-
cations by itself. We thus have bridge laws in form of identities between the two
theories. Thanks to functionalism and functional identifications, these bridge laws
are directly deduced from the reducing theory.

Having introduced the core of the Lewisian framework, let’s draw some further
considerations. To begin with, we can see how this account exemplifies functional
reductionism. First, it is a form of functionalism, since the ‘Ramseyfication’ of
the two theories is explicitly used to formulate functional definitions of the enti-
ties described by the theories. Second, it is a reductionist account. The Lewisian
framework sets out inter-theoretic reduction in the Nagelian sense, since the up-
per theory is taken to be derivable from the bottom theory, with the advantage of
having bridge laws as deduced and not postulated, as stressed by Butterfield and
Gomes (2020a). These bridge laws have the special form of identity statements,
as they follow from the identifications of the functional profiles given by function-
alism.8 Moreover, the account can accommodate the revised version of Nagelian
reduction, as we can take as T the corrected version of the original theory from
the outset.

Furthermore, as you can notice, this form of functional reductionism is spelled
out in terms of theories. However, in Lewis’ account, this functional reduction-
ism about theories, which leads to identity relations between theoretical terms, is
meant to be a way to ensure functional reduction about ontology as well. Lewis
makes this clear in several places, for instance in the passage quoted above, where

8However, even though they are bridge laws formulated as identities, the account does not run
into multiple realisability objections, due to the reason discussed in ft. 7.
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he stated that the T-terms refer to “the entities, whatever those may be, that bear
certain causal relations to one another and to the referents of the O-terms.” (Lewis,
1972, p. 255).9 The passage from theory to ontology is indeed straightforward.
On the assumption that the theoretical terms refer to actual entities, the theoreti-
cal functionalisation is just a means to codify in a scientifically accurate way the
causal roles played by the worldly entities referred to by the theoretical terms.
Thus, functional reduction of theoretical terms is a guide to functional reduction
of entities. That is, once we functionally define a theoretical term in the upper
theory and we find some other theoretical term in the bottom theory with the same
role, we can infer that there is a bottom entity (referred by the term ρi) to which
the upper entity (denoted by τi) is reduced to.

This scientific realist and ontologically-laden reading of functional reduction-
ism is not peculiar to Lewis, but rather explicitly underlies most of the cases in
which the view is applied. As such, we can take it as an integral part of the view.
In the philosophy of mind (cf. Kim (1998)) the reduction of folk-psychology to
physiology is used to functionally reduce mental states to brain states; in Lam
and Wüthrich (2018, 2020) theoretical reduction of general relativity to quantum
gravity backs the functional reduction of spacetime to non-spatiotemporal struc-
tures; in Albert (2015) and Lorenzetti (2022) theoretical reduction between laws
of quantum mechanics and classical laws is used to argue for the functional re-
duction of three-dimensional entities to quantum wavefunctions; finally a realist
stance is supported by Butterfield and Gomes (2020b) in the recovery of time from
geometrodynamics.10

We can thus notice that, given that the Lewisian model delivers (deduced)
bridge laws in form of identities between the theoretical terms, then if we give an
ontological interpretation of those terms it follows that functional reduction entails
(type) identity relations between the elements of the two ontologies.11 That is,
once we functionalise a theory and then find out another theory whose entities can

9Lewis (1970, 1972) is explicit about this: for him, theoretical terms like ‘electron’ are meant
to refer to actual entities, as he clearly wants to maintain a scientific realist stance.

10This widespread ontological reading of functional reduction is not surprising. In fact, one
crucial reason why functional reductionism is defended is that this is an approach to reduction
which allows for a non-eliminativist position about the higher-level reduced entities: we can be
realists about the reduced entity as far as we have another entity that realises the functional role of
the former. In this sense, it is an approach to theoretical reduction which bears a clear and strong
link with ontological reduction.

11It might naturally be the case that some theoretical terms are not ontologically interpreted and
thus this implication does not hold. However, we are interested here in those cases in which this
happens, like in the examples mentioned above.
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realize the former theory, we are committed to drawing theoretical identifications
across the two theories. If an entity belonging to the bottom theory plays the role
that we associated with another entity within the top theory, those two entities are
identical. This is the feature the puzzle of identity revolves around and that will be
crucial for the coming sections. Before that, however, I introduce a more concrete
example of functional reduction to see how the identification works.

2.2 An Example of Functional Reduction
I present here an example of functional reduction in physics, concerning classical
and quantum systems, drawing on Lorenzetti (2022). This is a simple instance of
functional reduction, but it is nevertheless a realistic case study and it allows us to
see more closely how functional reductionism works in the Lewisian model, and
how it leads to identity relations. The scheme followed here would be the same for
more complex cases, although the details would be less tractable. For example,
the model could be similarly applied to cases such as the functional reduction
of spacetime structures to spin networks in loop quantum gravity (cf. Lam and
Wüthrich (2018), sect. 5) and the functional reduction of thermodynamic entropy
to Gibbsian entropy in the context of thermodynamics and statistical mechanics
(cf. Robertson (2020)).

Our example concerns the functional reduction of a single-particle classical
system to a single-particle quantum system.12 Take first a quantum system as-
sociated with a wavefunction ψ , subject to a potential V (x). The Schrödinger
equation for the system is:

ih̄
∂ψ

∂ t
= Ĥψ, (1)

where Ĥ is the self-adjoint Hamiltonian: Ĥ =
p̂2

2m
+V (x̂). Now say that we have

an isolated and localised wavepacket defined over configuration space. Its posi-
tion, according to Ehrenfest’s theorem, can be said to evolve in this way:13

d
dt
⟨x̂⟩= ⟨p̂⟩

m
(2)

12For instance, you can take the latter to be the quantum system denoted by the quantum wave-
function of the Hydrogen atom.

13Ehrenfest’s theorem says that, for a generic operator Q̂, with associated expected value ⟨Q̂⟩,

the time evolution of ⟨Q̂⟩ can be stated as:
d
dt
⟨Q̂⟩= i

h̄
⟨[Ĥ, Q̂]⟩+ ⟨∂ Q̂

∂ t
⟩.
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Similarly, for the momentum operator:

d
dt
⟨p̂⟩=−⟨∂V (x̂)

∂x
⟩ (3)

If we assume that ⟨∂V (x̂)
∂x

⟩ is equal to
∂V (⟨x̂⟩)

∂x
– an assumption that is justified

here by the fact that this is a localised wavepacket – then the expectation values of
the position and the momentum evolve like the classical position and momentum,
and thus (3) is equivalent to Newton’s second law. In fact, we can write:

m
d2⟨x̂⟩
dt2 =

d⟨p̂⟩
dt

=−∂V (⟨x̂⟩)
∂x

, (4)

which is, for narrowly localised wavepackets, equivalent to a high approximation
to:

F = m
d2x
dt2 =

d p
dt

=−dV (x)
dx

(5)

This means that, within the quantum mechanical picture, the centre of the lo-
calised wavepacket has a trajectory that is identical, up to a very high approxima-
tion, to the trajectory of a point particle of mass m within classical mechanics (in
the Hamiltonian formulation). Thus, the trajectory of the wavepacket can be prac-
tically considered as a solution to the classical dynamic equation for a classical
particle.

This leads to the conclusion that, up to a high approximation, a localised
wavepacket can behave as a classical point particle. For the functional reduc-
tionist this is all we need. If all it takes to be a classical point-particle is to behave
according to Newton’s law for the evolution of a point-particle, then we have just
recovered a classical particle from the evolution of a wavepacket.14 Following the
Lewisian approach, functional reduction would proceed by functionally defining
the concept of being a ‘classical point-particle’ in terms of its role in classical
mechanics – as it is expressed by the laws of the theory properly restated in the
form of a Ramsey sentence – and then by showing that such behaviour is realised
by a ‘highly localised one-particle quantum system’. In such a case, the classical
system can be functionally reduced to the quantum system, provided the appro-
priate conditions. If we adopt a scientific realist stance to functional reduction,
as discussed above, this entails that the localised quantum system turns out to be

14Within classical mechanics every quantity is fixed by the position and the momentum, so here
we have really obtained a full-fledged classical particle.
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identical to the single classical point-particle, in the sense that we talk about the
same entity.

3 The Puzzle of Identity
This section introduces a challenge to functional reductionism, which I call ‘the
puzzle of identity’. The issue stems from the fact that functional reductionism
embeds a ‘levelled’ and asymmetrical picture of reality, which clashes prima facie
with the identity relations described in Section 2.

Start by considering the functionalist aspect of the functional reductionist
framework. The first step of the functionalist account is the functionalisation of a
certain property or entity. The second step is to find a realiser for that functional
role. The reductionist aspect of functional reductionism then follows from how
this functionalisation procedure formally works. The functional definition is first
picked out from a top theory and then the functional realiser is found within the
ontology of the bottom theory. In this way, the ontology of the upper theory is
reduced to the ontology of the bottom theory, in the right context. Thus, not only
the account makes a clear distinction between a bottom and an upper level, but it
seems to imply an asymmetrical relation between the two.15 This is a feature that
can be found in the general context of reductionism as well, as stressed by van
Riel and van Gulick (2019, p. 1), given that, when an entity x is said to be reduced
to an entity y, “then y is in a sense prior to x, is more basic than x, is such that x
fully depends upon it or is constituted by it”.

This levelled and asymmetrical conception of reality can indeed be found in
those situations in which functional reductionism is applied in practice. For in-
stance, if we functionally reduce classical systems to quantum systems (as we
did in our simple example above and as it is done by Albert (2013, 2015) and
Lorenzetti (2022)), or spacetime to non-spatiotemporal structures (cf. Lam and
Wüthrich (2018)), the assumption would be that the former kind of entities is
functionally reduced to the latter and not the other way round. The same would
hold for the relation between thermodynamic quantities and statistical mechanical
ones, as in the functional reductionist account proposed by Robertson (2020), and
within the cases considered by Butterfield and Gomes (2020b), and also in the

15It might be the case that this picture does not hold in the way for some possible cases of
reduction where functional reduction has not been discussed, e.g. intra-level examples reductions
different from the cases discussed here (cf. Nickles (1973)). I leave this open for future discussion
and focus here on the extant functional reductionist accounts.
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philosophy of mind, where mental states are functionally reduced to brain states
(cf. Lewis (1972) and Kim (1998)).

However, here comes the challenge. In fact, as we have seen, the functional re-
ductionist account presented entails identity. And identity relations are, of course,
symmetrical. We can call this issue ‘the puzzle of identity’: how can reduced and
reducing entities be asymmetrically related if they are identical? For instance,
how can we combine the asymmetry implicit in the intuition that it is the classical
system that is functionally reduced to the quantum one with the fact that the two
are the same system?

This puzzle has been firstly raised by van Riel (2013) as related to reduc-
tionism, but it has received little attention, and it is unexplored in the context of
functional reductionism – where bridge laws, and thus identity relations, follow
deductively from the functionalisation process. Notice that, due to this fact, the
tension is more pressing within functional reductionism than it is for general re-
ductionism. In fact, whereas a reductionist can simply avoid the challenge by
appealing to a reductionist account that is not formulated in terms of identity,
the functional reductionist is necessarily committed to the identity relations, since
those follows from the way in which reduction is obtained within the account, i.e.
via functionalism, as shown before.

One way for the functional reductionist to dissolve the tension would be to
reject the claim that reductionism requires any form of asymmetry. In contrast
with this counter-intuitive move, the aim of the next section is to dissolve the
tension while also vindicating the asymmetrical nature of functional reduction,
by moving the asymmetry from the ontological to the descriptive level. In other
words, there is no tension because symmetry and asymmetry operate on different
domains.

4 Reconciling Identity and Asymmetry
This section presents a strategy to deal with the the puzzle of identity. To do so, it
appeals to List’s (2019) systematic framework of systems of levels.16 Recall that,
since functional reduction entails identity, the entities belonging to the top theory
(the realised entities) and those entities belonging to the bottom one (the realisers)
do not occupy distinct levels within a hierarchy of levels, ontologically speaking.
However, the ontological notion of levels at play here is not the only available

16Cf. also Dewar et al. (2019).
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conception of levels. Most importantly, one can distinguish between ontological
and (more fine-grained) descriptive levels. List introduces a formal account of
both notions, showing how systems of descriptive levels can be systematized. This
section presents List’s framework for levels of description, and argues that this
notion can help us to solve the riddle of identity and to make room for (non-
ontological) asymmetry within functional reductionism.

Before discussing levels of description, let’s see how List (2019, p. 854) de-
fines the generic notion of systems of levels:

A system of levels is a pair ⟨L ,S ⟩ defined as follows:

• L is a class of objects called levels, and

• S is a class of mappings between levels, called supervenience
mappings, where each such mapping σ has a source level L and
a target level L′ and is denoted by σ : L → L′

Such that the following conditions hold:

(S1) If S contains σ : L → L′ and σ ′ : L′ → L′′, then it also contains
the composite mapping σ •σ ′ : L → L′′;

(S2) For each level L, there is an identity mapping 1L : L → L in S ,
such that, for every mapping σ : L → L′, we have 1L′ •σ = σ =
σ •1L;

(S3) For any pair of levels L and L′, there is at most one mapping
from L to L′ in S .

When S contains the mapping σ : L → L′, the level L′ can be said to be
supervenient (or dependent on, determined by, necessitated by) on the level L,
and thus L′ is the higher level, while L is the lower level. Also, supervenience is
taken here to have its usual meaning, i.e. a change in L′ is impossible without any
change in L.

Now that we have introduced the generic structure for a system of levels –
which was needed to characterize the class S of supervenience mappings – we
can move to the more particular framework of levels of description. Its purpose
is to give a model of levels which can account for the fact that different sciences
describe the world in different ways, ranging over different levels of description.
Following List (2019, p. 862), we introduce the notion of a language. We define
a language L as a set of sentences, plus (i) a negation operator ¬ such that for
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every sentence φ ∈ L, there is ¬φ ∈ L; and (ii) a consistency criterion, according
to which, once we have fixed some sets of sentences as consistent, the remaining
sets17 are classified as inconsistent. According to List, any language L introduces
a corresponding ontology, i.e. “a minimally rich set of worlds ΩL such that each
world in ΩL ‘settles’ everything that can be expressed in L“ (ibid.), where settling
a sentence means to assign it a truth-value. By linking truth-conditions to the
sentences, we are indeed committed to positing the ontology induced by L. In
sum, the set ΩL represents all the possible ways the world could be according to
L.

At this point, we can finally introduce the notion we need. Call a level of
description any pair of a language L and its corresponding set of worlds ΩL. Then,
a system of levels of descriptions ⟨L ,S ⟩ is defined as follows (p. 863):

• L is some non-empty class of levels of description, each of
which is a pair ⟨L,ΩL⟩;

• S is some class of surjective functions of the form σ : ΩL →
ΩL′ , where ⟨L,ΩL⟩ and ⟨L’,ΩL′⟩ are levels of description in L ,
such that S satisfies (S1), (S2) and (S3).

Now, one can take L to contain levels of description corresponding to any
science, from physics to chemistry. Any such level is going to embed a pair
of a level-specific language and the corresponding set of induced (level-specific)
worlds. For example, using the model presented here one can argue that the chem-
istry level of description is determined by the physical level of description. More
precisely, notice that the determination relation between the levels does not hold
directly, but holds in virtue of the supervenience mapping instantiated between the
induced ontologies that respectively constitute the two levels of description. But,
there is also something more. In fact, levels of description are more fine grained
than ontological levels, i.e. they encode more information. Different languages,
and thus different levels of description, can entail the same system of ontological
levels. As List crucially remarks, given the framework we have just introduced,
“it should be no surprise that different languages can in principle be used to de-
scribe the same sets of level-specific worlds, while describing them differently”
(ibid.). Therefore, it could be the case that the same ontology, the same onto-
logical level, turns out to be described by different languages, and so by distinct
(perhaps supervenient) levels of description.

17With the exclusion of the subsets of the consistent sets.
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It is now time to take stock of what we have seen so far, and make clear
how List’s framework can help us with functional reductionism. To recap the
problem at stake, identities between realisers and realised entities are at odds with
the asymmetry between the two ontologies. However, we can break this impasse
by appealing to levels of description. That is, even if functional reduction entails
that there is only one ontological level (and ontological symmetry), there is still a
sense in which we can say that there are two distinct levels of description in place,
that can accommodate a kind of asymmetry.

Consider the following quote. Butterfield and Gomes (2020a, p. 4), in their
introduction to functional reduction, highlight the fact that, within functionalism:

A single entity (extension) is picked out in two independent ways:

(a) as the unique occupant of a functional role extracted from the
first [top] theory, and

(b) as specified by the second [bottom] theory.

This is the functional model that we have seen in Section 2 and which en-
tails identity in the form of co-extensionality. The same extension is picked out
in two different ways, i.e. by the top and by the bottom theory. However, let’s
now pay attention to how that extension is picked out by those distinct theories.
Recall that – in the second section – the top theory was first introduced using the-
oretical terms (T -terms) and other/observational terms (O-terms). Then, after the
“functionalization“ – i.e. after the application of the Ramsey sentence – the same
theory was expressed only via O-terms. At that point, we constructed explicit
(functional) definitions for the T -terms τ1, ...τn. At the same time, we introduced
also a bottom theory, which was supposed to reduce the top theory. The bottom
theory was embedded with a new vocabulary containing new theoretical terms
(T ∗-terms). The terms in which the theory was expressed (ρ1...ρn) were called
O∗-terms, i.e. either T ∗-terms or O-terms. Then, we showed that we can build
bridge laws ρ1 = τ1, . . . ,ρn = τn between the terms of the two theories. In this
sense, the O∗-term ρi introduced by the bottom theory was shown to pick out the
same entity which was picked out by the top-term τi which we previously func-
tionally defined. This is the way in which, as Butterfield and Gomes remark, the
same entity can be specified both by the bottom theory (using the theoretical terms
of that theory) and by the top theory (via functional definitions).

At this point, notice that the two theories were couched in different languages,
one using sentences containing T -terms and O-terms and the other using O∗-
sentences (containing T ∗-terms and O-terms). In the end, the entities postulated

15



by the top theory are co-extensional with entities postulated by the bottom theory,
but what it is important here is that those entities are independently introduced by
two distinct theories expressed in two different languages. If we now recall List’s
notion of levels of description, we can say that each of those theories corresponds
to a different pair ⟨L,ΩL⟩, which denotes a level of description. The language LT
of the top theory induces a corresponding ontology, and the language LB induces
a different ontology. Then, it turns out that some of the entities in those ontologies
are co-extensional. Yet, through the notion of system of levels of description, we
can say that one level (the pair ⟨LT ,ΩLT ⟩) supervenes on the other level (the pair
⟨LB,ΩLB⟩).

Before concluding, I stress here two important points, also to anticipate some
possible questions. The first point I want to highlight concerns the supervenience
relation. That is, to secure the ordering of the two levels, we just need the super-
venience relation to hold between the induced ontologies ΩL and ΩL′ . This means
that the supervenience mappings hold between the possible worlds and not within
the actual world.

Second, a potential question that can be asked is the following. A central goal
of the present approach is to account for the fact that, even though the function-
ally reduced entities turn out to be identical with their realisers, the two entities
are significantly different in certain respects. For example, they may be differ-
ent epistemologically-wise. Thus, one could wonder why cannot we appeal to
the old extension-intension distinction, instead of the complex formal machinery
presented here. That is, we could maintain that the reduced and reducing entities
are co-extensive and identical, but have a different intension. In other words, re-
duction generates intensional contexts, in which expressions like ‘a reduces to b’
do not allow for substitutions salva veritate of co-referential terms to ‘a’ or ‘b’.
This would resemble the classic Kripkean account of the Hesperus/Phosphorus
case, and is roughly the strategy endorsed by van Riel (2013), in his response to
a challenge analogous to the puzzle of identity. However, the problem with this
strategy is that – while the intension/extension distinction accounts for the fact
that the reduced and the reducing are somehow different – this approach is unable
to account for the asymmetry and the hierarchical ordering between the two. In
contrast, a central advantage of the proposal defended here is to make room for
asymmetry. This is why List’s specific framework is particularly suitable for our
task, as suggested in the introduction.

To conclude, let’s thus sum up the intuition behind the strategy proposed here
to avoid the puzzle of identity. When the ontology of the bottom theory (e.g.
quantum systems) plays the right roles, then the entities described by the upper
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theory (e.g. classical systems) come into play. However, these are not new on-
tological posits. It’s just the fundamental/bottom ontology behaving in a certain
way. This ontology, in the right context, can thus be expressed in terms of the up-
per theory. This is just a redescription of the same entities. However, since levels
of description give us a way to hierarchically order different descriptions, we can
maintain that the two levels of description are not on a par. In yet other words;
ontologically speaking, the entities which are functionally reduced are straight-
forwardly identical, since they are co-extensive. In this respect, they belong to
the same ontological level. On the other hand, those entities are originally picked
out by different theories, which introduce them via different languages, at dif-
ferent levels of description – which are hierarchically ordered via supervenience
mappings. Thus, even within the Lewisian functional reductionist model, there
is still room for saying that reduction embeds asymmetrical relations. It is not
ontological asymmetry, but asymmetry of description.

5 Conclusion
The Lewisian account of functional reduction, i.e. the main model of the view
available in the literature, leads to an evident tension, which becomes even more
apparent when we apply the view to those cases in which functional reductionism
is employed, like the functional reduction of classical systems to quantum ones.
That is, how can we make sense of the asymmetry underlying functional reduction
given that the account entails that the functionally reduced entities are identical to
their realisers?

The paper proposes to distinguish between ontological levels and levels of
description. While we acknowledge that the functional reductionist account gives
us ontological identity, we move the asymmetry to the levels of description. We do
not simply claim that the same entity can be described in different ways, but rather
we employ List’s formal account to show that we can build a hierarchy between
the different descriptions, and it is this hierarchy which satisfies the asymmetry
desideratum.

This original solution will be of interest for all the specific debates in which
functional reduction is employed, as it dissolves a potential lingering tension. We
have been mainly focused here on the reduction between physical theories and
on the applications of functional reduction in science, but our strategy can be
carried over to the philosophy of mind since the Lewisian approach can be applied
to that context as well, as stressed along the way in several places. Finally, I
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suggest that the present discussion can be of interest also beyond the debate on
functional reduction. In fact, this strategy can be plausibly applied to any Nagelian
account of reduction in which the bridge laws have the form of identity statements
since nothing within the discussion of Section 4 essentially relied on details about
functional reduction.
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Lam, V. and C. Wüthrich (2020). Spacetime functionalism from a realist perspec-
tive. Synthese.

Levin, J. (2021). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia
of Philosophy (Winter 2021 ed.). Metaphysics Research Lab, Stanford Univer-
sity.

Lewis, D. (1970). How to Define Theoretical Terms. The Journal of Philoso-
phy 67(13), 427.

Lewis, D. (1972). Psychophysical and theoretical identifications. Australasian
Journal of Philosophy 50(3), 249–258.

List, C. (2019). Levels: Descriptive, Explanatory, and Ontological. Noûs 53(4),
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