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I explain that background freedom in quantum gravity automatically leads to a dissociation of
the quantum state into states having a classical 3d-space. That is, interference is not completely
well-defined for states with different 3d-space geometries, even if their linear combination is.

The dissociation into 3d-space geometries still allows for interference at small scales, but pre-
cludes it at macro scales. It grants the possibility of classical-looking macroscopic objects, including
measuring devices. Counting the 3d-space geometries automatically gives the Born rule.

But the wavefunction collapse turns out to be even more ad-hoc. Fortunately, the dissociation
entails a kind of absolute decoherence, making the wavefunction collapse unnecessary. This naturally
leads to a new version of the many-worlds interpretation, while solving its major problems:

1) the classical-3d-space states form an absolute preferred basis,
2) at any instant, the resulting branches look like classical worlds, with objects in the 3d-space,
3) the 3d-space geometries converge at the Big-Bang, favoring branching towards the future,
4) macro-branches stop interfering, even though micro-branches can interfere,
5) the coefficients Ψ[γ, ϕ] become real by absorbing the complex phases in the global U(1) gauge,
6) the ontology is a state vector uniquely dissociable into many gauged classical-3d-space states,

each of them counting as a world by having local beables (the classical fields),
7) the density of the classical-3d-space states automatically obeys the Born rule.

Keywords: Everett’s many-worlds interpretation; Born rule; quantum gravity; background-independence;
many-spacetimes interpretation.

I. INTRODUCTION

I show that background free approaches to quantum
gravity prevent most quantum state vectors from having
physically meaningful superpositions. Interference effects
require a way to relate the positions in space among dif-
ferent state vectors, but background freedom limits this
possibility. Linear combinations exist mathematically,
but interference effects are suppressed in most situations.

This leads to a new explanation of the emergence of
classicality at the macro level, and to a natural deriva-
tion of the Born rule by counting states with definite
classical 3d-space. The resulting approach to understand
quantum mechanics works less naturally with the wave-
function collapse, but very well with the many-worlds
interpretation, solving some of its main problems.

In Sec. §II I sketch the generic features of wavefunc-
tional formulations of background-free quantum gravity.
This leads to the notion of classical 3d-space states, hav-
ing a definite classical 3d-space (or other structure as-
sumed to be more fundamental than the 3d manifold).

In Sec. §III I explain how background freedom makes
the state vector dissociate into classical 3d-space states,
by limiting their ability to interfere.

In Sec. §IV I show how counting the 3d-space states
into which the state vector dissociates gives the Born
rule. Each 3d-space state either is absent from the wave-
functional, or it appears in it with equal amplitude but
varying density (see Fig. 2). The density is real, since
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FIG. 1. Wavefunctional dissociation due to quantum-
gravitational background freedom. The micro-states (in
green) are 3d-space states. They are very similar at the Big-
Bang, then background freedom makes them dissociate and
form a branching structure like in the many-worlds interpre-
tation. The dissociation is reversible at micro scales, allowing
interference, but it becomes irreversible when it manifests at
macro scales. The branching structure (in yellow) corresponds
to the macro-states (in blue). Counting the 3d-space states
for each macro-state or branch gives the Born rule.

the complex phases are absorbed into the gauge of the
classical fields defining the 3d-space states.

In Sec. §V I argue that the 3d-space states approach
works less well with the collapse postulate, but it works
naturally with the many-worlds interpretation, resulting
in a version of it named here the many-spacetimes inter-
pretation of quantum mechanics.

In Sec. §VI I explain how the many-spacetimes in-
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terpretation solves some of the main problems of the
many-worlds interpretation (Fig. 1). These include the
existence of a preferred basis, the emergence of quasi-
classical macro worlds, the existence of familiar, classical-
looking objects in the 3d-space, the time-asymmetry of
the branching structure, probabilities by counting states,
the appearance of complex numbers in quantum mechan-
ics, and the ontology, including the local beables, which
justify counting each 3d-space state as a world.

Sec. §VII concludes the article with a discussion.

II. 3D-SPACE STATES IN QUANTUM
GRAVITY

A. Classical 3d-space states

We do not have a yet final theory of quantum gravity,
and even less so one that includes the other fields. But I
will assume that such a theory is possible.

Many of the various currently known approaches to
quantum gravity admit wavefunctional formulations.

The Wheeler-de Witt equation

ĤΨ̃ = 0 (1)

involves a wavefunctional Ψ̃ = Ψ̃[γab] on the space
Riem(Σ) of all possible Riemannian geometries (Σ, γab),
where γab is the intrinsic metric tensor on a three-
dimensional manifold Σ, which is a time-dependent
spacelike 3d-slice of the spacetime manifold M = Σ ×
R. Equation (1) was obtained [87] by quantizing the
Hamiltonian formulation of classical general relativity by
Arnowitt, Deser, and Misner (ADM) [71].

The quantization replaces the classical 3d metric γab
and its conjugate momentum πcd

γ by operators,γ̂ab(x)Ψ[γab] = γab(x)Ψ[γab],

π̂cd
γ (x)Ψ[γab] =

ℏ
i

δΨ[γab]

δγcd(x)
,

(2)

subject to the canonical commutation relations{[
γ̂ab(x), π̂

cd
γ (y)

]
= iℏδc(aδ

d
b)(x,y),

[γ̂ab(x), γ̂cd(y)] =
[
π̂ab
γ (x), π̂cd

γ (y)
]
= 0,

(3)

where x,y ∈ Σ and δ/δγcd(x) is the functional derivative.
The Wheeler-de Witt equation is a constraint equa-

tion, not an evolution equation, despite de Witt initially
calling it the Einstein-Schrödinger equation. It is com-
plemented by three other constraint equations that fac-
tor out the space diffeomorphisms. The wavefunctional

Ψ̃ is a timeless solution. A proposal to decode a dynam-
ical solution, made by Page and Wootters [107], consists
of interpreting it as a quantum system |ψ(τ)⟩ entangled
with a clock |τ⟩, Ψ̃ =

∫
R |τ⟩|ψ(τ)⟩dτ . This, and other

proposals, were assessed critically in [94, 98]. According
to Page and Wootters, we can consider that the state of

the universe at the time t is represented by the vector
Ψ(t) := |t⟩|ψ(t)⟩.
In the following we will assume the existence of a quan-

tum theory of gravity based on time-dependent states.
Ashtekar’s formalism [72] is similar, except that in-

stead of γ and πγ , its variables are an su(2) connection,
whose conjugate variable is a densitized frame field on
Σ. At the classical level the ADM formalism and the
Ashtekar variables are equivalent. When quantized, the
resulting operators satisfy commutation relations similar
to (3) [96]. Its quantization was interpreted by Rovelli
and Smolin in terms of loop variables [113].
We do not know with certainty that spacetime is con-

tinuous. Various approaches to quantum gravity are dis-
crete, being based in general on structures that can be
represented as graphs or hypergraphs that may have at-
tached numbers at their vertices and (hyper-)edges. For
example, in the causal sets approach [118], the vertices of
the graph are events from spacetime, and oriented edges
join pairs of events in causal relation, in the sense that the
first event is in the past lightcone of the second one. The
Regge calculus [111] is based on triangulations of space-
time into 4-simplices further approximated as flat. Dis-
tances are attached to the edges, and the spacetime cur-
vature is concentrated at 2-faces, and expressed in terms
of deficit angles etc. The causal dynamical triangula-
tion approach is similar, but with fixed-length edges [99].
Loop quantum gravity can be formulated in terms of spin
networks and spin foams. Spin networks are graphs with
the edges labeled by half-integer numbers correspond-
ing to irreducible representations of su(2) [73, 108, 114].
Two spin networks at different times are joined by a spin
foam, a hypergraph used in the path integral formulation
of loop quantum gravity.
All these graph or hypergraph structures are

background-independent. They can also be seen as equiv-
alence classes of (hyper)graphs embedded in the 3d-space
Σ or in the spacetime M , where two such embedded
structures are equivalent if they can be related by a dif-
feomorphism of the background manifold.
Many of these discrete approaches use Feynman’s path

integral quantization, but at the end a complex coefficient
is associated to each classical 3d-space state, so it is likely
that a wavefunctional representation always exists.
I will assume that quantum gravity can be described

by a theory admitting a wavefunctional representation.
Let CS be the set of classical 3d-space configurations.

These may be the diffeomorphism equivalence classes
of Riemannian geometries (Σ, γ), or more fundamental
structures approximated by such geometries at low ener-
gies. For example, if quantum gravity is one of the dis-
crete theories whose classical configurations are labeled
(hyper)graphs, these will be the elements of CS .
While much of the following works well with both con-

tinuous and discrete spacetimes, we will see that contin-
uous spacetimes have some advantages.
I will assume that there is a Schrödinger formulation

of quantum gravity in terms of wavefunctionals over CS
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endowed with a measure µS on CS . We assume that
problems like the nonexistence of an infinite-dimensional
Lebesgue measure are solved or avoided. The states of
the universe are represented by unit vectors Ψ in the
Hilbert space HS spanned by states |γ⟩, where γ ∈ CS

and Ψ[γ] := ⟨γ|Ψ⟩, with the Hermitian scalar product

⟨Ψ|Ψ′⟩ :=
∫
γ∈CS

Ψ∗[γ]Ψ′[γ]DµS [γ]. (4)

For matter quantum fields I will assume, like in the
quantum field theory on the Minkowski spacetime, that
there is a formulation in terms of wavefunctionals on the
classical configuration space CM of classical fields on Σ.
The classical fields include bosonic fields, which com-
mute, and fermionic fields, which are expressed using
Grassmann numbers because they anticommute at equal
times, see e.g. [95]. If additional variables are needed
to specify how the 3d geometries integrate into 4d man-
ifolds, for example the shift and lapse variables, I will
assume that these are included as well in CM . If the
3d-space is a (hyper)graph γ ∈ CS , I will assume that
matter can be described, in principle, by attaching vari-
ous quantities or other structures to the elements of γ.

Let us summarize all of the above into the following

Assumption 1. The complete state of the universe is
represented by a wavefunctional on a configuration space
C = CS × CM , where CS is the 3d-space configuration
space and CM is the matter configuration space. We as-
sume a measure µ on C, of the form µ[γ, ϕ] = µS [γ]µM [ϕ],
where (γ, ϕ) ∈ C. Let the Hilbert space of such wavefunc-
tionals be H ∼= HS ⊗HM , with a scalar product

⟨Ψ|Ψ′⟩ :=
∫
(γ,ϕ)∈C

Ψ∗[γ, ϕ]Ψ′[γ, ϕ]Dµ[γ, ϕ]. (5)

Definition 1. The states |γ, ϕ⟩ satisfying Ψ[γ, ϕ] =
⟨γ, ϕ|Ψ⟩, where γ represents the 3d-space and ϕ the mat-
ter fields, will be called 3d-space states.

B. 3d-space states are fundamental

Just because physicists first discovered classical
physics, and later quantum theory, and formulated the
latter by quantizing the former, it does not mean that
quantum theory requires classical physics to exist. The
universe is what it is, and it is fundamentally quantum.

However, the Hilbert space is too symmetric as it is,
and without the existence of preferred structures that
break its symmetry, there would be no relation between
Hilbert space vectors and physical reality, or between
Hermitian operators and physical observables. Physical
properties cannot simply emerge from the abstract state
vector, even if the Hamiltonian is known, because if they
would, infinitely many entities with the very same prop-
erties, but able to represent completely different physi-
cal realities, would emerge as well [125, 128]. Therefore,

the basis (|γ, ϕ⟩)(γ,ϕ)∈C of the Hilbert space H is special
among the others, because of its physical meaning. This
justifies

Assumption 2. The 3d-space states are fundamental,
in the sense that, by their physical meaning, they are
special among the other states represented by H.

As explained earlier, these 3d-space states are not nec-
essarily Riemannian geometries, they can be other struc-
tures approximated at low energies by such geometries.
What is important is that they have a special physical
meaning, in the same sense in which, in nonrelativis-
tic quantum mechanics, the position operators and their
eigenvectors have a special physical meaning compared
to other operators or vectors in the Hilbert space.

C. Background freedom

To construct the configuration space C, we eliminated
the unphysical degrees of freedom due to diffeomorphisms
and global gauge transformations. For example, two met-
ric tensor fields on Σ may look different, but a coordinate
transformation, which corresponds to a diffeomorphism
of Σ, may be able to map them into one another, show-
ing that they are isometric. For this reason, we took the
equivalence class of metrics on Σ under diffeomorphisms.

Similarly if the 3d-space is a discrete structure like the
ones that can be represented by graphs or hypergraphs
from §IIA, we took the configuration space consisting of
such structures based on their internal relations, not as
particular embeddings in a 3d manifold. But let us state
this explicitly, since it will be central in the article:

Assumption 3. Our theory is background-free.

The case for background freedom was made for exam-
ple by Smolin [117]. General relativity already shows
that the structures have to be relational: we use coor-
dinates, but they are not absolute, they are just ways
to assign numbers to points in space or spacetime. The
hole argument [106, 119] shows that taking the points of
the underlying manifold as having an independent real-
ity from the intrinsic relations introduced by the metric
tensor leads to indeterminacy.

This is why many of the approaches to quantum grav-
ity seem to require background freedom, or even have it
built-in, including the formulation based on the Wheeler-
de Witt equation (1), the discrete approaches based on
(hyper)graphs discussed earlier, like causal sets, Regge
calculus, causal dynamical triangulations, loop quantum
gravity etc. For a discussion of background independence
in string theory see Witten [137].
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III. DISSOCIATION INTO CLASSICAL
3D-SPACE STATES

A. Background freedom and dissociation

In general, we make no difference between the concepts
of linear combination and superposition, except maybe
that a linear combination is understood as the mathe-
matical expression of a superposition, which is a physical
concept related to the position in the 3d-space and phe-
nomena like interference. And they usually coincide.

In nonrelativistic quantum mechanics, any two wave-
functions can be superposed in the 3d-space, because
the underlying geometry is the same, and the reference
frames are the same. In the wavefunctional formulation
of quantum field theory on Minkowski spacetime, the lo-
cal information about the wavefunctional of a scalar field
is obtained by using local operators at x ∈ Σ = R3, de-

finable in function of the operators ϕ̂(x) and π̂ϕ(x) (to be
rigorous, one uses operator-valued distributions, applied
to a sequence of test functions that converge uniformly
to the Dirac distribution δx).

In background-dependent theories of quantum gravity
we can define local operators in a similar way, in function

of the operators γ̂(x) and π̂γ(x) from eq. (2), and ϕ̂α(x)
and π̂ϕα(x) for each matter field ϕα, where α stands for
the spin and the internal degrees of freedom.

But in background-free quantum gravity local opera-
tions on the 3d-space do not make sense for all states,
and likewise superpositions, even if the linear combina-
tions are always defined. If the theory is background-
free, a difference appears when we apply local operators

to linear combinations. Any local operator Â(x) depends
on x, but background freedom prevents the matching of
x for |γ, ϕ⟩ to x for |γ′, ϕ′⟩, because in general γ ̸= γ′.
There is no definite correspondence between the points
of Σ for |γ, ϕ⟩ and those of Σ for |γ′, ϕ′⟩, because of back-
ground freedom. The situation is even more visible in
background-free theories where (Σ, γ) is replaced by a
labeled (hyper)graph.

If (Σ, γ) and (Σ, γ′) are isometric, a correspondence be-
tween the points of Σ for |γ, ϕ⟩ and those of Σ for |γ′, ϕ′⟩
exists, although it is not necessarily unique. Sometimes
such a correspondence exists only between some open re-
gions of Σ. So the dissociation is not always ensured, and
we will see that this is important.

We arrived at the following:

Key observation 1. Background freedom implies the
dissociation of the universal wavefunction into classical
3d-space states, because local operators and superposi-
tions are not completely well-defined in the absence of a
common background.

The dissociation is not necessarily complete, and vari-
ous cases are captured in the following definition.

Definition 2. Two 3d-space states |γ, ϕ⟩ and |γ′, ϕ′⟩ are
locally associable if there exist two open subsets U,U ′ ⊆

Σ and an isometry between (U, γ) and (U ′, γ′). In case
that U = U ′ = Σ, they are globally associable.
Two 3d-space states are dissociated if they are not

globally associable. They are partially dissociated if they
are locally but not globally associable. They are com-
pletely dissociated if they are neither locally nor globally
associable.

In the discrete case, in Definition 2, (local) isometries
are replaced by (local) isomorphisms between the labeled
(hyper)graphs γ and γ′.
As long as the dissociation is not complete, the 3d-

space states can reassociate, at least partially. This al-
lows quantum interference to exist at micro scales. This
is the key to understanding why our quantum world looks
quantum at small scales, and classical at macro scales.

B. Macro-states and classical micro-states

Macro-states correspond to equivalence classes of
micro-states. There is a complete set of commuting pro-

jectors (P̂α)α∈A on H, so that [P̂α, P̂β ] = 0 for any

α ̸= β ∈ A, and
⊕

α∈AP̂αH = H. Any macro-state

is represented by a subspace of the form P̂αH. We will

say that the states belonging to macro-states P̂αH are
quasi-classical.
Since the 3d-space states are classical, it makes sense

to assume that they are also quasi-classical, i.e. every

3d-space state |γ, ϕ⟩ ∈ P̂αH for some α.

Assumption 4. All 3d-space states are quasi-classical.

If at a given time the state of the universe is a 3d-
space state, it immediately evolves into a linear combi-
nation of 3d-space states. Dissociation and reassociation
happen continuously. However, at the macro level, the
state may remain quasi-classical for finite time intervals
under unitary evolution. This accounts for the fact that
macroscopic systems do not evolve all the time into linear
combinations of macro-states like the Schrödinger cat, al-
though it allows unitary evolution to lead to such linear
combinations during quantum measurements.

IV. PROBABILITIES FROM COUNTING
3D-SPACE STATES

A. Taking dissociation seriously

Every vector |Ψ⟩ from H has the form

|Ψ⟩ =
∫
(γ,ϕ)∈C

cγ,ϕ|γ, ϕ⟩Dµ[γ, ϕ], (6)

where cγ,ϕ = Ψ[γ, ϕ] = ⟨γ, ϕ|Ψ⟩.
We may be tempted to simply proclaim the Born rule,

that the probability density is

P [γ, ϕ] = |cγ,ϕ|2. (7)
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But let us resist this for a while, and explore the con-
sequences of the dissociation. If we explore the conse-
quences of a physical principle, we should do it in its own
terms, and if the result contradicts the observations, we
should drop the starting principle. So let us byte the
bullet and see where the idea of dissociation leads. We
will see that it leads to the Born rule, but in a natural
way, not by fiat. The dissociation into classical 3d-space
states suggests the following principle:

Principle 1. Each 3d-space state is either not present
in |Ψ(t)⟩, or it is present once (i.e. it cannot be “half-
present”, even if eq. (6) may suggest this possibility).

This may seem to contradict everything we know.
However, we will get quantum theory back, with the fa-
miliar complex numbers, which will receive a geometric
meaning in terms of a global gauge, and, since C is con-
tinuous, with the Born rule as we know it, but resulting
from counting the 3d-space states.

B. Making the wavefunctional real

Background freedom implies that the quantum state
dissociates automatically into 3d-space states, but since
the coefficients cγ,ϕ from eq. (6) are complex numbers,
we need to understand their meaning.

First, while |γ, ϕ⟩ is a classical state, cγ,ϕ|γ, ϕ⟩ is not
classical. Let us for the moment ignore γ, and consider
that ϕ is a scalar field. In general, c|ϕ⟩ ≠ |cϕ⟩. Even if c ∈
R, if c ̸= 1, |cϕ⟩ represents a classical state cϕ completely
different from ϕ, so |cϕ⟩ and |ϕ⟩ are orthogonal.
But if ϕ is an electrically charged field and φ ∈ R,

eiφϕ represents a global gauge transformation of ϕ. The
classical fields ϕ and eiφϕ are physically the same. The
state vectors |ϕ⟩ and eiφ|ϕ⟩ are distinct, they differ by a
phase factor, but they represent the same physical state.
This suggests the following interpretation:

Key observation 2. If the matter fields admit an U(1)
gauge symmetry, for any φ ∈ R,

eiφ|γ, ϕ⟩ = |γ, eiφϕ⟩. (8)

This accounts for the fact that the physical equiva-
lence of the classical fields ϕ and eiφϕ corresponds to the
physical equivalence of the state vectors |ϕ⟩ and eiφ|ϕ⟩.

This approach works for fields admit an U(1) symme-
try, like charged fields and spinor fields. Since the elec-
tromagnetic field can be put in a complex form, even the
photon admits an U(1) symmetry [79].

Let us express the complex coefficients cγ,ϕ from eq.
(6) in the polar form

cγ,ϕ = r[γ, ϕ]eiφ[γ,ϕ], (9)

with r[γ, ϕ] ≥ 0. Then, eq. (6) becomes

|Ψ⟩ =
∫
(γ,ϕ)∈C

r[γ, ϕ]|γ, eiφ[γ,ϕ]ϕ⟩Dµ[γ, ϕ], (10)

We see that, whenever a physical classical field con-
tributes to |Ψ⟩, it contributes only once, with a uniquely
determined gauge eiφ[γ,ϕ] and real coefficient r[γ, ϕ]. As
|Ψ⟩ evolves in time, the gauge and r[γ, ϕ] can change.
It remains to explain the relation between r[γ, ϕ] and

the probability density of the 3d-space states.

C. Emergence of the Born rule

Now that we have seen that gauge freedom allows the
coefficients in the linear combination of 3d-space states
to be real numbers, let us see what is their meaning and
how it relates to probabilities.
I will assume that the configuration space CS is contin-

uous, so C is also continuous. This happens for example
if Σ is a 3d manifold. I show that, under this assumption,
the Born rule emerges by counting the 3d-space states.
A more general derivation can be found in [127].
Let us choose all fields ϕ so that in eq. (9) φ[γ, ϕ] = 0.

We define ξ := (γ, ϕ).
First, we notice that a state vector of the form |Ψ⟩ =

1√
n

∑n
k=1 |ξk⟩, where (|ξk⟩)k∈{1,...,n} are distinct basis

vectors, leads to the Born rule. If P̂α is a macro projec-

tor and nα basis vectors composing |Ψ⟩ belong to P̂αH,

then ⟨Ψ|P̂α|Ψ⟩ = nα/n. Therefore, the Born rule simply
coincides with the usual counting rule “probability is the
ratio of the number of favorable outcomes to the total
number of possible outcomes”. But only a small subset
of the possible state vectors have this form, so this idea
fails if the basis is discrete.
However, this idea works in the continuous case, since

the basis vectors can be distributed with nonuniform den-
sity. More precisely, if r[ξ] = r[γ, ϕ] from eq. (10) is
µ-measurable, we can define a new measure

Dµ̃[ξ] := r[ξ]Dµ[ξ], (11)

and obtain

|Ψ⟩ =
∫
ξ∈C

|ξ⟩Dµ̃[ξ]. (12)

That’s all.
At first sight, one may think eq. (12) cannot represent

a normalized vector, so let us verify that it does:

⟨Ψ|Ψ⟩ =
∫
ξ∈C

⟨ξ|Dµ̃[ξ]
∫
ξ′∈C

|ξ′⟩Dµ̃[ξ′]

=

∫
ξ∈C

(∫
ξ′∈C

⟨ξ|ξ′⟩Dµ̃[ξ′]
)

Dµ̃[ξ]

=

∫
ξ∈C

(∫
ξ′∈C

⟨ξ|ξ′⟩r[ξ′]Dµ[ξ′]
)

Dµ̃[ξ]

=

∫
ξ∈C

r[ξ]Dµ̃[ξ] =

∫
ξ∈C

r2[ξ]Dµ[ξ] = 1.

(13)

Since r[ξ] is µ-measurable, the measure µ̃ is absolutely
continuous with respect to µ.
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Now, consider a macro projector P̂α so that the macro-

state P̂αH is the closure of a subspace spanned by
(|ξ⟩)ξ∈(C)α , where Cα is µ-measurable. Then, from As-
sumption 4, we get

⟨Ψ|P̂α|Ψ⟩ =
∫
ξ∈Cα

|ξ⟩Dµ̃[ξ], (14)

just like the Born rule says. Therefore, state counting
gives the Born rule, in accord to Principle 1 (Fig. 2).

A. Constant density, varying amplitude

B. Constant amplitude, varying density
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FIG. 2. The Born rule from counting 3d-space states.
A. The usual interpretation of a wavefunction as a linear com-
bination of basis state vectors of different lengths.
B. The interpretation of the wavefunction in terms of constant
length basis state vectors, but with inhomogeneous density.

Key observation 3. If CS is continuous, any state vec-
tor |Ψ⟩ ∈ H consists of mutually orthogonal 3d-space
states whose density is |Ψ[γ, ϕ]|Dµ[γ, ϕ].

Therefore, the numbers from eq. (10) have a direct
meaning: Principle 1 combined with the gauge freedom
allows the interpretation of the states |Ψ⟩ as consisting
of 3d-space states that are either present or not. We
obtained the Born rule from counting 3d-space states.

Remark 1. Note that the derivation of the Born rule from
this Section is not limited to the case when the basis
states are 3d-space states [127]. What is important is
that the basis is continuous, and that the basis vectors
belong to macro-states. In quantum field theory in the
Schrödinger wavefunctional representation, one can use
the classical field configurations to obtain the basis. In
nonrelativistic quantum mechanics, one can use the clas-
sical positions of the n particles, which are represented
by points in the configuration space R3n, and this is con-
sistent with the fact that ultimately every quantum mea-
surement translates to a position measurement. But the
3d-space states have the advantage of dissociating in a
natural way, and of including gravity. Moreover, the 3d-
space states are the only ones consisting of local beables,
which are γ and ϕ (see Sec. §VIG). This justifies count-
ing these states to get the Born rule.

V. COLLAPSE POSTULATE OR
MANY-WORLDS?

Let us see how dissociation into 3d-space states works
with quantum measurements, and whether it works bet-
ter by assuming the collapse postulate or with the many-
worlds interpretation.
A measuring device is a quasi-classical system. When

interacting with the observed system, assumed to be mi-
croscopic in the sense that it is not directly observable,
the combined system evolves into a linear combination
of macroscopically distinct states. Each of these states
contains the observed system in a different state, and the
pointer of the measuring device indicating that state. So
the Schrödinger equation predicts that two or more sto-
ries describing the measurement are simultaneously true.
But we never observe such linear combinations: after the
measurement, the pointer state is always in a definite
macro-state.

QM Problem 1. Why can the state vector of the ob-
served system be any linear combination at micro-scales,
but not at macro-scale?

To resolve this problem, in standard quantum me-
chanics one invokes the collapse postulate [133], which
simply states that quantum measurements suspend the
Schrödinger evolution, so that from the linear combina-
tion we keep only the term that corresponds to only one
of the possible pointer states, removing the others.
In doing this, standard quantum mechanics assumes,

without explaining it, the pre-existence of measuring de-
vices in quasi-classical states, but most quantum states
are superpositions of quasi-classical states. So we have
the following problem:

QM Problem 2. Why is the measuring device already
in a quasi-classical state?

The collapse postulate purports to solve Problem 1
by assuming implicitly that Problem 2 is already solved.
And, because of the collapse postulate, the Schrödinger
equation is considered valid in some situations, but it is
suspended in other situations.
There seems to be a double standard here. On one

hand, linear combinations and entangled states appear
and evolve in parallel as long as no observation is made,
and the experiments are consistent with this. On the
other hand, if we measure them, since we do not observe
more parallel sets of outcomes simultaneously, we allow
only one of the stories, and censor the other one, by ap-
pealing to the collapse postulate.
Let us see how measurements happen in the approach

based on dissociation into 3d-space states proposed here.
Consider a measuring device assumed to be almost

classical, having a locally well-defined 3d-space. Then,
what enters in its range can be any state of the observed
system, in any linear combination. Since the measuring
device is localized, the instances in each 3d-space branch
can be compared and collapse can be invoked. It may
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seem that the description of the measurement by using
collapse became clearer.

But we still had to assume that Problem 2 is solved.
And the collapse is still arbitrary, there is still no clear
rule when it should be invoked. When no measurement
is made, multiple 3d-space states are allowed to coexist,
dissociate and associate in interference patterns in the
wavefunctional. But when a measurement is made, only
some of the 3d-space states seem to remain. Some linear
combinations of 3d-space states seem to be “more equal”
than others.

One may try to use the 3d-space states approach to
solve Problems 1 and 2 at once, by reformulating the
collapse postulate in the following way:

Tentative Postulate 1 (Alternative Collapse Postu-
late). During the evolution of the system, the 3d-space
states may become irreversibly dissociated into two or
more sets of 3d-space states, determined by the macro
projectors. Let us call these sets macro-branches. When
this happens, only one of the macro-branches remains,
and the others disappear.

This Tentative Postulate seems to provide a basis to
explain macro systems, including measuring devices. If
so, it can solve both Problems 1 and 2 at once.

But dissociation and reassociation happen all the time.
Reassociation allows interference effects, but when disso-
ciation is irreversible, these effects are suppressed auto-
matically.

Remark 2. If we assume collapse and try to explain the
Born rule by counting 3d-space states as in Sec. §IV,
we will have to accept that the wavefunction consists of
many micro-states that exist simultaneously, and part of
them are eliminated by every collapse. But this would
make quantum mechanics with the collapse postulate
a strange version of the many-worlds interpretation, in
which some of the micro-branches are removed with ev-
ery collapse. On the other hand, the derivation of the
Born rule from Sec. §IV works naturally with MWI.

These remarks immediately prompt the following:

Key observation 4. Tentative Postulate 1 is unneces-
sary, because once the dissociation becomes irreversible,
the macro-branches evolve independently and no longer
interfere.

Therefore, since when dissociation becomes irreversible
at macro scales the macro branches no longer interfere,
the 3d-space states approach works more naturally with
the many-worlds interpretation (MWI) rather than with
the wavefunction collapse.

The key idea of MWI is to take the Schrödinger equa-
tion seriously, without introducing any ad-hoc rule that
applies only to macro scales. This implies that all pos-
sible components of the total wavefunction continue to
exist after the measurement, but thanks to decoherence,
they no longer “see” each other. The linearity of the
Schrödinger equation allows the macroscopically distinct

states that result from a quantum measurement by uni-
tary evolution to be independent, but in addition, they
no longer interfere. The wavefunction branches so that
the different branches occupy different regions in the con-
figuration space. Interference is suppressed because the
copy of any measuring device in one branch is unable
to detect anything from another branch, so the branches
no longer “know” about one another. And the branches
become macroscopically distinct, in the sense that they
correspond to projections of the state vector on different

macro-states P̂α1
H, . . . , P̂αn

H.

Decoherence into macro-branches seems to explain the
existence of measuring devices and solve the measure-
ment problem without violating the Schrödinger equation
by invoking an ad-hoc wavefunction collapse.

There are several problems that are not solved, at least
not in a way that does not require a complete reinter-
pretation of well-established concepts like probabilities.
They will be discussed in Sec. §VI, where I will propose
that these problems are solved, or at least alleviated, by
the dissociation into 3d-space states, which provides an
absolute form of decoherence.

VI. THE MANY-SPACETIMES
INTERPRETATION

We think that we are forced to suspend the Schrödinger
equation as a result of measurements, because we observe
only one of the stories that the Schrödinger equation de-
scribes as taking place in parallel. But could we observe
more than one of these stories at once? The Schrödinger
equation predicts that even the observers would be “mul-
tiplied”, each of its instances participates in one of the
stories and not in the others, of which they are oblivi-
ous. And the laws of physics are the same in all of these
stories.

Everett noticed the perfect symmetry of the situation,
and saw no reason to favor the story in which one gets an
outcome against the competing stories. He proposed to
trust the Schrödinger equation and accept that all stories
continue to happen independently [88, 89]. Schrödinger
himself proposed earlier something that he worried may
“seem lunatic” along the same lines [75, 86, 116].

The result of Everett’s realization is the many-worlds
interpretation (MWI) of quantum mechanics. But there
are still open questions in MWI. Various proposals were
made to solve them, and some researchers think they
are solved. Others think that they cannot be solved and
MWI does not deserve to be taken seriously.

In this Section I argue that the 3d-space states ap-
proach solves some of these problems, or provides a more
natural way to solve them. This leads to a variant of the
many-worlds interpretation, which may be called “the
many-3d-space states interpretation”, but I will call it
the many-spacetimes interpretation (MSTI).
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A. Preferred basis: 3d-space states

Let us start with a problem whose solution is the key
to solving other problems.

MWI Problem 1 (Preferred basis). In what basis does
the branching take place, so that the worlds appear clas-
sical at the macro level?

Presumably, this is solved by decoherence [100]. How-
ever, there has to be more to the preferred basis than
that it simply “emerges”. Otherwise, if a preferred basis
emerges, either for the entire universe, or for a subsys-
tem, infinitely many others emerge [125].

In nonrelativistic MWI, it is expected that the pre-
ferred basis is related to the positions in the configura-
tion space. This would explain why branches no longer
interfere – it is because they no longer overlap in the
configuration space.

But the MSTI answer is different.

MSTI Answer 1 (Preferred basis). The dissociation
of the state vector automatically selects as the preferred
basis the 3d-space states basis.

B. Macro world

Another important problem is the following

MWI Problem 2 (Macro world). How does the
classical-looking macroscopic world emerge from the
wavefunction?

Often, Problem 2 is considered solved by decoherence
[97, 100, 138], which appeared in the first place to solve
it.

Without denying the importance of decoherence, the
dissociation strengthens the idea, by introducing an ab-
solute notion of decoherence.

MSTI Answer 2 (Macro world). Each macro world
corresponds to multiple classical 3d-space states that be-
long to the same macro-state, because they are not dis-
tinguishable at the macro level.

The 3d-space states gather together into macro states
(Assumption4). Since each 3d-space state is also quasi-
classical, and since they are not distinguished by the
macro projectors, they can account for the macro world.

C. Classicality as classicality

Another problem is that the wavefunction is not de-
fined on the 3d-space, but on the much larger configu-
ration space. This disturbed Schrödinger [74], Lorentz
([110], p. 44), Einstein [90, 93], Heisenberg, Bohm [81]
etc. This is true for the wavefunction of any state vec-
tor in the total Hilbert space. So even if MWI solves
Problem 2, the following may remain:

MWI Problem 3 (Objects in space). Given that the
wavefunction is defined on the high-dimensional config-
uration space, how do familiar, classical-looking objects
localized in space emerge from the wavefunction?

The wavefunction, being an element of a representation
of the Galilei or the Poincaré group [136], is intrinsically
associated to space or spacetime. Therefore, properly an-
alyzed, it satisfies all expectations of standard geometric
objects in space or spacetime [126]. Moreover, if one is
not satisfied with this and wants the wavefunction to be
expressed as classical-like fields in space or spacetime,
this is also possible, albeit in an inaesthetic way that at
least serves as a proof of concept [124]. But in the case
of quantum gravity, the representation from [124] only
works if the theory is background-dependent.
And even if the wavefunction is, in the sense of group

theory or as fields, an object in space, it does not look
like the familiar, classical-looking objects we see.
Maybe decoherence leads to branches that look like fa-

miliar, classical-looking objects localized in space. Wal-
lace [135] thinks that the branches form patterns in the
sense of Dennett [84], but are these patterns classical-
looking enough?
Maudlin [101–103] and Norsen [105] think that Prob-

lem 3 is not solved, and that it is hard to solve it
even if Problems 1 and 2 would be. They contrast this
with the pilot-wave theory (PWT) [80], which includes,
along with the wavefunction, point-particles at definite
positions in space, and with the Ghirardi-Rimini-Weber
(GRW) interpretation [91], where the wavefunction col-
lapses around well-localized points in the configuration
space, thereby appearing classical.
Their arguments can be seen as relying on the idea that

the primitive ontologies of the PWT and GRW interpre-
tation (especially in Bell’s flash ontology [78]) are very
similar to the classical ones. This similarity also seems
to help solving the other problems of the PWT and GRW
interpretations 1.
An important lesson that can be learned from their ar-

guments is that classical physics is clearer, and so any in-
terpretation of quantum mechanics that is closer to clas-
sical physics has an important advantage.
This suggests the following heuristic rule

Rule of Thumb 1. If a solution is considered to work
without problems in classical physics, and if it can be
applied to an interpretation of quantum mechanics, it
should also be considered to work without problems in
that interpretation of quantum mechanics.

We can see that the MSTI Answers 1 and 2 already
align MWI to this Rule of Thumb, except for the multi-

1 But for these interpretations to work, the wavefunction governing
the motion of the particles in PWT and the probability of the
spontaneous localization in the GRW interpretation has to be
itself well localized around the points of the configuration space,
so the MWI Problem 3 applies to these interpretations as well.
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plicity of the worlds, which is not present in the classical
theories.

It is therefore desirable to have a solution of Problem 3
along the Rule of Thumb 1 as in the PWT and GRW in-
terpretations. Background freedom automatically makes
this possible.

MSTI Answer 3 (Objects in space). The 3d-space
states consist of classical fields on the 3d-space.

What can be more classical than the classical itself?

D. Branching asymmetry from Big-Bang symmetry

Another problem is the following

MWI Problem 4 (Branching asymmetry). Why is the
branching happening only towards the future, and why
do the branches remain separated?

This is also often claimed to be solved by decoherence,
but since the Schrödinger equation is time-symmetric,
without very fine-tuned initial conditions of the universe,
decoherence would equally predict branching towards the
past.

In the standard framework of the many-worlds inter-
pretation, Wallace acknowledged this problem, analyzed
it, and concluded that the branching asymmetry is cor-
related to the thermodynamic arrow of time [135]. But
we do not have an explanation for the thermodynamic
arrow of time either, although the second law of thermo-
dynamics is a well-established fact.

The dissociation into 3d-space states allows us to make
some progress, by relating branching asymmetry with the
cosmological arrow of time. The cosmological arrow of
time points from the Big-Bang to the direction of time in
which the universe expands. The closer the state of the
universe is to the Big-Bang, the more homogeneous and
isotropic the universe is. Moreover, as the singularity is
approached, the 3d-space contracts.

A way to interpret this is that it contracts to a point,
which is the singularity. This would be problematic, since
if Σ is a point at t = 0, we will need to explain how it
evolves into a 3d manifold.

Another way to interpret it is that the 3d-space com-
ponents of the metric tensor tend to 0 as t ↘ 0, but
the topology of space does not contract to a point, it
is still the 3d manifold (Σ, γab(x) ≡ 0). By avoiding
to make the assumption that the topology derives from
distance, we can obtain equations for general relativity
that continue to be valid under more general conditions.
For this we need an alternative formulation of semi-
Riemannian geometry and Einstein’s general relativity,
which is equivalent to these ones outside the singularity,
but well-defined and free of infinities at the singularity.
This was achieved and shown to work in many situations
in which non-singular semi-Riemannian geometry is not
defined [120, 122, 123]. Moreover, this approach works
well together with Penrose’s Weyl curvature hypothesis,

whose motivation was to connect the cosmological and
the thermodynamic arrows of time [109, 121].
Then, there is only one possible 3d-space state at the

Big-Bang singularity. Of course, as t ↘ 0 the system
may be chaotic, as in the Mixmaster model [104] or the
Belinski–Khalatnikov–Lifshitz model [77]. Then, while
at the singularity there is still only one possible 3d-space
state, it can be approached in different ways as t ↘ 0.
However, the limit γ → 0 forces the solutions to depend
on a small number of parameters as they converge to the
unique 3d-space (Σ, 0).
Therefore, the severe constraint of the initial condi-

tions for (Σ, γ) implies that the branching structure of
the wavefunctional is very asymmetric in time. This sug-
gests a possible reason why, at macro scales, branching
happens only towards the future.

MSTI Answer 4 (Branching asymmetry). Branching
happens only towards the future because at the Big-Bang
the 3d-space states are characterized by a very small
number of degrees of freedom and converge to the same
initial 3d-space state.

This answer is of course incomplete. We do not know
why the initial state had to be the Big-Bang, and it is not
even sure that there was a singularity, many researchers
think that quantum gravity will be able to remove it.

E. Probabilities from continuity

When a quantum measurement is made, the probabil-
ity to obtain a certain outcome is given by the Born rule
to be the square of the projection of the state vector.
Different outcomes may therefore have different proba-
bilities. However, in MWI, there is only one branch for
each of these outcomes. A direct counting argument im-
plies that all outcomes should be obtained with the same
probability, contrary to the Born rule. Everett proposed
that somehow the squared amplitude of the branch gives
the probability that the observer ends out being the ob-
server from that branch.

MWI Problem 5 (Probabilities). Why are the prob-
abilities proportional to the squared amplitudes of the
branches?

There are various proposed solutions, based on many-
minds [70], decision theory [85, 134], measure of existence
[129] etc. For a review see [132]. Proposals that some-
how the amplitude of a branch yields probability have
merits and led to interesting insights into the nature of
probability [135]. But if there is a way to obtain proba-
bilities in the old-fashioned way, for example by branch
counting (Saunders advocates this [115]) or as the ratio
of the number of favorable outcomes to the total number
of possible outcomes, the result would be more palatable,
without necessarily contradicting other proposals.
The Rule of Thumb 1 suggests the desirability to solve

the problem by micro-state or micro-branch counting.
Fortunately, MSTI does just this:



10

MSTI Answer 5 (Probabilities). “Counting” 3d-space
states allowed to have an inhomogeneous density gives
probabilities proportional to the squared amplitudes.
Counting each 3d-space state is justified by the fact that
only those states have local beables, see §VIG.

This derivation of the Born rule is consistent with,
and provides a concrete realization of, Saunders’ branch-
counting [115], Vaidman’s notion of measure of existence
[129], and maybe, but I am not sure, the Deutsch-Wallace
decision-theoretic argument [85, 134].

F. Real wavefunction

The Rule of Thumb 1 also suggests the following

MWI Problem 6 (Real-number-based probabilities).
It is true that the norm of the (complex) wavefunction
is real. But is there a deeper reason why we get real
probabilities?

MSTI suggests a solution according to the Rule of
Thumb 1 for this too:

MSTI Answer 6 (Real-number-based probabilities).
The wavefunction is real, and the complex phases only
represent a global U(1) gauge choice for the classical fields
in the 3d-space states.

G. Ontology: a real wavefunction

Another problem is that of ontology:

MWI Problem 7 (Ontology). What is the ontology of
MWI? What are the local beables?

Some researchers consider that the abstract state vec-
tor and the Hamiltonian are sufficient to specify the on-
tology of MWI, and from it one can derive an essentially
unique 3d-space, the tensor product structure, the pre-
ferred basis, and all there is to be known about the uni-
verse [83]. This is impossible, because if any of these
structures can be derived from the state vector and the
Hamiltonian, infinitely many other solutions exist [125].

Other researchers consider that the wavefunction is
needed, in the sense that not only the state vector is
required, but also the 3d-space, and this is sufficient to
specify the complete ontology [130, 131].

Despite this, authors like Maudlin [101–103] and
Norsen [105] consider that MWI does not have a primi-
tive ontology in terms of local beables.

But in every micro-world in MSTI there are local be-
ables, just like in classical physics.

MSTI Answer 7 (Ontology). There is a wavefunc-
tional, composed of 3d-space states and dissociable into
them. Each 3d-space state consists of a 3d-space (Σ, γ),
on which classical fields ϕ are defined, with a fixed gauge.

Every 3d-space state appears at most once in the com-
position of the wavefunctional, but these states can be
distributed with a nonuniform density. The distribution
gives the real wavefunctional, and the gauge gives the
complex phase of each term in the wavefunctional. The
local beables are the classical fields ϕ and γ defined on
the 3d manifold Σ, so they are defined only for 3d-space
states. Because the 3d-space states are the ones having
definite local beables, they correspond to (micro-)worlds.
This justifies counting them to obtain the probabilities.

Therefore, local beables exist, and the Rule of Thumb
1 was followed.

VII. DISCUSSION

It is uncommon to use the wavefunctional formulation
of quantum field theory in the interpretation of quantum
mechanics. For some reason, it is considered more natu-
ral to take nonrelativistic quantum mechanics as a bench-
mark for these interpretations. But the wavefunctional
formulation is natural too, if not even more natural.

Remark 3. When we perform a quantum measurement of
a smaller system, we never observe directly its state, only
the pointer state of the apparatus, which is macroscopic.
A measuring device is dedicated to a particular location
and type of quantum field (or subsystem in general), not
to a particular particle (or subsystem). The result of any
measurement translates into a change in the macro-state
of the universe. All these are described adequately by
the wavefunctional of the entire universe.

Wheeler and Everett considered MWI as the interpre-
tation of quantum mechanics that is suitable for quantum
gravity [76, 82]. According to DeWitt [87], p. 1141:

Everett’s view of the world is a very natural
one to adopt in the quantum theory of grav-
ity, where one is accustomed to speak without
embarrassment of the ’wave function of the
universe.’ It is possible that Everett’s view is
not only natural but essential.

Here, we have seen that background free quantum
gravity solves some foundational problems of quantum
mechanics, and especially of MWI. It even suggests a
version of MWI (which is MSTI) as the more natural
interpretation of quantum mechanics. The relation be-
tween quantum gravity and MWI is therefore reciprocal.
Finally, I argued that MSTI solves some of the main

problems of standard quantum mechanics and MWI.
The strategy to make this interpretation more palat-

able was to highlight similarities with classical physics,
based on the Rule of Thumb 1. It turns out that, ex-
cept for the existence of a multiplicity of worlds, MSTI
is a more classical version of MWI, with respect to the
appearance of classicality, the existence of local beables,
the statistics, and even the understanding of the complex
numbers inherent to the theory.
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