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Abstract

This paper traces the origin of renormalization group concepts back to
two strands of 1950s high energy physics: the causal perturbation theory
programme, which gave rise to the Stueckelberg-Petermann renormalization
group, and the debate about the consistency of quantum electrodynamics,
which gave rise to the Gell-Mann-Low renormalization group. Recognising
the different motivations that shaped these early approaches sheds light on
the formal and interpretive diversity we find in contemporary renormaliza-
tion group methods.

1 Introduction

The renormalization group saw its most famous successes, and established its
central place in the toolkit of contemporary theoretical physics, in the 1970s. This
paper examines the origins of renormalization group ideas two decades earlier, in
the 1950s.

There are a number of motivations for undertaking such a project. The historical
development of the renormalization group has been little studied and from the
intellectual historian’s perspective it makes sense to start at the beginning. Un-
derstanding the early renormalization group is a prerequisite for investigating how
the work of Kenneth Wilson and others, in the 70s, built on and diverged from,
these older approaches.

Furthermore, these questions about the conceptual evolution of the renormaliza-
tion group are not mere historical curiosities, as they have an important bearing
on the foundations of quantum field theory (QFT). A common view amongst
physicists, which has also recently been developed in the philosophy of physics
literature (Wallace 2011, Fraser 2020), is that Wilson’s incarnation of the renor-
malization group played a decisive role in resolving conceptual problems which had
been present since the invention of renormalization techniques. This explanatory
claim implies a story of conceptual progress in renormalization theory which can
be illuminated by historical investigation.
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In addition to preparing the way for this broader historico-philosophical study
of renormalization theory, studying the early renormalization group turns out
to have more self-contained lessons. When approaching the subject historically, it
quickly becomes evident how misleading it can be to speak of “the renormalization
group”. There are really multiple distinct formal structures that are referred
to as renormalization groups in the contemporary literature, as well as multiple
interpretations of those structures. This multiplicity is already evident in the
1950s, where we find two independent origin points for renormalization group
ideas.

The story, in brief, is this. Stueckelberg and Petermann (1951a, 1953) postulated
a group of transformations between different ways of defining the coefficients of
QFT perturbation series. Their primary motivation was to address the existence
of ambiguities arising in their heterodox causal formulation of perturbative QFT,
but their discussion can, in retrospect be seen as elucidating general structural fea-
tures of perturbative renormalization. Independently, Gell-Mann and Low (1954)
invented a trick for obtaining information about the short distance behaviour of
QFT propagators based on writing down functional equations involving a “cut-
off” scale. In doing so they intervened in a debate that was raging at the time
about whether QFTs, and especially quantum electrodynamics (QED), could be
consistently formulated outside of perturbation theory. These two strands were
connected by Bogoluibov and Shirkov (1955a, 1955b) who popularised the term
“renormalization group” in their QFT textbook (Bogoluibov and Shirkov, 1959).

While these two original versions of the renormalization group were entwined to-
gether by Bogoluibov and Shirkov we can see each of them as having distinct
historical echoes. After elaborating the account just sketched in detail, I conclude
by reflecting on how this has fed into contemporary conceptions of the renormal-
ization group. An important moral for historical and philosophical engagement
with this tradition is drawn: we must be cognizant of the diverse range of formal
structures and interpretations that fall under the rubric of the renormalization
group.

2 Stueckelberg and Petermann’s Renormalization Group

The first appearance of a renormalization group concept in the literature is in the
papers of Ernst Stueckelberg and André Petermann (Stueckelberg and Petermann
1951a, 1953), though they, in fact, used the term “groupe de normalisation”, or
normalization group. Stueckelberg is one of those unfortunate figures in the his-
tory of science who is primarily known for anticipating ideas that would later be
associated with more celebrated names. These papers with Petermann were more
than isolated premonitions, however, and did have an impact on later develop-
ments, though admittedly by a circuitous route. Their limited readership at the
time (and today) is partially explained by their use of Stueckelberg’s unorthodox
causal formulation of perturbative QFT (their elliptical prose, idiosyncratic nota-
tion, and use of the French language likely also did not help). This approach never
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penetrated mainstream physics in the English speaking world, but it was further
developed by Nicholay Bogoluibov in the Soviet Union. It was Bogoluibov and
his student Dmitry Shirkov who took up Stueckelberg and Peterman’s “groupe de
normalisation” and redubbed it the renormalization group.

The little known causal perturbation theory programme that Stueckelberg initi-
ated thus played a forgotten role in the early development of renormalization group
ideas. Our first order of business will be to explain the basic features of this ap-
proach. The historical development of causal perturbation theory is chronicled in
detail elsewhere (Blum, Fraser and Miller, 2021). Here I will focus on aspects that
provide important background for Stueckelberg and Petermann’s introduction of
their group.

2.1 The Causal Perturbation Theory Programme

A central theoretical problem that had stalked QFT since its inception was the ap-
pearance of ultraviolet divergences in perturbation theory. Perturbation theory is
a framework for generating approximations, whereby quantities of interest are ex-
panded in a series in an interaction coupling, which is assumed to be small. When
this is done naively in the case of QFT, ill-defined integrals appear in the series
coefficients. Written in momentum space, these integrals blow up in the region of
arbitrarily large momentum—referred to as the ultraviolet regime. Stueckelberg’s
goal in the 40s was to formulate a perturbative formalism for relativistic quantum
theory which was free of this problem. He was thus a competitor of Tomonaga,
Schwinger and Feynman, whose work in the same period would go on to form the
basis of renormalized perturbation theory as it is practised in mainstream high
energy physics today. Henceforth in this section, I will somewhat anachronistically
refer to this formalism as conventional perturbative QFT.

A key feature of Stueckelberg’s approach which set it apart was its grounding
in Heisenberg’s S-matrix programme (Heisenberg 1943a, Heisenberg 1943b; see
Blum (2017) for a historical treatment). The S-matrix is an operator which maps
asymptotic states at t = −∞, interpreted as the ‘incoming’ particles of a scattering
process and represented by states of a free (i.e. interactionless) QFT, to ‘outgoing’
(and again free) states at t = ∞. It is a crucially important object in conventional
perturbative QFT. Indeed, following Dyson (1949), it is S-matrix elements for
particular scattering processes which QFT perturbation series are primarily used
to approximate. Heisenberg’s ambitions for the S-matrix had been rather grander
than this. In conventional perturbative QFT, the series expansion for the S-matrix
is (somewhat informally) derived via the integration of a differential time-evolution
equation of the Schrodinger type. Heisenberg believed that quantum theory’s
reliance on such equations was the root of the ultraviolet divergence problem and
hoped that the S-matrix might form the basis of a purely integral formulation of
quantum theory which eschewed time-evolution equations entirely.

This meant stepping away from the hitherto unquestioned method of obtaining a
quantum theory via the canonical quantization of a classical Hamiltonian theory,
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which raised the question of how a pure S-matrix theory would actually be con-
structed. For those interested in developing Heisenberg’s vision the key question
was how to fix a determinate form for the S-matrix without resorting to the use
of a time-evolution equation. Stueckelberg’s big idea was that a causality condi-
tion could be used to determine the form of a series expansion for the S-matrix.1

Heisenberg had imposed unitarity and Lorentz invariance on his S-matrix, but
Stueckelberg argued that an S-matrix satisfying these conditions could still dis-
play behaviour he labelled acausal. Heisenberg had considered an S-matrix of the
form:

S = eiλ
∫
d4xϕ(x)4 , (1)

purportedly describing a quartic self-interaction of a scalar field ϕ(x). This S-
matrix has a Taylor series expansion in the coupling constant λ:

S = eiλ
∫
d4xϕ(x)4 = 1− iλ

∫
d4xϕ(x)4 − λ2

2

∫
d4x

∫
d4yϕ(x)4ϕ(y)4 + ... (2)

Stueckelberg interpreted these terms as permitting the occurrence of retrocausal
processes, in which events in the future influence those in the past.

As Stueckelberg realised, a series expansion of the S-matrix element of a particu-
lar set of free incoming and outgoing states could be decomposed into two-point
functions—products of the free field operators evaluated at two space-time points.
Heisenberg’s ansatz for the S-matrix would give rise to two point-functions of the
form:

D(x− y) = ⟨0|ϕ(x)ϕ(y) |0⟩ =
∫

d3p⃗

(2π)3
1

2ω(p⃗)
eip⃗.(x⃗−y⃗)e−iω(p⃗)(x0−y0), (3)

appearing in the terms of the series expansion. If x0 < y0 then the field operator
with the later time argument acts on the vacuum first, a situation which Stueck-
elberg interpreted as a particle being created at y0 and propagated backwards in
time to x0 (Stueckelberg 1944).

After a few false starts, a proscription for imposing causality on the expansion
of the S-matrix was eventually advanced in papers co-authored with Dominique
Rivier (Stueckelberg and Rivier 1950a, Stueckelberg and Rivier 1950b). There
it was argued that the two-point functions occuring in the series expansion of a
causal S-matrix must take a particular form:

Dc(x− y) = θ(x0 − y0) ⟨0|ϕ(x)ϕ(y) |0⟩+ θ(y0 − x0) ⟨0|ϕ(y)ϕ(x) |0⟩ (4)

=

∫
d3p⃗

(2π)3
1

2ω(p⃗)
eip⃗.(x⃗−y⃗)(θ(x0 − y0)e

−iω(p⃗)(x0−y0) + θ(y0 − x0)e
iω(p⃗)(x0−y0)). (5)

Stueckelberg called this the causal function, or causal propagator. Today it is
more commonly known as the Feynman propagator, the same type of expres-
sions having been introduced by Feynman in his approach to perturbative QED.

1The idea that additional conditions needed to be invoked in order to progress Heisenberg’s
S-matrix approach was pursued by other physicists of this period such as Max Born and Ralph
Kronig—see Blum (2017) for details.
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In modern parlance, the field operators in this product are time-ordered, mean-
ing that the operator with the earlier time argument always act on the vacuum
first. The acausal processes which Stueckelberg had identified in the expansion of
Heisenberg’s ansatz for the S-matrix had thus been eliminated.

In Stueckelberg and Rivier’s scheme causality is imposed on the series expansion
of the S-matrix by adding a correction at each order which ensures that all two-
point functions that appear in the series take this form. One starts by specifying
the first-order term, S1, of the general expansion:

S = 1 +
∑

Sn, (6)

which corresponds to selecting an interaction potential for the theory. Requiring
S be unitary imposes relationships between the terms of the series. At second
order we have, S2 + S†

2 = −S1S
†
1, which fixes the hermitian part of S2. The anti-

hermitian part of S2 is then chosen in such a way that the resulting term contains
only causal propagators. Higher-order terms can then be iteratively constructed
in the same manner. In this way, a series expansion for the S-matrix is generated
without mentioning either a Hamiltonian or a time-evolution equation.

By 1950, of course, conventional perturbative QED was already triumphant, and
the Stueckelbergian alternative largely fell on deaf ears. In retrospect, the causal
approach was still in a nascent stage of development at this point and substan-
tive issues with Stueckelberg and Rivier’s formalism further limited the prospects
for wider adoption. Stueckelberg’s arguments about the causal behaviour of the
S-matrix were poorly communicated and rested on the dubious practice of inter-
preting individual terms in the perturbation series as corresponding to physical
processes, rendering the justification for his condition murky. Furthermore, his for-
mulation of the causality condition was unwieldy, making questions about the be-
haviour of the resulting series difficult to answer. Stueckelberg and Rivier (1950b)
claim to reproduce Schwinger’s (1949) second-order expression for the anomalous
magnetic moment of the electron, and a paper co-authored the next year with
another student, T. A. Green, treated third and fourth-order QED terms in the
causal approach (Stueckelberg and Green, 1951). Still, whether Stueckelberg’s
approach agreed with conventional perturbation theory at all order was, at this
point, unclear.

Luckily for us, later iterations of what would become called causal perturbation
theory clarified many of these issues, and it will thus be useful to briefly sketch
the forward trajectory of the programme Stueckelberg had initiated. The Soviet
mathematician turned physicist Nicholay Bogoluibov, who will play an important
role later on in our story, was one of the few authors to take up Stueckelberg’s
ideas in the 50s. He introduced a new formulation of the causality condition
which was stated in non-perturbative terms and possessed a more natural physical
interpretation (Bogoluibov 1955).2 Furthermore, Bogoluibov was able to show

2Bogoluibov’s formulation of the causality condition made use of another concept invented by
Stueckelberg: the adiabatic switching function g(x) (for a detailed discussion see Blum, Fraser
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that imposing his version of the causality condition on a series expansion for the
S-matrix comprised of arbitrary products of field operators reproduces the form
of the Dyson series, the expansion of the S-matrix that occurs in conventional
perturbative QFT (Bogoluibov and Shirkov 1959). A later mathematical physics
tradition, following the work of Epstein and Glaser (1973), developed Bogoluibov’s
formalism still further, focusing on integrating a rigorous distribution theoretic
analysis of the perturbative terms into the causal approach (on which, more in
section 2.2). By this time, causal perturbation theory was firmly established as
a rational reconstruction of conventional perturbative QFT rather than a rival
theory.

There was, however, an important difference between the causal and conventional
approach to perturbative QFT when it came to the resolution of the problem of
ultraviolet divergences, which feeds directly into Stueckelberg and Petermann’s
introduction of their renormalization group concept. In conventional perturbative
QED, the problem of ultraviolet divergences was tackled via the introduction of
a renormalization procedure that works in the following way. The divergent inte-
grals are first replaced by “regularized” convergent integrals; the simplest way to
do this being to impose an upper bound, or “cutoff”, on the range of integration
in momentum space. The fields, masses and charges of the theory, which are now
dubbed “bare” quantities, will depend on the value of this cutoff. The theory’s
dynamics is then rewritten in terms of a new set of renormalized fields, masses
and couplings, together with a set of so-called counterterms. In the case of QED,
it turned out to be possible to completely remove the part of the perturbative
coefficient at each order which diverges as the cutoff goes to infinity by introduc-
ing renormalized versions of the field normalization constants, masses and charges
appearing in the original Lagrangian (more on the general concept of renormaliz-
ability later). When the cutoff is removed, the bare and counterterm parameters
go to infinity, but, if this redefinition process has been carried out correctly, we
end up with a finite series coefficient multiplying a power of a finite renormalized
charge.

and Miller, 2021). g(x) is a smooth function which multiplies the interaction potential of a
theory, such that space-time regions where g(x) = 0 correspond to a free theory, and those
where g(x) = 1 correspond to the interaction being fully ‘switched on’. Stueckelberg (1951)
had introduced the switching function in order to describe scattering processes occurring over
finite time periods using an S-matrix (which standardly relates states at asymptotic times), but
Bogoluibov realised that it could be used to provide an improved statement of Stueckelbergian
causality. Consider two switching functions g1(x) and g2(x) which take non-zero values in two
finite space-time regions G1 and G2, where all of the points in G1 are in the past with respect
to some refernece frame and all of the points in G2 are in the future with respect to the same
reference frame. Bogoluibov’s causality condition is then:

S(g1 + g2) = S(g2)S(g1). (7)

The interpretation of this statement being that the effect of an earlier period of scattering (in
the G1 region) on the final outgoing state is independent of that of a later period of scattering
(in the G2 region)—that is, retrocausal influence is ruled out. (Note that Bogoluibov (1955)
gives an equivalent, but slightly more difficult to read, differential formulation of this causality
condition. The integral expression given above appears in later works.)
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The causal approach to perturbation theory led Stueckelberg to a conceptually
quite different approach to the ultraviolet divergences problem. While ultravio-
let divergent terms are so-called because of their behaviour in momentum space,
in position space the behaviour of the causal/Feynman propagator at x − y = 0
can be seen as the culprit. Stucekberg and Rivier point out that, since causality
considerations concern the temporal ordering of events they don’t tell us anything
about how the propagators behave at these points were the space-time arguments
coincide. This led them to state that the products of two-point functions that
appear in their perturbation series are in fact ambiguously defined at these prob-
lematic coincident points: one can add terms which vanish everywhere except at
x = y—Dirac delta functions, δ(x − y), and their derivatives—without violating
Stueckelberg and Rivier’s (or Bogoluibov’s) causality condition. The causal formu-
lation of perturbation theory thus “replaces the problem of eliminating divergences
with that of determining the undefined terms of the S matrix” (Stueckelberg and
Rivier 1950a, 215, translation).

This might not seem to be a great improvement. As Stueckelberg and Peterman
would later write, in light of these ambiguities allowed by the causality condition,
“The S-matrix may, therefore, seem at first glance to be completely indetermi-
nate” (Stueckelberg and Petermann 1953, 513, translation). Stueckelberg and
Rivier, claimed that the ambiguity could be “partially eliminated” by physical
considerations, but this remained another underdeveloped aspect of their work in
1950. Stueckelberg was clearly aware of this deficiency, as the nature and impli-
cations of these perturbative ambiguities was the central issue framing his work
with Petermann, including the introduction of their “groupe de normalization”.

2.2 The “Groupe de Normalization”

Stueckelberg’s collaboration with André Petermann, which represents the final
phase in the development of his approach to relativistic quantum theory, was ap-
parently triggered by a fundamental realisation about the mathematical machinery
needed to properly formalise perturbative QFT—a discovery that would shed new
light on the ambiguities in the series expansion that Stueckelberg and Rivier had
identified. According to Petermann’s recollections:

“[I was] a recently graduated mathematician working on direct prod-
ucts of generalized functions and on the space on which they can be
defined. Stueckelberg, having such a problem with his student T. A.
Green, in the work they were doing in S-matrix theory, asked me if
I would be interested in working at the Swiss Atomic Energy Com-
mission, in order to deal with this problem in a mathematical way,
according to Schwartz, Sobolev and others.”3

It seems that, circa 1950, Stueckelberg made a connection between the problematic
terms appearing in QFT perturbation series and the theory of generalised func-
tions, or distributions, which had recently been developed in pure mathematics

3Taken from personal email correspondence between Petermann and Andreas Aste in 2007.

7



by Laurent Schwartz.

In Schwartz’s approach, distributions are defined as maps from a space of test
functions to the numbers, a definition which encompasses ordinary functions but
also includes so-called singular distributions like the Heaviside and Dirac delta
‘functions’, which are not functions in the classical sense. The causal/Feynman
propagators that appear in causal and conventional perturbation theory are, in
fact, also singular distributions, with the singularity occurring at the coincident
point x = y. From the beginning, Schwartz had emphasised an important differ-
ence between distributions and ordinary functions: multiplications and divisions
of distributions with overlapping singularities are not generally well-defined. And,
it turns out, the problematic terms in QFT perturbation series which give rise
to ultraviolet divergences in the conventional approach are products of distribu-
tions with overlapping singularities. In contemporary mathematical physics, the
problem of ultraviolet divergences and perturbative renormalization is thus often
reconstructed as one of giving a proper definition for these products of distribu-
tions that appear in the expansion. Stueckelberg and Petermann appear to have
been among the first to advance this formulation of the problem.4

After publishing two short notes in 1951, which I will come back to later, Stueck-
elberg and Petermann’s project culminated in the paper “La normalisation des
constants dans la théorie des quanta” (The normalization of constants in quan-
tum theory) in 1953 which I will focus on here.5 This is a difficult work. It is long
by Stueckelberg’s standards but retains the usual density of obscure statements
and notational oddities. I will not try to explain all of its intricacies here but focus
instead on the line of thinking which directly leads into the introduction of their
“groupe de normalization”.

It was in this work that the integration of distribution theory into the causal per-
turbation theory programme came to fruition. They clearly state that ultraviolet
divergences arise in the conventional approach because when one starts from a
time-evolution equation one ends up writing down products of distributions that
are ill-defined. They then go on to develop a procedure for providing a proper
definition for the problematic terms which works in the following way. First, the
distributions are multiplied by a kinematic factor which compensates for the sin-
gularity at coincident points. Products of propagators can then be defined in the
same manner as the products of ordinary functions. One then carries out a division
of this well-defined product so as to recover the distribution of interest. Consider

4The mathematician Georges De Rham, a colleague of Steuckelberg’s for two decades at this
point at the Universities of both Geneva and Lausanne, appears to have played an important
role in transmitting distribution theoretic ideas. De Rham was an early promoter of Schwartz’s
new theory, inviting him to present his theory in Lausanne in 1948. Stueckelberg likely came
across distribution theory, and realised its relevance to QFT, through conversations with De
Rham, and if Petermann was already familiar with these ideas from his undergraduate studies,
as the above recollections suggest, it must have been from lectures given by De Rham.

5In the 1951 proceedings of Swiss Physical Society Stueckelberg and Petermann published a brief
paper entitled “The normalization group in quantum theory” which is the first appearance of
a renormalization group concept (Stueckelberg and Petermann 1951b).

8



a product like Dc(x − y)2, which occurs in the series expansion of a scalar field
theory. In four space-time dimensions, Dc(x−y) has a singularity like (x−y)−2 for
x ≈ y, thus if we write down, (x− y)4Dc(x− y)2 we have eliminated the singular
behaviour at the origin. The idea is one can then define the series coefficients by
dividing this intermediary by (x− y)4.

Stueckelberg and Petermann were a little too ahead of their time here, ploughing
on past where the mathematics had been firmly worked out. A systematic theory
of the division of distributions was not yet available in 1953 and seems not to have
been treated fully in pure mathematics until 1960 in the works of Bernard Mal-
grange (Malgrange 1960). Stueckelberg and Petermann’s claims are stated rather
than proven, and indeed it was not until the work of Epstein and Glaser (1973)
that the project of treating the products appearing in QFT perturbation series
in a fully distribution theoretic way was realised with mathematical rigour. Still,
their gist of what they say is confirmed by this later, more systematic work. They
state that the division problem for determining the perturbation coefficients does
not have a unique solution. Instead, it defines a class of distributions that differ
by the addition of Dirac delta distributions, and their derivatives. Consequently,
the coefficients of the expansion at each order will take the form:

Sn =

∫
dx1...dxn[Tn(x1, ..., xn) + c1δ(x1, ...xn) + c2

∂

∂x
δ(x1, ..., xn) + ...] (8)

where Tn is determined by the causality condition, but the additional terms contain
constants c1, c2, ...ci which are entirely arbitrary.

We have thus returned to the earlier conclusion of Stueckelberg and Rivier, that
the coefficients of QFT perturbation series contain delta function type ambiguities,
but with a few important sophistications. In the distribution theoretic analysis
the power of derivatives of the Dirac delta distribution which can be added to the
perturbative coefficient at each order is determined by the strength of the singular-
ity of the relevant product—roughly speaking, one cannot make the distribution
“more singular” by the addition of these ambiguous terms. We can now see that
the ambiguity that arises is not only due to the inapplicability of the causality
condition to coincident points, but also flows from the singular nature of QFT
two-point functions.6 The problem of the apparent indeterminacy of the S-matrix
does not appear to have been rendered any less severe, however. It is in the course
of giving an argument to ameliorate this worry that Stueckelberg and Petermann
introduce the “groupe de normalisation”.

They first introduce a set of transformations which move us between different ways
of fixing the arbitrary constants in the perturbative coefficients of the expansion
of the S-matrix:

δSn =
∑
i

δciPiSn, Pi = ∂/∂ci. (9)

6This explains why these kinds of ambiguities do not arise in non-relativistic quantum mechanics
perturbation theory, though it can also be formulated using a causality condition (Scharf 2014).
Because the propagators are not singular distributions in this case there is a unique extension
of functions given by the causality condition to coincident space-time points.
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They claim that these Pi operators satisfy a Lie algebra equation:

[Pi, Pk] = −
∑
l

Ll
ikPl, (10)

and, therefore, act as generators for a transformation group. Again, this is more or
less stated rather than proven—later mathematical physicists would be much more
careful in establishing the nature of this group structure (see, for instance, Dütch
2020). They then argue that moving between different values of the ci’s via the
action of this transformation induces a variation in the dynamical parameters ap-
pearing in the series expansion. In QED, for instance, varying the ci’s that appear
in the perturbative expansion of the S-matrix is equivalent to varying the mass
and charge of the electron which appears in the series. They call this postulated
group structure the normalization group rather than the renormalization group,
presumably because in the causal approach one avoids initially writing down ul-
traviolet divergent expressions so one is not renormalizing but simply selecting a
normalization when one fixes the values of the ci’s.

Stueckelberg and Petermann take this to resolve the ambiguity problem, but the
interpretation of their solution is not entirely clear. One way of reading what they
are saying is that, since variations in the ci constants are equivalent to variations
in the dynamical parameters we can eliminate all of the ambiguity by directly
measuring, say, the mass and charge of the electron in the case of QED. This
would be consistent with the way that the perturbative renormalization procedure
was commonly understood at the time. There is, however, another interpretation
that is strongly suggested, if not explicitly endorsed, in their article. The fact that
they discuss their normalization group alongside the gauge group indicates that
they, in fact, want to interpret it as a symmetry transformation of the perturbative
S-matrix. Since the effect of any change in the ci’s can be exactly compensated
by a change in the masses and charges appearing in the series we can view this
compound transformation as leaving the perturbative S-matrix invariant. Many
years later, when reviewing his work with Stueckelberg, Petermann would make
this interpretation explicit:

Stueckelberg... noticed that to a change of the arbitrary parameters
corresponds a change of the parameters of the theory (couplings, etc.)
or, equivalently, that one can find simultaneous changes of the param-
eters of the theory (couplings, etc.) which compensate the change in
the arbitrary parameters, leaving therefore physical quantities invari-
ant. (Petermann 1979)

Some clarifications are needed to understand the full significance of this more
interesting reading of Stueckelberg and Petermann’s group concept. The reader
may have the impression from the discussion thus far that Stueckelberg has merely
solved a problem of his own making in a rather convoluted way. After all, the
ambiguities in the perturbation series seemed to arise from the heterodox aspects
of Stueckelberg’s approach; the causality condition and the use of distribution
theory. In fact, it is possible to translate Stueckelberg and Petermann’s claims into
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the language of conventional perturbative renormalization and understand them as
identifying a general structural property of QFT perturbation series (though they
themselves made little attempt to establish such a connection). In the conventional
renormalization procedure, counterterms are introduced in order to subtract the
divergent part of the perturbative coefficients. During this process, it is in fact
also possible to subtract an arbitrary finite part of the coefficient, a fact which
does not seem to have been recognised in many of the early papers developing the
perturbative renormalization technique. In the contemporary physics literature,
the choice of prescription used to assign finite values to the perturbative coefficients
is known as a renormalization scheme.

Stueckelberg and Petermann can thus be read as pointing out the invariance of the
S-matrix with respect to one’s choice of renormalization scheme. Once again, they
were ahead of their time here; it would take many decades for the modern concept
of a renormalization scheme to crystalise (see section 5 for further discussion).
It is interesting to note that the causal perturbation theory programme seems
to have played a forgotten role in initiating this process. While the ambiguities
Stueckelberg had identified can also manifest in the conventional approach, they
are, in some sense, more obvious in the causal perturbation theory approach,
whether they are seen as flowing from the causality condition or from distribution
theory. We can thus see this as a familiar case of a particular feature of a theory
being more transparent in one equivalent formulation than another. Stueckelberg
and Petermann’s work had essentially no direct impact in mainstream high energy
physics, but, as I discuss in section 4, Bogoluibov and Shirkov’s adoption of their
ideas would represent a step towards the modern concept of a renormalization
scheme.

It is worth emphasising what we definitely do not find in the work of Stueckelberg
and Petermann, however. They say nothing about a renormalization scale, nor do
they connect their renormalization group concept with the scaling behaviour of a
QFT in any way. As we shall see shortly, the central application of renormalization
group methods in the 50s and 60s was to the question of the asymptotic short dis-
tance behaviour of QFT models. This is completely absent from Stueckelberg and
Petermann’s paper. They took their renormalization group to be important for
general foundational, rather than practical, reasons—it shows how perturbative
QFT is, in fact, a physically sensible framework, despite the ambiguities which
arise in the series coefficients. Adding the apparent lack of calculational applica-
tion of their group to the esoteric nature of their 1953 paper, it is not hard to
see why many of the insights which can be gleaned from it in retrospect were not
recognised at the time.

To be fair to Stueckelberg and Petermann, they did put their renormalization
group concept to work in one context, using it to develop a notion of renormaliz-
ability (though, again, they did not use that term). Renormalizability will be an
important concept going forward, so I will conclude this discussion of Stueckelberg
and Petermann’s work by briefly considering what they say about it. In a note
published in Physical Review in 1951 Stueckelberg and Petermann discussed the
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question of what interaction terms can sensibly be added to the QED lagrangian
(Stueckelberg and Peterman 1951a). This was a crucial question at the time. With
the empirical success of QED established, the central phenomenological problem
in the 50s became the strong nuclear interaction, with various “meson theories”,
which attempted to describe strongly interacting particles using a field theory in
the mould of QED, being considered. Stueckelberg and Petermann treated the
question of how the new fields introduced in these theories could consistently in-
teract electromagnetically, concurring with the growing consensus at the time that
only scalar, pseudo-scalar and pseudo-vector interaction terms between a meson
field and the photon were viable, with vectorial coupling terms being branded
physically unacceptable.

Characteristically, they have a heterodox view of why these interactions must be
rejected. The dominant view which was emerging at the time was that, in the case
of renormalizable interactions, the ultraviolet divergences could be completely re-
moved via the rescaling of a finite number of dynamical parameters, while in the
case of these problematic non-renormalizable interactions the ultraviolet diver-
gences problem really was fatal as the divergences could not be systematically
removed from the series. In Stueckelberg’s approach, of course, ultraviolet diver-
gences never occur in the first place so they more or less had to understand this
distinction in a different way. In another 1951 note, published in the proceedings
of the Swiss Physical Society, Stueckelberg and Petermann first present a nascent
version of their normalization group idea (Stueckelberg and Petermann 1951b).7

There they say that the normalization group property discussed above holds for
non-renormalizable theories, but in these theories, new ambiguities arise at each
order in the series corresponding to variations in coupling parameters for new inter-
action terms.8 What they identify as pathological about this is that, in the case of
abelian gauge theories, this will give rise to an infinite series of higher-order deriva-
tive terms. Summing up these terms gives a non-local term in the Lagrangian—a
term multiplying field operators at different space-time points. They thus reject
non-renormalizable interactions on the grounds that they lead to violations of the
physical principles which had been used to construct the perturbation series in
the first place.

Stueckelberg and Petermann, yet again, anticipate later conceptual developments
in renormalization theory with their emphasis on the fact that non-renormalizable
interactions necessitate the introduction of infinitely many dynamical parameters.
But the key point from these early discussions of renormalizability which feeds
into Gell-Mann and Low’s work, to which we now turn, is that one only has to
consider rescaling a finite number of dynamical parameters which already appear

7In addition to minor notational differences, this brief paper contains no discussion of distribution
theory or the origin of the perturbative ambiguities.

8In modern developments of the causal perturbation theory approach within mathematical
physics the notion of renormalizability is explicated in terms of the strength of the singu-
larities occurring in the products of propagators appearing at each order in the series. In the
case of non-renormalizable interactions, the strength of the singularities increases at each order,
giving rise to new ambiguities in the coefficients. See, for instance, Scharf (2014).
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in the theory if it is renormalizable. As we shall see, Gell-Mann and Low took this
fact to provide important information about the theory’s short distance behaviour.

3 Gell-Mann and Low’s Renormalization Group

In 1954 Gell-Mann and Low published a paper which is also a crucial source
of early renormalization group ideas. Like Stueckelberg and Petermann, they
did not use that term, in fact, they did not refer to a transformation group at
all. The problem they were addressing was quite different from Stueckelberg and
Petermann, whose work we can be fairly certain neither was aware of. What we
have, then, is something close to a completely independent second origin point for
the renormalization group tradition.

Gell-Mann and Low’s paper is most naturally situated within the context of a de-
bate that was going on in the early 1950s about the consistency of QED.While they
themselves were not particularly passionate participants in this debate, the works
of Gunnar Källén (who certainly was) seems to have been their initial jumping-
off point, and their paper was soon after its publication used by Bogoluibov and
Shirkov to combat the claims about the pathologies of QFT being advanced by
Lev Landau and his collaborators. We will thus start by giving some relevant
background on this debate.9

3.1 The Consistency of QED Debate

The early 1950s was a period of critical reflection on what had really been achieved
by the invention of renormalized QED. The renormalization procedure was, at this
point, tied to perturbation theory and consequently it remained unclear whether
it had solved longstanding worries about the foundations of QFT or merely reha-
bilitated an approximation technique. As theorists tried to free themselves from
the confines of the perturbation series, worries about the high-momentum/short-
distance behaviour of QED, and QFT as a whole, quickly recurred.

Perhaps the most ardent pursuer of this line of investigation was Gunnar Källén.
In a 1952 paper Källén made the first strides towards translating the renor-
malization procedure into non-perturbative language using what is now called
the Källén-Lehmann spectral representation of the two-point functions (Källén
1952).10 By inserting a complete set of eigenstates, |α⟩, with momenta pµα, it is
possible to relate the two-point propagator of the fully interacting field theory to
the causal/Feynman propagator of the free theory. For a scalar field, for instance:

⟨Ω|Tϕ(x)ϕ(y) |Ω⟩ =
∫ ∞

0

d(M2)ρ(M2)Dc(x− y,M2). (11)

9A detailed discussion of this debate, which treats many subtleties that I gloss over here, is Blum
(forthcoming).

10Källén (1952, 1953), in fact, focused on the spectral representation of the interacting field
commutation relations. My brief presentation here, focusing on the propagators, is closer to
what is found in Lehmann (1954) and Gell-mann and Low (1954), as well as modern textbooks.
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Here T indicates that the field operators have been time-ordered (as in equation
4), |Ω⟩ is the vacuum state of the fully interacting theory, Dc(x − y,M) is the
causal/Feynman propagator of a free scalar field of mass M , and ρ(M2) is the
so-called spectral function, given implicitly by,

ρ(M2) = (2π)3
∑
n

δ(M2 − p2α)| ⟨Ω|ϕ(0) |α⟩ |2, (12)

which can be read as describing the density of the theory’s eigenstates at a given
energy level.

As I described in section 2.1, the perturbative renormalization proceeds by dis-
tinguishing a set of bare, counterterm and renormalized parameters. Focusing in
on the case of the QED charge, in Dyson’s terminology the renormalized electric
charge er had been related to the bare charge e0 via a renormalization constant
Z3 which parameterises the counterterms:

e2r = Z3e
2
b . (13)

Z3 is then chosen so that the counterterms completely subtract the ultraviolet
divergent part of the series coefficient at each order. In practice, this meant that
Z−1

3 was, rather unsatisfactorily, identified with a series consisting of divergent
integrals. This particular renormalization constant is, in fact, related to the self-
energy of the photon field, and consequently, the spectral representation of the
photon propagator can be used to provide a putatively exact definition:

Z−1
3 = 1 +

∫ ∞

0

ρA(M
2)d(M2), (14)

where ρA(M
2) is the spectral function of the photon field A(x), defined in an

analogous way to equation 12.

It’s worth pausing on the physical interpretation of this construction. The per-
turbative renormalization procedure was often seen through the lens of vacuum
polarization, the possibility for electron-positron creation and annihilation events
to screen the true charge of a point particle. In our post-renormalization-group
interpretations of QFT, it is common to speak of an ‘effective charge’, or ‘running
coupling’, which varies with the energy scale of the process under consideration.
At this stage, however, physicists were operating with a two-level picture: there
was the bare charge, which was understood as the intrinsic charge of a pointlike
electron, and the renormalized charge which incorporates the (possibly infinite) ef-
fects of vacuum polarization and was identified with the value of the electric charge
extracted from long-established experimental measurements of the fine-structure
constant. What Källén was doing with his new definition for the renormalization
constants was transferring this picture into an exact non-perturbative context.
That is, he took the spectral representation of Z3 to relate the measured charge of
the electron to the intrinsic charge associated with an exactly solved QFT model.

Now, many physicists had already accepted that the intrinsic charge of QED was
infinite in light of the fact that the bare parameters introduced in the perturbative
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renormalization procedure go to infinity as the regulator is removed (see, for in-
stance, Tomonaga’s Nobel lecture; Tomonaga, 1966). In some corners, however, it
was hoped that this was an artefact of perturbation theory and did not reflect the
true non-perturbative behaviour. Nowadays it is obvious that a QFT can exhibit
ultraviolet divergences in its perturbation series yet have a finite bare coupling
constant because asymptotically free theories like quantum chromodynamics are
taken to realise this scenario. In the 50s this was much less clear. Exploring
whether there was conceptual room to make this distinction was part of what was
going on in these debates about the consistency of QED outside of perturbation
theory.

For Källén, the spectral representation offered a framework for posing, and poten-
tially answering, the question of what the true behaviour of the bare parameters
was. The following year, he took the next step in this programme, giving an ar-
gument to the effect at least one of the bare parameters of QED must really be
infinite (Källén 1953). The argument proceeded as a reductio ad absurdum. First,
he supposed that the bare charge, and the other bare parameters of the theory, are
finite. This would imply that the integral in equation 14 converges, which requires
that ρ(k2) → 0 as k2 → ∞. However, using the assumption that the bare quanti-
ties of the theory were finite and taking the first few eigenstates of the spectrum
as an approximation, Källén was able to derive a lower bound for the asymptotic
behaviour of the spectral function. This meant that the integral could not con-
verge, in contradiction with the initial assumption. Thus, Källén concluded, at
least one (though, he suggested, probably all) of the bare parameters of QED must
be infinite.

Evaluations of the significance of this result varied. For those who took the di-
vergence of the bare parameters in the perturbative renormalization procedure
physically seriously, this result might not have been particularly revelatory. It
seemed to scupper hopes that QED might be formulated as a completely finite
theory outside of perturbation theory, however. Julian Schwinger evidently con-
sidered Källén’s argument to be a serious threat to the physical foundations of
QED, and QFT more broadly, writing in his 1963 Belfer lecture:

[O]ver this whole field, over the attempt to make practical calculations
in the domain of field theory for the past ten or more years, has lain the
dead hand of Källén’s dictum that one of the renormalization constants
of the theory is infinite. That is, that you could not avoid infinities in
any attempt to calculate with the theory. (Schwinger 1963)

For Schwinger, and his followers, it was necessary to find loopholes in Källén’s
argument if QFT was to be rehabilitated as a viable framework for fundamental
physics.11 For Källén, and his old mentor Wolfgang Pauli, however, this was only
the first step in a more ambitious project, which aimed to prove that QED suffered

11A series of papers by Schwinger’s students, Baker, Johnson and Wiley (1963, 1964, 1967),
briefly mentioned in section 4.2, followed this agenda of refuting Källén’s proof and demon-
strating the finitude of the QED bare parameters. See Blum (forthcoming) for a detailed
discussion of this work.
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from even more severe physical pathologies than infinite bare parameters (Blum,
forthcoming).

Meanwhile, in the Soviet Union, Lev Landau and his collaborators, Alexei Abrikosov,
Isaak Khalatnikov, and Isaak Pomeranchuk were also claiming that the non-
perturbative behaviour of QED was, in fact, even worse than Källén’s 1953 ar-
gument suggested. Limited lines of communication with Western physicists had
left Soviet physicists on the sidelines during the initial development of pertur-
bative renormalization, but this distance from the centre of the action left them
well placed to engage in the critical reception of these new methods taking place
in the 50s. Landau, who had been a participant in the earlier struggles with
ultraviolet divergences before the war, was apparently initially dismissive of the
new renormalized perturbation theory (Ioffe, 2002). Eventually, he relented and
joined his former students in developing a different approach to investigating the
behaviour of the QED bare parameters (Landau, Abrikosov, Khalatnikov 1954a,
1954b, 1954c, Landau and Pomeranchuck, 1955, Landau, 1955).

Landau’s group’s starting point was to impose a cutoff Λ on the theory’s momen-
tum states, which they interpreted as corresponding to a non-zero radius for the
electron and look at how the bare charge of such a cutoff theory, eb(Λ), depends
on Λ. Note that, despite making suggestive comments in this direction, they also
seem not have a robust concept of an effective charge, and continued to operate
with a two-level model of charge renormalization. What they had in mind was a
series of theories with different cutoffs and bare charges which give rise to the same
“physical” renormalized charge, rather than probing a single theory at different
momentum scales and observing different values for the charge.

The method they proposed for determining the bare charge’s dependence on the
cutoff was based on resumming a portion of the perturbation series. Their ap-
proach was inspired by the observation that, if one set up a series expansion in
eb(Λ) instead of the renormalized charge, the parts of the series coefficients which
diverge as Λ → ∞, which appear as logarithms of the cutoff, would become ex-
tremely large, spoiling the apparent convergence of the series. Consequently, they
propose resumming all of those sub-terms in the expansion which contain loga-
rithms of the cutoff, ln(Λ2/k2). In Feynman diagram terms, this amounted to
singling out a particular class of diagrams called ladder diagrams, which can, in
fact, be systematically resummed. Focusing just on this portion of the series,
they were able to write down a closed set of equations for the photon propagator,
which as we saw earlier can be related to the renormalization constant Z3, and
thus allows one to get at the QED bare charge.

Using this method Landau’s group obtained a troubling formula for the relation-
ship between the bare and renormalized charge:

e2b =
e2r

1− e2r
3π

ln(Λ2/m2)
. (15)

If we hold er fixed and gradually increase the cutoff this expression says that
e2b diverges at a finite value Λ = me3π/2e

2
, the so-called “Landau pole”. After
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this point e2b becomes negative, and approaches 0 from below, corresponding to
the renormalization constant Z3 actually being negatively infinite. A negative
value for the squared coupling was associated with the existence of so-called ghost
states—states with negative energy that signal the breakdown of unitarity, which
Pauli and Källén (1955) had found in a toy QFT model known as the Lee model
(Lee 1954). As a result, you will also find the term “Landau ghost” used to refer to
the problematic behaviour identified by Landau’s group, though they themselves
did not emphasise this issue. What they identified as the most severe consequence
of their formula was that holding eb fixed and taking Λ → ∞, the renormalized
charge er actually goes to zero, no matter what value we assign to eb. Vacuum
polarization appears to be so strong that even an infinite bare charge is rendered
completely invisible! Thus, a third and final name for the problem Landau’s group
had identified is the “Moscow zero”.

Clearly, if this result was taken seriously, QED could not be considered a coherent
theory of point-interacting fields. Nowadays, physicists tend not to lose sleep over
the question of whether QED can consistently describe a possible world down to
arbitrarily small length scales because it is viewed as an effective field theory, valid
only in a limited energy regime. Physicists in the 50s were, of course, well aware
that QED was not a fundamental theory. The real significance of these arguments
was that QED stood in as a proxy for QFT as a whole. Landau’s group claimed
that QED only made sense if a cutoff was imposed below the Landau pole, and
further argued that in the case of meson QFTs, which were being developed at the
time, the pathologies appeared at a much lower momentum scale, indicating that
they have no domain of applicability at all. They thus concluded that QFT had
reached the end of its usefulness with renormalized perturbative QED. Källén’s
attitude towards field theory was more nuanced (and cryptic) but the aim of
his investigations was also to probe the limits of QFT in order to inform future
theorising.

Chronologically, Gell-Mann and Low’s paper “On Quantum Electrodynamics at
Small Distances”, sits between Källén (1953) and the papers of Landau’s group.
While it clearly fits into this debate about the true values of the QED bare pa-
rameters, Gell-Mann and Low appear not to have had a big picture view of the
foundational status and future prospects of QFT, and never would return to the
topic. Where Källén and Landau were motivated by foundational questions and
developed new techniques in the course of trying to answer them, for Gell-Mann
and Low it may have been the other way round: they may have noticed a fea-
ture of QED perturbation series which seemed to shed light on the asymptotic
behaviour of the fully interacting propagators, without taking much of a stance
on the significance of this problem.

17



3.2 Gell-Mann and Low “On Quantum Electrodynamics at Small Dis-
tances”

Gell-Mann and Low’s collaborative relationship began when they shared an of-
fice together as postdocs at the Institute for Advanced Study in Princeton in
1950. There, the pair co-authored a paper which provided a derivation of the
Bethe-Salpeter equation, a previously postulated equation describing a QFTs two-
particle bound states (Gell-Mann and Low, 1951). What is interesting about this
paper for our purposes is that their derivation proceeds by inserting a complete
set of eigenstates into the interacting four-point function, in a very similar way to
Källén’s derivation of the spectral representation. This lends credibility to Gell-
Mann’s claim that he independently discovered the spectral representation of the
propagators around this time (Gell-Mann, 1987).

Plausibly then, Gell-Mann and Low obtained the spectral representation of the
interacting propagators, and like Källén, recognised that it could be used to frame
questions about the behaviour of the QED bare parameters outside of perturbation
theory. The frequent references to Källén’s work, and the fact that they relate
their conclusions to Källén’s 1953 argument for infinite bare parameters, suggests
that his papers may have been the trigger for their second project together, or at
least strongly influenced its final form. We know that Gell-Mann and Low sent
Källén an early draft of the paper, though unfortunately the correspondence is
lost—Källén reported this to Pauli, and Gell-mann and Low (1954) acknowledge
discussion with Källén in a footnote.12

If they were following on from Källén’s work, their approach was, conceptually and
technically quite different. Unlike Källén, they focus specifically on the bare charge
of QED and frame their discussion around the concept of vacuum polarization.
They start, in their introduction, by pointing out that perturbative QED implies
the existence of corrections to the classical Coulomb potential associated with
charged bodies, and that the deviations are strongest at very short distances. They
then say something interesting about the physical interpretation of this vacuum
polarization correction:

[A]s we inspect more closely and penetrate through the [electron-
positron] cloud to the core of the test body, the charge that we see
inside approaches the bare charge q0, concentrated in a point at the
center. (Gell-Mann and Low, 1301)

Here they seem to posit a series of intermediate values between the renormal-
ized and bare charge. Indeed Gell-Mann and Low are often credited with first
introducing the notion of an effective scale-dependent charge (see, for instance,
Wienberg 1981). As I will shortly point out, however, their notation still bears

12Interestingly, Källén tells Pauli that Gell-Mann and Low were trying to prove the inconsistency
of QED, which could indicate that the stated conclusion of the earlier draft Källén read was
quite different from the published version, which certainly does not claim to have shown
that QED is inconsistent, or, indeed, has infinite bare parameters. This could also just be a
rhetorical flourish (or mistake) on Källén’s part, however.
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the mark of the two-level model of renormalization, and their discussion cannot be
neatly mapped onto contemporary presentations of the “running coupling” within
perturbative QFT as they do not yet have a concept of a renormalization scale.

In any case, unlike Källén, they clearly see the problem of getting at the bare
charge as being one of determining the short distance scaling behaviour of the
theory. They start by giving the spectral representation of the interacting photon
propagator (which I will denote Dr as they associate it with the sum to all orders
of the perturbative expansion written in terms of the renormalized charge er) and
relating its Fourier transform to the modified Coulomb potential:

V (r) =
qq′

(2π)3

∫
d3keik⃗.r⃗Dr(k

2, e2r). (16)

For Gell-Mann and Low, then, the true value of the QED bare charge ultimately
depends on how Dr(k

2, e2r) behaves as the external momentum, k, goes to in-
finity. (Gell-Mann and Low also treat the asymptotic behaviour of the electron
propagator, but since the techniques they develop can be fully illustrated by their
treatment of the photon propagator, which they clearly see as more physically
significant, I will restrict my attention to that case.)

The approach to this problem which Gell-Mann and Low develop also departs
from Källén by being based on the perturbative expansion.13. In order to get
at the full photon propagator of the theory, they want to relate it to what they
call the “cutoff propagator” that appears in perturbation theory. There is some
difficulty interpreting what they have in mind here. The first step of the renor-
malization procedure, recall, is to regularize the ultraviolet divergent integrals.
The original way of doing this was to somehow “cutoff” the large momentum part
of the integral. Gell-Mann and Low initially discuss a regularization procedure
originally introduced by Feynman, which can straightforwardly be understood as
suppressing the high momentum contributions in ultraviolet divergent integrals
appearing in the series. However, they go on to develop a more sophisticated pro-
cedure based on John Ward’s systematic treatment of the renormalization of QED
(Ward, 1951). Ward had made explicit what had often gone unsaid in previous
presentations: that the subtraction of ultraviolet divergences is carried out in such
a way that, at zero external momentum, the renormalized propagator is set equal
to the propagator of the free theory. Gell-Mann and Low point out that we can
also set the renormalized propagator equal to the free propagator at some other
momentum scale, λ, which they continue to call a “cutoff”.

Formally, the momentum scale they have introduced is essentially what we now call
a renormalization scale (more on this notion shortly when we come to discuss the
work of Bogoluibov and Shirkov). However, the fact that they continue to call λ a
cutoff indicates that they are not interpreting it in the way we do today. Landau’s
group, remember, had also introduced a cutoff, interpreting it physically as a finite

13Källén had been trying to get away from the perturbation series entirely, which he viewed as
an unreliable starting point, leading him to criticise Gell-Mann and Low’s paper in a review
for Zentralblatt der Mathematik (Källén 1954).
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radius of the electron. They had thus imagined different values of the cutoff as
corresponding to different non-local theories. There is no indication that this is
what Gell-Mann and Low have in mind, however. More often, in perturbation
theory, the cutoff functions were understood as calculational intermediates with
no physical significance. This seems to be the way they view their cutoff photon
propagator Dλ, which they identify with the perturbative expansion of the photon
propagator to all orders calculated with their λ “cutoff”. They continue to view
Dr as the primary object of interest and seem to view Dλ as playing a formal role
in their technique for probing its large momentum behaviour. The two-level view
of renormalization thus continues to make itself manifest in Gell-Mann and Low’s
notation, even as they lay the foundations for a more sophisticated picture.

The starting point for their method is the following expression they write down
connecting the “cutoff” and renormalized photon propagator:

Dλ(λ
2, k2,m2, e2λ) = Z3λ(λ

2,m2, e2r)Dr(k
2,m2, e2r). (17)

Where m is the mass of the electron, k is the external momentum, λ is this new
“cutoff” scale, and eλ is the charge appearing in the “cutoff” perturbation series.
This relation, they say, holds to all orders in perturbation theory because QED
is renormalizable. Their idea here seems to be that, because the interaction is
renormalizable we know that the “cutoff” dependence in Dλ can be completely
removed via the rescaling of the charge alone (via the constant Z3λ). They then
argue that, at very small length scales, or equivalently large momentum, we can
set, |k2|, λ2 ≫ m2, neglecting the mass dependence of the cutoff propagator, and
write, Dλ = dλ(k

2/λ2, e2λ)/k
2. The renormalized propagator can similarly be writ-

ten, Dr = dr(k
2/m2, e2r)/k

2. Finally, they argue that the renormalization constant
is given by, Z−1

3λ = [dr(k
2/m2, e2r)]k2=λ2 . Employing these kind of dimensional

arguments they reach a pair of functional equations:

dλ(k
2/λ2, e2λ) =

dr(k
2/m2, e2r)

dr(λ2/m2, e2r)
, (18)

e2λ = e2rdr(λ
2/m2, e2r), (19)

Gell-Mann and Low understand these equations as expressing a constraint on the
large momentum dependence of the perturbative expansion to all orders which
flows from the renormalizability of the interaction and dimensional analysis.14

14Note that there is an issue here about what it really means to equate Dr and Dλ with the sum
of an “all orders” perturbation series. There was a growing consensus in the early 50s that,
even after renormalization, QED’s perturbation series likely did not converge. (Incidentally,
André Petermann contributed to this literature while he was working with Stueckelberg, Peter-
mann (1953)). Gell-Mann and Low address this issue only briefly, noting: “[T]he convergence
properties of this series are unknown. We have assumed throughout, however, that it defines
a function which satisfies the same functional equations that we have derived for the series”
(Gell-mann and Low, 1954, 1308). They thus assume that it will be possible to assign some
kind of the sum to the series even if it turns out not to converge. Even granting this, though,
a question remains about whether a sum assigned to a quantities perturbative expansion can
be equated with its value in an exact solution of the model. In my view, questions of this kind
remain pertinent in contemporary implementations of the perturbative renormalization group.

20



These functional equations admit different classes of solutions, which Gell-Mann
and Low relate to various possible short distance behaviours for QED. They write
the general solution to their functional equations in a few forms, but the most
useful for relating their discussion to the later evolution of the renormalization
group is the following integral equation:

k2 → ∞ : ln
k2

m2
=

∫ e2λ(λ
2=k2)

q(e2r)

dx

ψ(x)
. (20)

They read this asymptotic condition in the following way. As k2 → ∞ the left-
hand side goes to infinity. eλ(λ

2 = k2 = ∞) is identified with the bare charge of
the theory, so the question, as they see it, is at what value of its upper limit the
integral on the right-hand side diverges. This is determined by the behaviour of
the unknown function ψ(x).15

They distinguish two possible scenarios for QED’s short distance behaviour. The
integral may diverge when eλ takes some finite value, corresponding to the ex-
istence of a finite bare charge for QED. This occurs if ψ(x) has a zero at some
finite value x0 = e2b . Gell-Mann and Low stress that, in this case, the finite value
of the bare charge is independent of the renormalized charge er. What they are
anticipating here is the possibility of what is nowadays called an ultraviolet fixed
point. In an appendix, Gell-Mann and Low define their ψ-function in the following
way:

ψ(e2λ) =
∂(e2λ)

∂(ln (k2/λ2))
. (21)

A reader familiar with contemporary field theory will thus recognise it as a no-
tational variant of what is now called the β-function.16 The β-function describes
how the expansion parameter depends on the renormalization scale, and thus char-
acterises the scaling behaviour of the theory. A zero in the β function is taken to
correspond to a fixed point in the “flow” induced by the renormalization group
transformation, meaning that the theory is invariant under further scale trans-
formations. In the ultraviolet regime, this implies that the theory’s behaviour is
asymptotically finite and scale-invariant. Gell-Mann and Low, of course, do not
have this picture. In fact, they do not attach a clear physical interpretation to
their ψ-function. Formally, however, there is a direct continuity between their dis-
cussion and later characterisations of finite asymptotic scaling within perturbative
QFT.

The other possibility they consider is that the integral in their asymptotic condi-
tion diverges only when the upper limit is infinite, corresponding to an infinite bare
charge. They calculate a perturbative approximation for ψ(x) to second-order and

15The lower limit of integration, q(e2r) is also an unknown function, however, Gell-Mann and
Low comment that it is very well approximated by e2r and does not play an important role in
determining the asymptotic behaviour.

16The β-function is usually defined: β(e(µ)) = ∂e(µ)/∂(ln(µ)), where µ is the renormalization
scale. This notation originates in Symanzig (1970).
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state that this is the scenario indicated by perturbation theory. However, they im-
ply that they do not consider this to be decisive. They note that Källén’s (1953)
argument leaves open the possibility of a finite bare charge if one of the other
renormalization constants is infinite. They thus implicitly suggest that effects
that are invisible within perturbation theory may still give rise to a finite bare
charge, and in fact extend this conclusion to other renormalizable field theories,
such as the meson theories which were being investigated in the 50s. They say
nothing explicit, however, about what the open possibility of a finite or infinite
interaction coupling means for the scope of QFT, leaving the foundational upshot
of their discussion unspecified.

This attempt to map out the possible short distance behaviour of a QFT model
would ultimately turn out to be extremely influential. With hindsight, we can
see that Gell-Mann and Low’s taxonomy contains some important gaps, however.
What they appear to have missed is that inserting their first order perturbative
approximation, ψ(x) ≈ (1/12π)x2, into equation (19) does not give rise to an
integral which diverges as eλ → ∞ but one that converges. This corresponds to eλ
going to infinity for some finite value of k2, i.e. to the existence of a Landau pole.
The work of Landau’s group had not appeared when Gell-Mann and Low were
writing their paper, but they could very well have reached a similar conclusion
about the ultraviolet behaviour suggested by QED perturbation theory within
their own framework. Bogoluibov and Shirkov would later add the Landau pole
scenario to Gell-Mann and Low’s list of potential short distance behaviours for
QED.

A second, entirely excusable, omission of their discussion is the possibility of
asymptotically free theories—theories whose interaction coupling vanishes at short
distances. Returning to Källén’s spectral representation of the renormalization
constants (equation 14), one can see that, if the spectral function is positive defi-
nite, Z3 can only take a value between 0 and 1. This seems to imply that vacuum
polarization can only screen the intrinsic value of the charge, and the renormalized
charge cannot be larger than the bare charge. Källén had taken the positive defi-
niteness of the spectral function to be a necessary feature of a physically sensible
QFT and thus believed that this statement about the relative values of the bare
and renormalized charge was generic. Following this view, Gell-Mann and Low
assumed that the ψ-function is positive definite. In a theory where ψ(x) takes
negative values the limits of integration on the right-hand side of their asymptotic
condition can be exchanged, opening up the possibility of a bare charge which is
smaller than the renormalized charge. It was not until perturbative calculations
of the β-function of non-abelian gauge theories in the 70s indicated a zero bare
charge that this scenario was even countenanced, however (t’Hooft, 1999). It was
only then that the true breadth and power of the classificatory scheme for which
Gell-Mann and Low had laid the groundwork was fully appreciated.
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4 Bogoluibov and Shirkov’s Renormalization Group

We now have two papers on the table, Stueckelberg and Petermann (1953) and
Gell-mann and Low (1954), which appear to develop very different ideas in service
of very different aims. I suspect, in fact, that most QFT experts of this period
would have seen little connection between them. There was one figure, however,
who was uniquely placed to synthesise these two lines of thought. Nicholay Bo-
goluibov was one of the very few physicists to take up Stueckelberg’s causal per-
turbation theory approach in the 50s. As was discussed in section 2, he developed
an improved formulation of the Stueckelberg’s perturbative causality condition
(Bogoluibov 1955), and presented the causal approach in a much more compre-
hensible way in a series of papers (Bogoluibov and Shirkov 1955c, 1955d), and
finally a textbook (Bogoluibov and Shirkov 1959)17, co-authored with his student
Dmitri Shirkov. He was thus perhaps one of the only physicists in this period
who carefully read, and made some sense of, Stueckelberg and Petermann (1953).
Being in Moscow in the 1950s, he also had a front-row seat for the hubbub sur-
rounding Landau’s claims about the pathologies of QFT.

It was at the confluence of these two intellectual streams that the term “renor-
malization group” was finally coined. I will start by discussing how this synthesis
took place, and what Bogoluibov and Shirkov contributed in the process. I will
then consider the puzzle of why this newly minted renormalization group concept
did not, in fact, have a major impact in the decade following Bogoluibov and
Shirkov’s work.

4.1 Bogoluibov and Shirkov’s Synthesis

In 1955 Landau presented his group’s claims about the inconsistency of QED at a
conference on “Quantum Electrodynamics and Elementary Particle Theory” held
at the Lebedev Institute in Moscow.18 This caused quite a stir at the time, and
owing to Landau’s considerable influence, his anti-QFT interpretation of their
results would shape Soviet high energy physics for many years to come.

Bogoluibov was naturally placed to act as a counterpoint to this QFT-skeptic
movement in Soviet physics. Where Landau spent the 50s shooting down QFT,
Bogoluibov had been trying to shore up its foundations. As well as develop-
ing Stueckelberg’s causal approach, which he took to be a mathematically and

17Originally published in Russian in 1957 and translated into English in 1959.
18With the death of Stalin in 1953 it became easier for scientists to travel between the Soviet
Union and the West, and a number of foreign field theorists were invited to this conference.
As it happens, Källén was the only Western physicist who attended, and debated the fate
of QED with Landau there—he was sharply critical of their approach to the subject, due
to its basis in the perturbative expansion. In 1956 another high energy physics conference
took place in Moscow which many more foreign field theorists attended, including Gell-Mann.
Gell-Mann and Landau apparently also discussed his group’s claims about the behaviour of
the bare charge, with Gell-Mann also being unconvinced (presumably for similar reasons to
Bogoluibov and Shirkov).
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conceptually superior way of setting up perturbative QFT, he wrote on other fun-
damental topics, such as the Schwinger-Tomonaga equation (Bogoluibov 1951a,
1951b), and, with Parasyuk developed a rigorous approach to demonstrating the
renormalizability of a QFTs perturbative expansion (Bogoluibov and Parasyuk,
1957). As a result, Bogoluibov and his students came to form a pro-QFT school
within Soviet physics which rivalled the dominant Landau school.

According to Shirkov’s recollections, in the immediate aftermath of the 1955 con-
ference, he and Bogoluibov set about scrutinising Landau’s results and investigat-
ing the consistency of QED issue themselves. And it was in this context that the
Stueckelberg-Petermann and Gell-Mann-Low concepts were fused:

Shortly after the conference at the Lebedev Institute, Alesha [Alexei
Abrikosov] told me about Gell–Mann and Low’s article, which had just
appeared. The same physical problem was considered in this paper,
but, as he put it, it was complex to understand and they had not
succeeded in combining it with the results obtained by their group.
I looked through the article and presented my teacher with a brief
report on the methods and results... The scene that followed my report
was quite impressive. On the spot, N.N. [Bogoluibov] announced that
Gell–Mann and Low’s approach was correct and very important: it was
a realization of the normalization group (la groupe de normalisation)
discovered a couple of years earlier by Stueckelberg and Petermann in
the course of discussing the structure of the finite arbitrariness in the
matrix elements arising upon removal of the divergences. (Shirkov,
1996, 4)

In what sense was Gell-Mann and Low’s approach a “realization” of Stueckelberg
and Petermann’s normalization group concept? Making this connection required
some reinterpretation of the line of argument which appears in Gell-mann and
Low (1954).

Bogoluibov and Shirkov (1955a, 1955b) interpreted the momentum scale, λ, which
Gell-Mann and Low had introduced, not as a cutoff, but as an arbitrary scale at
which the perturbative expansion of the interacting photon propagator is normal-
ized. In other words, they understood the momentum scale as entering not during
regularization but during the renormalization phase, in which a prescription is
defined to assign finite values to the perturbative coefficients. They argue that
different choices of λ corresponded to physically equivalent definitions of the co-
efficients and expansion parameters appearing in the series and thus equivalent
definitions of the fully interacting propagators.19 The freedom to fix this scale is
embodied in a group of transformations that move us between different values of
λ:

Dλ → Dλ′ = z3(λ, λ
′)Dλ, eλ → eλ′ = z−1

3 (λ, λ′)eλ. (22)

It is this group of transformations that is finally dubbed the renormalization

19Note that Bogoluibov and Shirkov also do not address how the non-convergence of the pertur-
bation series affects their argument (see footnote 14).
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group. Stueckelberg and Petermann (1953), charitably interpreted, had argued
that moving between different values for the arbitrary constants which appear in
the expansion coefficients could be compensated by a redefinition of the dynam-
ical parameters appearing in the series. Bogoluibov and Shirkov state that the
freedom to normalize the expansion of the propagator at different scales λ is a
manifestation of this property.

They then reconstruct Gell-Mann and Low’s analysis of the short distance be-
haviour of QED starting from this transformation property. They obtain an anal-
ogous set of functional equations in the limit of arbitrarily large momentum, with
an important notational difference. Gell-Mann and Low had maintained a dis-
tinction between their renormalized propagator Dr and the cutoff propagator Dλ,
apparently attaching physical significance only to the former. This distinction now
evaporates. Gell-Mann and Low’s Dr is just the propagator obtained with λ = 0,
but all values of the momentum scale are on a par physically on Bogoluibov and
Shirkov’s reinterpretation. While Bogoluibov and Shirkov do not use the term,
they clearly come much closer to the modern concept of a renormalization scale.
In contemporary convention perturbative QFT, the renormalization scale is typ-
ically characterized as an arbitrary momentum scale at which the subtraction of
ultraviolet divergences is carried out. In the causal perturbation theory approach,
as we saw, one never writes down ultraviolet divergent expressions or introduces
a regulator, so Bogoluibov and Shirkov were more or less forced to reinterpret
Gell-Mann and Low’s talk of a “cutoff” scale. Again, we see that the causal
perturbation theory programme played a forgotten role in drawing attention to
perturbative ambiguities which, while also manifest in the conventional approach,
had often gone unnoticed. In the following decade, Bogouibov and Shirkov’s in-
sight that one could, in principle, impose renormalization conditions which set
the photon propagator equal to the free propagator a non-zero external momen-
tum seems to have been quietly taken on board by practitioners of conventional
perturbative QFT, paving the way for the modern concept of a renormalization
scale.

Bogoluibov and Shirkov also suggested that their renormalization group poten-
tially had a broader significance than just giving information about short-distance
structure. They emphasised that functional equations of the kind Gell-Mann and
Low wrote down hold not only in the limit of arbitrarily large external momen-
tum but in all regimes since their existence expresses a general structural feature
of QFT perturbation series. They also consider the long-distance, or infrared,
asymptotic limit, pointing out that analogous dimensional arguments can be used
to obtain solvable functional equations in this regime as well (Bogoluibov and
Shirkov, 1956). This part of their work would not be picked up by their immedi-
ate successors (though nowadays renormalization group methods are, indeed, also
used to probe infrared structure). But the fact that Bogoluibov and Shirkov are
looking to expand the range of useful applications of their renormalization group
concept is significant. As I discuss in the next section, adapting the renormal-
ization group concept to new problems will be an essential precondition for the
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explosive growth of renormalization group methods in the 70s.

When it comes to the short distance asymptotics problem, an important contri-
bution of Bogoluibov and Shirkov’s work is that they relate Gell-Mann and Low’s
framework with the claims of Landau’s group. Gell-Mann and Low, recall, had
missed the possibility of a Landau pole, instead only distinguishing between the
possibility of a finite and infinite bare charge. Bogoluibov and Shirkov explained
how Landau’s analysis of QED could, in fact, be fitted into Gell-Mann and Low’s
framework. They argued that we can understand Landau’s resummation approach
as computing a perturbative approximation of Gell-Mann and Low’s ψ-function.
Resumming the “leading logarithms” appearing in the series was equivalent to tak-
ing the first-order approximation to ψ(x), and calculating higher-order corrections
amounts to resumming higher powers of ln(k2/λ2)n. Bogoluibov and Shirkov thus
added the Landau pole behaviour to Gell-Mann and Low’s categorization of pos-
sible short distance behaviours and pointed out that it actually this third option
which was suggested by a perturbative approximation of the ψ-function.

This reconstruction of Landau’s approach allowed Bogoluibov and Shirkov to iden-
tify its shortcomings, however. They point out that a first-order approximation
to the ψ-function will only be valid if eλ is small. But the whole point of Landau’s
argument is that eλ will become very large and go to infinity. Landau’s group, on
Bogoluibov and Shirkov’s reading, were therefore guilty of extrapolating a small
value approximation outside of its region of applicability. In addition to this point
about the limitations of a purely perturbative treatment of asymptotic behaviour,
Bogoluibov and Shirkov give an informal argument to the effect that, supposing
the bare charge is infinite, introducing a non-local cutoff in the way that Landau’s
group had suggested may actually give rise to the misleading appearance of a Lan-
dau pole. They thus conclude that, when it comes to the asymptotic behaviour
of QED, “it is dangerous to make on the basis of approximations any sort of con-
clusion with respect to the state of affairs in the exact problem” (Bogoluibov and
Shirkov, 1959, 529).

The official Bogoluibov and Shirkov line thus seems to have been one of agnosti-
cism about the fate of QED. Given the theoretical tools available at the time it
was simply impossible to tell whether QED, or any other QFT for that matter,
had finite asymptotic behaviour or something more physically problematic (they
do not discuss Källén’s non-perturbative arguments). Pragmatically, therefore, it
made sense to further develop and refine QFT rather than abandon it. This atti-
tude fits well with the research programme that Bogoluibov and his collaborators
pursued during the 50s, which as I said was characterised by modest attempts to
shore up the foundational standing of the theory. Bogoluibov and Shirkov’s text-
book, “An Introduction to the Theory of Quantum Fields”, published in Russian
in 1957 and translated into English in 1959 collated much of this work. The penul-
timate chapter on the renormalization group seems to have been the primary line
of transmission for the ideas from the 50s we have been surveying into the following
decade. All of the articles I have been able to find which continue this tradition
in the 60s both use the term “renormalization group” and immediately cite Bo-
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goluibov and Shirkov’s textbook. Important figures for later developments, like
Wilson and Weinberg, both recall learning of the renormalization group concept
from this source as young theorists.

While Bogoluibov and Shirkov’s textbook established a place for the renormal-
ization group in the QFT lexicon, it did not establish its centrality. I will now
consider the puzzlingly slow uptake of the newly minted renormalization group
concept in the following decade.

4.2 Why the Quiet Decade?

The renormalization group remained a fairly marginal concept throughout the
1960s. A bibliographical search for abstracts containing the term “renormalization
group” gives a low figure of the order of 10 per year during the 60s which increases
by an order of magnitude in the 70s. There is an obvious historical puzzle here:
why did it take so long for the renormalization group to rise to its contemporary
prominence? This is a wide-ranging question, which stands in need of more careful
study, but I will offer some hypotheses.

A major factor behind the weak reception of the 50s renormalization group work
was surely its close ties to a class of models which most theorists were desper-
ately trying to get away from by the 60s: renormalizable perturbative QFTs. In
the early 50s, there was some hope that it might be possible to describe strongly
interacting particles via a formalism that was closely analogous to perturbative
QED, but this looked increasingly unlikely as time went on. Meson field theories
failed to reproduce the startling empirical successes of QED, and perturbation
theory, with its assumption of weak coupling, seemed to be an inherently inappro-
priate framework for approaching strong nuclear processes. While Gell-Mann and
Low (1954) had been trying to probe QED’s exact short distance behaviour the
method they had developed was intrinsically tied to the perturbative expansion.
In a sense, this became more evident with Bogoluibov and Shirkov’s synthesis, as
the Stueckelberg-Petermann renormalization group concept was all about ambigu-
ities that arise in the course of setting up QFT perturbation series. Furthermore,
Gell-Mann and Low had styled their method as being fundamentally based on the
concept of perturbative renormalizability, and Bogoluibov and Shirkov had qui-
etly continued to restrict their attention to renormalizable theories. It was thus
difficult to see how renormalization group ideas could be salvaged from the now
faltering perturbative formalism.

In fact, many of the approaches to strong interactions which rose to prominence
in the 60s, such as the S-matrix programme championed by Jeffrey Chew, moved
away from QFT entirely. The renormalization group, which had been associated
with a cautiously optimistic attitude towards the consistency of QFT question,
was likely damned by association in the eyes of many. When Bjorken and Drell
dedicated the final subsection of their 1965 QFT textbook to the renormalization
group they no doubt further solidified its place in the physics canon, but their
final words on the subject are telling:
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“[C]onclusions based on the renormalization group arguments concern-
ing the behavior of the theory summed to all orders are dangerous and
must be viewed with due caution. So is it with all conclusions from
local relativistic field theories.” (Bjorken and Drell, 1965, 376).

This ambivalent attitude towards early renormalization group methods, condi-
tioned by an ambivalent attitude towards QFT, seems to typify the dominant
community opinion during this period.

Many of those theorists who did engage with renormalization group ideas in the
60s were QFT loyalists, of one kind or another, the most important being Kenneth
Wilson. Wilson’s thesis, completed in 1961 under the supervision of Gell-Mann,20

was an early attempt to employ renormalization group ideas outside of perturba-
tion theory, carrying out a Gell-Mann-Low style analysis of the large momentum
limit of the Low equation, a non-perturbative result in fixed source nuclear field
theories (Wilson, 1961). Ultimately rejecting Chew’s S-matrix approach, Wilson
continued to hold the minority view that strong nuclear physics must be under-
written by a QFT. Yet even someone like Wilson, who was committed to QFT and
considered the renormalization group work of the 50s to be extremely important,
struggled to advance these ideas during the 60s. His papers in the early 70s would
finally liberate renormalization ideas from the confines of perturbation theory, and
indeed from QFT itself, an achievement that played a decisive role in the explosion
of interest in the renormalization group in the 70s (Wilson 1971a, 1971b). This
was no straightforward generalization of ideas from the 50s, however. As we will
discuss further in the next section, Wilson’s renormalization group was something
quite different, both formally and conceptually, from what had come before.

A more typical continuation of the renormalization group tradition was the work
of Karl-Erik Eriksson. Joining the Cern theoretical division in 1959, Eriksson
collaborated with our old friend André Petermann, now a member of the theory
division there (Eriksson and Petermann, 1960), and went on to write a series of
papers clarifying aspects of Bogoluibov and Shirkov’s renormalization group, fo-
cusing especially on the connection with the resummation of kinematic logarithms
(Eriksson 1961, 1963a, 1963b). The phenomenological background of this work
was the precision testing of QED being carried out at Cern, in which context per-
turbative QFT continued to reign supreme. The fact that publications employing
the renormalization group were clustered in this area further supports the point
that the intrinsically perturbative nature of the 50s renormalization group lim-
ited opportunities for wider adoption. This situation changed radically when the
asymptotic freedom of quantum chromodynamics (QCD) was established, mean-
ing that weak coupling approximations were valid at high energies. Parallel to
Wilson’s efforts in developing a non-perturbative version of the renormalization
group, perturbation theory had, surprisingly, returned to centre stage in the guise
of perturbative QCD, surely another crucial factor in the resurgence of renormal-

20Though apparently, Gell-Mann had relatively little input on Wilson’s project. Wilson and Gell-
Mann both, somewhat surprisingly, report that personal interactions between them played no
role in the transmission of renormalization group ideas.

28



ization group ideas in the 70s.

Another reason for the lacklustre response to renormalization group methods in
the 60s was their weak track record when it came to solving concrete problems.
The Gell-Mann-Low and Bogoluibov-Shirkov work had shown, to those that under-
stood it, that Landau’s conclusions about the generic pathological short distance
behaviour of QFTs were too quick. They had not succeeded in giving much posi-
tive information about short-distance structure, however. In the 60s some theorists
continued to pursue this problem, in many cases departing from the renormaliza-
tion group approach. As a PhD student of Wilson’s, Roman Jackiw was given the
thesis problem of applying renormalization group methods to the short distance
behaviour of the QED vertex function but ended up abandoning this approach and
developing a so-called eikonal approximation for estimating its asymptotic form.
Steven Weinberg wrote a paper attacking the problem of asymptotic behaviour
using similar techniques, which did not even mention the renormalization group
(Weinberg, 1963). Marshall Baker, Kenneth Johnson and Raymond Wiley likewise
developed their own framework for addressing the ultraviolet consistency of QED
(Baker, Johnson, and Wiley, 1963, 1964, 1967). We thus see a pattern of attempts
to replace, rather than to build on, the 50s renormalization group treatment of
ultraviolet asymptotic behaviour.

While Bogoluibov and Shirkov had gestured at the potential broader relevance of
renormalization group ideas, attempts to apply them to new problems met with
limited success. Amongst Bogoluibov’s school attempts were made to connect the
renormalization group to work on Regge poles, a hot topic in the 60s which was a
fundamental pillar of the new S-matrix programme (Arbuzov, Logunov, Tavkhe-
lidze, 1962; Shirkov, 1963). Low and Haung (1964) criticised this work, however,
arguing that Gell-Mann-Low style functional equations did not constrain the angu-
lar momentum dependence of physical quantities at fixed energy and consequently
were irrelevant to the problem of Regge poles. Overall, one gets the impression
that many theorists took the 1950s work to have already exhausted the fairly lim-
ited usefulness of the renormalization group concept. Wilson’s work on critical
phase transitions and the perturbative demonstration of the asymptotic freedom
of QCD—both Nobel prize-winning achievements which hinged on renormaliza-
tion group methods—dramatically boosted the renormalization groups reputation,
encouraging a new generation of physicists, in a range of sub-disciplines, to learn
about these techniques.

A final factor is worth considering: did interpretive confusions play a role in slow-
ing the propagation of renormalization group ideas? A number of authors have
suggested as much. Wilson and Kogut write that one of the central defects of the
early renormalization group was that “the intuitive ideas were encased in a thick
shell of formalism; it has required many years to peel off the shell.” (Wilson and
Kogut, 1974, 82). Besides Wilson, many other physicists anecdotally record find-
ing the early renormalization group work difficult to understand. Weinberg claims
to have found Bogoluibov and Shirkov’s discussion impenetrable and explicitly
blames their invocation of group theory:
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Bogoluibov and Shirkov seized on the point about the invariance with
respect to where you renormalize the charge, and they introduced the
term “renormalization group” to express this invariance. But what
they were emphasizing, it seems to me, was the least important thing
in the whole business. (Weinberg, 1981, 7)

What should have been emphasised instead, according to Weinberg, was the break-
down of scale invariance made possible by the need to impose renormalization
conditions at a particular momentum scale, a point which he finds more explic-
itly prefigured in Gell-Mann and Low’s discussion. This suggests the following
provocative answer to the slow uptake question: Bogoluibov and Shirkov’s synthe-
sis was a mistake, which delayed the recognition of Gell-Mann and Low’s insights.

We need to be careful not to read contemporary physical interpretations of the
renormalization group back into the 50s here, however. While Gell-Mann and
Low’s discussion of quantum corrections to the Coulomb potential can, in retro-
spect, be viewed as containing the seed of the notion of anomalous scale breaking,
neither they nor their contemporaries, articulated this idea explicitly in the 50s.
As I emphasised, Gell-Mann and Low do not even have the concept of a renor-
malization scale. The papers of Callan and Symanzig, which became the standard
references for the perturbative renormalization group in the 70s were arguably the
first to make this point manifest (Callan 1970, Symanzig 1970). Furthermore, the
focus on scale symmetry, and its violation, at the end of the decade was triggered
by new phenomenological work on deep inelastic scattering (Bjorken, 1969), as well
as theoretical work on the operator product expansion and anomalous symmetry
breaking (Wilson, 1969)—see Cao (2010) for an account of these developments.
It is thus more accurate, in my view, to say that the connection between the per-
turbative renormalization scale and the breakdown of scale invariance was made
in the 70s, rather than being rediscovered.

It should also be noted that Weinberg’s view of what is interpretively important
and what is ancillary in renormalization group techniques is one amongst many.
Shirkov gives a diametrically opposed reading, criticising Gell-Mann and Low for
failing to recognise the group-theoretic nature of their argument and taking the
existence of a self-similarity transformation to be at the core of the renormalization
group in all of its guises (Shirkov 1999). This draws our attention back to an issue
which likely did impact on the reception of the renormalization group framework
in ways that are difficult to precisely determine: the existence of distinct formal
structures, and physical interpretations, falling under the rubric of “the renormal-
ization group”. I want to conclude by considering how the proceeding historical
investigation sheds light on the many-faced nature of the renormalization group.

5 The Many Faces of the Renormalization Group

In contemporary physics, the renormalization group is both ubiquitous and ex-
tremely varied in its manifestations. Arguably, this remains a source of confusion
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and misunderstandings. History gives us one way of getting a handle on this land-
scape of renormalization group concepts. The twin origins of the renormalization
group examined here account for at least some of the heterogeneity we find in
contemporary conceptions of the renormalization group. While Bogoluibov was
certainly right that there is a connection between the Stueckelberg-Petermann
and Gell-Mann-Low renormalization group concepts, they are not, in fact, identi-
cal and in the later history, they have occassionally come apart once more.

They are not identical because the Stueckelberg-Petermann renormalization group
concept is more general. Stueckelberg and Petermann had postulated a set of
transformations relating all of the different ways of fixing the arbitrary constants
that appear in QFT perturbation series. Using modern terminology, we can de-
scribe their group as spanning the full space of renormalization schemes—the pos-
sible prescriptions used to assign finite values to the series coefficients. One part
of fixing a scheme is the choice of a renormalization scale, and it is the freedom
to vary the renormalization scale which Bogoluibov and Shirkov had focused on
in their work. However, the renormalization scale does not parameterise the full
space of renormalization schemes. In addition to fixing a renormalization scale, one
must also fix what is sometimes called a subtraction convention—roughly speak-
ing, a prescription that specifies how much of the series coefficient is subtracted
at the scale λ. Stueckelberg and Petermann’s renormalization group should in-
clude transformations between different subtraction conventions as well as different
renormalization scales. Consequently, the transformation group which Bogoluibov
and Shirkov had identified in Gell-mann and Low (1954) is really a sub-group (or,
more correctly according to recent mathematical physics treatments, a cocycle,
Dütch 2019) of the larger Stueckelberg-Petermann group.

After being largely subsumed by Bogoluibov and Shirkov’s synthesis in our period
of study, Stueckelberg and Petermann’s concept has stepped out of their shadow
in a number of contexts. In mathematical physics, a great deal of work has been
done on making perturbative QFT mathematically rigorous and characterising
the structures underlying it. Much of this work has its roots in Stueckelberg and
Petermann’s idea that the problem of ultraviolet divergences and perturbative
renormalization should be understood through the lens of distribution theory. In
this tradition, the existence of a transformation group linking the possible develop-
ments of the perturbative S-matrix is viewed as a fundamental result, expressing
a general structural feature of perturbative QFT. Indeed, a more precise version
of this statement is sometimes referred to as “the main theorem of perturbative
renormalization” (Popineau and Stora, 2016). Stueckelberg and Petermann, re-
call, had not connected their groupe de normalisation with the scaling behaviour
of a QFT and had instead postulated it as a foundationally important object in its
own right. We can see this mathematical physics work as reaffirming the indepen-
dent significance of the larger renormalization group Stueckelberg and Petermann
had been gesturing towards.

The distinction between the Stueckelberg-Petermann and Gell-Mann-Low renor-
malization groups was also redrawn in the debate about renormalization scheme
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dependence which erupted circa 1980. While the S-matrix itself is independent
of the choice of renormalization scheme, truncations of the series expansion—the
approximations which are actually compared to empirical data—are not. This was
never fully understood in the age of QED because the so-called on-shell renormal-
ization scheme, which sets perturbative corrections to the photon propagator to
zero for zero external momenta, allowing the renormalized charge to be identified
with the charge appearing in the classical fine structure constant, was taken to be
a uniquely physically motivated scheme. The scheme dependence of truncations of
the perturbation series became a practical issue in QCD in part because there is no
low energy classical theory we can use to define an analogous “physical” scheme.
This led to a heated debate about how the renormalization scheme should be fixed
in perturbative calculations. In at least some of the proposed approaches to this
problem, the Stueckelberg-Petermann renormalization group, again, resurfaced as
an important object in its own right. Paul Stevenson’s principle of minimal sen-
sitivity, for instance, fixes the scheme by minimising the approximants sensitivity
with respect to the “full renormalization group of Stueckelberg and Petermann”
(Stevenson, 1981).21

The future trajectory of the Gell-Mann-Low side of the 50s renormalization group
is more difficult to parse, owing to the substantial innovations which took place in
the later tradition. Wilson clearly saw his work as continuing the ideas about the
scaling behaviour of QFTs that Gell-Mann and Low and Bogoluibov and Shirkov
had developed in some sense—he continued to use the term renormalization group,
after all.22 However, the framework which Wilson developed in the 70s differ in
many important respects from the renormalization group structures we have ex-
amined in this paper. Wilson’s conception of the renormalization group is based on
a class of coarse-graining transformations, which recursively eliminate a model’s
small length scale degrees of freedom, producing an effective description of its
large scale behaviour. These transformations are thus not usually understood as
relating equivalent formulations of the same theory, where perturbative renormal-
ization schemes are taken to be physically equivalent notational variants.23 They
also often do not form a true transformation group, since coarse-graining transfor-
mations are not typically invertible. The class of transformations one considers in
the Wilsonian approach is thus usually, strictly speaking, a semi-group. On both
the formal and interpretative level, Wilson’s renormalization group was something
quite new (and it is crucial to emphasise that there is a large amount of formal and

21The scheme dependence debate is arguably also a context where authors implicitly employ
different interpretations of the renormalization group, and is thus a scientific debate which the
present line of investigation can potentially help clarify.

22When Wilson places his work in a historical context he tends to emphasise continuity with
the 50s renormalization group ideas we have examined in this paper—see for instance, Wilson
and Kogut (1974) and Wilson’s nobel lecture (Wilson, 1984). Of course, as historians and
philosophers, we should take a critical view of this rhetoric, and as I suggest briefly here there
are good reasons to see Wilson’s renormalization group ideas as radically novel.

23There is quite a bit more to say on this point as Wilsonian coarse-graining transformations
sometimes are interpreted as relating physically equivalent systems—see Rosaler and Harlander
(2019) for a discussion of this point in the recent philosophical literature.
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interpretive diversity within the Wilsonian tradition itself which stands in need of
further historical and philosophical scrutiny).

This new renormalization group did not replace the old but rather coexisted with
it. The work of Callan and Symanzig in the 1970s took up and developed the im-
plications of the group of transformations between different renormalization scales,
remaining within the context of perturbative QFT. Today, this later incarnation
of the Gell-Mann-Low renormalization group is much more central to the practice
of perturbative QFT than it ever was in the 50s and 60s. The twin origins of the
renormalization group I have examined in this paper helps us understand some of
the diversity that exists in contemporary renormalization group approaches then,
but the fact that new renormalization group concepts layered on top of this al-
ready imperfectly unified base is another, and ultimately perhaps more important,
part of the story.

There is clearly much more historical work that remains to be done. The present
study makes clear that the project of giving a more complete historical analysis of
the renormalization group should not be conceived as tracing the development of
a unitary scientific concept. Rather, an approach that is sensitive to the existence
of many quasi-independent strands within the renormalization group tradition is
needed. A useful parallel here might be with historical work on the notion of
biological species, which has stressed the complex interplay between multifarious
species concepts (Wilkins, 2009). There is also a need for philosophers of science
to clarify the conceptual relationships between the various renormalization group
notions. Arguably, mapping out this conceptual space is a necessary component
of other projects which philosophical engage with renormalization group ideas.
In recent years the renormalization group has been connected to debates about
the foundations of QFT, scientific explanation, and emergence, to name only a
few (Wallace 2011, Fraser 2020, Batterman 2002, Butterfield 2014). The present
study suggests the following cautionary moral for investigations of this sort. If we
ask questions, or state theses about the philosophical significance of “the renor-
malization group” without being sensitive to the variety of approaches that term
encompasses we risk falling foul of oversimplification and terminological confusion.
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