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Can neuroscientists ask the wrong questions? On why etiological considerations 

are essential when modeling cognition 

Lotem Elber-Dorozko 

Abstract: It is common in machine-learning research today for scientists to design 

and train models to perform cognitive capacities, such as object classification, 

reinforcement learning, navigation and more. Neuroscientists compare the processes 

of these models with neuronal activity, with the purpose of learning about 

computations in the brain. These machine-learning models are constrained only by the 

task they must perform. Therefore, it is a worthwhile scientific finding that the 

workings of these models correlate with neuronal activity, as several prominent 

papers reported. This is a promising method to understanding cognition. However, I 

argue that, to the extent that this method’s aim is to explain how cognitive capacities 

are performed in the brain, it is expected to succeed only when the modeled capacities 

are such that the brain has a sub-system dedicated to their performance. This is likely 

to occur when the modeled capacities are the result of a distinct adaptive or 

developmental process. 
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1. Introduction 

As the capabilities of machine-learning algorithms grow, it is becoming increasingly 

common in the cognitive sciences to utilize the following methodology: identify some 

cognitive capacity, use machine learning research to build and train algorithms to 

achieve this capacity, and compare the workings of these algorithms with neuronal 

activity. When neuronal activity is found to correlate with processes in the machine-

learning algorithm, this finding is worthwhile for two reasons - First, we gain a new 

way to predict neuronal activity, often with better accuracy than previous models. 

Second, the finding of correlation suggests that computation in the brain is similar in 

some ways to the machine-learning algorithm. Such work was done for object 

recognition (Cao and Yamins 2022a; Yamins et al. 2014; Yamins and DiCarlo 2016; 

Zhuang et al. 2021), reinforcement-learning (Cross et al. 2021), language processing 

(Goldstein et al. 2022; Schrimpf et al. 2021), navigation1 (Banino et al. 2018; Cueva 

and Wei 2018), orientation during self-motion (Mineault et al. 2021) and more.  

Borrowing from (Yamins et al. 2014), I will henceforth call this methodology 

‘performance-based’ methodology, because it aims to create models that can perform 

capacities that people perform. This methodology closely resembles Marr’s (1982) 

levels of analysis: it begins by describing the performed computation, then it 

identifies an algorithm which can perform this computation, and finally it searches for 

the algorithm’s neuronal correlates. This approach emphasizes the usefulness of top-

down constraints in modeling neuronal activity – the model must be able to perform 

the cognitive function in which the brain area is involved. At least in the step of 

constructing the algorithm for the cognitive capacity, this approach also minimizes the 

 
1 Navigation is a slightly different case because neuronal activity is already characterized as 

representing location in a grid like manner, and therefore neuronal activity is well explained with a 

simple concept. Scientific works show how these representations arise as part of learning navigation-

related tasks. 
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importance of physical, developmental, or evolutionary constraints – the only 

constraint on the algorithm is that it achieves high performance on the relevant tasks. 

For this reason, it is often a pleasant surprise for scientists when they discover 

similarities between the model and neuronal activity. This leads some to suggest that 

the constraint that the algorithm must perform a specific cognitive capacity may be 

sufficient to create similarities in the algorithm utilized by the machine-learning 

algorithm and in cognitive processing (Cao and Yamins 2022a; Yamins and DiCarlo 

2016).  

Here, I argue that, to the extent that this methodology aims to explain how cognitive 

capacities are performed, it must take into account another aspect of cognition, over 

and above neuronal activity and behavior; we must also consider whether the capacity 

it aims to model is a capacity for which there is a dedicated ‘sub-system’ in the brain. 

For if this is not the case, it is very unlikely that scientists will be able to model how 

said capacity is performed in the brain. If the modeled capacity is not performed by a 

dedicated sub-system in the brain, machine learning models will overlook important 

constraints on the way the capacity is performed. Here, ‘Sub-system’ is simply taken 

to mean that there are specific properties and states of the brain that are dedicated 

solely to the performance of a specific capacity. Such ‘sub-systems’ need not be 

anatomically distinct. Despite the difficulty in identifying specific capacities in 

biology (Wouters 2005), some well-known examples for sub-systems in the body 

include (simplistically described) various organs in the body, such as the heart – 

dedicated to pumping blood, the ribosome – dedicated to building proteins, or the 

immune system – dedicated to preventing or limiting infection. 

This paper further argues that to identify sub-systems in the brain scientists should 

pay careful consideration to the etiology of cognitive capacities. This, because 
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capacities that are not the result of specific adaptations (or developmental/learning 

processes if one considers the brain to be plastic enough) are very unlikely to have 

sub-systems dedicated specifically to them. 

Finally, this paper argues that while identification of correlates or mapping of causal 

relations between a model and the brain can help us learn about computation in the 

brain, it is not, in and of itself, decisive evidence that a specific computation is 

performed in the brain. Computational models can yield significant correlations when 

compared with systems that are designed to perform an essentially different 

computation from the model, as several scientific publications have shown (Elber-

Dorozko and Loewenstein 2018; Jonas and Kording 2017; Marom et al. 2009). 

Generally, we should expect many various computations to correlate with neuronal 

activity, and therefore considerations of evolutionary and developmental processes 

cannot be completely eliminated, even with much empirical data about neuronal 

activity. Therefore, putting too much weight on correlational data while ignoring 

etiological considerations, may lead to erroneous attribution of computation to the 

brain. 

The emphasis this paper suggests on evolutionary considerations is not novel. It has 

been repeatedly suggested by neuroscientists and philosophers that cognitive 

scientists should pay mind to evolutionary processes. In a special issue dedicated to 

neuroscience and evolution, Cisek and Hayden (2022) write: ‘we think that the 

consideration of evolutionary history ought to take its place alongside other 

intellectual tools used to understand the brain’.2 Moreover, the performance-based 

methodology this paper addresses is regularly taken to be the champion of 

evolutionary considerations. For, often, this methodology results in neuronal activity 

 
2 It should be noted, that Cisek focuses more on phylogenetic analyses, while this paper advocates for 
adaptationist considerations. 
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being described as activity that has been adapted for a specific purpose – the one that 

the algorithm was trained on. This description often supplants previous descriptions of 

neuronal activity as responding to well-defined concepts such as oriented lines or 

faces. Indeed, Cao and Yamins (2022b) write: “we want to find tasks that are good 

proxies for evolutionary goals that brains were actually selected for achieving.”  

This paper aims to add onto this literature in several novel ways. First, it demonstrates 

concretely how etiological (used here to simply mean evolutionary or developmental) 

considerations are relevant when using a specific method to identify neuronal 

computation. Second, it argues for the importance of etiological considerations, not 

only as a heuristic tool to identify possible models for computation in the brain but as 

playing a role in the assessment of these models together with neuronal and 

behavioral data. This paper argues that decisions about computations in the brain are 

likely to depend on an interplay of etiological considerations, together with empirical 

data about brain activity, brain structure and behavior. This interplay has generally 

been overlooked, with scientists commonly appealing to experimental data alone to 

justify their conclusions. Finally, this paper argues that we must adopt a more 

nuanced view of etiology. The fact that having a capacity increases an organism’s 

fitness does not mean this is a capacity that the organism has adapted to have a 

specific sub-system for. Ignoring such distinctions may lead to erroneous attribution 

of computations to the brain. 

The next section describes one example of the methodology this paper addresses – 

modeling object classification. Section three will describe the argument for the 

importance of considering capacities for which there are dedicated sub-system. It will 

make this argument by demonstrating three ways in which failure to do so can lead us 

astray. Then, this section will discuss the difficulties this argument raises for current 
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scientific practice and will suggest a way forward. Finally, section 4 will address 

some objections to the argument of the paper, most notably the objection that the 

neuronal data demonstrates that we identified the right computations. 

 

2. An example for performance-based modeling – object classification 

The case of object classification is one well-known example for the use of 

performance-based models to explain neuronal activity. In their famous paper, 

Yamins et al. (2014) train a model that can perform an object classification task at 

near human performance; The model can classify objects from various perspectives 

into one of eight categories: animals, boats, cars, faces, etc.  

The architecture of the model is inspired by the structure of the visual ‘ventral stream’ 

in the brain (the areas associated with object recognition) in that it includes several 

feedforward ‘layers’ where the connectivity between layers is determined according 

to the ‘Linear-Non Linear’ (LN) posit about neuronal processing (the function 

performed by the neurons is some linear operation on neuronal activity in the previous 

layer, followed by a non-linear operation). However, the model does not aim to copy 

neuronal processing, only to use it as an inspiration to successfully perform the task; 

the model was only trained to perform the task as best as possible, and information 

about neuronal activity was not used during training. 

Yamins et al. (2014) recorded neuronal activity in visual areas of monkeys and 

discovered that the activity of simulated neurons in the highest layer in their 

computational model was able to predict activity in the inferior temporal cortex (IT) - 

a ‘high’ area in the ventral stream, which receives inputs after several stages of 

neuronal processing, and can support object categorization for a variety of object 

positions over a wide range of tasks. They were able to predict 48.5 ±1.3% of the 
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variance in activity in individual neurons in IT across the presentation of 1600 

different photos. This is a two-fold improvement in prediction over the other, non-

performance-optimized, models they tested. Moreover, Yamins et al. (2014) 

discovered that intermediate layers in their model were able to predict 51.7± 2.3% of 

the variance of neuronal activity in the intermediate brain area V4, while the first and 

last layer in the model predicted a much smaller fraction of the variance. Thus, they 

found strong correlates between neuronal activity and simulated activity in their 

model, which fitted with the processing stages in the model and in the brain. 

Yamins et al. conclude, in a paragraph which emphasized the role of etiological 

considerations in building models for neuronal computation: “[the paper presents] a 

top-down perspective characterizing IT as the product of an 

evolutionary/developmental process that selected for high performance on recognition 

on tasks like those used in our optimization... This type of explanation is qualitatively 

different from more traditional approaches that seek explicit descriptions of neural 

responses in terms of particular geometrical primitives”.  

In a follow-up paper, they demonstrate how they view machine learning algorithms as 

models for neuronal processing in the ventral pathway (Fig. 1). They write: “HCNNs 

are good candidates for models of the ventral visual pathway. By definition, they are 

image computable, meaning that they generate responses for arbitrary input images; 

they are also mappable, meaning that they can be naturally identified in a component-

wise fashion with observable structures in the ventral pathway; and, when their 

parameters are chosen correctly, they are predictive...” (Yamins and DiCarlo 2016). 



 

8 
 

 

Fig. 1, from (Yamins and DiCarlo 2016), a performance-based model for object 

classification as a model of computation in the brain. Each layer in the model is 

mapped to an area in the brain, with corresponding processing stages. 

 

These last two quotes demonstrate two different ways in which the results of the 

performance-based methodology can be used. First, machine learning algorithms as 

means to predict neuronal activity is a useful shift from the ‘explicit descriptions … in 

terms of particular geometrical primitives’ that Yamins et al. (2014) talk about, 

because it allows scientists to describe neuronal activity even when it does not 

resemble a known concept. A second, stronger, claim scientists can make based on 

results of these correlations go beyond description of neuronal activity to argue that 

these results are evidence that the performance-based model can answer the question 

of how the brain performs the relevant cognitive capacity. As (Yamins and DiCarlo 

2016) write: “HCNNs are good candidates for models of the ventral visual pathway”. 

This paper targets the second, stronger, claim about computation in the brain, which is 

often explicitly stated, or otherwise may be tacitly implied. 

Performance-based methods have been used to predict neuronal activity for a variety 

of capacities, including reinforcement-learning (Cross et al. 2021)  - where brain 
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activity of participants playing video games was found to correlate with activity in 

deep layers of a model that was trained to play the same games from inputs of images 

to outputs of actions, and language processing (Goldstein et al. 2022) – where 

neuronal activity while listening to a podcast could be predicted from representations 

created by language models, to name a few.  

In some cases, it has been explicitly argued that performance-based models are 

models for neuronal computation. (Goldstein et al. 2022) write: “[T]he human brain 

and autoregressive DLMs [deep language models] share three fundamental 

computational principles”; (Zhuang et al. 2021) claim: “[These results] present a 

strong candidate for a biologically plausible computational theory of primate sensory 

learning.” It has even been suggested that such computational models whose 

simulated activity maps onto neuronal activity according to specific criteria, met by 

the model in Yamins et al. (2014), are mechanistic explanations of how the brain 

performs the capacity (Cao and Yamins 2022a).3  

Following the impressive results from a variety of papers (Banino et al. 2018; Cross et 

al. 2021; Cueva and Wei 2018; Mineault et al. 2021; Schrimpf et al. 2021; Yamins et 

al. 2014) it may seem that this methodology can yield new understanding of the 

underlying computation for any capacity of our choosing. However, in the next 

section I point out that this methodology is likely to yield explanation and 

understanding of cognition only when it attempts to explain capacities for which there 

is a dedicated sub-system. I further argue that one important way to identify these 

capacities is to consider their etiology. Without such etiological considerations, 

although simulated activity may show some mapping to neuronal activity, the 

computational models are likely to be different in important ways from the ones 

 
3 See (Craver 2007; Kaplan and Craver 2011; Piccinini 2015) for detailed frameworks of mechanistic 

explanations  
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employed by the brain, because they will miss important constraints on how the 

capacity is performed. I elaborate in the next section. 

 

3. How etiological considerations matter 

An important advantage of the performance-based methodology is that its models are 

able to perform cognitive capacities. This makes it much more likely that they capture 

the essence of how brains perform those capacities, compared with models that cannot 

perform said capacities. Nonetheless, another important aspect to consider is the 

plausibility that the brain performs the capacity in the same manner the model does. 

The next three sub-sections describe three different ways in which the process 

underlying a capacity is evidently not a dedicated sub-system, leading to models that 

substantially diverge from the true processes underlying the modeled capacity. 

A. Modeling side effects, rather than adapted functions 

The brain does many things, some of them it has been adapted to do and some are 

‘side-effects’ of other evolutionary or developmental processes. Biological functions 

have been extensively discussed in philosophy (Boorse 2002; Cummins 1975; 

Millikan 1989; Neander 1991; Wouters 2005). The major question has been what 

differentiates the functions of the system from other things the system does. To give 

the oft used example, the heart both pumps blood and makes thumping sounds, but we 

usually only take the former to be its function. On perspectivalist views of function, 

the functions of the system are not an objective matter, but rather depend on the 

interests of the observers (Craver 2013). On such views the heart’s function may well 

be to make thumping sounds if the observer is interested in building stethoscopes. 

This observer may also be interested in explaining the underlying mechanism that is 

responsible for the thumping sounds.  
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Another set of views take functions to be an objective matter. One such popular view 

of functions is the ‘selected-effects’ view. This view describes functions by reference 

to their evolutionary history; the function of a system is to bring about effects that in 

the past were relevant to its selection (Millikan 1989; Neander 1991). Hence, hearts 

have the function of pumping blood but not the function of making thumping sounds, 

because only their ability to pump blood was causally relevant to the existence of the 

organism today. Therefore, there is a difference between functions the system has 

because they were previously relevant for its selection, and functions the system can 

perform, i.e., side-effects.  

It is not my intention to make an argument in favor of one view or other of function. 

Nonetheless, the distinction between ‘side-effects’ and capacities the brain has 

adapted to have is relevant to the epistemological practice of building and assessing 

computational models for cognitive tasks. This, because capacities that are considered 

side-effects according to the selected-effects view are, by definition, very unlikely to 

have a sub-system dedicated to their performance and therefore unlikely to be given a 

computational model that is similar to the computation that takes place in the brain.  

As a thought experiment, consider a scientist who encounters for the first time a 

lightbulb. The scientist has no idea what the function of the light bulb is, or if it even 

has one. She notices that the lightbulb emits heat and tries to explain how it does so. 

She comes up with a model for a heat emitting device – a radiator. The radiator is just 

as good at emitting heat as the lightbulb. Therefore, according to the performance-

based methodology it is a model that can be compared with the activity of the light 

bulb, and correlations between the activities of the two may even be identified, as I 

also argue in section 4. For example, both heat up when connected to electricity. 

Nonetheless, there is some deep sense in which the scientist missed how the lightbulb 
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emits heat – it does so via a mechanism that was designed to emit light. The lightbulb 

emits heat, but it has the function of emitting light, and this puts specific constraints 

on its mechanism for emitting heat. Models constructed specifically to emit heat are 

likely to miss these constraints. Similar scenarios will occur if someone tries to 

explain how a coffee machine emits such a strong noise, using a performance-based 

approach; the issue isn’t that the models they will come up with do not make coffee, 

but rather that they are very unlikely to suggest the right answers for the source of the 

noise – grinding coffee beans and foaming milk. Therefore, they are very unlikely to 

come up with a model that is similar to how the coffee machine produces noise. 

In relation to human cognition, we can consider chess playing. The performance-

based methodology would build a machine-learning algorithm that can play chess and 

compare its activity with brain activity. Such chess-playing models have already been 

created and rivaled human champions. However, according to the selected-effects 

view, people can play chess, but they do not have the function of playing chess. 

Brains were not adapted for chess playing so it would be astonishing to discover that 

neuronal computation is similar to algorithms designed specifically for chess playing, 

such as deep blue (Campbell, Hoane, and Hsu 2002). An accurate computational 

model of human chess playing will take into account that this capacity utilizes 

mechanisms that were adapted for other purposes.4 Similar points can be made with 

regard to driving, baking a cake and synchronized swimming. While some of these 

capacities are useful today, such as driving, it is clear that this capacity exists not as 

the result of a dedicated sub-system, but as a side-effect of our perceptual and motor 

abilities more generally. Thus, attempting to create models that can perform these 

 
4 One may suggest that chess experts develop specific mechanisms that are not constrained by other 

tasks, to support chess playing. This is not impossible, but does not fit with what is known about 

neuronal processing or about how acquisition of skills in chess affect the brain (Mayeli, Rahmani, and 

Aarabi 2018), and at any rate at least novice chess players are very unlikely to have such a module. 
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capacities alone is unlikely to yield similar processing to how they are performed in 

the brain. Modeling capacities that are evolutionary side-effects is unlikely to yield 

models similar to computation in the brain. 

B. Modeling overly specific capacities 

Not every capacity that is considered a function according to the selected-effects view 

will have a dedicated sub-system. Some cognitive functions may only be partial 

descriptions of the capacities that brains have adapted to have. When considering 

capacities that are the result of evolution, it is useful to consider what evolutionary 

psychologists call ‘Darwinian modules’ (not to be confused with Fodor’s modules, 

which are characterized differently) – capacities that are the result of a distinct 

evolutionary process (Machery 2007b, 2007a). As Machery (2007b) writes: 

“evolutionary psychologists are adamant that many competences, such as reading, 

programming in C++,   and piloting an airbus, are not underwritten by dedicated 

modules. There is no module whose evolved function is, say, to read, since, 

obviously, reading is a recent cultural invention. Rather, reading is underwritten by a 

collection of modules that evolved for other reasons.” 

Machery’s paragraph nicely captures the notion of Darwinian modules. One may 

wonder if the examples given by Machery should be considered side-effects and 

belong in sub-section 3a, since they are too recent to be the result of an adaptive 

process. Nonetheless, similar arguments can be made for capacities that are not side-

effects, but simply partial descriptions of capacities with dedicated sub-systems, and 

for this reason do not have a dedicated sub-system. 

The fact that our ancestors were able to distinguish zebras and tigers increased their 

fitness, and this capacity would be considered a function according to the selected-

effects view, but we do not think ancestral brains have adapted for this specific task, 
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independently of other perceptual tasks, and so we do not expect the capacity to 

differentiate zebras and tigers to be a ‘Darwinian module’ and have a dedicated sub-

system. Imagine a scientist using the performance-based methodology to explain how 

people distinguish between zebras and tigers. They build a model and train it to make 

this distinction. With current technology, the model will probably do very well. But 

this model is likely to solve this problem in a very different manner than people. It 

may classify black and white objects as zebras and the rest as tigers, for example. 

People are unlikely to use this method because they must perform a much more 

complex capacity, not only to distinguish zebras from tigers, but also to distinguish 

zebras from cats, chess boards, and cross walks. Thus, because the scientist chose an 

overly narrow description of a capacity, one that the brain has not adapted to have a 

dedicated sub-system for, it is very unlikely that they come up with good models. 

As another example, consider an attempt to explain how people swim. The 

performance-based approach will attempt to come up with the best model for 

controlling movement in water. This model will likely resemble a fish. It will widely 

diverge from how people use their bodies to swim, because it ignores other constraints 

on the human body, specifically that it needs to be able to also move on land. The 

upshot is that attempting to use performance-based modeling to explain any capacity 

that is only a partial description of a capacity with a dedicated sub-system is expected 

to miss important constraints on how the capacity is performed and is unlikely to 

result with explanatory models. 

When discussing evolutionary psychology, one should mention the debates 

surrounding this practice. Evolutionary biology in general has been criticized as prone 

to telling ‘just-so’ stories, making claims that sound compelling about how certain 

features serve certain functions without evidence or justification (Gould and Lewontin 
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1979). There is also debate on the extent to which cognition can be characterized as 

evolutionary modular – the extent to which selection pressures can be separated for 

different cognitive capacities (Machery 2007b; Quartz 2002). A third related issue is 

the grain problem – how should scientists know what is the right level of specificity 

of which to define a cognitive capacity? Atkinson and Wheeler (2004) nicely point 

out that there is no area of research that can fully answer this question, as both 

phenotypes and problems of adaptation can be treated at different levels of 

granularity. Finally, even if scientists correctly identify specific selection pressures, 

there is no guaranty that adaptation will lead to a capacity that is well-designed to 

perform the specific task. I will go a bit more in depth into these issues at section 3E. 

For now, it will suffice to point out that the approach suggested here focuses on the 

implausibility of certain claims given what we know about evolution, and does not 

aim to support tenuous hypotheses. Therefore, it is not in much danger to tell ‘just-so’ 

stories. Moreover, much work in evolutionary psychology centers around very high 

level cognitive capacities – mate choice, recognition of cheaters, etc. (Machery 

2007a). These are areas for which it will be very difficult to identify other converging 

evidence for a distinct sub-system for the investigated capacity. Performance-based 

methodology focuses on more basic capacities – object classification, decision-

making, navigation. For such capacities there is more room for neuronal and 

etiological consideration to constrain each other. Finally, despite all the challenges 

presented for evolutionary modularity, for certain capacities it is quite clear that they 

are not capacities for which there are dedicated sub-systems, such as driving or 

differentiating zebras and tigers. This knowledge can be important for scientific 

practice. 

C. Modeling tasks with unnatural data  
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There is a long line of researchers advocating for examining behavior in more natural 

scenarios (Gibson 1979; Krakauer et al. 2017; to name a few). This section will do the 

same, albeit for different reasons. For even if one is convinced that conducting a 

simple experiment in the lab is a good proxy for behavior in natural environments, 

this does not entail that training models on the same unnatural stimuli will yield 

models that are similar to the computation in the brain. 

There is some overlap between this subsection and the previous two subsections, in 

that unnatural stimuli tend to be either stimuli that people do not encounter in their 

natural environment and therefore we do not expect them to have adapted to perform 

the corresponding task, or they are stimuli that are overly simplified and to not 

capture the true complexity of the modeled capacity. In both cases training models on 

such stimuli is unlikely to lead to models that resemble computation in the brain. 

Consider as one example a two-armed bandit task where participants repeatedly 

choose between two actions (Fox et al. 2020). Presumably people use in this case a 

general system for decision making, which can be utilized in various scenarios, with 

3, 4, or infinite options, where states and actions may change in unpredictable ways, 

etc. Nonetheless, having people perform this task in the lab may lead to worthwhile, 

albeit simplified, insights (Fox et al. 2020; Shteingart, Neiman, and Loewenstein 

2013). However, if we train a model in our simple scenario there is no promise that it 

will be able generalize to other cases and in this sense, it will significantly differ from 

computation in the brain. The only exception is if we think that the brain will have a 

dedicated sub-system to repeatedly decide between two options. Thus, training 

models on experimental tasks that are used to assess human behavior is likely to lead 

to models performing capacities that fall into one of the discussed pitfalls – either they 
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are unnatural ‘side-effects’ or they are overly simplified, or they are both. This is the 

rubric that describes many capacities modeled in scientific practice. 

D. Current scientific practice 

While current scientific practice strives to use stimuli and tasks that are as natural and 

complex as possible, in various cases it is still quite clear that the capacities that 

models are trained to perform cannot be capacities for which there is a dedicated sub-

system.  

Consider object classification. Clearly, identifying objects is beneficial for survival. 

However, when delving into the details we see that the model was trained to classify a 

restricted set of objects from a variety of photos where objects are placed on 

unmatching backgrounds (see Fig. 2). 

 

 

 

 

Fig. 2. Example of two test images from (Yamins et al. 2014). Left – a chair. Right 

- a face. 

This choice for training data is understandable, as matching backgrounds may lead the 

model to use the background to classify the object. Nonetheless, the result is that the 

task is clearly one for which the brain does not have a dedicated sub-system. The 

ability to perform this specific task is a side-effect of classifying objects in natural 

environments, in which objects are placed in specific contexts in time and in space, 

and so we would expect the computation performed by the brain to perform this 

object classification task to be different from the trained model in (Yamins et al. 

2014). Moreover, even in cases where training is done on natural images, as in 
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(Zhuang et al. 2021) there is room to wonder if there is a dedicated sub-system to 

classify objects from images. Perhaps it is more reasonable to say that perception 

adapted for actively extracting relevant information from moving visual scenes, in a 

specific environmental context, into a wide and complex array of categories. 

Moreover, proponents of embodied cognition have suggested that it is likely that 

perception has adapted to support actions that contribute to fitness rather than to 

accurately represent the environment (Proffitt 2006) and (Bowers et al. 2022) have 

suggested other selection pressures on the ventral visual stream besides maximizing 

classification accuracy. Similar claims can be made regarding other cognitive 

capacities. For example, models for reinforcement learning from visual inputs are 

generally trained and tested in video game environments (Cross et al. 2021). While 

these environments are meant to imitate decision making processes, they substantially 

differ from natural environments in various elements, including a simple and discrete 

structure of states and actions, and explicit relatively immediate rewards. Therefore, 

one could call the ability to play video games a side-effect of the human capacity for 

decision-making, and to the extent that playing video games relies on a decision-

making capacity, it is a capacity for simpler environments than natural environments, 

one which is unlikely to have a dedicated sub-system in the human brain that deals 

with complex, changing, and continuous environments. 

The claim that current scientific practice does not model capacities with dedicated 

sub-systems is not meant as a criticism of this specific area of research. It is certainly 

an area worth pursuing, in which scientists are demonstrating how machine-learning 

models can perform more complex and impressive capacities. What this paper aims to 

do instead is to point out a specific relevant domain which scientists should include 

when assessing such models; it is not enough that a model can perform the capacity 
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and that there are correlates between the model and neuronal activity. To be a 

plausible model for a cognitive capacity the modeled capacity should be one which is 

likely to have a dedicated sub-system. 

E. Identifying sub-systems 

So far, this paper has described several cases where, intuitively, the modeled capacity 

is not a capacity for which there is a dedicated sub-system and therefore do not expect 

the model to correspond to computation in the brain. The question that obviously 

arises is how one can identify these sub-systems. 

One aspect of this issue has been described as the ‘grain problem’ – evolutionary 

pressures can be described at finer or at courser grain and there doesn’t seem to be a 

principled reason to choose one grain level over the other. As (Atkinson and Wheeler 

2004)  point out, this is also true for phenotypic traits, so one cannot appeal to them to 

decide on the right grain level. Although this issue stands, it is an empirical fact that 

we can divide many biological systems into subsystems in a way that aids in the 

explanation of phenomena – bodies can be divided into organs and sub-systems such 

as the immune and endocrine systems, organs into cells, cells divided into organelles, 

and so forth.  

Moreover, there are parts in the brain that, although not all is understood about how 

they work, are already considered dedicated sus-systems for specific capacities. It is 

known that, in certain birds, the neurons in the nucleus magnocellularis and the 

nucleus laminaris (areas in the brain stem) serve as a sub-system that implements the 

‘Jeffress model’ to compute interaural time difference, the time delay of sound 

between the two ears (Ashida and Carr 2011). This computation is the basis for sound 

localization for certain frequencies. As another example, there is strong evidence that 

an area in the central complex of the fly brain implements the computational model 
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known as the ‘ring attractor’ to represent head direction (Turner-Evans et al. 2020). 

The upshot of all these examples is simply that it is probable that we should be able to 

identify other sub-systems in the brain and should not give up on this mission, even 

when we know in advance that there is no such thing as a completely independent, 

distinct evolutionary pressure. It may turn out for some general capacities, such as 

decision-making or language processing, that they cannot be divided into simpler sub-

capacities with dedicated sub-systems. Then, the consequence is that the modeled 

capacities should not be divided as well. Modeling such complex capacities would be 

an extremely challenging task for scientists. Nonetheless, it may be what should be 

done to explain these cognitive capacities. 

How will such sub-systems be identified? I suggest that to identify computation in the 

brain we should appeal to an interplay of evidence as well as common-sense 

assumptions from different domains. Attempting to model capacities for which 

dedicated sub-systems are more plausible is likely to lead to better prediction of 

behavior and neuronal activity. Similarly, correlates with neuronal activity is also 

evidence for the etiology of capacity. If a ‘performance-based’ computational model 

could predict 99% of neuronal variance (which is currently not likely due to 

individual heterogeneity, [Cao and Yamins 2022a]), this would be strong evidence 

also for the etiology of the capacity – this is the computation the brain has historically 

come to perform using a dedicated sub-system. Additionally, anatomical evidence 

about sub-structures and experiments testing for double dissociation can also be used, 

and have been used to provide evidence for distinct sub-systems. However, etiological 

considerations never disappear entirely, even a 99% prediction of neuronal activity 

would not convince us that the brain is calculating the location of Mars relative to 

Neptune. Thus, there is reciprocity between considerations of etiology and 
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considerations of similarity to neuronal activity, 5 and one should be careful not to put 

too much weight on the latter.  

It is not impossible to suggest the right computational model without etiological 

considerations, but etiological considerations aid in constraining the models that 

scientists consider. Sciences would be very lucky to come up with the right model for 

how the brain performs a capacity, when their model is optimized specifically for this 

capacity, while the brain has adapted to have different capacities and does not have a 

dedicated sub-system for the modeled capacity. The closer the capacity considered by 

scientists and the capacity the brain has a dedicated sub-system for, the more similar 

we can expect the scientific model and neuronal computation to be.  

In the next section I present some objections to the claim that without etiological 

considerations scientists may be supporting the wrong models. 

 

4. Some objections 

A. Neuronal correlates can fully support a specific computation 

One evident objection to the claim that computational modeling requires etiological 

considerations, is to note that this argument completely ignores the neuronal data. The 

described scientific projects in previous sections identified correlations between 

neuronal activity and simulated activity in the model. Is this not evidence that these 

are the models that are implemented in the brain? 

Although this claim seems obviously true, several scientific publications have 

demonstrated that it is entirely possible to identify correlations and causal relations 

that map with one computational model, when the system is designed to perform a 

 
5 Interestingly, (Atkinson and Wheeler 2004) suggest a similar approach: “Ideally there is a dynamic 
and mutually constraining relationship between attempts to infer architectural solutions from 
adaptive problems and attempts to infer adaptive problems from architectural solutions.” 
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completely different computation6 (Elber-Dorozko and Loewenstein 2018; Jonas and 

Kording 2017; Marom et al. 2009). Famously, Jonas and Kording (2017) utilized 

standard neuroscientific methods to understand the workings of a microprocessor that 

performed a simple task of booting one of three video games. They arrived at 

ridiculous results such as a “Donkey Kong transistor or a Space Invaders transistor.” – 

transistors that are taken to have a function that relates only to one specific game, 

when it is well-known that this is not how microprocessors are designed.  

Elber-Dorozko and Loewenstein (2018) analyzed the case of ‘action-value 

representations’. Many previous scientific findings reported brain representation of a 

variable called ‘action-value’, leading many scientists to believe that the computation 

of this variable is essential to decision-making. Elber-Dorozko and Loewenstein 

(2018) specifically designed a model for decision making which does not include any 

implicit or explicit representation of ‘action-value’, and discovered that standard 

analyses performed on this model still erroneously identified significant 

representation of ‘action-value’.  

These results demonstrate that correlation does not imply computation (and, for the 

same reason, neither do mapping of causal relations). It is easier to understand why 

this is so when we consider that when performing a correlation analysis, the null 

hypothesis is that the neuronal activity is completely orthogonal to the computational 

variable. Any other case with enough data will result in a significant correlation. 

Thus, identification of a correlation between neuronal activity and some variable is 

 
6  Some readers with a philosophical background may be reminded of ‘the triviality arguments about 
computational implemental’ (Sprevak 2018). These arguments expose why it is problematic to define 
computation as mapping between a physical system and a computational model. It has been argued 
that, without constraints on the mapping relations between the physical system and the 
computation, any physical system can be mapped to any computational model. If computation 
depends solely on mapping, the resulting picture is one of pan-computationalism. The scientific 
papers here similarly demonstrate the problem of relying on mapping to identify (rather than define) 
computation, even within the constrained methods employed in neuroscience. 
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not an indication that this variable is computed, but only that neuronal activity is not 

completely orthogonal to this variable. Given that any computational variable that 

performs some capacity is likely to correlate with properties of the inputs and the 

outputs of the capacity to some magnitude, it would seem that there are many possible 

computational models that correlate with neuronal activity without being identical to 

neuronal computation. 

Even though scientific results of correlation with neuronal activity cannot imply a 

specific computational model, still much can be learned from them. First, as long as 

they are not taken as the sole relevant evidence, they can be invaluable in comparing 

suggested models. Schrimpf et al. (2020) built a platform for comparison of various 

computational models with neuronal data in a variety of visual tasks. Such 

comparisons can certainly assist in determining what computational properties lead to 

closer resemblance to neuronal processing (but see (Bowers et al. 2022) on the 

domains in which such evidence should be sought). Relatedly, as I argued in the 

previous section, evidence that neuronal activity correlated with a computational 

model can also support the hypothesis that the modeled capacity is one that has a 

dedicated sub-system. But, if it is implausible that the modeled capacity has a 

dedicated sub-system, the evidence from neuronal activity should be overwhelming to 

convince us that our plausibility considerations have been wrong. So far, very rarely 

is evidence for neuronal correlates of a model overwhelming. 

 

B. The determinants of computation are not etiological 

The reader may have noticed that the argument made in section 3 moved quickly 

when discussing what is the ‘right’ and what is the ‘wrong’ computational model for 

the computation performed in a system. The examples in section 3 and the scientific 
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papers described in 4A, refer either to adaptation or to design as the determinant of 

the computation the system performs; that is, conclusions about computation are 

erroneous because they do not fit with what the system was designed to do or with our 

intuitions about what the system has adapted to do. There are no ‘donkey-kong’ 

transistors because no transistors were designed as such, and there is no chess playing 

module because the brain has not adapted or developed for chess-playing. This notion 

fits with the philosophical view that the question of what a physical system computes 

depends on its etiology. One could adopt such a view if one takes computing systems 

to be systems that have the function to perform some computation and this function is 

defined according to the history of the system.  

One could, of course, deny that etiological considerations are relevant when 

considering what the brain, and other systems, compute. There are several popular 

views of computation that do just that. Shagrir (2022) argues that the individuation of 

a computation depends on its semantic content (this would be a non-etiological view 

only if we take semantic content to not be determined etiologically). Piccinini’s 

(2015) framework of physical computation describes computing systems as 

mechanisms that have the function of performing a specific computation. He is 

explicit, however, that the functions he refers to are not defined by their evolutionary 

history, but rather by their current causal contributions (2015, chap. 6).  

Such views are worthwhile alternatives to the etiological view. Moreover, there are 

several criticisms of etiological views of function. Most notably, it is pointed out that 

in biological systems the etiology is often unknown, and this does not stop scientists 

from assigning functions to systems. Moreover, it does not seem that the history of a 

system should be relevant to determine what a system is currently computing (Craver 

2013; Piccinini 2015).  
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As an answer to the latter criticism, I note that this debate often centers on rare cases 

where etiology and computation come apart. The case of a swamp-person 

miraculously created de-novo, or the case of a major first mutation which turns out to 

be beneficial. While it may certainly be true that in these cases what the system 

computes comes apart from its history, they are too rare to merit overlooking history 

in general. For swamp-people practically never happen, and first mutations tend to be 

small and to build upon previous states. Moreover, attempting to analyze a swamp-

person from a scientific perspective seems a nearly hopeless endeavor. For if 

scientists will try to explain chess playing the same way they explain sound 

localization (Ashida and Carr 2011), as a unique module, they will have a very hard 

time making any progress. Thus, ontologically it may be true that etiological 

considerations do not determine what a system computes. However, empirically, for 

practically all systems we view as computing, their etiology is relevant and useful for 

understanding how they perform the computations – organisms have evolutionary 

histories and computers are designed.  

Another challenge to the claim that etiological considerations are essential is that it is 

very difficult to know the etiology of various capacities, so it is difficult to see how 

they can be taken into account in determining computation, and nonetheless scientists 

move forward with assigning functions and computations. One answer to this is that 

while it is challenging to know the exact etiology of capacities, some general 

properties are quite easily considered, as can be seen in the work of evolutionary 

psychologists and implicitly in the choices of neuroscientists. To illustrate, we know 

that brains have not adapted for chess-playing or for stock-trading, or that they 

adapted for a specific mechanism for telling zebras and tigers apart. Neuroscientists 

certainly use these intuitions when choosing capacities to model. Considering various 



 

26 
 

organisms can also be telling about the etiology of capacities. Moreover, as described 

in section 3, models that are built to perform etiologically relevant capacities are also 

more likely to be similar to behavior and to neuronal activity. Therefore, while 

etiological considerations are not perfect, they are an important part of building more 

realistic models and being more explicit and clear about them can help scientists in 

explaining cognition.  

Finally, I present a challenge to the non-etiological views. it is not clear what 

epistemological alternative non-etiological views of computation suggest. Without 

constraints on mapping between computational and physical states an incredibly large 

variety of computations can be considered to be implemented in a system, as 

demonstrated in the ‘triviality arguments about computational implementation’ 

(Sprevak 2018). Therefore, views that deny that etiological considerations are relevant 

for computation, describe other constraints on the computations implemented in a 

system. The challenge to these views is to explicate the implications of these 

constraints to scientific practice. Without such implications to neuroscientific 

practice, although what a system computes may be well-defined ontologically, it is 

not clear how questions about what a system computes can be answered. Etiological 

considerations at least offer some way to advance in this regard for the vast majority 

of computing systems.  

 

C. Current models are a good approximation of cognitive capacities 

There is worry that my criticism of the functions neuroscientists model is too harsh. 

Surely, they are limited, but they are still a great improvement relative to earlier 

simpler models and they are making effortful attempts to be realistic. To this I answer 

that this paper does not aim to invalidate the progress that is achieved with this 
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practice, these performance-based models are certainly a step forward towards more 

accurate models of cognitive capacities. However, I do suggest that as they are, they 

cannot yet provide a realistic model for these capacities and it is useful to keep this in 

mind. Moreover, if neuroscientists wish to claim that their models aim to capture a 

specific capacity which was created with independent etiological pressures, it would 

be beneficial if they would do so explicitly. To illustrate, Yamins et al. (2014) may 

claim that their model describes the first forward pass in the ventral stream where 

only feedforward connections are relevant and an object is recognized quickly from a 

single snapshot. This is different from arguing that their model is a model of ‘the 

ventral steam’ and may be much more plausible. Then, the question shifts to the 

question of whether it is reasonable that this quick classification in the forward pass is 

the result of specific evolutionary pressures that yielded a sub-system.  

Finally, to the extent that the computational models created in the performance-based 

methodology are close to computation in the brain, if one is convinced by the 

argument in this paper, then it paints a path forward for existing models; rather than 

aiming to account for more neuronal variance, or improve performance on pre-

existing tasks, we should focus on trying to model capacities with specific, 

independent, etiologies. 

D. Even when ignoring considerations of adaptation, we may still identify the 

right computation 

Cao and Yamins (2022b) write: “…given a challenging task, we should take seriously 

the possibility that two systems that solve it share deep explanatory similarities … 

difficult tasks are more constraining tasks, and success at difficult tasks justifies 

mechanistic/causal interpretations of our successful model”. Thus, they suggest that 

for difficult enough tasks the realm of possible solutions may be constrained enough 
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that any two algorithms that can solve this task are likely to exhibit ‘deep explanatory 

similarities’. Therefore, even without etiological considerations, scientists may 

suggest the ‘right’ model. This is an interesting suggestion. But it seems to me that it 

is motivated by empirical results of correlations between simulated and neuronal 

activity that are related to object classification tasks. As I argued in 4A, however, 

such results do not imply that the same computation is taking place in those two 

systems. Moreover, some counterexamples come to mind. Chess-playing seems like a 

difficult enough task, yet it is believed that ‘deep-blue’ solves it in a different manner 

than people. Finally, the argument in this paper is exactly that the functions the brain 

and the model are optimized to perform are different, while the latter is optimized for 

the function, the former may only perform it, without being optimized for it 

specifically. Therefore, the computations performed are likely to differ between the 

brain and the model. It still may be that for certain tasks the possible solutions are 

constrained enough, but this seems like an open, empirical question.  

 

5. Some concluding remarks 

This paper argued that scientists must take etiological considerations into account 

when using a performance-based methodology to model neuronal computation. This 

is because the history of how a computation came to be determines whether it will has 

a dedicated sub-system. Two main issues are worth emphasizing. First, although 

neuronal data can certainly be used to guide scientific search for the computations the 

brain performs, it is not a deciding factor. For neuronal correlations and causal 

relations can be identified for a variety of competing hypotheses about computations. 

Instead, more weight should be given to etiological considerations. Second, the fact 

that a function increases or increased the fitness of an organism does not mean that 
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this is the right description of the function for which it has a dedicated sub-system, as 

demonstrated for the cases of object recognition. In general, to discover what the 

brain computes, scientists should be sensitive to the manner in which the 

computations became possible. Without such sensitivity, discovering computations in 

the brain is not impossible, but vastly more difficult. 
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