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Abstract: The finitude or infinity of the universe divided the ancient philosophers fueling 
a debate intertwined with the subtleties of the very concept of infinity and the plausibility 
of its realization in the physical world. While the 19th century took the first steps in the 
formal domain of mathematical infinity, the question of the size of the cosmos remained 
open pending better empirical evidence. At the end of the 20th century, the observational 
data of cosmology seemed to favour an infinite volume, although the delicate physical 
and metaphysical problems that such an option implies have rarely been highlighted. 
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1. Introduction 

The possibility of infinite quantities in nature has inspired some of the most 
intense scientific and philosophical debates, especially about the extent of the universe. 
It is well known that Aristotle distinguished between potential infinity, which is 
conceived through a process capable of generating unlimitedly increasing magnitudes. 
and the actual, which is given entirely in itself at once [Oppy (2006)]. Recall the 
Stagirite’s reply to Zeno's famous aporias against movement, in which he remarked to the 
Eleata that although space and time are infinitely divisible potentially, they cannot be 
infinitely divided actually. Aristotle also denied the existence of infinitely large objects, 
unlike Anaxagoras and Epicurus, who did accept it. For his part, 

Architas of Tarentum starred in one of the most famous arguments in defense of 
spatial infinity, imagining himself in the sky of the fixed stars, where it is always possible 
to stretch out your hand or stick and thus demonstrate that there is no limit to the places 
you could occupy. This very intuitive argument was repeated with various nuances by 
Eudemus, Cicero, Lucretius, Giordano Bruno, Hery More, and John Locke. Since the 
medieval scholastics reserved infinity for the power of God, Galileo, and Descartes 
remained prudently ambiguous about it, chastened by Bruno's disastrous end. 

Newton, however, found no impediments to reconcile divine omnipotence with 
the infinity of space, although he was unable to explain the gravitational stability of a 
cosmos thus constituted. The English genius did not succeed because the mathematical 
concepts necessary for the handling of infinity were only fully developed many years 
after his death. In fact, it was in the second half of the 19th century when the work of 
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Cauchy and Weierstrass would definitively establish the consistency of the infinitesimal 
calculus. At the same time, infinite sets would be brilliantly systematized by Georg 
Cantor, opening up a new and fertile field in mathematical research whose fruits continue 
to germinate to this day without ceasing to abound in new challenges. 
 
2. Infinity in natural science 

For the purposes of our discussion, it is convenient to separate the role played by 
infinite quantities in physical theories into two large families, namely, those that are 
adopted for merely instrumental simplifying purposes, and those that are provisionally 
admitted on account of a future and more developed theory of which our present 
formalisms would be just crude approximations. The first modality is evident in idealized 
cases such as the infinite plate condenser of elementary electrostatics, the free particle 
moving inertially in infinite space, or the plane waves without beginning or end. 

A different matter is the one that involves infinite quantities related to elementary 
particles or space-time itself. In both cases they are usually associated with the so-called 
"singularities", certain regions in which our physical equations lose their validity and 
yield infinite results. This concept acquired a new perspective when in 1915 Albert 
Einstein formulated a new theory of gravitation, called general relativity. Einstein's theory 
conceives of gravity as an effect of the space-time curvature, whose geometry is pseudo-
Riamennian. Such a curvature is given by the mass-energy content of the material systems 
located in a certain space-time region, as given by the famous gravitational equations of 
general relativity. 

By studying the evolution of stars depending on the relationship between their 
mass and their radius, the Indian scientist Subrahmanyan Chandrasekhar warned of the 
possibility that in certain extreme cases gravitation would overcome any stabilizing force 
and the star would collapse under its own weight, shrinking to a point. [Chandrasekhar 
(1931a, 1931b, 1932); Penrose (1996)], the singularity. Eddington and Einstein publicly 
rejected this possibility, but in 1939 Oppenheimer and Volkoff presented a paper 
[Oppenheimer and Volkoff (1939)] in which, by using the Schwarzschild metric, they 
demonstrated the perfect theoretical validity of the hypothetical gravitational collapse 
suggested by Chandrasekhar. 

The Schwarzschild metric described the space-time curvature around a non-
rotating mass with spherical symmetry [Schwarzschild (1916), Wald (1984)]. In spherical 
coordinates it is written (eq. (2.1): 
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where r is the radial distance from the central body, considered at the origin of 
coordinates, and  are the spherical polar angles, and Rs = 2GM/c2 is the so-called 
“Schwarzschild radius” (or “gravitational radius”). When r = Rs, no physical signal can 
escape from the region r  Rs in order to influence events in the region r  Rs. We have 
therefore an “event horizon”, the border where the condition r = Rs is met, and inside it 
nothing not even light can escape.  

The concept of event horizon was introduced in 1958 when it was understood that 
in the Schwarzschild metric, the case r = Rs (“coordinate singularity”) could be solved 
with a coordinate change [Filkenstein (1958)]. But if the body was dense enough, it 
became impossible to avoid an overwhelming gravitational contraction until r = 0, and 



then the theory lost all its predictive power. In 1970 Stephen William Hawking and Roger 
Penrose proved that physical singularities are a characteristic of any acceptable solution 
of general relativistic equations, regardless of quantum considerations [Hawking and 
Penrose (1970)]. Furthermore, their topological reasoning concluded that the formation 
of the singularity implied at least one point of discontinuity in the fabric of space-time, 
although there is always an event horizon hiding the singularities formed in the future of 
a surface of regular initial data [Penrose (1969)]. Perhaps the incorporation of quantum 
effects [Mottola and Mazur (2004)] prevents the appearance of genuine singularities, 
neverthless solid conclusions are still lacking in this regard. 

The singularities associated with particle physics are also related to null volumes. 
Usually the elementary character of the particles is conceived by identifying them with 
dimensionless points. This creates daunting problems in both classically and quantum 
regimes. In classical physics, an electron, for example, should generate an infinite electric 
field around it if its size is zero, since the intensity of the field depends on the inverse of 
the squared distance. Quantum physics aggravates the situation by maintaining that 
around each elementary particle there is always a cloud of other virtual particles –creating 
and annihilating one another in perpetual mutual interaction– whose total energy, when 
rigorously calculated, also yields an infinite result, usually called “divergence” [Weinberg 
(1979)]. 

The problems derived from virtual particles become even worse, since the number 
of virtual particles turns out to be itself divergent, that is, it tends to infinity by itself. The 
solution chosen to date has been to assume that, if the accompanying cloud of virtual 
particles has an infinite total energy, the proper mass of the electron –or any other 
particle– must be an infinite amount of opposite sign, so that both quantities cancel almost 
exactly and cause us to measure experimentally the mass of the electron that we actually 
did measure. This technique is called “renormalization” and well-founded suspicions 
continue to hover on its legitimacy, both formal and conceptual, only cushioned by the 
indisputable empirical success of its predictions. 
 
3. The cosmological scenario 
 There is, however, a branch of natural sciences in which the existence of the actual 
infinite is admitted: such is the case of modern cosmology. Einstein was the first to apply 
his gravitational theory to the universe as a whole, an endeavour that began in 1917 by 
assuming for simplicity a homogeneous, isotropic and static cosmos [Einstein (1917)]. 
For this purpose, he had to introduce a new term in his equations, the cosmological 
constant, whose effect would only manifest itself on a large scale in the universe to 
compensate for the universally attractive character of ordinary gravitation and thus 
prevent the collapse of all matter in the universe. The German scientist did not take long 
to notice that his model would be radically unstable, which prompted the Dutchman 
William De Sitter, also in 1917, to propose another cosmological model in which the 
universe would be practically empty and expanding [Weinberg (1971)]. As a 
consequence, it was demonstrated that general relativity admitted a dynamic vacuum 
solution, 

This opened the door for others to consider the variety of possible solutions to 
general relativity equations, everyone representing a different type of universe. This is 
what Alexander Friedman did by assimilating the material content of the universe to a 
dynamic, homogeneous and isotropic gas. In this way he obtained cosmological models 
in which the universe could be expanding or contracting depending on the initial 
conditions [Misner et al (1973)]. 



The further we go back I n time, the more the cosmic volume decreases, while the 
value of certain physical magnitudes –such as temperature or density– grows without 
limit, tending to infinity. And, in fact, in the singularity these properties would become 
supposedly infinite. But if we thoughtfully review the process in the ordinary 
chronological order, it seems that we are starting from a bunch of infinities that gradually 
reduce until they reach their current, obviously finite, values over time. Then it is worth 
asking when these properties stopped being infinite, if this question itself makes any 
sense. 
 The answer is that at no time do temperature, density, or any other physical 
property acquire infinite values, which is why there is no instant in which they cease to 
be so to become finite. In the case of the series of instants that converge –they are as close 
as we want– to the origin of the universe (that is, t0 = 0), admitting as usual the continuity 
of time and space, it turns out that there is no instant immediately prior to t0, since between 
every two instants there are always an infinity of them, as it is typical for a continuous 
magnitude. Every instant subsequent to t0, regardless how small it may be, has a finite 
value of the temperature, no matter how large it may be. 
 In t0 we would not have infinite values because, generally speaking, the limit of a 
series is not necessarily one of the terms that constitute the series. Only in some specific 
cases the limit value of a convergent series belongs to the set of terms that form the series. 
In our case, t0 is not part of the decreasing series of time instants that converge at the 
origin of the universe. Surprisingly, this cosmological approach allows us to conclude 
that, even without going back to an infinite past, the cosmos did not have a beginning in 
time, if by "beginning" we understand the instant t0.     
 Perhaps Friedman's most lasting legacy was the metric that bears his name (eq. 
3.1), today expanded to Friedmann-Lemaître-Robertson-Walker (FLRW). It is an exact 
solution of the relativistic equations of gravity involving the curvature K and the scale 
factor, a(t), which expresses the time dependence of the spatial component of the metric. 
In spherical coordinates: 
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Likewise, there happens to be of a high importance an equation (eq. 3.2) that 

expresses the spatial curvature of the universe K as a function of the scale factor a(t), the 
average cosmic density c and the critical densityc, in whose definition is included the 
gravitational constant G and the well-known Hubble parameter H (wrongly called 
“constant”, since it varies with time), which relates the rate of distance between two points 
in the universe with their mutual separation. 
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The mentioned critical density acts as a threshold value to discuss the possible 
spatial geometries of the universe and its evolution over time. When > c the curvature 
is positive, the geometric properties of the universe resemble those of a sphere, and the 
spatial volume of the cosmos has a finite value. On the contrary, if  < c the curvature is 
negative, its geometry corresponds to the hyperbolic type (as in the surface of a horse 
saddle) and the spatial volume is infinite. Finally, under the condition,  = c, the 



geometric characteristics of the cosmos would be given by the typical Euclidean geometry 
of the ordinary flat plane. 

The relationship between density and its critical value is so important that it is 
usually expressed as a quotient with its own symbol,  = /c. The case  > 1 implies a 
closed cosmos with a beginning in time (the so-called Big Bang) and a sufficient material 
stuff to stop the expansion at some future instant depending on the specific value of c. 
From that moment the expansion will become a contraction and the universe will end in 
a total gravitational collapse (Big Crunch). But if  < 1 there is not enough stuff to reverse 
the process and the cosmological expansion will go on forever. 
 This very direct link between density, geometry and evolution over time is broken 
when we introduce the cosmological constant into our considerations. This new 
magnitude contributes to the total curvature of the universe in a way opposite to that of 
ordinary matter, that is, as if it were a repulsive force (antigravity). In fact, current 
estimates suggest that the cosmological constant would be responsible for an accelerated 
expansion of the universe with zero or, perhaps, very slightly negative curvature 
[Perlmutter et al. (1998), Goldhaber (2009)]. 
 
4. The spatial volume problem 
 The possible spatial infinity of the universe had been a real headache even since 
Newton offered the first scientifically sound formulation of gravity as the dominant force 
on a cosmic scale. At the end of the 19th century the German astronomer Hugo von 
Seeliger exposed the well-known paradox that bears his name [Seeliger (1895)]. Briefly 
expressed, it tells us that, in an infinite and static cosmos with a uniform distribution of 
matter, it follows that the Newtonian gravitational potential is undefined and, therefore, 
the total gravitational force on any object in the universe is also undefined. The 
controversy, which lost its strength when general relativity entered the stage, never failed 
to cast serious doubt on the coherence of classical Newtonian cosmology [Norton (1999); 
Vickers (2008)]. 

The advent of Einstein's theory of gravity altered the terms of the debate, but the 
problem of infinity resurfaced in another guise. When we ask ourselves if the volume of 
the universe is infinite, we must remember that in general relativity any division of space-
time in a space volume or hypersurface and a dimension of time is equally valid (as 
long as the condition that no pair of points on the spatial hypersurface can causally 
influence each other is obeyed). Therefore, we must first clarify how we define the spatial 
portion of the universe whose size we wish to calibrate. 

The matter becomes more complicated when we include proposals as exotic as the 
multiple variants of inflationary models (eternal, self-generated, fractal, etc.). In such an 
intricate framework, it hardly makes sense to wonder about spatial infinity when the very 
notion of the universe is diluted in a profusion of bubble-universes that come from other 
bubble-universes and in turn engender their own offspring in a process without beginning 
or end (as its followers say). Even so, it is difficult to understand how the problem could 
be solved by admitting that from one of these bubble-universes of infinite size another, 
also infinite, could break off in a process repeated an infinity of times [Albrecht (2004), 
Steinhardt and Turok (2007), Linde (2008)]. 

For all these reasons, from now on we will limit our discussion to the traditional 
Friedman models, as mentioned in the preceding section. Unlike closed cosmological 
models whose positive curvature is represented by the surface of a sphere the case of 
an open universe (negative or null curvature) is more difficult to visualize. And it is 
noteworthy that the inconveniences of attributing an infinite extension to the universe are 



not usually discussed. For instance, defining the density of matter or the global 
temperature over an infinite spatial volume is a particularly delicate matter. 

With an infinite spatial extent, regression in time would not imply the reduction 
of the three-dimensional volume until it collapsed to a point. In such a situation we would 
progressively approach a curious state in which, preserving spatial infinity, the matter 
density would grow as we get closer to the initial instant, tending to infinity at all points 
in space. Whether such a state has any physical meaning is quite another matter. 

Obviously, the limit of this retrospective sequence would be found again at a null 
value for time, a state in which the density would be infinite at all points of an infinite 
spatial volume. Unlike the case of positive curvature, however, we cannot now say that 
infinite values of physical quantities correlate with a zero-tending decrease in space-time 
volume. In the previous case, this procedure had allowed us to consider that these 
infinities corresponded to a limit that did not belong to the series itself, expelling them 
so to speak of space-time. But that possibility does not exist when we are forced to 
maintain an always infinite spatial volume, given the close imbrication between space 
and time required by relativity, and nothing guarantees that such a state has some kind of 
legitimate physical interpretation. 

Not less important is the unnoticed inconsistency that creeps in when we try to fix 
the physical meaning of an infinite spatial extension where all its points happen to be 
singular. The difficulty will become more apparent if we look at what happens when we 
go back in time with a magnitude like, say, the density of matter. An infinite cosmos 
would contain an equally infinite number of particles distributed more or less uniformly 
within it. That quantity of material particles would correspond to a countable infinity, 
unlike the points in space  if accepting the usual assumption of continuity which form 
an infinite uncountable set. It seems difficult, then, to explain how we could have an initial 
state in which the density was infinite at all points of an infinite spatial volume 
(uncountable set) if we started our countdown from a countably infinite quantity of 
material particles. 
  Looking to the future, instead of going back to the origin, the inconvenience does 
not disappear, especially if we intend to compose a model like the one offered by Roger 
Penrose in his conformal cyclical cosmology. To face the fact that all available data rules 
out that the universe stops expanding and implodes, Penrose suggests that the end of one 
stage (with a supposedly infinite spatial volume) is connected to the beginning of the next 
(with a volume tending to zero) through the convenient re-scaling associated with a 
conformal transformation [Penrose (2006)]. Leaving aside other obstacles such as, for 
example, the need to respect the conservation of electric charge the formal legitimacy 
that mathematical coherence grants does not in itself grant the necessary physical 
plausibility that cosmological models aspire to possess. At the moment, no process is 
known that can give physical meaning to the infinite re-scaling of distances defended by 
Penrose in his proposal, without forgetting that the empirical evidence collected for the 
time being does not support it either. 
 
5. Proposals to overcome the issue 

In addition to geometry, to deal with this problem we have to count on topology, 
a branch of mathematics that deals with the properties that remain invariant under 
deformations that do not involve adding or removing points from the object (or, in 
general, from a variety) in question. Whether the size of the cosmos is finite or infinite, it 
may depend on its topological properties, which, in turn, are linked to some extent to the 
geometry of space-time. Stated very succinctly and without excessive loss of rigor, the 
topology of a manifold is defined by the type of n-dimensional figure, or “fundamental 



domain”, whose repetition –as in a tile– can cover the entire space considered [Lachieze-
Reya and Luminet (1995), Flapan (2010)]. When the curvature is not zero, the radius of 
curvature sets a natural scale of distances for the minimum size of the fundamental 
domain. 
 A model of the universe with positive curvature necessarily implies for any instant 
a finite volume to which we can associate many –infinite simple or multiply connected 
topologies. Models with null or negative curvature enrich the possibilities, since in both 
cases the volume of the cosmos they represent can be finite or infinite, depending on the 
topology chosen for them. And between these two options, the hyperbolic cosmos –with 
negative curvature seems to be the most promising because, in addition to the freedom 
to assign it a finite or infinite volume, the fact that its radius of curvature is finite makes 
it possible to establish a harmonious link between its geometry and its topology.  

Furthermore, according to the pioneering work of the American mathematician 
William Thurston, almost all three-dimensional manifolds admit a metric with negative 
curvature, as in hyperbolic spaces [Thurston (1988, 1997)]. The special attractiveness of 
this class of models increases thanks to the rigidity theorem, in virtue of which geometric 
magnitudes as characteristic as volume, length or geodesic trajectories, turn out to be 
topological invariants. 
 This leaves us at a triple crossroads:  
 
(A) the 3-dimensional hypersurface of our universe has an infinite spatial volume, and 
what we call the “observable universe” is only an infinitesimal portion of its extension; 
 
(B) the spatial volume is finite due to peculiar topological connectivity, but the 
fundamental domain is larger than the observable universe;  
 
(C) the same case as in (B), although the fundamental domain of the topology is smaller 
than the observable universe and, therefore, we could detect its characteristic features.  
 

Option (A), although not impossible, is as untestable as any hypothesis involving 
the measurement of an infinite quantity. Depending on the size of the fundamental domain 
–that basic figure capable of “tiling” the entire space– case (B) could be confused with 
(A), unless there were some topologically significant inhomogeneity manifesting itself in 
the observable universe. And case (C) would be desirable for any researcher with the 
appropriate technical means. 

The empirical procedure to decide between these possibilities is usually directed 
towards the search for specific patterns or regularities in two areas: one is the microwave 
background radiation which, as far as we know, permeates all outer space and the other 
one concerns the distribution of measurable radiation sources (pulsars, quasars, 
supernovae, active galaxies, etc.). Currently we have an appreciable amount of data 
provided by the Hubble (1990) and Herschel (2009) space telescopes, as well as the 
COBE (1989), WMAP (2001) and PLANCK (2009) space probes, among many others. 

Based on such evidence, with almost absolute certainty we have to rule out a 
closed cosmological model with positive curvature. The evidence points rather towards a 
flat universe or perhaps with a slight negative curvature [O'Raifeartaigh et al. (2018)]. 
There are also no traces of multiple topological connectivity which would allow a finite 
spatial volume to be associated with one of these two cosmic geometries. However, it is 
true that a fundamental domain larger than the observable universe –option (B) mentioned 
above– would be compatible with the cumulative data. 



To increase the complexity of this subject, in the first two decades of the 21st 
century a theorem was proven that excluded the possibility of knowing the global 
structure of space-time even assuming that the physical laws valid in our environment 
also rule any other space-time region [Manchak (2009, 2020), Smeenk, and Wuthrich 
(2020)]. It seems that we are dealing with an inevitable underdetermination of reality by 
the theory that describes it: general relativity provides us with too many possibilities, in 
principle empirically equivalent, for the global shape of the universe. However, it is not 
known for sure if this overabundance of observationally indistinguishable models would 
be solved by including the presence of matter in the aforementioned theorem. 

The publication in June 2021 of a new study on the possibility of attributing a 
finite volume to the universe fuelled interest in the cosmological implications of topology 
[Aurich et al (2021)]. A joint Franco-German team from the Universities of Ulm and 
Lyon compared the observable distribution of background radiation perturbations at 
different scales with the results of a computer simulation designed for a universe whose 
topology constrained its three-dimensional volume. The observational data appeared to 
fit the finite volume computer simulation better than the usual model with a simple 
topology and infinite volume. If this is confirmed in future work in this regard, it could 
be assumed that the cosmos has the topological properties of a kind of three-dimensional 
doughnut (toroidal shape), with a volume about three or four times greater than that of 
the visible universe, whose radius is about 45,000 million light-years. It's too early to tell, 
but perhaps an emerging gravitational-wave astronomy will allow us to explore deep 
space and discover some characteristic patterns for the topology of our universe. 
 
6. Conclusions 

The most pertinent way of dealing with infinity has been a source of confusion in 
science and philosophy from the very origins of these disciplines. Mathematicians, as so 
many other times, demonstrated sufficient ability to establish themselves as pioneers in 
the task of mastering the formal management of infinite sets, although their work, more 
than a century and a half later, is far from finished. However, the elegance and depth of 
the mathematical discoveries about infinite quantities left their possible existence in the 
natural world unclear. That was a question that could only be answered empirically and, 
in the absence of data to settle the query, this problem remained to be resolved. 

The development of modern science so-called from Galileo and Newton 
onwards had to deal with the same ambiguities as the ancient philosophers due to a lack 
of formal tools with which to bridle the concept of infinity. This was, other than being 
identified with divine omnipotence, associated with ideal models very useful for the 
simplification of calculations. Infinity was as well taken as a distinctive sign of the limits 
of applicability of the theory applied (and perhaps also as a warning of a future theory 
that would replace it). In other words, and using a more Aristotelian language, for 
theoretical reasons in the natural sciences it was accepted and taken advantage from 
potential infinity with the same serenity with which actual infinity was rejected on 
empirical grounds. 

Modern cosmology, that started in 1917 with the first applications of general 
relativity to the universe, came to completely change such a quiet landscape. The cosmic 
geometry went forth, opening up three possible scenarios in two of which the spatial 
volume of the universe appeared to be necessarily infinite. When astronomical 
observations ruled out the possibility of a cosmos with positive curvature, at the end of 
the 20th century, the remaining options invited us to think of an infinite extension. This 
circumstance contained not a few inconveniences, both theoretical (What sense does the 



actual infinity make in the physical world?) and empirical (How could the value of a 
magnitude that by definition is incommensurable be calibrated?), 

However, the difficulties implied by open cosmological models refused to go 
away. Spatial infinity would entail an infinite amount of uniformly distributed matter, 
otherwise we would have an infinite amount of absolutely empty space, something with 
very little physical meaning. But then the problem of temporal evolution would reappear: 
going back to the initial moment of the Big Bang, the type of countable infinity associated 
with the amount of matter would not correspond to the non-countable infinity that 
characterizes the continuity of space. 

The only reasonable way out seems to direct us towards a cosmological model 
with null or slightly negative curvature, as indicated by the observations, which at the 
same time presents a finite spatial volume to avoid the aforementioned problems. This 
could only be achieved, in the current framework, either by relaxing some of the 
conditions that lead to the FLRW family of geometries, such as homogeneity in the 
distribution of matter (a requirement, on the other hand, not infrequently discussed), or 
by resorting to considerations that are not merely geometric, such as topological 
properties. These new research directions take us into a vast territory of possibilities, the 
vast majority of which we can barely glimpse today. 

Be that as it may, in the cosmological field, theoretical work will have to wait for 
new and more precise observational data to guide its path. Meanwhile, the question of the 
actual infinity, clearly expressed in the volume of our universe, will remain open and no 
one knows how long it will be unsolved or what future consequences for our image of the 
cosmos the solution will entail. 
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