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Abstract. We characterise and critically evaluate five formulations of the thesis

that the structure of spacetime is conventional, rather than empirically deter-

mined. The proliferation of formulations comes from considering generalisation

first, via a more liberal Carnapian understanding of the conventionalism argu-

ment in terms of universal effects, rather than Reichenbachian universal forces,

and second, via a more liberal understanding of the modal context of the empir-

ical underdetermination, that is as underdetermination between observers rather

than models. Whilst three of the five formulations of conventionalism will be

found to fail, two are found to open up new interesting problems for researchers

in the foundations of general relativity. In all five cases, our analysis will ex-

plore interplay between geometric identities, symmetry, conformal structure, and

the dynamical content of physical theories. The conventionalism dialectic is thus

deployed towards as a tool of explication, clarification, and exploration.
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2 Spacetime Conventionalism Revisited

1. Conventionalism About What?

Conventionalism about geometry is the view that statements about the ge-

ometry of space or spacetime are not empirical facts, but rather depend on certain

freely stipulated conventions. Thus: the straightness of a line drawn on a page is

only defined with respect to a standard ruler; and, the isochrony of a ticking watch

is only defined with respect to a standard clock. This perspective was proposed by

Poincaré (1902), following in the tradition of Riemann (1854), and developed in a

variety of forms by Dingler (1911), Carnap (1922), and Reichenbach (1928).1

For our purposes, it will prove highly instructive to demarcate specific va-

rieties of conventionalism which we can understand to arise from how one answers

the following two questions:

(1) Which geometric statements are not empirically-determined truths?

(2) Which physical differences arise in the comparison of different conventions

about such statements?

Reichenbach (1928) famously responded to the first question that statements re-

garding the spatial or spacetime metric tensor of any given model are not empiri-

cally determined; and, to the second question that the physical difference between

two metrics (and thus two models) would manifest as an apparent universal force.

In particular, Reichenbach (1928), like Poincaré in the disc experiment, compares

the measuring rod of observers living in two different worlds having flat spacetime.

In this thought experiment, inhabitants of one of the world have rulers under the

effect of heat and perceive the spacetime as curved. However, “(h)eat as a force

can thus be demonstrated directly” (p. 13) because heat affects different materials

differently. As a result, the geometry of spacetime is underdetermined if the heat

is taken as a universal force:

“Thus the only distinguishing characteristic of a field of heat is the

fact that it causes different effects on different materials. But we

could very well imagine that the coefficients of heat expansion of all

materials might be equal then no difference would exist between a

field of heat and the geometry of space.” (Reichenbach 1928, p. 26)

A great deal of modern philosophy of science regarding the conventionality of geom-

etry has been directed to the evaluation the conventionalist thesis as considered in

Reichenbachian form (Grünbaum 1968; Sklar 1974, 1985; Glymour 1977; Friedman

1See Ben-Menahem (2006) for an overview. Ivanova (2015a,b) gives a helpful analysis of Poincaré’s
conventionalism, and Torretti (1978) of Dingler’s. A translation of the 1919-1921 doctoral disser-
tation of Carnap (1922) can be found in Carnap (2019).
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1983; Malament 1985; Norton 1994; Dewar et al. 2022). Our discussion will consider

one such treatment due to Weatherall and Manchak (2014) in terms of the view we

demarcate as Spacetime Conventionalism 1 in the following Section 2.

What forms of conventionalism might we consider beyond the specific Re-

ichenbachian form? As just noted, in his original argument Reichenbach took metri-

cal relations of spacetime to be conventional and made the specific assumption that

the choice in convention could be underdetermined by introducing universal forces.

Significantly, Dieks (1987) argues that it is in the Reichenbachian spirit to interpret

gravitation as a universal ‘force’, since any effect of the curvature of spacetime can

be explained by a suitable gravitational effect. Indeed, in Reichenbach (1928) we

find the following text:

[The] universal effect of gravitation on all kinds of measuring instru-

ments defines therefore a single geometry. In this respect we may say

that gravitation is geometrized. (Reichenbach 1928, p. 256) (italics

in original)

An explicit defence of this more liberal ‘universal effect’ reading can be found in

the later work of Carnap (1966):

Reichenbach called them ‘forces’, but it is preferable here to speak

[...] in a more general way, as two kinds of ‘effects’. (Forces can be

introduced later to explain the effects.) [p. 169]

The first dimension of novelty in our analysis is the re-framing of the debate

via the Carnapian form of the conventionalist thesis. In particular, we will consider

different formulations of the conventionalist thesis in terms of different proposals for

the spacetime structure that could be understood to be empirically underdetermined

and the physical differences that are taken to result from different proposals for the

relevant universal effect.

A second dimension in which one can generalise the form of the convention-

alist thesis is in terms of the modal context of empirical underdetermination thesis.

The idea is that the context in which one is answering the questions (1) and (2) is

itself underdetermined to the degree that it might be specified as obtaining between

two observers within a single model of a theory rather than two models within the

same theory, or two models of different theories. Careful consideration of this aspect

will be combined with the Carnapian generalisation to effects as the two principal

dimensions of analysis framing of our discussion.
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A third issue that connects the different parts of our project is the formal

interplay between geometric identifies, symmetry, conformal structure, and dynam-

ical equations within the foundations of general relativity. Fascinatingly, each of

the forms of conventionalism we will consider, to at least some degree, trades on

a package of re-reading the interconnection between these aspects of the formal-

ism. Of particular significance will be the role of the Bianchi identities of general

relativity, variously understood as formal geometric identities, conservation equa-

tions, and dynamical field equations, and of decomposition of tensor fields into

conformally invariant and non-conformally invariant parts. Outlining clearly the

interplay between various of these formal relations will be a subsidiary major goal

in what follows.

The fourth aspect of our project concerns dialectical context in which the

conventionalism thesis is being proposed and analysed. Our goal in what follows is

neither bury nor resurrect the view. Rather, the revisitation of spacetime conven-

tionalism is deployed as an tool of foundational analysis towards both clarification

of old conceptual problems, or indeed pseudo-problems, and the identification of

new problems. Articulation of new conceptual problems is, in turn, understood in

a Laudanian spirit as a constitutive element of scientific progress (Laudan 1977).

Thus, our ultimate aim is to apply conventionalism as a lense to advance scientific

understanding of spacetime theory.

In Section 2 our analysis commences with consideration of a recent formu-

lation of the classical Reichenbachian form of conventionalism. In particular, we

will briefly review a precise formulation of the thesis as articulated and refuted by

Weatherall and Manchak (2014). We will conclude that as powerful and convincing

as this analysis is within the relevant domain, the field is still open for consideration

of varieties of the more generalised forms of conventionalism.

In Section 3 we present our first attempt at formulating a Carnapian form of

conventionalism with reference to inertial structure and putative universal effects

that result from differing representations local stress-energy 4-current by coinci-

dent observers following different world-lines. Ultimately, the view is found to be

unconvincing, since there are good reasons to reject the physical salience of the

energy 4-current and thus this prima facie plausible form a conventionalism can be

dissolved.

In Section 4 we then consider conformal structure and the universal effect

of tidal deformation. We argue that by considering the invariant decomposition of

the Riemann tensor into Weyl and Ricci parts we can dissolve a further potential
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source of conventionalism with regard to the deforming and non-deforming aspects

of tidal effects. In each case, although the new forms of conventionalism are found

to fail, our discussion serves to elucidate new perspectives on the representational

roles of different objects within the foundations of general relativity.

In Section 5, we pull our focus back to a wider form of interpretational

question regarding the dynamical understanding of the Weyl tensor fields and the

role of the Bianchi identities. This analysis serves to open up the possibility of

a very different form of conventionalism in terms of how to isolate the dynamical

content of general relativity.

Finally, in Section 6, we consider a proposal based upon the decomposition

of the Einstein tensor into a conformally invariant and non-conformally invariant

parts. The potential for underdetermination of this decomposition is then taken

to be the hallmark of a novel form conventionalism whose validity is expressible in

terms of (the failure of) a precise mathematical ‘Bach conjecture’, whose truth is

as yet unknown.

2. Metric Structure and Universal Forces

Spacetime Conventionalism 1

(1) The metric structure of relativistic spacetime is not an empirically-

determined truth.

(2) Physical differences between conformally equivalent models of relativistic

spacetime with regard to the existence of universal forces arise in the

comparison of different conventions about affine structure.

Any pair of conformal equivalent relativistic spacetimes are, by definition,

such that (M, gµν) and (M, g̃µν) where g̃µν = Ω2gµν . Each of these spacetimes is

accompanied by a metric compatible, torsion-free, Levi-Civita derivative operator,

∇ and ∇̃ respectively. Relativistic spacetime conventionalism can then be formu-

lated as the thesis that the same curve, γ, can be a geodesic relative to ∇ but be

associated with an acceleration relative to ∇̃ given by a ‘universal force’ induced by

a tensor field Gµν via the equation Gν
µξ̃

µ where ξ̃ is the tangent field to γ with unit

length relative to g̃µν . So formulated a relativistic conventionalist thesis, equivalent

to Spacetime Conventionalism 1, is provably false (Weatherall and Manchak 2014,

Proposition 2).
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A few remarks are in order here. First, it is noteworthy that Reichenbach

himself does not, in fact, enforce a requirement of conformal equivalence in his

formulation of the thesis. Rather, this is added by Weatherall and Manchak (2014)

as a further interpretative step following the observation of Malament (1977) that

Reichenbach himself argued in other writings that the causal structure of spacetime

was non-conventional. Since two spacetimes are conformally equivalent just in case

they agree on casual structure the assumption that conformal equivalence is well

justified as a Reichenbachian one. What is of particular interest for our project

is the role that we already find an interplay between the putative conventionality

of spacetime and conformal structure. This intersection of topics will be found to

persist as a theme throughout our analysis.

Second, as Weatherall and Manchak (2014) accept, their formulation of the

conventionalist thesis takes place ‘closer to the ground floor of spacetime physics’

(p. 234) than a maximally general formulation in that it is assumed that forces are

represented by rank 2 tensor fields associated with the acceleration of a test particle

and spacetimes are represented by Lorentzian manifolds with torsion free derivative

operators. To see why such an assumption might be questioned, let us suppose a

term K was added to the Einstein-Hilbert. We would then have that:

(1) S =

∫
dx4
√
−g(R +K)

In this context, we might then ask why the resulting ‘force’ from the action

would have to require a rank-2 contribution from K, since the rank of K can take

any value. In fact, Weatherall and Manchak (2014) note precisely such possibility:

This option may even be compatible with our description of force

fields above, although much more would need to be said about how

such a field would give rise to forces and what properties it would

have. (p. 245)

Following our Carnapian outlook, one might argue that one need not consider

‘forces’ at all, rather one need only consider the ‘effects’ of the term K.

In sum, the argument of Weatherall and Manchak (2014) is self-consciously

targeted at a fairly limited and conservative notion of relativistic spacetime con-

ventionalism within the Reichenbachian form. As powerful and convincing as this

analysis is within this domain, the field is still open for consideration of varieties

of the more generalised Carnapian form of conventionalism. It is to the different

possibly further articulations of that project that we turn in the following sections.
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We arrive at the form of conventionalism most closely resembling a generalised ver-

sion of the Weatherall and Manchak (2014) in Section 6. At this initial stage it will

prove most profitable first consider the idea of re-embedding the conventionalist

dialectic in the context of underdetermination between observers in a single model.

3. Inertial Structure and Local Stress-Energy Flux

Spacetime Conventionalism 2

(1) The inertial structure of a particular relativistic spacetime is not an

empirically-determined truth.

(2) Physical differences between coincident observers with regard to local

stress-energy flux arise in the comparison of different conventions about

which time-like vector field is chosen as an observer’s inertial frame.

The second form of conventionality of spacetime conventionality we will consider

relates to the interpretation of different observers of the same model, and thus

the same geometric facts, in terms of different local dynamical facts. The idea is

that within a spacetime there can be observers that are coincident and yet will

disagree about the dynamical interpretation of the same local geometric facts. The

formal property that we will isolate in the privileged class of observers who have the

analogue of a vanishing universal force is that they are Killing observers and thus

the answer to the first of our two conventionalism questions is inertial structure.

The physical differences that feature in the second question are then with regard to

local stress-energy flux.

We can better understand the motivation for Conventionalism 2 by briefly

considering the problem of the local definition of conservation of energy in general

relativity.2 The problem can be straightforwardly stated as follows. For a vanishing

cosmological constant the Einstein equations take the familiar form:

(2) Gµν = Rµν −
1

2
Rgµν = 8πTµν

2See Pitts (2010, 2016, 2021); Lam (2011); Read (2020); Dewar and Weatherall (2018); Duerr
(2019b,a) for discussions of the problem of defining gravitational energy. A further noteworthy
paper, along lightly different lines, is Lehmkuhl (2011). There it is argued that in the context
of general relativity energy-momentum density as expressed by Tµν , cannot, in fact, be regarded
as an intrinsic property of matter, but rather should be understood as a relational property that
matter possesses only in virtue of its relation to spacetime structure. For an outstanding general
discussion of energy conditions in general relativity see Curiel (2014).
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where Tµν is energy-momentum tensor associated with all matter fields and their

interactions, and Gµν is the Einstein tensor which is determined by the metric gµν

via the Ricci curvature Rµν and Ricci scalar R.

The Levi-Civita derivative, ∇µ, can be explicitly constructed from the metric

and an arbitrarily chosen derivative operator. Given such a derivative operator on

a manifold M it can be proved that there exists a unique smooth tensor field on M

such that for all smooth fields ξσ:

(3) Rρ
σµνξ

σ = −2∇[µ∇ν]ξ
ρ

(Malament 2012, Lemma 1.8.1). Rρ
σµν is then the unique Riemann curvature tensor

field associated with ∇µ. The Ricci curvature tensor is defined via the contraction

of the Riemann curvature as:

(4) Rσµ = Rρ
σµρ

An important identity that holds for any Riemann tensor is the second Bianchi

identity. For the torsion free case this can be expressed in terms of the Levi-Civita

derivative as:

(5) ∇[αR
ρ
|σ|µν] = 0

This equation follows from the basic mathematical properties of the Riemann tensor

and is thus naturally understood in this context as a formal identity without physical

content.3 Interestingly, however, when combined with the definition of the Einstein

tensor the Equation (5) can be shown to imply:4

(6) ∇µG
µν = ∇µT

µν = 0

At this point, it is very tempting to read the equation∇µT
µν = 0 as an expression of

the local conservation of energy (or stress-energy) and it seems like we have derived

a dynamical conservation equation from a formal identity. However, such a näıve

way of thinking about energy conservation in GR immediately runs into trouble.

Consider an observer moving along the integral curve of an arbitrary time-

like vector field ξµ. Let us define the stress-energy 4-current along the direction

defined by this vector as j[ξµ] = T µνξ
ν . This 4-current does not in general vanish,

so we cannot be guaranteed that ∇µj[ξ
µ] = 0 by the fact that ∇µT

µν = 0. This

might be interpreted to mean that we no longer have ‘strict’ conservation of energy

according to the curved spacetime version of Gauss’ law (Wald 1984, pp. 69-70).

3See (Malament 2012, p.69-79) and (Landsman 2021, p.61) for proofs.
4See (Malament 2012, p.322). N.b. one also uses further symmetry properties of the Riemann
tensor in this short derivation.
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Moreover, we might plausibly interpret j[ξµ] as the conserved current associated

with the observers time translations and thus understand ∇µj[ξ
µ] = 0 to imply a

failure of conservation of locally measured energy. Next, recall that the class of

Killing vector fields are given by the satisfaction of the Killing equation:

(7) ∇µξν +∇νξµ = 0

This is equivalent to the statement that the metric is invariant along the integral

curves of ξν or, in terms of the Lie derivative, that we have that Lξgµν = 0. The

existence of a time-like Killing vector field is then (in this sense) equivalent to the

symmetry of time translation invariance holding along the relevant time-like curves.

The existence of a time-like Killing vector field is then necessary and sufficient for

the vanishing of the stress-energy 4-current. This, in turn, implies that for the class

of Killing observers whose, worldlines are integral curves of the vector fields solving

(7), the vanishing of the stress-energy 4-current and thus ‘strict’ conservation of

energy is guaranteed.

We can then formulate Spacetime Conventionalism 2 by interpreting the

stress-energy flux for the non-Killing observers as playing the functional role of

a Carnapian universal effect. Killing and non-Killing observers can be coincident

within the same spacetime patch but will attribute different interpretations to the

same geometric facts in terms of the presence or absence of this additional associated

flux. Putative physical differences with regard to local stress-energy flux thus can be

understood to arise in the comparison of different conventions about which timelike

vector field is chosen as an observers rest frame. The existence or not of such effects

depends upon a convention as to choice of timelike vector field as a rest frame.

Three clear lines of response to this argument for Spacetime Conventionalism

2 are available. The first is simply to note that in the general class of Einstein

spacetimes Killing observers are not guaranteed to exist at all. The existence or not

of Killing vector fields depends upon there being non-trivial continuous isometries

of the metric, and there are good reasons to believe that such transformations do

not exist in general for physically realistic spacetimes.5 In a generic spacetime

5Following the results of Fischer (1970), what can be proved explicitly is that for globally hy-
perbolic Einstein spacetimes which admit an initial value formulation, the topology of the space
of physically distinguishable initial states (i.e. the ‘superspace’ composed of distinct Riemann-
ian three-geometries) is such that the geometries admitting continuous isometries are singular
points. Furthermore, initial data without non-trivial Killing vector fields is generic in the sense
that ‘geometries of high symmetry are completely contained in the boundary of geometries of
lower symmetry’ (p. 303). There is thus a good formal basis to expect that a generic (globally
hyperbolic) Einstein spacetime will lack Killing vector fields. At a simpler, more intuitive, level it
is not hard to convince oneself that the any physically realistic spacetime will be too ‘messy’ in
terms of inhomogeneities and anisotropies to contain Killing vector fields.
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we can therefore expect that there will not be any set of ‘freely falling’ observers

who measure locally vanishing stress-energy 4-current. Spacetime Conventionalism

2 would then be best understood as a viable but highly limited conventionalist

position.6

The second response relies upon the introduction of further structure into

the theory. The first step is to note that the magnitude of the stress-energy 4-

current depends upon the affine properties of the world-line of the observer. This

means that the quantity given the the flux into a region is still conventional in

the sense that it will be different for different observers moving within the same

spacetime patch irrespective of the existence of not of Killing vector fields. In this

context, one could consider introduction of a gravitational-energy-momentum tensor

tµν [gαβ,∇αβ] which is such that a total energy-momentum complex is conserved with

respect to the the flat metric’s torsion free derivative operator (Pitts 2010, 2016,

2021). This would eliminate any potential for conventionalism with regard to total

energy conservation but at the cost of introducing extra background or auxiliary

structures into the theory.

This brings us to our third ultimately more satisfactory response to Killing

conventionalism: rejection of physical salience of the energy 4-current. The key

observation is that it is far from clear that focusing on localised energy fluxes is

germane to the context of relativistic physics; arguably the ambiguities we have

encountered are a product of focusing on concepts and quantities that are a relic of

the bygone, pre-relativistic era. Consider in particular the fact that the failure of the

vanishing of the stress-energy 4-current can occur for non-Killing observers even in

flat spacetimes. This surely indicates that we should not think of it as encoding the

results of additional universal effect resulting in the failure of energy conservation.

Rather it motivates us to look for a completely general characterisation of the causal

basis of genuine universal gravitational effects due to curvature without the need for

background structure: this is to re-frame the discussion to focus on tidal forces and

their explicit geometric representation, rather than energy conservation. To do this

it will prove essential to consider the physical significance of conformal structure

within general relativity.

6It is true that, in general, local conservation of stress-energy will approximately hold for ‘small
enough’ patches of spacetime, with how small depending on the relevant curvature (Wald 1984,
pp. 70). Thus, there will, in general, exist ‘approximate Killing observers’ for whom within some
‘small enough’ region there are no tidal forces and gravitational stress-energy 4-current vanishes.
Operationally, however, observers cannot be arbitrarily small, and thus making such a move would
violate the spirit of the Reichenbachian argument.
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4. Conformal Structure and Tidal Deformation

Spacetime Conventionalism 3

(1) The local conformal structure of a particular relativistic spacetime is not

an empirically-determined truth.

(2) Physical differences between coincident observers regard to geodesic de-

formation arise in the comparison of different conventions about the de-

composition of the Riemann tensor into deforming and non-deforming

parts.

Consider a smooth one-parameter family of geodesics. Define two vector

fields: a timelike vector field ξµ tangent to the family of geodesics and second

vector field χν that represents the infinitesimal displacement to an infinitesimally

nearby geodesic. For a given Riemann curvature tensor, the acceleration due to

geodesic deviation is given by:

(8) aµ = −Rµ
βναξ

αξβχν

In general terms, tidal ‘forces’ should be understood as the effects of geodesic devi-

ation as induced by Riemann curvature. There are two physically distinct senses in

which a geodesic can undergo deviation. The first is through conformal re-scaling,

which would change local spatial scales but preserve local shape. The second is

through deformation which would preserve local spatial scales but change local

shape. There are good physical reasons for us to consider only the second as an

effect that observers would attribute to a genuine physical force since deformation

of a body is unambiguously associated with stress.

Spacetime Conventionalism 3 is then the view that seeks to exploit under-

determination in the representation of tidal deformation. The proposal would be

that different coincident observers may decompose the consequences of the geodesic

deviation given by Equation (8) differently, and so adopt different conventions with

regard to degree of tidal deformation. This would not only underdetermine the

tidal ‘forces’ in a physically significant sense but was also underdetermine the local

conformal structure of spacetime.

The proposed new formulation of spacetime conventionalism has, however,

been set up to fail. It is in precisely in the relevant respect that the Riemann

curvature tensor has a unique decomposition in terms of its Ricci and Weyl parts.

This decomposition equates to exactly the decomposition of geodesic deviation into
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deforming and non-deforming parts. We can see this as follows. The Weyl curvature

tensor, Cρσµν can be defined via the Riemann and Ricci curvature tensors as the

traceless tensor:

(9) Cρσµν = Rρσµν −
1

2

(
gρ[νRµ]σ + gσ[µRν]ρ

)
− R

6

(
gρ[µgµ]σ

)
The tensorial nature of this expression of course means that the decomposition of

Riemann curvature into Ricci and Weyl parts is invariant under the push-forward

of diffeomorphisms, φ of the spacetime manifold M . That is, for any three tensors

which are related such that A = B + C we will have that φ?(A) = φ?(B + C) =

φ?B + φ?C. Observers using different coordinate systems in a given spacetime will

necessarily agree on the decomposition. Moreover, the decomposition of Riemann

curvature tensor into Ricci and Weyl components has its origin in the symmetry

transformation properties of the Riemann tensor. In particular, we can explicitly

derive the decomposition by considering the symmetric and anti-symmetric parts of

a decomposition of the Riemann tensor in terms of SO(3,1) irreducible tensors.7 We

thus find that there is a solid mathematical foundation for taking the distinction as

observer independent and intrinsic to the structure of a given spacetime.

A further decomposition of the Weyl tensor then allows an explicit and

insightful connection to tidal deformation.8 Let us first interpret the Weyl tensor

as the free gravitational field, and the metric tensor as its (2nd order) potential

field and consider a timelike unit vector field ξνξν = −1 representing a family of

observers. Next, parallel to the way one can split the electromagnetic field into

electric and magnetic parts in the rest frame of ξν , we can split the Weyl curvature

tensor, Cρσµν , into electric and magnetic parts constructed as symmetric traceless

7Following Ramond (1997) we can decompose Rρ
σµν in terms of SU(2) ⊗ SU(2) as it is locally

isomorphic to SO(3, 1). We decompose the Riemann curvature tensor into symmetric parts

(10) (3⊗ 3)⊕ (5⊗ 1)⊕ (1⊗ 5)⊕ (1⊗ 1)⊕ (1⊗ 1)

and antisymmetric parts

(3⊗ 3)⊕ (3⊗ 1)⊕ (1⊗ 3)

We then find that the Weyl tensor Cρσµν transforms as (5⊗ 1) ⊕ (1⊗ 5) and it is conformally
symmetric. The object that transforms as (3⊗ 3) in the symmetric part the corresponds to
traceless part of Ricci tensor R.
8Here we are following Goswami and Ellis (2021). The origin of this decomposition is Matte
(1953). Further discussion can be found in Bel (2000). Thanks to Juliusz Doboszewski for help
with these historical sources.
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tensors orthogonal to ξν . The explicit expressions are:

Eρσ = Cρσµνξ
µξν(11)

Hρσ =
1

2
ερναC

να
σµξ

µ(12)

where ερσµ is the effective volume element in the rest space of the comoving observer

and is explicitly given by:

(13) ερσµ =
√
|det g|δ0[ρδ1σδ2µδ3ν]ξν

(Goswami and Ellis 2021, Appendix A). The equation for geodesic deviation due to

the Weyl curvature is then simply:

aµ = −Cµ
βναξ

αξβχν(14)

= Eµ
νχ

ν(15)

We can thus understand the electric part of the Weyl tensor as uniquely responsible

for the tidal deformation effect – that is, geodesic deviation that changes the shape

of bodies in geodesic motion.9 Tidal deformation is a non-conventional effect which

can be associated with a specific part of the Weyl curvature tensor of any given

spacetime. Spacetime Conventionalism 3 is a resounding failure.

5. Coupling and Dynamical Fields

Spacetime Conventionalism 4

(1) The dynamical or non-dynamical interpretation of a particular tensor

field in a relativistic spacetime is not an empirically-determined truth.

(2) Physical differences with regard to dynamical and non-dynamical inter-

pretations of field equations arise in the comparison of different conven-

tions about whether certain fields are understood to couple or interact

within equations.

Whilst the dynamical role of the Weyl tensor forecloses the possibility for a putative

conventionalism about tidal deformation, it opens up an opportunity for a more

interesting, and ultimately more tenable, form of conventionalism with regard to

the dynamical and non-dynamical interpretations of the equations that enforce the

connection between Weyl and Ricci curvature. We can articulate the line of thought

behind this form of conventionalism as follows.

9There is also an important connection between the electric part of the Weyl tensor and gravita-
tional waves - see Goswami and Ellis (2021) for more details.
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First, recall that solving the Einstein equation (2) does not uniquely deter-

mine the Riemann curvature. This can be seen most obviously in the example of

vacuum Einstein spacetimes which are defined as the class of Ricci flat Lorentzian

manifolds – i.e. Einstein spacetimes in which the Ricci curvature tensor Rµν is

zero. The Riemann curvature of a Ricci flat Lorentzian manifold is entirely deter-

mined by the Weyl curvature tensor Cµναβ. In contrast, we might also consider

Weyl flat spacetimes, in which the Ricci curvature encodes all geometric degrees of

freedom. Weyl flat spacetime cannot admit any local deformations of shape and are

illustrated most vividly by the FLRW spacetimes that approximately describe our

universe. The intersection of the Ricci flat and Weyl flat cases is then the unique

Riemann flat spacetime: Minkowski spacetime. In general, a spacetime will have

non-zero Ricci and Weyl curvature and the obvious question is then how these two

forms of curvature can be related if the Einstein equation only relates to the Ricci

part.

The answer is found in the Bianchi identities. Equation (5) can be re-written

as:

(16) ∇[αRµν]ρσ = 0

this can be expanded via the Weyl-Ricci decomposition (9) as:

(17) ∇νC
ρσµν = ∇[σRρ]µ +

1

2
gµ[σ∇ρ]R

In the context of the further decomposition of the Weyl tensor as per Equation

(11), the contracted Bianchi identities then lead directly to the temporal and spatial

derivatives of the electric and magnetic part of the Weyl tensor, and these equations

then lead in vacuo to the propagation equations for gravitational waves (Goswami

and Ellis 2021).10

The next crucial step towards Spacetime Conventionalism 4 is to consider

the form of Maxwell’s equations:

(18) ∇σF
ρσ = Jρ

where F ρσ is the electromagnetic field tensor and Jρ is the source current, and note

that we can re-write the equations (17) such that they take an analogous form:

(19) ∇νC
ρσµν = Jρσµ

10For the original treatments along related lines see Newman and Penrose (1962); Newman and
Unti (1962); Hawking (1966).
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where Jρσµ = ∇[σRρ]µ + 1
2
gµ[σ∇ρ]R (Hawking and Ellis 1973, p.85). This striking

analogy suggests we might think of the Equation (17) as field equations for the

Weyl curvature, just as the Einstein equations provides field equations for the Ricci

curvature. Furthermore, we can use the Einstein equation to re-write the source

current directly in terms of stress-energy such that we have an expression of the

form:

(20) ∇νC
ρσµν = ∇[σT ρ]µ +

1

2
gµ[σ∇ρ]T νν

We would then seem to have a dynamical equation for the Weyl curvature as sourced

by the stress-energy tensor (Danehkar 2009). In such circumstances the difference

between Weyl and Ricci curvature appears to have disappeared in the sense that

both can be seen as dynamical fields encoding geometric degrees of freedom that

are sourced by stress-energy.

Notwithstanding the argument just given, we can also arrive at a non-

dynamical interpretation of the Weyl tensor by starting with a different reading of

the modal status of the Bianchi identities. That is, we understand the identities as

encoding restrictions on kinematical rather than dynamical possibilities. A Bianchi

identity is, in the general case, defined as the consequence of the ‘gauge’ symmetry

properties of a theory via Noether’s second theorem.11 The Noether derivation of

Bianchi identities does not require stationarity of the relevant action. Then, in

the context of general relativity, as was discussed in Section 3, the second Bianchi

identity follows from the basic mathematical properties of the Riemann tensor and

is thus naturally understood as a formal identity without physical content. As such,

Equation (17) is derivable completely independently of the action and would hold

for any spacetime theory formulated on Riemannian geometries with a torsion-free

connection.

These considerations lead us to a second non-dynamical interpretational op-

tion in which we treat the Bianchi identities as fundamental kinematic or pre-nomic

restrictions. In the context of general relativity, this means that the space of kine-

matically possible models of the theory is preselected such that the identities are

obeyed. This, in turn, means that the Ricci and Weyl curvatures are kinematically

constrained to be coordinated such that the Riemann curvature obeys the relevant

identity. Dynamics is then encoded solely within the Einstein equation which then

fixes the dynamically allowed Ricci curvature. Residual freedom within the Weyl

11For detailed discussion of Noether’s second theorem in a historical context see Kosmann-
Schwarzbach (2010). For a rigorous formal overview see Olver (1993). For discussion in context
of gauge theories and quantization see Henneaux and Teitelboim (1992).
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curvature is can be understood as fixed via the choice of initial conditions. Un-

der such an interpretation the relation between the Ricci and Weyl curvature is

a product of a pre-established kinematical harmony not a substantive dynamical

relationship. The Weyl tensor is a non-dynamical field.

A useful way of understanding the connection between the interpretation of

equations and the interpretation of fields has been suggested by Lehmkuhl (2011):

[A]n interaction demands that all fields present are dynamical fields

[...] it seems sensible to make a distinction between speaking of

two fields interacting and two fields coupling. For a dynamical field

can couple to a non-dynamical field [...] but we would not speak

of an interaction if only one of the two fields was dynamical: a

non-dynamical field acts without being acted upon if it couples to

a dynamical field. Hence, two fields interacting should be seen as

sufficient but not necessary for the fields to couple, whereas two

fields coupling is necessary but not sufficient for the two fields to

interact. (p.469)

Following this formulation, we would then have it that if the Bianchi identities (17)

describe an interaction then the Weyl tensor is a dynamical field of the same status

as the Ricci tensor; they each act whilst simultaneously are acted upon. However, if

the Bianchi identities (17) describe a coupling, then we should offer a non-dynamical

interpretation of the Weyl curvature tensor, it merely couples to the Ricci tensor,

the two fields do not interact; the Ricci tensor acts upon the Weyl tensor without

being acted upon.

What would appear to be the best strategy for breaking this interpreta-

tional underdetermination is to consider the initial value problem. In particular,

if the initial value problem of general relativity were found to be fully specifiable

independently of the Bianchi identities, one could argue that only the Einstein equa-

tions encode dynamical degrees of freedom, and the non-dynamical interpretation

is supported. Conversely, if the Bianchi identities play an explicit role in encoding

interactions between degrees of freedom within the initial value problem then the

dynamical interpretation would be supported.

Unfortunately, in practice what is found does not allow for such a simple

means of differentiation. First, we may observe that the Einstein equations are a set

of second-order quasiliniear partial differential equations for the metric. However,

the system is both overdetermined and underdetermined, and the equations do not
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have the hyperbolic form that would allow access to strong formal results regarding

the initial value problem. For this reasons, approaches to the explicit solution of the

initial value problem in general relativity proceed via hyperbolic reductions based

upon a particular gauge choice.12

The most famous of these is the ‘harmonic’ or ‘wave’ gauge treatment due to

Choqouet-Bruhat. In this approach, it may be observed that although the Bianchi

identities do play a substantive role, they do not form part of the basic system

of hyperbolic dynamical equations that is obtained as a reduction of the Einstein

equations. This would seem to support the non-dynamical interpretation. However,

there exists an alternative approach to the hyperbolic reduction of general relativity

due to Friedrich (1996) in which the Bianchi identities are explicitly understood as

hyperbolic propagation equations for the Weyl tensor. Explicitly, and considering

the vacuum case, within this approach, the Weyl tensor is treated as one of the

fundamental dynamical variables in a system of equations given by:

Rµ
νλρ = Cµ

νλρ(21)

∇µC
µ
νλρ = 0(22)

which are equivalent to the vacuum forms of the the Einstein equation and Bianchi

identity respectively. This is precisely to understand the Einstein equations and

Bianchi identities as interaction equations of equal status and, moreover, to explic-

itly treat the Weyl tensor as a dynamical field.

We thus see that it is far from clear whether study of the initial value problem

of general relativity should lead us to attribute a dynamical or non-dynamical role to

the Bianchi identities and the Weyl tensor. If anything the cause of conventionalism

is strengthen by detailed consideration of this context since the the role of the

Bianchi identities, and the implied consequences for the Weyl tensor, appears to

depend upon a ‘convention’ as to which approach towards the hyperbolic reduction

to an initial value problem is taken.

At this point, it is perhaps insightful here to draw the analogy between the

interpretation of the role of the cosmological constant in the Einstein equation.

Consider a universe in which the stress-energy tensor is zero but the cosmological

constant is non-zero. The resultant field equation can be understood to describe a

‘Λ-vacuum’ spacetime and take the form:

(23) Gµν + gµνΛ = 0

12Here we are following (Choquet-Bruhat 2008, §VI) and (Landsman 2021, 7.5).
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Writing the equation in this way makes it natural to think of Λ as a constant of

nature. We might, of course, alternatively re-write the same equation as:

(24) Gµν = −gµνΛ

In this context, it is natural to think of the term Λ as a dynamical source for the

Ricci degrees of freedom. But these are, of course, completely trivial re-writings

of the same equation and no one would take there to be a genuine interpretational

problem in which of the two equations we focus our attention on in the context of

general relativity taken in isolation. Some physicists, however, see there to be good

reasons coming from outside the theory to treat the cosmological constant vs. dark

energy interpretational question as a substantive physical issue.13

This requirement for reference to external physical or physics principles could

also be taken to be required for the case of our two interpretations of Ricci-Weyl

relationship. Within general relativity the equations themselves do not give priority

to the differing dynamical and non-dynamical interpretations. However, in a wider

theoretical context, and considering in particular the relevance to quantization,

the distinction between the interpretation may in fact ground genuine physical

differences.14 It is in this sense Spacetime Conventionalism 4 becomes an profitable

interpretational viewpoint that offers insight into alternative heustitic strategies

for theory extension, rather than a problematic underdetermination of spacetime

structure.

6. The Bach Conjecture

Spacetime Conventionalism 5

(1) The geometric structure of spacetime is not an empirically-determined

truth.

(2) Physical differences with regard which tensor fields play the role of geo-

metric structure, arise through different conventions the decomposition

of the Einstein tensor into conformally invariant and non-conformally

invariant parts.

13For the historical details see Huterer (2011) and Peebles and Ratra (2003).
14For example, whereas it is generally the case that kinematical restrictions are converted to
super-selection rules in quantization, dynamical restrictions, such as conservation laws, are applied
as quantum nomological restrictions, which allows for their violation subject to the uncertainty
principle. See Gryb and Thébault (2016) for more discussion in the context of the problem of time
and the cosmological constant.
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The final form of conventionalism we will consider is, in a sense, a marriage

of the formulation of Reichenbachian conventionalism in the spirit of Weatherall and

Manchak (2014) with the idea discussed above of understanding conformal invariant

tensors as representing the geometric structure of spacetime. The view is, however,

to our knowledge entirely novel. Furthermore, it leads to a precise mathematical

conjecture the truth of which is as yet unproven.

The basic starting point for this particular strategy is to look to re-express

the Einstein equation in a conformally invariant form. That is, seek to show that

Einstein’s equation is true if and only if,

(25) Bµν = 8πTµν + Aµν ,

where Tµν is the matter-energy tensor appearing in Einstein’s equation, Bµν is a

conformally invariant tensor, and Aµν is a further tensor that is not conformally

invariant. So far this is a purely a formal exercises in analysis. The interpretation

move is then to take Bµν to characterise facts about pure spacetime structure,

which is, by assumption, understood to be conformally invariant. By contrast, the

non-conformally invariant objects Tµν and Aµν are taken to characterise a matter-

energy field and a further ‘universal effect’, restrictively. Clearly, by the theorem of

Weatherall and Manchak (2014), Aµν will not be expressible as a Newtonian force.

We are thus explicitly making use of our more liberal Carnapian perspective on

conventionalism.

The re-formulation (25) we are looking for to fulfil this interpretative re-

quirement is indeed possible, by defining Bµν to be the Bach tensor 15 which can be

expressed in terms of the Weyl and Ricci tensors as:

(26) Bµν := ∇σ∇ρCρµνσ + 1
2
CρµνσR

ρσ.

In four dimensions, the Bach tensor is well-known to be conformally invariant (Bach

1921). Thus, defining Aµν := Bµν − Gµν , we find that Equation (25) holds if and

only if the Einstein Equation does, as desired.

The pivotal issue in the context of Spacetime Conventionalism 5, is then

whether the Bach tensor Bµν is the unique conformally invariant two-place tensor,

at least up to a multiplicative constant. Adopting the interpretation of spacetime

structure and matter-energy above: uniqueness would imply that this decompo-

sition allows one to distinguish uniquely between spacetime structure (Bµν) and

15Named for Rudolf Bach, not the Baroque German composer. Although, the former was in fact a
pseudonym for Rudolf Förster. See Appendix A for discussion of the relation between the Bianchi
identities, Bach tensor and the Cotton and Schouten tensors.
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matter-energy (Tµν) and the ‘universal effect’ (Aµν); and, non-uniqueness would

amount to a sense in which the distinction between spacetime structure and matter-

energy is conventional, in a sense closely related to that suggested by Reichenbach

(1928) and Carnap (1966).

Fascinatingly, although this question is both mathematically precise and

foundationally important, its status appears, as yet, unsettled. Essentially, the

issue is that more generally associated with finding the conformal invariants in the

theory of Lorentzian manifolds:

“Classically known conformally invariant tensors include the Weyl

conformal curvature tensor, which plays the role of the Riemann

curvature tensor, its three-dimensional analogue the Cotton tensor,

and the Bach tensor in dimension four. Further examples are not so

easy to come by.” (Fefferman 2012, p.1)

Thus, although review of the literature does not reveal any other known conformal

invariants in four-dimensions, there is no proof of the absence of such alternatives

either. One might thus propose that the debate over conventionality and non-

conventionality, as described above, is not just a matter of philosophical debate,

but of settling a precise mathematical conjecture, whose truth is not yet known:

Bach Conjecture. The Bach tensor the unique (up to a multiplicative constant)

conformally invariant rank 2 tensor field on a four-dimensional Lorentzian mani-

fold.

If the Bach Conjecture is false, then Spacetime Conventionalism 5 is true; if

the Bach Conjecture is true, then Spacetime Conventionalism 5 is false. We thus

take the proof or refutation of the Bach conjecture to be an important problem in

the foundations of general relativity that warrants considered attention.

7. Summary

One might reasonably judge proposals for the conventionality of spacetime

structure in terms of their respective novelty, interestingness, and plausibility. Our

discussion has characterised and critically evaluated five formulations of the con-

ventionality thesis and we hope the reader will agree that all five have the qualities

of being both novel and interesting. The first three options considered have been

argued to be implausible on grounds that vary from direct refutation (Spacetime

Conventionalism 3), to provable falsity under reasonable assumptions (Spacetime

Conventionalism 1), to rejection on the grounds of the lack of physical salience of
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the central undetermined object (Spacetime Conventionalism 2). Nevertheless, each

of the three views are worth of consideration, not least since they illustrate impor-

tant morals regarding the interplay between empirical and mathematical structures

within the foundations of spacetime theory. The final two forms of conventional-

ism we considered to be novel, interesting, and plausible. Moreover, in terms of

analysis of the dynamical role of the Bianchi identities (Spacetime Conventionalism

4) and proof or refutation of the Bach conjecture (Spacetime Conventionalism 5),

they each open up an new direction of enquiry that we may hope to be profitably

pursued in future researches.
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Argentina, and to Patrick Dürr for helpful comments. The authors take full re-

sponsibility for any errors, omissions or inaccuracies.

References

Bach, R. (1921). Zur weylschen relativitätstheorie und der weylschen erweiterung
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A

Appendix A. Conformal Tensors and the Bianchi Identities

The Bianchi identities can also be related to the Cotton Tensor Cρσν (Cotton

1899) and Bach Tensor Bab as follows. Following Garćıa et al. (2004), we can decom-

pose curvature into irreducible representations with respect to pseudo-orthogonal

group for certain dimensions, n, as follows:

n = 1 → Rαβ = 0(27)

n = 2 → Rαβ = Scalarαβ(28)

n = 3 → Rαβ = Scalarαβ + R̃αβ(29)

n ≥ 4 → Rαβ = Scalarαβ + R̃αβ + Cαβ(30)

where R̃ denotes traceless Ricci part of the decomposition and every tensor

is in their Weyl 2-form. For n = 3, the Cotton tensor paper which is given by

DRαβ = DCαβ + 2
n−2υ[α ∧ Cβ] = 0 where D denotes exterior covariant derivative

and υ denotes coframe of a Riemannian space of n dimensions.

(31) Cρσν = 2

(
∇[αRβ]γ −

1

2 (n− 1)
∇[αRgβ]γ

)
and for n = 4, the Bach tensor can be defined as
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(32) Bαβ := ∇µCαµβ + LµνCαµβν

where Lµν is called Schouten tensor and given by

(33) Lµν = Rµν −
1

2 (n− 1)
Rgµν .
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