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This paper introduces a precise correspondence between the theory of stochastic processes

and quantum theory. This correspondence provides a new framework for using Hilbert-space

methods to formulate highly generic types of stochastic dynamics, with potential applications

throughout the sciences. This paper also uses the correspondence in the other direction

to reconstruct quantum theory in general from physical models that consist of classical

kinematics combined with stochastic dynamics. This reconstruction approach opens up

new ways of understanding quantum-theoretic phenomena like interference, decoherence,

entanglement, noncommutative observables, and wave-function collapse.

I. INTRODUCTION

The theory of stochastic processes describes the phenomenological behavior of systems with

definite configurations that evolve in time according to probabilistic laws. Quantum theory is

a comprehensive mathematical apparatus for making measurement predictions when taking into

account the microscopic constituents of various kinds of physical systems, from subatomic particles

to superconductors. At an empirical level, both theories involve probabilities, and at the level of

formalism, both employ vectors and matrices.

There have been a number of previous attempts in the literature to identify a fundamental

relationship connecting stochastic-processes theory and quantum theory [1–7]. This paper intro-

duces a new and fully general correspondence between these two theories in the form of a simple

‘dictionary’ expressing any time-dependent stochastic matrix in terms of a suitable combination of

Hilbert-space ingredients.

On the one hand, from a practical standpoint, this ‘stochastic-quantum correspondence’ provides

a systematic framework for constructing highly generic forms of stochastic dynamics, much as

the classical Lagrangian or Hamiltonian formulations of classical mechanics provide systematic

frameworks for constructing deterministic dynamics. Potential applications range from turbulence

to finance, to name just two examples. Importantly, this stochastic-quantum correspondence does

not require assuming that the stochastic dynamics in question can be modeled as a Markov chain,

nor does it require making any other frequently deployed approximations.

Taking a more foundational perspective, this paper also uses this stochastic-quantum correspon-

dence to show that physical models based on classical kinematics combined with stochastic dynam-

ics can replicate all the empirical predictions of textbook quantum theory—including interference,
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decoherence, entanglement, noncommutative observables, and wave-function collapse—without re-

lying on the austere and metaphysically opaque Dirac-von Neumann axioms [8, 9]. In this alterna-

tive approach, systems have physical configurations in classical configuration spaces, and the math-

ematical objects of the Hilbert-space formulation serve a functional role akin to gauge-theoretic

degrees of freedom.

In addition to establishing these new results, this paper identifies several forms of gauge invari-

ance that have not previously been described in the literature, analyzes the measurement process

in detail, and describes the implications of the stochastic-quantum correspondence for dynamical

symmetries and for formal enlargements or dilations of a system’s Hilbert space. Taking advantage

of having a concrete model of stochastic hidden variables in hand, this paper also revisits and

clarifies a number of important questions related to the status of nonlocality in quantum theory.

Given the mathematical simplicity of this stochastic-quantum correspondence, it is surprising

that it has apparently not shown up in the literature before. To the author’s knowledge, the only

previous example that bears a suggestive resemblance to the approach taken in this paper, at least

at the level of some of its equations, is the unpublished draft [6].1 Although that reference argues

that some stochastic processes can be modeled using a formalism similar to that of quantum theory,

it does not establish that the resulting Hilbert-space representation is fully general. Nor does it

attempt to show that the correspondence is bidirectional, so that quantum systems can be modeled

by stochastic processes on classical configuration spaces.

II. STOCHASTIC PROCESSES

In the theory of stochastic processes [10], one starts with a configuration space C and a stochastic

map Γ(t) that acts linearly on probability distributions over C at an initial time t = 0 to yield

corresponding probability distributions over C at other times t 6= 0. The formalism is easiest to

express in the case in which C has a finite number N of configurations labeled by positive integers

1, . . . , N :

C ≡ {1, . . . , N}. (1)

In that case, the probabilities at t = 0 can be denoted by

pj(0) [j = 1, . . . , N ], (2)

the probabilities at t 6= 0 can be denoted by

pi(t) [i = 1, . . . , N ], (3)

and the stochastic map consists of conditional probabilities

Γij(t) ≡ p(i, t|j, 0) [i, j = 1, . . . , N ], (4)

1 The author thanks Logan McCarty for finding this reference.
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where p(i, t|j, 0) denotes the conditional probability for the system to be in its ith configuration

at the time t, given that it is in its jth configuration at the time 0. (Note that no assumption is

made here about whether t > 0 or t < 0.) Being probabilities, these quantities satisfy

pj(0), pi(t) ≥ 0,
N∑
j=1

pj(0) =
N∑
i=1

pi(t) = 1, (5)

and

Γij(t) ≥ 0,
N∑
i=1

Γij(t) = 1. (6)

Then from marginalization, one has the linear relationship

pi(t) =

N∑
j=1

Γij(t)pj(0), (7)

where the initial probabilities pj(0) are arbitrary and can therefore be freely adjusted without

altering the conditional probabilities Γij(t).

Letting p(0) denote the N×1 column vector with entries given by the probabilities pj(0), letting

p(t) denote the analogous N × 1 vector with entries given by pi(t), and letting Γ(t) denote the

time-dependent N ×N matrix consisting of the conditional probabilities Γij(t), one can recast the

linear relationship (7) in matrix form as

p(t) = Γ(t)p(0). (8)

The conditions (6) on Γ(t) identify it as a (left) stochastic matrix. On physical grounds, Γ(t) will

be assumed to satisfy the continuity condition that in the limit t → 0, it approaches the N × N
identity matrix 1:

lim
t→0

Γ(t) = 1 ≡ diag(1, . . . , 1). (9)

Next, consider a random variable A(t) with (not necessarily unique) magnitudes a1(t), . . . , aN (t)

determined by the system’s configuration i = 1, . . . , N , and possibly also depending explicitly on

the time t. Then the expectation value 〈A(t)〉 is defined as the statistical average or mean of the

magnitudes of A(t) over the probability distribution at t:

〈A(t)〉 ≡
N∑
i=1

ai(t)pi(t) =
N∑
i=1

N∑
j=1

ai(t)Γij(t)pj(0). (10)

One can go on to define the standard deviation and various statistical moments of A(t) by appro-

priate generalizations of this basic definition.

All these formulas can be extended to systems with continuous configuration spaces. For a
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system with a continuous configuration space C, one uses probability densities p(y, 0) at t = 0 and

p(x, t) at t 6= 0, where x and y each symbolically denotes a set of real-valued coordinates. The

linear relationship (7) then becomes

p(x, t) =

∫
C
dµ(y) Γ(x, y, t)p(y, 0), (11)

where dµ(y) is a suitable integral measure over C and where the conditional probability density

Γ(x, y, t) naturally serves as an integral kernel. A random variable A(t) then has magnitudes a(x, t)

labeled by x and t, and its expectation value (10) becomes

〈A(t)〉 ≡
∫
C
dµ(x) a(x, t)p(x, t)

=

∫
C
dµ(x)

∫
C
dµ(y) a(x, t)Γ(x, y, t)p(y, 0).

 (12)

For ease of exposition, the discrete case will be assumed going forward.

Equations like (7), (9), and (11) may appear to single out t = 0 as a special time. Section IX,

however, will show that for systems in sufficiently strong contact with a noisy environment, t = 0

need not actually be a unique time, but will typically be only one of many times that play a similar

role.

III. CONVENTIONAL APPROXIMATIONS

In textbook treatments of stochastic processes [10], one often introduces various approximations

or simplifications of a system’s time-dependent stochastic matrix Γ(t) to make it easier to construct

and describe. A typical such approximation is to assume a discrete-time Markov chain, meaning

that for some small but finite time scale ∆t, one can express the time-dependent stochastic matrix

Γ(t = n∆t) at any integer number n ≥ 1 of steps of duration ∆t as n powers of a constant stochastic

matrix Γ:

Γ(t = n∆t) = Γn. (13)

Somewhat more generally, a convenient simplification is to assume that for any two times t and

t′ satisfying t > t′ > 0, one has the composition law

Γ(t) = Γ
(
t← t′

)
Γ
(
t′
)
, (14)

which is known as divisibility [11]. Here Γ(t← t′) is likewise required to be a stochastic matrix, in

the sense that its entries are all non-negative and its columns each sum to 1, as in (6).

An even more special simplification is to take Γ(t) to be a time-dependent permutation matrix,

meaning a matrix whose rows and columns are permutations of the N ×N identity matrix 1. In

that case, Γ(t) does not contain nontrivial probabilities at all, and the system transitions deter-

ministically from one configuration to another in its configuration space C. In a suitable continuum
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limit N →∞, the time evolution reduces to smooth, deterministic dynamics.

Absent these sorts of approximations or simplifications, one is confronted with the task of

constructing a time-dependent, generically ‘indivisible’ N × N stochastic matrix Γ(t) for a given

configuration space C, ideally in a systematic way. For small configuration spaces, it is easy to

devise smoothly time-dependent, indivisible examples, like the 2× 2 stochastic matrix

Γ(t) ≡

(
e−t

2/τ2 1− e−t2/τ2

1− e−t2/τ2 e−t
2/τ2

)
, (15)

where τ is a constant with units of time, or

Γ(t) ≡

(
cos2 ωt sin2 ωt

sin2 ωt cos2 ωt

)
, (16)

where ω is a constant with units of inverse-time.

It may not seem obvious how to construct smoothly time-dependent stochastic matrices Γ(t)

systematically, especially in the case of large (N � 1) configuration spaces. A sufficiently general

approach for accomplishing this task could have numerous practical applications in many scientific

and technical fields. Ideally, one immediate application would be making it possible to derive a

self-contained theoretical justification for why the Markov and divisibility approximations work so

well in many real-world cases.

IV. THE HILBERT-SPACE FORMULATION

This paper introduces a novel and highly general framework for formulating time-dependent

stochastic matrices Γ(t), conceptually akin to the Lagrangian or Hamiltonian frameworks for for-

mulating deterministic dynamics for mechanical systems.

The starting place is to ‘solve’ the non-negativity condition Γij(t) ≥ 0 of the individual entries

of Γ(t) by expressing them in the following way:

Γij(t) = |Θij(t)|2. (17)

This equation is not a postulate—it is a mathematical identity.

The N × N matrix Θ(t) introduced in (17) is guaranteed to exist, although it is not unique.

Its entries Θij(t) could be taken to be the real square roots of the corresponding quantities Γij(t),

but they could also include complex numbers, quaternions, or even the elements of a more general

normed algebra (although associativity is a very helpful property to require). To keep things

simple, this paper will assume that Θij(t) involves only the complex numbers.

On account of the general properties of Γ(t) specified in (6), note that the matrix Θ(t) must
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satisfy

N∑
i=1

|Θij(t)|2 = 1. (18)

For now, no further conditions, such as unitarity, will be imposed on Θ(t), whose significance will

soon become more clear.

There are several helpful ways to re-express the identity (17). To begin, introduce the Schur-

Hadamard product �, which is defined for arbitrary N × N matrices X and Y as entry-wise

multiplication [12–14]:

(X � Y )ij ≡ XijYij . (19)

One can then regard (17) as expressing the stochastic matrix Γ(t) as a Schur-Hadamard factoriza-

tion of the complex-conjugated matrix Θ(t) with Θ(t) itself:

Γ(t) = Θ(t)�Θ(t). (20)

Schur-Hadamard products are not widely used in linear algebra, in part because they are not

basis-independent. For the purposes of analyzing a given stochastic system, however, the system’s

configuration space C naturally singles out a specific basis, to be defined momentarily.

As an alternative approach that will turn out to have significant ramifications, start by defining

an N -member collection of constant, diagonal N × N projection matrices P1, . . . , PN , which will

be called ‘configuration projectors.’ For each i = 1, . . . , N , the configuration projector Pi consists

of a single 1 in its ith row, ith column, and 0s in all its other entries. That is, Pi is defined as

Pi ≡ diag(0, . . . , 0, 1
↑

ith entry

, 0, . . . , 0), (21)

with individual entries

Pi,jk = δijδik, (22)

where δij is the usual Kronecker delta:

δij ≡

1 for i = j,

0 for i 6= j.
(23)

It follows immediately that these configuration projectors satisfy the conditions of mutual exclu-

sivity,

PiPj = δijPi, (24)
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and completeness,

N∑
i=1

Pi = 1, (25)

where again 1 is the N × N identity matrix. The configuration projectors P1, . . . , PN therefore

constitute a projection-valued measure (PVM) [15, 16].

Letting tr( ) denote the usual matrix trace, one can then recast (17) instead as

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (26)

This equation is a new result. It will turn out to serve as an important ‘dictionary’ between

the classical theory of stochastic processes, as symbolized by Γij(t) on the left-hand side, and

an expansive set of mathematical tools for constructing stochastic dynamics, as embodied by the

right-hand side.2

To understand what these mathematical tools are, introduce a set of N × 1 column vectors

e1, . . . , eN , where ei has a 1 in its ith component and 0s in all its other components. That is, ei

has components

ei,j = δij . (27)

It follows that the column vectors e1, . . . , eN form an orthonormal basis for the vector space of all

N × 1 column vectors, so e1, . . . , eN will be called the system’s ‘configuration basis.’ In particular,

e†iej = δij , eie
†
i = Pi, (28)

where Pi is the ith configuration projector, as defined in (21).

Hence, the right-hand side of the dictionary (26) is a trace over a Hilbert space H, meaning

a complete inner-product space over the complex numbers. The dictionary therefore provides a

Hilbert-space formulation for constructing generic forms of stochastic dynamics.

Substituting the right-hand side of the dictionary (26) into the linear relationship (7) between

the probabilities pj(0) at t = 0 and the probabilities pi(t) at t 6= 0, one finds that

pi(t) = tr(Piρ(t)), (29)

where ρ(t) is a time-dependent, self-adjoint, unit-trace, generically non-diagonal N × N matrix

defined as

2 Similar-looking formulas appear in equations (3)–(6) of [17] as an intermediate step in proving a lemma used for
conceptually different purposes.



8

ρ(t) ≡ Θ(t)

 N∑
j=1

pj(0)Pj

Θ†(t)

= Θ(t)diag(. . . , pj(0), . . . )Θ†(t)

= ρ†(t),

tr(ρ(t)) = 1.


(30)

Similarly, by substituting the formula (29) for pi(t) into the definition (10) of the expectation value

of a random variable A(t), one obtains

〈A(t)〉 = tr(A(t)ρ(t)), (31)

where A(t) is now understood to be the diagonal N ×N matrix defined as

A(t) ≡
N∑
i=1

ai(t)Pi = diag(. . . , ai(t), . . . ). (32)

In the special case in which the system’s probability distribution at t = 0 is pure, meaning that

one of the system’s configurations j is occupied with probability 1, the system’s probability vector

at t = 0 is equal to the jth vector ej in the configuration basis (27):

p(0) = ej [pure]. (33)

Defining a unit-norm, N × 1 column vector

Ψ(t) ≡ Θ(t)ej

[
Ψ†(t)Ψ(t) = 1

]
, (34)

which is ultimately just the jth column of Θ(t), the ith component Ψi(t) of Ψ(t) is a purely law-like

quantity equal to the specific matrix entry Θij(t):

Ψi(t) = Θij(t). (35)

It follows immediately that the self-adjoint matrix ρ(t) defined in (30) is rank-one and has factor-

ization

ρ(t) = Ψ(t)Ψ†(t) [pure]. (36)

The probability formula (29) then simplifies to

pi(t) = |Ψi(t)|2, (37)
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and the formula (31) for the expectation value of a random variable A(t) becomes

〈A(t)〉 = Ψ†(t)A(t)Ψ(t). (38)

Looking at all these results, one notices a striking resemblance to mathematical objects and

formulas that are familiar from textbook quantum theory.3 Specifically, one sees that Θ(t) plays

the role of a time-evolution operator, ρ(t) is a density matrix, Ψ(t) is a state vector or wave

function, and A(t) represents an observable. The probability formulas (29) and (37) have the same

form as the Born rule, and (31) and (38) have the same form as quantum-theoretic expectation

values.

These formulas are all expressed in what would conventionally be called the Schrödinger picture.

One could instead work in the Heisenberg picture, with the definitions

ρH ≡ ρ(0), ΨH ≡ Ψ(0),

AH(t) ≡ Θ†(t)A(t)Θ(t),

}
(39)

where AH(t) now includes both a possible explicit dependence on time through its magnitudes ai(t)

as well as implicit dependence on time through the time-evolution operator Θ(t). The probability

formula (29) would then become4

pi(t) = tr(PH(t)ρH), (40)

and the formula (31) for expectation values would become

〈A(t)〉 = tr(AH(t)ρH). (41)

Despite the similarity to expressions found in quantum theory, as well as the appearance of

non-diagonal matrices, it is important to keep in mind that the system under investigation here is

always fundamentally in a specific configuration i = 1, . . . , N in its configuration space C at any

given time, and that the system’s dynamics is completely captured by the stochastic matrix Γ(t),

whose entries are conditional probabilities p(i, t|j, 0), in accordance with (4). The mathematical

objects Θ(t), ρ(t), Ψ(t), A(t), despite being extremely useful, are not uniquely defined by C or Γ(t).

V. GAUGE TRANSFORMATIONS

To make this non-uniqueness more manifest, it will be helpful to introduce an analogy with the

Maxwell theory of classical electromagnetism.5

In classical electromagnetism, the electric and magnetic fields are physically meaningful quanti-

ties, but it is often very convenient to work instead in terms of scalar and vector potentials, which

are not uniquely defined. All choices for the potentials that yield the same electric and magnetic

3 For pedagogical treatments of quantum theory, see [18–22].
4 Note that for a generic time-evolution operator Θ(t), the Heisenberg-picture version PHi (t) ≡ Θ†(t)PiΘ(t) of a

projector Pi will not likewise be a projector.
5 For pedagogical treatments of classical electromagnetism, see [23–25].
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fields are said to be related by gauge transformations, and any one such choice for the potentials

is called a gauge choice. Making a suitable gauge choice can greatly simplify many calculations,

such as using Lorenz gauge to compute the electric and magnetic fields for delayed boundary con-

ditions. Ultimately, however, all calculations of physical predictions in classical electromagnetism

must conclude with expressions that are written in terms of gauge-invariant quantities.

To set up the claimed analogy with electromagnetic gauge transformations, start by observing

that the Schur-Hadamard product of the time-evolution operator Θ(t) with a matrix of time-

dependent phases exp(iθij) is a transformation of Θ(t) with no physical effects, and therefore

corresponds to a genuine form of gauge invariance:

Θ(t) 7→ Θ(t)�


eiθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (42)

This gauge transformation can be written equivalently at the level of individual matrix entries as

Θij(t) 7→ Θij(t)e
iθij(t). (43)

To the author’s knowledge, this kind of gauge invariance, which could be called a ‘Schur-Hadamard

gauge transformation,’ has not yet been described in the literature. It will turn out to play a key

role in the analysis of dynamical symmetries that will be presented in Section XVI, and will be

extended in an interesting way in the context of Hilbert-space dilations in Section XVII.

The Hilbert-space formulation has another form of gauge invariance, which appears to have first

been written down in [26] in the context of transformations of the Schrödinger equation between

inertial and non-inertial reference frames. Letting V (t) be a time-dependent unitary matrix, the

following transformation is also a gauge invariance of the Hilbert-space formulation, leaving all

probabilities pi(t), expectation values 〈A(t)〉, and the stochastic matrix Γ(t) as a whole unchanged:6

ρ(t) 7→ ρV (t) ≡ V (t)ρ(t)V †(t),

Ψ(t) 7→ ΨV (t) ≡ V (t)Ψ(t),

A(t) 7→ AV (t) ≡ V (t)A(t)V †(t),

Θ(t) 7→ ΘV (t) ≡ V (t)Θ(t)V †(0).


(44)

If the unitary matrix V (t) is time-independent, then the gauge transformation (44) is merely

a change of basis. However, if V (t) depends nontrivially on time, and if one regards the system’s

Hilbert space at each moment in time as a fiber over a one-dimensional base manifold parameterized

by the time coordinate t, then V (t) represents a local-in-time, unitary transformation of each

individual Hilbert-space fiber. In particular, any given time-dependent state vector Ψ(t), regarded

as a trajectory through the Hilbert space H, can be mapped to any other trajectory by a suitable

choice of time-dependent unitary matrix V (t), so trajectories in H do not describe gauge-invariant

6 Note the appearance of t = 0 in V †(0) in the transformation rule for Θ(t).
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facts.

VI. KRAUS DECOMPOSITIONS

In the most general case, a time-evolution operator Θ(t) may not satisfy any nontrivial con-

straints apart from (18). It will turn out to be helpful to find alternative ways of representing the

N ×N matrix Θ(t) in terms of more tightly constrained mathematical objects.

For β = 1, . . . , N , let Kβ(t) be the N × N matrix defined to share its βth column with Θ(t),

but with 0s in all its other entries:

Kβ(t) ≡


0 · · · 0 Θ1β(t) 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ΘNβ(t) 0 · · · 0

 [β = 1, . . . , N ]. (45)

The entries of Kβ(t) are given explicitly by

Kβ,ij(t) = δβjΘij(t). (46)

Then the summation condition (18) on Θ(t) becomes the statement that the matricesK1(t), . . . ,KN (t)

satisfy the Kraus identity

N∑
β=1

K†β(t)Kβ(t) = 1, (47)

so these matrices are called Kraus operators [27]. One can then write the dictionary (26) in an

alternative form called a Kraus decomposition:

Γij(t) =

N∑
β=1

tr(K†β(t)PiKβ(t)Pj). (48)

Like all the other mathematical objects in the Hilbert-space formulation, the Kraus operators

K1(t), . . . ,KN (t) are not unique. Notice also that any number of N × N matrices satisfying the

Kraus identity (47) are guaranteed to yield a valid stochastic matrix Γ(t) via the Kraus decompo-

sition (48).7

VII. UNISTOCHASTIC DYNAMICS

In the most minimal case in which the stochastic matrix Γ(t) is determined by just a single

Kraus operator K1(t), that Kraus operator will be denoted instead by U(t). In that case, the

7 Kraus operators and Kraus decompositions play an important role in quantum information theory. They provide
(non-unique) expressions for specific generalizations of unitary time evolution known as quantum channels, or
completely positive trace-preserving (CPTP) maps. In particular, conditional probabilities similar in form to (48)
were studied in [28].
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general Schur-Hadamard factorization (20) specializes to

Γ(t) = U(t)� U(t). (49)

That is,

Γij(t) = |Uij(t)|2, (50)

or, equivalently, in dictionary form (26),

Γij(t) = tr(U †(t)PiU(t)Pj). (51)

The Kraus identity (47), meanwhile, reduces to the statement that U(t) is unitary,

U †(t) = U−1(t), (52)

and Γ(t) is then said to be unistochastic [29, 30].8 It follows immediately from the dictionary

formula (51) that every unistochastic matrix is doubly stochastic, meaning that summing over its

rows or its columns yields 1:

N∑
i=1

Γij(t) =

N∑
j=1

Γij(t) = 1. (53)

Note that U(t) will not generically remain unitary under Schur-Hadamard gauge transforma-

tions (42), so writing a unistochastic matrix Γ(t) in terms of a unitary time-evolution operator U(t)

corresponds to making a gauge choice—or, somewhat more precisely, to partially fixing the gauge

freedom (42). Notice also that every permutation matrix is unitary, so deterministic dynamics is

a special case of unistochastic dynamics.

Assuming that U(t) is a differentiable function of the time t, one can define a corresponding

self-adjoint generator H(t), called the system’s Hamiltonian, according to

H(t) ≡ i~∂U(t)

∂t
U †(t) = H†(t). (54)

Here the factor of i ensures that H(t) is self-adjoint, and, for present purposes, ~ is a fixed constant

introduced for purposes of units.

In terms of the Hamiltonian, the system’s density operator ρ(t) then evolves in time according

to the von Neumann equation,

i~
∂ρ(t)

∂t
= [H(t), ρ(t)], (55)

8 In Section XVII, it will be shown that all stochastic matrices can be expressed in terms of a unitary time-evolution
operator on a suitably enlarged or dilated Hilbert space, so assuming unistochastic dynamics is not as special a
condition as it might seem.
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its state vector Ψ(t) (if it exists) evolves according to the Schrödinger equation,

i~
∂Ψ(t)

∂t
= H(t)Ψ(t), (56)

its Heisenberg-picture random variables AH(t) evolve according to the Heisenberg equation of

motion,

dAH(t)

dt
=
i

~
[HH(t), AH(t)] +

(
∂A(t)

∂t

)H
, (57)

and its expectation values 〈A(t)〉 evolve according to the Ehrenfest equation,

d〈A(t)〉
dt

=
i

~
tr([H(t), A(t)]ρ(t)) +

〈
∂A(t)

∂t

〉
. (58)

The matrix HH(t) appearing in the Heisenberg equation of motion (57) is the Hamiltonian in the

Heisenberg picture. Note also that the brackets [X,Y ] that naturally show up in these equations

are genuine commutators XY − Y X, not Poisson brackets, and involve products of non-diagonal

matrices that do not generally commute with each other under multiplication.

The emergence of these famous equations from a physical model based on classical kinemat-

ics—with a classical configuration space C—is a surprising new result.

If the system’s time-evolution operator Θ(t) = U(t) is indeed unitary, then under the unitary

gauge transformation defined by (44), the Hamiltonian transforms precisely as a non-Abelian gauge

potential:9

H(t) 7→ HV (t)

= V (t)H(t)V †(t)− i~V (t)
∂V †(t)

∂t
.

 (59)

This transformation behavior makes clear that a Hamiltonian is not a gauge-invariant observable,

even though it may happen to coincide with various observables according to particular gauge

choices.

Moreover, one can write the Schrödinger equation (56) as

D(t)Ψ(t) = 0. (60)

Here D(t) is a gauge-covariant derivative defined according to

D(t) ≡ 1
∂

∂t
+
i

~
H(t). (61)

These formulas make manifest that the Hilbert-space formulation of a stochastic system is

ultimately a collection of gauge-dependent quantities. Hence, although a Hilbert-space formulation

may be extremely useful for constructing stochastic dynamics or for carrying out calculations,

9 For pedagogical treatments of non-Abelian gauge theories, see [31, 32].
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one should be suspicious about trying to assign direct physical meanings to its mathematical

ingredients.

Notice that if one picks

V (t) ≡ U †(t), (62)

then the Hamiltonian precisely vanishes:

HV (t) = 0. (63)

This choice of gauge is nothing other than the definition (39) of the Heisenberg picture. Uni-

tary gauge transformations (44) can therefore be viewed as generalized changes of time-evolution

picture.10

VIII. INTERFERENCE

The appearance of the Schrödinger equation (56) is an important signal that the dictionary (26)

is more than just a tool for using Hilbert-space methods to craft highly general forms of stochastic

dynamics. It also suggests that stochastic dynamics might have the resources to replicate the

features of quantum theory more broadly.

As another hint pointing in this direction, start by noting that an arbitrary time-dependent

stochastic matrix Γ(t) is generically indivisible, in the sense that it does not satisfy the divisibility

property (14) at arbitrary times. To see what goes wrong, suppose that at some time t′, Γ(t′) has

a matrix inverse Γ−1(t′), and let

Γ̃
(
t← t′

)
≡ Γ(t)Γ−1

(
t′
)
. (64)

As an immediate consequence, one then has

Γ(t) = Γ̃
(
t← t′

)
Γ
(
t′
)
, (65)

which resembles the divisibility property (14). However, it follows from an elementary theorem of

linear algebra that the inverse of a stochastic matrix can only be stochastic if both matrices are

permutation matrices, and therefore do not involve nontrivial probabilities.11 Hence, the matrix

Γ̃(t← t′) defined in (64) is not generically stochastic, so (65) does not express a genuine form of

divisibility.

There is an alternative—and far-reaching—way to understand the generic indivisibility of a

10 The fact that one can set HV (t) = 0 for all t is a manifestation of the fact that the fiber bundle in this case,
consisting of copies of the system’s Hilbert space over a one-dimensional base manifold parameterized by the time
t, has vanishing curvature.

11 Proof: Let X and Y be N × N matrices with only non-negative entries and with Y = X−1, so that XY = 1.
Then, in particular, the first row of X must be orthogonal to the second through Nth columns of Y . Because Y
is invertible, the columns of Y must all be linearly independent, so the first row of X must be orthogonal to the
(N − 1)-dimensional subspace spanned by the second through Nth columns of Y . Because the entries of X and Y
are all non-negative by assumption, the only way that this orthogonality condition can hold is if precisely one of
the entries in the first row of X is nonzero, with a 0 in the corresponding entry in each of the second through Nth
columns of Y . Repeating this argument for the other rows of X, one sees that X can only have a single nonzero
entry in each row. If X is a stochastic matrix, then each of these nonzero entries must be the number 1, so X
must be a permutation matrix. QED
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time-dependent stochastic matrix Γ(t). To this end, suppose that Γ(t) happens to be unistochastic

for simplicity, and let U(t) be a unitary time-evolution operator for Γ(t). Then for any two times

t and t′, one can define a relative time-evolution operator

U
(
t← t′

)
≡ U(t)U †

(
t′
)
, (66)

which yields the composition law

U(t) = U
(
t← t′

)
U
(
t′
)
. (67)

At the level of the unistochastic matrix Γ(t), one has from the Schur-Hadamard factorization (49)

that

Γ(t) = U(t)� U(t)

= [U(t← t′)U(t′)]�
[
U
(
t← t′

)
U
(
t′
)]
,

}
(68)

which cannot generally be expressed in the form Γ(t← t′)Γ(t′) for any stochastic matrix Γ(t← t′),

due to the presence of cross terms.

Indeed, examining individual matrix entries, one finds more explicitly that

Γij(t) =

N∑
k=1

|Uik
(
t← t′

)
|2|Ukj

(
t′
)
|2

+
∑
k 6=l

Uik(t← t′)Ukj(t′)Uil
(
t← t′

)
Ulj
(
t′
)
.

 (69)

With Γkj(t
′) defined according to (50) as usual,

Γkj
(
t′
)

= |Ukj
(
t′
)
|2, (70)

and defining

Γik
(
t← t′

)
≡ |Uik

(
t← t′

)
|2, (71)

which is manifestly unistochastic, one sees that the discrepancy between Γ(t) and its would-be

division Γ(t← t′)Γ(t′) is given by

Γij(t)−
[
Γ
(
t← t′

)
Γ
(
t′
)]
ij

=
∑
k 6=l

Uik(t← t′)Ψk(t′)Uil
(
t← t′

)
Ψl

(
t′
)
,

 (72)

where Ψ(t′) ≡ Θ(t′)ej is the system’s state vector at the time t′, in keeping with the general

definition of state vectors in (34). Remarkably, the right-hand side of (72) has precisely the

mathematical form of quantum-theoretic interference, despite the absence of manifestly quantum-

theoretic assumptions.
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One sees from this analysis that interference is a direct consequence of stochastic dynamics not

generally being divisible. More precisely, interference is nothing more than a generic discrepancy

between indivisible stochastic dynamics and divisible stochastic dynamics.

In particular, interference does not imply that matter is physically wavelike, contrary to frequent

claims in textbook treatments like [33]. Indeed, from the perspective of the present discussion, the

notion that interference ever suggested a wavelike quality for matter was merely an unfortunate

accident of history, arising from the fact that many early empirical examples of interference in

quantum-theoretic systems happened to resemble the behavior of interfering waves propagating

in three-dimensional physical space. These historical examples were clearly special cases, as is

evident from considering interference in multiparticle systems, whose purported waves would need

to propagate through high-dimensional configuration spaces (as was noted by Schrödinger in his

early work on wave mechanics [34]), or in more abstract systems, like qubits, that lack continuous

configuration spaces altogether.

Nor does interference mean that, say, a particle in a double-slit experiment fails to go through

one slit or the other.12 According to the approach laid out in this paper, the particle does go

through a specific slit in each run of the experiment. The interference that shows up in the double-

slit experiment may be surprising, but that is only because indivisible stochastic dynamics can

be highly nonintuitive, and in the historical absence of a sufficiently comprehensive framework for

describing indivisible stochastic dynamics, it was difficult to recognize just how nonintuitive such

dynamics could be.

The fact that interference shows up in a sufficiently generic stochastic model means that relative

phase factors in state vectors have clear empirical signatures, even in the absence of the usual

axioms of textbook quantum theory. These empirical manifestations of relative phases are strong

evidence that it should be possible to carry out measurements on a much wider set of observables

than those that are represented by diagonal matrices (32) in the system’s configuration basis.

Indeed, Section XIII will show that non-diagonal self-adjoint matrices will turn out to be candidate

observables as well.

These results also suggest that interference should arise in a much broader class of contexts

than just for quantum systems. One could imagine experimentally measuring interference effects

for essentially any system that can be modeled using indivisible stochastic dynamics.

IX. DIVISION EVENTS

Why do discrete-time Markov chains (13) provide such a good approximation to so many

stochastic processes in the real world? One intuitively reasonable explanation is that when a

system is not isolated from a noisy environment, delicate correlations from one time to another

‘wash out’ over short time scales as those correlations leak out into the environment. Using the

framework presented in this paper, it is possible to make this intuitive picture more precise.

12 The exposition in [33] ends up at precisely such a conclusion: “It is not true that the electrons go either through
hole 1 or hole 2.” [Emphasis in the original.] This conclusion, however, does not logically follow from the empirical
appearance of interference effects, but also implicitly depends on the hidden assumption that the behavior of an
electron in a double-slit experiment can be described by divisible dynamics.
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To set things up, start by introducing a composite system SE consisting of a subject system

S together with an environment E . Label the configurations of the subject system’s configuration

space CS by i = 1, . . . , N , and label the configurations of the environment’s configuration space

CE by e = 1, . . . ,M , where M ≥ N . The configuration space of the composite system is then the

Cartesian product

CSE = CS × CE , (73)

meaning that each element of CSE is a simple ordered pair of the form (i, e).13 Single out N

configurations of the environment by labeling them as e(1), . . . , e(N).

For the dynamics, suppose for simplicity that the composite system evolves according to an

overall unistochastic matrix

ΓSE(t) = USE(t)� USE(t), (74)

or, in terms of individual entries,

ΓSEie,i0e0(t) = |USEie,i0e0(t)|2. (75)

Furthermore, suppose that the subject system and the environment interact up to a time t′ > 0 in

such a way that they end up with joint probabilities of the form

pSEi′e′
(
t′
)

= pSi′
(
t′
)
δe′e(i′), (76)

which describe an idealized correlation between the configuration i′ of the subject system at t′ and

the corresponding configuration e(i′) of the environment.

If there is to be any possibility of the two subsystems evolving independently for times t > t′

after the interaction has concluded, then it should be possible to factorize the composite system’s

relative time-evolution operator USE(t← t′) between the two subsystems for t > t′ as the following

tensor product:

USE
(
t← t′

)
= US

(
t← t′

)
⊗ UE

(
t← t′

)
for t > t′.

}
(77)

In terms of individual entries, one has

USEie,i′e′
(
t← t′

)
= USii′

(
t← t′

)
UEee′

(
t← t′

)
for t > t′,

}
(78)

meaning that each entry USEie,i′e′(t← t′) of the composite system’s relative time-evolution operator

is the product of corresponding entries USii′(t← t′) and UEee′(t← t′) of the relative time-evolution

13 Note that the right-hand side of (73) is indeed a Cartesian product, not a tensor product, because this equation
is solely a statement about the composite system’s kinematics, not its dynamics.
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operators for the two subsystems individually.14

In light of the Born rule (37), the joint probabilities (76) correspond to a wave function15

ΨSEi′e′
(
t′
)

= ΨSi′
(
t′
)
δe′e(i′), (79)

so the composite system’s wave function at later times t > t′ after the interaction is given in terms

of the relative time-evolution operator (78) according to

ΨSEie (t) =
∑
i′,e′

USEie,i′e′
(
t← t′

)
ΨSEi′e′

(
t′
)

=
∑
i′

USii′
(
t← t′

)
ΨSi′
(
t′
)
UEee(i′)

(
t← t′

)
.

 (80)

From the Born rule (37), one sees that the joint probabilities for t > t′ are given by

pSEie (t) =
∣∣ΨSEie (t)

∣∣2. (81)

Marginalizing over the configuration e of the environment and invoking the unitarity of the en-

vironment’s relative time-evolution operator UE(t← t′), one obtains the standalone probabilities

pSi (t) for the subject system alone for t > t′:

pSi (t) =
∑
e

pSEie (t)

=
∑
i′1,i
′
2

US
ii′1

(t← t′)ΨS
i′1

(t′)USii′2

(
t← t′

)
ΨSi′2

(
t′
)

×
∑
e

UE
ee(i′1)

(t← t′)UEee(i′2)
(
t← t′

)
=
∑
i′

|USii′
(
t← t′

)
|2|ΨSi′

(
t′
)
|2.


(82)

Taking the limit t→ t′ in (82) and referring back to the Born rule (37) again, one sees that the

subject system’s standalone probabilities at t′ > 0 are

pSi′
(
t′
)

= |ΨSi′
(
t′
)
|2. (83)

One also sees from (82) that, as in (71), one can identify

ΓSii′
(
t← t′

)
≡ |USii′

(
t← t′

)
|2. (84)

Hence, (82) simplifies to a genuinely linear relationship that precisely mirrors the basic marginal-

14 Note the natural appearance of a tensor product in (77) and (78), which are statements about the composite
system’s dynamics.

15 If necessary, one can easily write down idealized examples of appropriately unitary time-evolution operators for
the composite system. For instance, one could use USE(t′) ≡

∑
i′ P
S
i′ ⊗ REe(i′), where PSi′ is the i′th configuration

projector (21) for the subject system, and where REe(i′) is a unitary transformation that takes the environment’s
initial configuration to the configuration e(i′).
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ization formula (7) for a stochastic process, with t′ > 0 now serving as the ‘initial time’:

pSi (t) =
∑
i′

ΓSii′
(
t← t′

)
pSi′
(
t′
)
. (85)

Applying the basic marginalization formula (7) to the stochastic process from t = 0 to t′ > 0,

one also has the equation

pSi′
(
t′
)

=
∑
j

ΓSi′j
(
t′
)
pSj (0). (86)

Combining (85) with (86) immediately yields

pSi (t) =
∑
j

ΓSij(t)p
S
j (0), (87)

where ΓS(t) is a manifestly divisible stochastic matrix:

ΓS(t) ≡ ΓS
(
t← t′

)
ΓS
(
t′
)
. (88)

Thus, the interaction between the subject system S and the environment E up to the time t′ > 0

has led to a stochastic matrix ΓS(t) for the subject system that is instantaneously divisible at t′.

It is natural to refer to t′ as a ‘division event.’ An important corollary is that t = 0 is not a

unique or special time, but is instead only one of many division events inevitably experienced by

a system in sufficiently strong contact with a noisy environment.

Suppose that these kinds of division events can be approximated as occurring regularly over a

characteristic time scale ∆t. Suppose, moreover, that the unistochastic dynamics is homogeneous

in time, in the sense that US(t+ ∆t← t) = US(∆t) for all times t. Then the subject system’s

stochastic matrix after any integer number n ≥ 1 of time steps ∆t is given by

ΓS(t = n∆t) =
(
ΓS
)n
, (89)

where

ΓSij ≡ |USij(∆t)|2. (90)

The stochastic dynamics therefore takes the form of a discrete-time Markov chain (13). This

analysis therefore provides an explanation for the ubiquity of Markovian stochastic dynamics in so

many real-world cases.

X. DECOHERENCE

Had the environment not interacted with the subject system, then the subject system’s density

matrix ρS(t′) at t′ > 0 would have generically been non-diagonal, in accordance with the general
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definition (30):

ρS
(
t′
)

= US
(
t′
)∑

j

pj(0)Pj

US†(t′)
= US

(
t′
)
diag(. . . , pj(0), . . . )US†

(
t′
)
.

 (91)

By contrast, suppose that the environment indeed interacts with the subject system to produce

a division event (88) at t′. In that case, the standalone probability pSi (t) for the subject system to

occupy its ith configuration at t > t′ is given by (82), which can be written instead as

pSi (t) = tr(Piρ
S(t)), (92)

where

ρS(t) ≡ US
(
t← t′

)
ρS
(
t′
)
US†

(
t← t′

)
, (93)

and where, in turn,

ρS
(
t′
)
≡
∑
i′

pSi′
(
t′
)
PSi′ = diag

(
. . . , pSi′

(
t′
)
, . . .

)
, (94)

which is diagonal.

On comparing the two expressions (91) and (94) for the subject system’s density matrix ρ(t′) at

t′, one sees that the interaction with the environment has effectively eliminated the off-diagonal en-

tries, or coherences, in the subject system’s density matrix. This phenomenon is called decoherence,

and the foregoing analysis makes clear that decoherence is nothing more than the unremarkable

leakage of correlations into the environment when viewed through the lens of the Hilbert-space

formulation.

This analysis also sheds new light on the meaning of coherences in density matrices, as well as

on superpositions in state vectors, where superpositions are related to coherences in the case of

a rank-one density matrix through the formula ρi1i2(t) = Ψi1(t)Ψi2(t), in accordance with (36).

From the standpoint of this analysis, superpositions and coherences are merely indications that

one is catching a given system when it is in the midst of an indivisible stochastic process, between

division events, rather than implying that the system is in ‘multiple states at once.’

These results may also help explain why the precise connection between quantum theory and

stochastic processes remained unclear for so long. If one assumes a Markov approximation, as

is often the case in the literature on stochastic processes, then coherences and superposition do

not show up, meaning that density matrices remain diagonal, state vectors remain trivial, and

nontrivial unistochastic dynamics cannot arise.
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XI. ENTANGLEMENT

Consider next a composite system AB consisting of a pair of subsystems A and B. Suppose that

the two subsystems do not interact from t = 0 up to some time t′ > 0, but then begin interacting

at t′.

For times t between 0 and t′, the composite system’s stochastic matrix ΓAB(t) factorizes into

the tensor product of a stochastic matrix ΓA(t) for A and a stochastic matrix ΓB(t) for B:

ΓAB(t) = ΓA(t)⊗ ΓB(t) for 0 ≤ t < t′. (95)

Starting at t = t′, however, the composite system’s stochastic matrix ΓAB(t), which encodes

cumulative statistical information, will fail to factorize between the two subsystems, in the sense

that

ΓAB(t) 6= ΓA(t)⊗ ΓB(t) for t > t′, (96)

for any possible stochastic matrices ΓA(t) and ΓB(t) that properly capture the respective dynamics

of the two subsystems. Even if the two subsystems have a notion of localizability in space, and

are eventually placed at a large separation distance at some time t > t′, the composite system’s

stochastic matrix will still fail to factorize between the two subsystems, thereby leading to the

appearance of what looks like nonlocal stochastic dynamics across that separation distance.16

However, if the composite system exhibits a division event of the form (88) at some later time

t′′ > t′, perhaps due to interactions with the larger environment, then the composite system’s

stochastic matrix ΓAB(t) will divide at t′′:

ΓAB(t) = ΓAB
(
t← t′′

)
ΓAB

(
t′′
)

for t > t′′ > t′. (97)

If the two subsystems A and B do not interact with each other after t′, then the relative stochastic

matrix ΓAB(t← t′′) will factorize between them,

ΓAB
(
t← t′′

)
= ΓA

(
t← t′′

)
⊗ ΓB

(
t← t′′

)
, (98)

so the two subsystems will cease exhibiting what had looked like nonlocal stochastic dynamics.

This analysis precisely captures the quantum-theoretic notion of entanglement. Systems that

interact with each other start to exhibit what appears to be a nonlocal kind of stochastic dynamics,

even if the systems are moved far apart in physical space, but decoherence by the environment

effectively causes a breakdown in that apparent dynamical nonlocality.

This stochastic picture of entanglement and nonlocality provides a new way to understand

why they occur in the first place. The indivisible nature of generic stochastic dynamics could be

viewed as a form of nonlocality in time, which then leads to an apparent nonlocality across space.

A division event leads to an instantaneous restoration of locality in time, which then leads to a

16 Questions about nonlocality will be addressed in detail in Section XVIII.
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momentary restoration of manifest locality across space.

XII. EMERGEABLES

The preceding sections have shown that a model with kinematics based on a classical config-

uration space and dynamics based on a suitable stochastic process is capable of accounting for

signature features of quantum theory, like interference, decoherence, and entanglement. In addi-

tion, the Hilbert-space side of the dictionary (26) contains many expressions and equations that

are identical to those found in quantum theory. However, an actual quantum system also includes

observables beyond those like (32) that are diagonal in a single basis. Indeed, the existence of

noncommuting observables is another hallmark feature of quantum theory.

Remarkably, a stochastic system will generically contain such observables as well. Specifically,

Section XIII will establish that these mathematical objects represent candidate observables that

naturally satisfy the usual probabilistic rules of quantum theory, all without introducing any new

fundamental axioms. In so doing, the analysis ahead will demonstrate that the dictionary (26) is

not merely a tool for studying stochastic processes, but defines a comprehensive stochastic-quantum

correspondence.

As motivation, let A be a time-independent (diagonal) random variable (32), and consider the

time derivative of its Heisenberg-picture counterpart AH(t), as defined for a generic time-evolution

operator Θ(t) by (39):

dAH(t)

dt
=
∂Θ†(t)

∂t
AΘ(t) + Θ†(t)A

∂Θ(t)

∂t
. (99)

Evaluating this matrix in the limit t → 0 gives a self-adjoint, generically non-diagonal N × N

matrix Ȧ at t = 0:

Ȧ ≡ lim
t→0

dAH(t)

dt
= Ȧ†. (100)

This matrix will not generally commute with the original random variable A itself:

[A, Ȧ] 6= 0. (101)

However, the matrix Ȧ has physical uses. For example,

tr(Ȧρ(0)) = lim
t→0

d〈A(t)〉
dt

, (102)

which is a perfectly meaningful physical quantity, even though the time derivative of an expectation

value is not necessarily the expectation value of something physical.

The matrix Ȧ therefore resembles a random variable in some ways, but incorporates stochastic

dynamics directly into its definition (100), through the time-evolution operator Θ(t), and does not

have a transparent interpretation at the level of the system’s underlying configuration space C.
Instead, Ȧ is an emergent amalgam of kinematical and dynamical ingredients, so it will be called
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an ‘emergeable.’17 This terminology is intended to contrast Ȧ with the system’s genuine random

variables, which could be called ‘beables’ or ‘be-ables’, as coined in [35].

XIII. MEASUREMENTS

Consider now a composite system SDE consisting of three subsystems that will be called a

subject system S, a measuring device D, and an environment E . One of the goals ahead will be to

identify the necessary criteria for a subsystem like D to be regarded as a genuine measuring device.

Focusing momentarily on the subject system, consider a self-adjoint N ×N matrix ÃS = ÃS†,

which may or may not be one of the subject system’s diagonal random variables.18 As a concrete

example, ÃS could be an emergeable like (100).

By the spectral theorem, ÃS has a spectral decomposition of the form

ÃS =
∑
α

ãαP̃
S
α , (103)

where ãα are the eigenvalues of ÃS and where P̃Sα are its eigenprojectors. These eigenprojectors

P̃Sα are not generically diagonal, but they satisfy the analogues of the mutual exclusivity condition

(24),

P̃Sα P̃
S
α′ = δαα′P̃

S
α , (104)

and the completeness relation (25), ∑
α

P̃Sα = 1
S , (105)

where 1
S is the identity matrix for the subject system. These eigenprojectors therefore constitute

a projection-valued measure (PVM) of their own. Letting ẽα be the corresponding orthonormal

basis, one has

ẽ†αẽα′ = δαα′ , ẽαẽ
†
α = P̃α. (106)

If ÃS happens to be one of the subject system’s random variables (32), then the eigenvalues ãα

are the random variable’s magnitudes and the eigenprojectors P̃Sα are the configuration projectors

(21). More generally, however, the eigenvalues ãα and eigenprojectors P̃α do not yet have an

obvious physical meaning.

Suppose that the measuring device D has configurations d(α) that can be labeled by the index

α appearing in the spectral decomposition (103), and, similarly, that the environment E has config-

urations e(α) that can be labeled by α. Generalizing (75), suppose, moreover, that the composite

17 There is a sense in which emergeables are not an entirely new idea, but are closely related to other emergent
phenomena like temperatures or pressures.

18 More generally, one could take ÃS to be a normal matrix, meaning a matrix that commutes with its adjoint ÃS†.
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system SDE evolves according to an overall unistochastic matrix

ΓSDEide,i0d0e0(t) = |USDEide,i0d0e0(t)|2. (107)

Generalizing (79) and letting ẽα′,i′ denote the i′th component of the basis vector ẽα′ with respect

to the configuration basis ei′ , suppose that the three subsystems interact up to a time t′ > 0 in

such a way that they end up with overall wave function19

ΨSDEi′d′e′
(
t′
)

=
∑
α′

Ψ̃Sα′
(
t′
)
ẽα′,i′δd′d(α′)δe′e(α′), (108)

and that, mirroring (77), the composite system’s relative time-evolution operator factorizes between

the three subsystems for later times t > t′:

USDE
(
t← t′

)
= US

(
t← t′

)
⊗ UD

(
t← t′

)
⊗ UE

(
t← t′

)
for t > t′.

 (109)

Then the composite system’s wave function for times t > t′ after the interaction is

ΨSDEide (t) =
∑
i′,e′,d′

USDEide,i′d′e′
(
t← t′

)
ΨSDEi′d′e′

(
t′
)

=
∑
i′

∑
α′

USii′
(
t← t′

)
Ψ̃Sα′
(
t′
)
ẽα′,i′

× UDdd(α′)
(
t← t′

)
UEee(α′)

(
t← t′

)
.


(110)

Invoking the Born rule (37), it follows that the joint probabilities for t > t′ are given by

pSDEide (t) =
∣∣ΨSDEide (t)

∣∣2. (111)

Marginalizing over the configuration i of the subject system as well as the configuration e of

the environment, and invoking the unitarity of both the subject system’s relative time-evolution

operator US(t← t′) and the environment’s relative time-evolution operator UE(t← t′), one obtains

19 It is straightforward to write down idealized examples of suitable unitary time-evolution operators for the composite
system. One choice is USDE(t′) ≡

∑
α′ P̃

S
α′ ⊗RDd(α′)⊗REe(α′), where P̃Sα′ is the α′th eigenprojector appearing in the

spectral decomposition (103), and where RDd(α′) and REe(α′) are unitary transformations for the measuring device
and the environment that respectively put them in the configurations d(α′) and e(α′).
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the standalone probabilities pDd (t) for the measuring device alone for t > t′:

pDd (t) =
∑
i,e

pSDEide (t)

=
∑
i′1,i
′
2

∑
α′1,α

′
2

UD
dd(α′1)

(t← t′)Ψ̃S
α′1

(t′)ẽα′1,i′1

× UDdd(α′2)
(
t← t′

)
Ψ̃Sα′2

(
t′
)
ẽα′2,i′2

×
∑
i

US
ii′1

(t← t′)USii′2

(
t← t′

)
×
∑
e

UE
ee(α′1)

(t← t′)UEee(α′2)
(
t← t′

)
=
∑
α′

|UDdd(α′)
(
t← t′

)
|2|Ψ̃Sα′

(
t′
)
|2.



(112)

In the limit t→ t′, the last line implies that

pDd(α′)
(
t′
)

= |Ψ̃Sα′
(
t′
)
|2, (113)

so the measuring device has a probability |Ψ̃Sα′(t′)|2 of ending up in its configuration d(α′), exactly

as predicted by textbook quantum theory. One can then naturally define an expectation value

〈ÃS(t)〉 for ÃS as the usual kind of statistical average:

〈ÃS(t)〉 ≡
∑
α

ãαp
D
d(α′)

(
t′
)
. (114)

This analysis establishes that as long as there exists a form of unistochastic time evolution (107)

for the composite system SDE that arrives at the wave function (108), the matrix ÃS represents a

genuine observable, in the sense that the time evolution (107) leads to the measuring device ending

up in the correct configuration with the correct Born-rule probability.

For times t > t′ after the interaction, the last line of (112) implies that t′ > 0 is a division event

for the measuring device:

ΓD(t) = ΓD
(
t← t′

)
ΓD
(
t′
)

for t > t′. (115)

Here the measuring device’s dynamics for times t > t′ is given by the relative unistochastic matrix

ΓDdd(α′)
(
t← t′

)
≡ |UDdd(α′)

(
t← t′

)
|2. (116)

By contrast, unless the observable ÃS happens to be one of the subject system’s (diagonal)

random variables (32), the subject system does not experience a division event at t′. Instead,

the subject system remains mired in indivisible time evolution at t′, with some stochastically

evolving underlying configuration. Nonetheless, for times t > t′, one can compute the standalone

probability pSi (t) for the subject system to be in its ith configuration by marginalizing over the

measuring device and the environment:
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pSi (t) =
∑
d,e

pSDEide (t)

=
∑
i′1,i
′
2

∑
α′1,α

′
2

US
ii′1

(t← t′)Ψ̃S
α′1

(t′)ẽα′1,i′1

× USii′2
(
t← t′

)
Ψ̃Sα′2

(
t′
)
ẽα′2,i′2

×
∑
d

UD
dd(α′1)

(t← t′)UDdd(α′2)
(
t← t′

)
×
∑
e

UE
ee(α′1)

(t← t′)UEee(α′2)
(
t← t′

)
=
∑
α′

∑
i′1,i
′
2

US
ii′1

(t← t′)USii′2

(
t← t′

)
ẽα′,i′2 ẽα′,i′1


× |Ψ̃Sα′

(
t′
)
|2.



(117)

Recognizing |Ψ̃Sα′(t′)|2 from (113) as the probability pDd(α′)(t
′) for the measuring device to end

up in its configuration d(α′) at t′ > 0, and recalling both the configuration projectors PSi defined

in (21) as well as the eigenprojectors P̃Sα appearing in the spectral decomposition (103) for ÃS ,

one can write (117) more succinctly as

pSi (t) = tr(PSi ρ
S(t)). (118)

Here the subject system’s density matrix ρS(t) for t > t′ is given by

ρS(t) ≡ US
(
t← t′

)[∑
α′

pDd(α′)P
S
α′

]
US†

(
t← t′

)
. (119)

Hence, one can recast the expectation value (114) for ÃS as

〈ÃS(t)〉 = tr(ÃSρS(t)), (120)

which precisely mirrors the formula (31) for the expectation value of a (diagonal) random variable.

Moreover, (117) yields a linear relationship between the standalone probabilities pDd(α′)(t
′) for

the measuring device at t′ > 0 and the standalone probabilities pSi (t) for the subject system at

t > t′:

pSi (t) =
∑
α′

ΓSDi,d(α′)
(
t← t′

)
pDd(α′)

(
t′
)
. (121)

The entries ΓSDi,d(α′)(t← t′) of the hybrid relative stochastic matrix appearing here are given explic-
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itly by

ΓSDi,d(α′)
(
t← t′

)
≡
∑
i′1,i
′
2

US
ii′1

(t← t′)USii′2

(
t← t′

)
ẽα′,i′2 ẽα′,i′1 .

 (122)

Because these matrix entries do not depend on the measuring device’s standalone probabilities

pDd(α′)(t
′), they naturally define conditional probabilities for the subject system to be in its ith

configuration at the time t > t′ given that the measuring device is in its configuration d(α′) at

t′ > 0:

pSD
(
i, t|d(α′), t′

)
≡ ΓSDi,d(α′)

(
t← t′

)
. (123)

XIV. WAVE-FUNCTION COLLAPSE

Importantly, notice also that one can write the hybrid stochastic matrix (122) in an overall form

that resembles the dictionary (26):

ΓSDi,d(α′)
(
t← t′

)
= tr(US†

(
t← t′

)
PSi U

(
t← t′

)
P̃Sα ).

 (124)

Rearranging the right-hand side gives the equation

ΓSDi,d(α′)
(
t← t′

)
= tr(PSi ρ

S|α′,t′(t)), (125)

with a ‘conditional’ density matrix ρS|α
′,t′(t) for the subject system at the time t > t′ naturally

defined by time-evolving the eigenprojector P̃Sα′ from t′ > 0 to t > t′:

ρS|α
′,t′(t) ≡ U

(
t← t′

)
P̃Sα′U

S†(t← t′
)
. (126)

Thus, the calculation (117) reduces to the statement that the standalone probabilities pSi (t) for

the subject system at t > t′ are given by

pSi (t) = tr(PSi ρ
S(t)), (127)

where the subject system’s density matrix ρS(t), which was originally defined in (119), can equiva-

lently be expressed as a probabilistic mixture of the conditional density matrices ρS|α
′,t′(t) defined

in (126), statistically weighted by the measurement probabilities pDd(α′)(t
′):

ρS(t) ≡
∑
α′

ρS|α
′,t′(t)pDd(α′)

(
t′
)
. (128)

Taking stock of these results, one sees that to make future predictions for t > t′ about the subject
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system, conditioned on the measuring device’s result d(α′) at t′ > 0, one effectively replaces the

subject system’s density matrix with the conditional density matrix ρS|α
′,t′(t), corresponding to a

‘collapsed’ state vector or wave function defined as

ΨS|α
′,t′(t) ≡ U

(
t← t′

)
ẽα. (129)

By contrast, for an observer who does not know the specific measurement result d(α′), the correct

density matrix ρS(t) to use is the one defined in (128), which, again, consists of an appropriate mix-

ture of conditional or collapsed density matrices probabilistically weighted over the measurement

results.

XV. THE MEASUREMENT PROBLEM

According to the foregoing analysis, measuring devices are ordinary physical systems that carry

out measurements of observables, and then end up in final configurations that reflect definite

measurement outcomes, with the probabilities for those various measurement outcomes given by

the Born rule. Hence, the picture of quantum theory presented in this paper arguably has the

resources to solve the measurement problem [36].

The stochastic-quantum correspondence is also helpful for understanding the measurement pro-

cess in another important way. Textbook treatments of quantum theory typically regard measuring

devices as metaphysical primitives or posits, without providing clear principles for deciding which

kinds of systems merit being called measuring devices and which do not. The approach taken

toward the measurement process in this paper not only gives a candidate resolution of the mea-

surement problem, but also yields a natural set of criteria for defining what counts as a good

measuring device, without the need to regard measuring devices as special among all other systems

in any truly fundamental way.

Based on the approach in this paper, a good measuring device should be a physical system with

at least as many configurations as possible outcomes for the observable to be measured (at least up

to the desired level of experimental resolution), it should admit an overall form of dynamics that

results in the correct final correlations, and it should be in sufficiently strong contact with a noisy

environment to generate a robust division event at the conclusion of the measurement interaction.

It is worth noting that the first two of these three criteria would be standard requirements for a

measuring device even without worrying about indivisible stochastic dynamics or quantum theory.

XVI. SYMMETRIES

The stochastic-quantum correspondence developed in this paper provides new ways to think

about dynamical symmetries in quantum theory. Going in the other direction, the stochastic-

quantum correspondence also makes it more straightforward to impose dynamical symmetries

systematically as constraints in the construction of the dynamics for a given stochastic model.
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Classically, any invertible transformation of a system’s configurations i = 1, . . . , N is a permu-

tation transformation of the configuration projectors (21):

Pi 7→ Pσ(i),

with {σ(1), . . . , σ(N)} = {1, . . . , N}.

}
(130)

More generally, a transformation between two PVMs P1, . . . , PN and P̃1, . . . , P̃N is always a simi-

larity transformation of the form

Pi 7→ P̃i ≡ V †PiV, (131)

where V is some unitary operator.20 This similarity transformation reduces to the configurational

transformation (130) if and only if V is a permutation matrix.

The more general transformation (131) leaves the stochastic dynamics invariant precisely if the

right-hand side of the stochastic-quantum dictionary (26) remains unchanged:

tr(Θ†(t)P̃iΘ(t)P̃j) = tr(Θ†(t)PiΘ(t)Pj). (132)

This condition is equivalent to the statement that

tr(Θ̃†(t)PiΘ̃(t)Pj) = tr(Θ†(t)PiΘ(t)Pj), (133)

where

Θ̃(t) ≡ VΘ(t)V †. (134)

Re-expressing both sides of the equivalent condition (133) in terms of squared absolute values, as

in (17), one sees that (134) is a dynamical symmetry precisely if

|Θ̃ij(t)|2 = |Θij(t)|2. (135)

It follows immediately that Θ̃(t) can differ from Θ(t) by at most a Schur-Hadamard gauge

transformation (42), meaning that a necessary and sufficient condition for a unitary matrix V to

give a dynamical symmetry is that

VΘ(t)V † = Θ(t)�


eiθ11(t) eiθ12(t)

eiθ21(t)
. . .

eiθNN (t)

. (136)

20 Proof: Let e1, . . . , eN be the orthonormal configuration basis (28), with e†iej = δij and eie
†
i = Pi, and let ẽ1, . . . , ẽN

be an orthonormal basis related to the new projectors P̃i in the analogous way, with ẽ†i ẽj = δij and ẽiẽ
†
i = P̃i.

Then the N ×N matrix defined by V ≡
∑
i eiẽ

†
i is unitary and satisfies V †PiV = P̃i. Going the other way, if V

is a unitary N ×N matrix, then the N ×N matrices defined for i = 1, . . . , N by P̃i ≡ V †PiV are guaranteed to
constitute a PVM. QED
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As special cases, this condition includes unitary dynamical symmetries,

VΘ(t)V † = Θ(t), (137)

as well as anti-unitary dynamical symmetries,

VΘ(t)V † = Θ(t). (138)

Note that if one redefines V 7→ V , which is still unitary, then one can re-express (138) in the

somewhat more conventional form

V KΘ(t)KV † = Θ(t). (139)

Here K denotes the operation of complex conjugation, so that K2 = 1 and KXK = X for any

N × N matrix X. The composite operator V K as a whole is then said to be an anti-unitary

operator. Anti-unitary operators play an important role in describing time-reversal symmetries.21

If Θ(t) = U(t) is unitary, then VΘ(t)V † will likewise be unitary. In that case, if V is continuously

connected to the identity 1 by some smooth parameter, with a corresponding self-adjoint generator

G = G†, then Noether’s theorem then easily follows as the statement that the expectation value

〈G(t)〉 of that generator is constant in time:

〈G(t)〉 = tr(GU(t)ρ(0)U †(t)) = 〈G(0)〉. (140)

XVII. DILATIONS

In most textbook treatments of quantum theory, a quantum system is axiomatically defined

as a particular Hilbert space together with a preferred set of self-adjoint operators designated

as observables with predetermined physical meanings, along with a particular Hamiltonian to

define the system’s time evolution.22 From that point of view, modifying a system’s Hilbert-space

formulation in any nontrivial way would necessarily mean fundamentally modifying the system

itself.

From the alternative point of view developed in this paper, by contrast, a Hilbert-space for-

mulation is merely a collection of mathematical tools for constructing the dynamics of a given

stochastic system. The system itself is ultimately defined by a configuration space and a dynami-

cal law that stand apart from any arbitrary choice of Hilbert-space formulation. As a consequence,

one is free to modify a system’s Hilbert-space formulation as needed, much like changing from one

gauge choice to another in a gauge theory, or like adding physically meaningless variables to the

Lagrangian formulation of a deterministic classical system.

21 Intriguingly, because K anticommutes with i, meaning that Ki = −iK, the four mathematical objects 1, i, K,
and iK satisfy −i2 = K2 = (iK)2 = iK(iK) = 1, and therefore define a Clifford algebra isomorphic to the
pseudo-quaternions [37]. In a sense, then, the Hilbert spaces of quantum systems are actually defined not over the
complex numbers, but over the pseudo-quaternions.

22 In some circumstances, it may turn out to be more convenient to define a quantum system by a formal C*-algebra
of observables alone, without picking a specific Hilbert-space representation.
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With this motivation in place, recall again the basic stochastic-quantum dictionary (26):

Γij(t) = tr(Θ†(t)PiΘ(t)Pj). (141)

The Hilbert-space formulation expressed by the right-hand side can be manipulated for convenience,

provided that the left-hand side of the dictionary remains unchanged.

In particular, for an integer D ≥ 2, one can freely enlarge, or dilate, the Hilbert-space formula-

tion to a larger dimension ND by the following dilation transformation:

Θ(t) 7→ Θ(t)⊗ 1
I ,

Pi(t) 7→ Pi(t)⊗ 1
I ,

Pj(t) 7→ Pj(t)⊗ P Iγ .

 (142)

Here 1
I is the D × D identity matrix on a new ‘internal’ Hilbert space HI , and P I1 , . . . , P

I
D

collectively form any PVM on that internal Hilbert space satisfying the usual conditions of mutual

exclusivity,

P Iγ P
I
γ′ = δγγ′P

I
γ , (143)

and completeness,

D∑
γ=1

P Iγ = 1
I . (144)

It is then a mathematical identity that one can rewrite the stochastic-quantum dictionary as

Γij(t) = tr
(

trI

([
Θ†(t)⊗ 1

I
][
Pi ⊗ 1

I]
×
[
Θ(t)⊗ 1

I][Pj ⊗ P Iγ ])),
 (145)

with a second trace over the internal Hilbert space HI . The choice of value for the label γ here is

immaterial, with different choices of γ related by gauge transformations.

One can equivalently write the dilated form of the dictionary in block-matrix form as

Γij(t) = trI

(
[Θij(t)]

I†[Θij(t)]
IP Iγ

)
. (146)

Here [Θij(t)]
I is a diagonal D×D matrix consisting of repeated copies of the specific entry Θij(t)

(for fixed i, j) along the diagonal,

[Θij(t)]
I ≡ Θij(t)1

I , (147)

and the adjoint operation † in (146) acts on this D × D block matrix [Θij(t)]
I , so it does not
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transpose the indices i and j on the N ×N matrix Θij(t) itself,

[Θij(t)]
I† ≡ [Θij(t)]

I
. (148)

In this dilated version of the Hilbert-space formulation, the Schur-Hadamard gauge transforma-

tion (42) is enhanced to the following local-in-time gauge transformation, which has not yet been

described in the literature:

[Θij(t)]
I 7→ V I(ij)(t)[Θij(t)]

I . (149)

Here V I(ij)(t) are a set of N2 unitary D ×D matrices, where each such unitary matrix as a whole

is labeled by a specific pair (ij) of configuration labels:

V I†(ij)(t) = (V I(ij)(t))
−1. (150)

The gauge transformations (149) will not generally preserve the factorization Θ(t)⊗1I appearing

in (145), so they motivate considering more general ND × ND time-evolution operators Θ̃(t), in

terms of which the dilated dictionary (145) takes the form

Γij(t) = tr
(

trI

(
Θ̃†(t)

[
Pi ⊗ 1

I]Θ̃(t)
[
Pj ⊗ P Iγ

]))
. (151)

Any ND × ND matrix Θ̃(t) appearing on the right-hand side of this dictionary is guaranteed to

lead to a valid stochastic matrix Γij(t) on the left-hand side, so working with a dilated Hilbert-space

formulation essentially provides a larger ‘canvas’ for designing stochastic matrices.

As a simple example of a dilation for the case D = 2, one can formally eliminate the complex

numbers from a quantum system’s Hilbert space [38]. Specifically, by increasing the system’s

Hilbert-space dimension from N to 2N , one can replace the imaginary unit i ≡
√
−1 with the

real-valued 2 × 2 matrix
(
0 −1
1 0

)
, with the enhanced version (149) of the Schur-Hadamard gauge

transformation now consisting of two-dimensional rotations of the internal Hilbert space HI . One

can then represent the complex-conjugation operator K appearing in (139) as the 2×2 matrix ( 0 1
1 0 ).

The result is that all unitary and anti-unitary operators become 2N×2N orthogonal matrices. One

cost in using this ‘real’ representation, however, is that the Hilbert spaces of composite systems do

not factorize as neatly into Hilbert spaces for their constituent subsystems.23

As a somewhat more significant application of dilations, recall that any stochastic matrix Γij(t)

has a Kraus decomposition (48):

Γij(t) =

N∑
β=1

tr(K†β(t)PiKβ(t)Pj). (152)

The Stinespring dilation theorem [39] then guarantees that by an appropriate dilation to a larger

23 Without increasing the dimension N of a system’s Hilbert space, one could instead attempt to limit the ap-
pearance of the complex numbers in a system’s Hilbert-space formulation by using the original Schur-Hadamard
gauge transformation (42) to make all the entries of the system’s time-evolution operator Θ(t) real-valued. In this
alternative approach, however, a unistochastic matrix Γ(t) may not be expressible in terms of a unitary or orthog-
onal time-evolution operator, and the complex numbers will generally still be needed anyway to define various
observables.
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Hilbert space if necessary, one can express Γij(t) in terms of a unitary time-evolution operator

Ũ(t):

Γij(t) = tr
(

trI

(
Ũ †(t)

[
Pi ⊗ 1

I]Ũ(t)
[
Pj ⊗ P Iγ

]))
. (153)

This fact makes clear the inevitability of unitary time evolution in quantum theory.24

As another application, a dilated Hilbert-space formulation can make it possible to introduce

new kinds of emergeables. Some of these emergeables may be observables that can yield defi-

nite results in measurement processes, along the lines of Section XIII, despite not having a direct

meaning at the level of the system’s underlying configuration space. In this way, a stochasti-

cally evolving system based on a classical configuration space can easily accommodate emergent

observables that model all kinds of quantum-theoretic phenomena. Indeed, obtaining a unitary

time-evolution operator for a given system may require dilating the Hilbert space in just this way,

as in (153).

An important example of this last application is intrinsic spin. To introduce spin as an emerge-

able, one merely dilates the Hilbert space to ND dimensions, introduces a D-dimensional repre-

sentation of SO(3) for the internal Hilbert space, and then requires that the dilated time-evolution

operator has the appropriate form of rotation symmetry.

XVIII. NONLOCALITY

This paper has shown that systems with classical configuration spaces and indivisible stochastic

dynamics have Hilbert-space representations and can replicate the usual mathematical formalism

and empirical predictions of quantum theory.

The classical configurations in this new picture for quantum theory essentially play the role of

hidden variables. The term ‘hidden variables’ immediately raises questions about the potential

invocation of nonlocal dynamics, the study of which has motivated famous papers like [40] and has

led to the development of a number of important theorems [35, 41–43].

Before assessing the implications of these theorems for the picture described in this paper, it

will be important to note that these theorems do not rule out the possibility of hidden variables

altogether. Nor do these theorems imply that introducing hidden variables would necessarily make

quantum theory any more dynamically nonlocal than it already is.

Being mindful of those caveats, there is ample reason to probe the question of nonlocal dynamics

in the approach to quantum theory taken in this paper. After all, looking back at the discussion

of entanglement in Section XI, a pair of systems that interact at some time will generically exhibit

what look like nonlocal stochastic dynamics after that time, at least until the later occurrence of

a division event due to decoherence by an external system.

24 From the starting assumptions presented here, one can sketch the following proof: Given N ×N Kraus matrices
Kβ(t), with β = 1, . . . , N , define an N3 × N2 matrix Ṽ (t) according to Ṽ(iβm)(jl)(t) ≡ Kβ,ij(t)δlm, treating

(iβm) as the first index of Ṽ (t) and treating (jl) as its second index. One can show that this matrix satisfies
Ṽ †(t)Ṽ (t) = 1N2×N2 , so it defines a partial isometry, which can always be extended to a unitary N3 ×N3 matrix
Ũ(iβm)(jγ)(t) by adding N3 − N2 additional columns that are mutually orthogonal with each other and with the

previous N2 columns already in Ṽ (t), where the new index γ runs through N2 possible values. The last step is to
show that Ũ(t) satisfies (153), whose right-hand side reduces to

∑
β,m |Ũ(iβm)(jγ)(t)|2. QED
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In what follows, it will be important to be keep in mind the distinction between deterministic

hidden-variables theories and stochastic hidden-variables theories.

Bell’s original nonlocality theorem, as formulated and proved in [41], only addressed the case

of a deterministic hidden-variables theory. Specifically, Bell showed that if one assumes that a

theory’s hidden variables uniquely determine measurement outcomes, and if one also assumes that

local measurement results should not depend on the settings of faraway measuring devices, then

one arrives at an inequality that is expressly violated by quantum theory.

There seemed to be just two available options in response to this nonlocality theorem. One

could either accept a theory of nonlocal deterministic hidden variables, or deny the existence of

deterministic hidden variables and thereby avoid having to introduce any dynamical nonlocality

into quantum theory.

However, for a hidden-variables theory based on stochastic dynamics rather than deterministic

dynamics, the question of dynamical nonlocality becomes murkier. The generalization to stochastic

dynamics means that one needs to rely on more abstract, statistical conditions for establishing

whether the theory’s hidden variables behave in a dynamically local manner.

The most frequently cited statistical locality criterion for stochastic hidden-variables theories

was formulated by Bell later on [35, 44, 45]. That statistical locality criterion is a statement about

how rich a theory’s hidden variables should be in order for the theory to qualify as dynamically

local.

To formulate this statistical locality criterion, start by considering the case of a measurement

outcome x based on local measurement settings a, and a far-separated measurement outcome y

based on local measurement settings b. Then suppose that the joint probabilities p(x, y|a, b) for the

measurement results x and y, conditioned on the measurement settings a and b, show a statistical

correlation. Bell argued that in order for the theory in question to be considered dynamically local,

the theory should contain enough hidden variables to account for the statistical correlation in the

following precise sense: if one conditions on all the hidden variables λ in the past light cone of the

two measurements, then the joint probabilities should factorize according to

p(x, y|a, b, λ) = p(x, a|λ)p(y, b|λ). (154)

Bell’s statistical locality criterion is precisely the condition that the theory in question should

have enough hidden variables to ensure that the factorization (154) is always possible. Based on

this statistical locality criterion, which should hold even in cases of ‘one-shot’ measurements in

which certain measurement outcomes can be assigned a probability of 1 [43], one can again derive

predictions that are violated by quantum theory, just as in the case of a deterministic hidden-

variables theory.

However, this statistical locality criterion is broader than the conditions Bell studied in his

earlier work on deterministic hidden-variables theories in [41]. Bell’s statistical locality condition

is so broad, in fact, that Bell used it to argue that textbook quantum theory is itself dynamically

nonlocal [35, 46].

To understand why, observe that textbook quantum theory is committed to the existence of
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measurement settings and definite measurement outcomes that end up behaving precisely as a

(highly incomplete) set of stochastically evolving hidden variables. In other words, although text-

book quantum theory is not a deterministic hidden-variables theory, it is, in fact, a stochastic

hidden-variables theory.

The stochastic-quantum correspondence makes these commitments by textbook quantum the-

ory manifest. Indeed, one can regard textbook quantum theory as the insistence that for any

measurement set-up consisting of a subject system S, a measuring device D, and an environment

E , as laid out in Section XIII, the configurations of D are to be treated as hidden variables (that

is, as beables), whereas the configurations of S and E are to be regarded merely as emergeables.

This seemingly arbitrary division of the world into measuring devices, which truly have under-

lying configurations, and all other systems, which do not, leads directly to all the usual mysteries

about the measurement process according to textbook quantum theory. What, in the end, deter-

mines whether a given system counts as a measuring device, and therefore merits having underlying

configurations?

More relevant to the present discussion is that because textbook quantum theory includes

stochastic hidden variables for measuring devices, and because those stochastic hidden variables are

insufficient to ensure the factorization property (154), the nonlocality theorems that employ Bell’s

statistical locality criterion imply that textbook quantum theory is itself dynamically nonlocal.

Hence, there is no real cost to upgrading the configurations of S and E to being hidden variables

on an equal footing with the configurations of D. These additional hidden variables do not lead

to the factorization property (154) either, but they also do not lead to any trouble for the no-

communication theorem [47, 48], which precludes using quantum theory to send controllable signals

faster than light.

The main conclusion of this analysis is that if one takes Bell’s statistical locality criterion

seriously, then textbook quantum theory is already dynamically nonlocal, so adding some additional

hidden variables to the theory will not ultimately make that dynamical nonlocality any worse. If one

instead disputes Bell’s statistical locality criterion, then it cannot be used to argue that the picture

of quantum theory presented in this paper is dynamically nonlocal. Either way, the approach

taken toward quantum theory in this paper is no more or less dynamically nonlocal than textbook

quantum theory already is.

A number of other important no-go theorems have been proved over the years, like von Neu-

mann’s early no-go theorem [9], the Kochen-Specker theorem [49], the Pusey-Barrett-Rudolph

theorem [50], and Myrvold’s no-go theorem [51]. These theorems either assume that all observ-

ables are true random variables (that is, beables) that exist at the level of the given system’s

configuration space, or they assume that measurements are passive operations that merely reveal

pre-existing values of observables without altering the behavior of measured systems in the process,

or they assume the existence of additional probability formulas. Because the picture of quantum

theory introduced in this paper refrains from making any of these assumptions, it is consistent

with these theorems.
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XIX. DISCUSSION

This paper has shown that one can reconstruct the mathematical formalism and predictions of

quantum theory using simpler, more physically transparent axioms than the standard Dirac-von

Neumann axioms. Rather than postulating Hilbert spaces and their ingredients from the begin-

ning, one instead posits a physical model based on classical kinematics and generically indivisible

stochastic dynamics.

This new axiomatic approach naturally suggests a new interpretation of quantum theory

grounded in the theory of stochastic processes. According to this highly adaptable interpretation,

which one could naturally call the ‘indivisible interpretation’ of quantum theory, systems have

underlying physical configurations in configuration spaces at all times, and their dynamics is no

more or less nonlocal than the dynamics of textbook quantum theory.

From this perspective, density matrices, wave functions, and other appurtenances of Hilbert

spaces, while highly useful, are merely gauge variables and should not be assigned direct physical

meanings or treated as though they directly represent physical objects, any more than a Lagrangian

or a Hamilton’s principal function directly describe physical objects. Superposition is then not a

literal smearing of physical objects, but is merely a mathematical artifact of catching a system in

the middle of an indivisible stochastic process, as represented using a Hilbert-space formulation and

wave functions. Moreover, from this standpoint, ‘canonical quantization’ need not be regarded as

the promotion of classical observables to noncommutative operators by fiat, but can be implemented

(when mathematically feasible) simply by generalizing a classical system’s dynamics from being

deterministic to being stochastic, with all the exotic features of quantum theory then emerging

automatically.

Because the indivisible interpretation invokes hidden variables in the form of underlying physical

configurations, this approach to quantum theory shares some features with the de Broglie-Bohm

formulation, or Bohmian mechanics [52–54]. However, in contrast to the indivisible interpretation,

Bohmian mechanics employs deterministic dynamics, and features a guiding equation that funda-

mentally breaks Lorentz invariance by singling out a preferred foliation of spacetime into spacelike

hypersurfaces. The indivisible interpretation instead takes seriously what experiments strongly

suggest—that the dynamics of quantum theory is indeterministic.

In contrast with the Everett interpretation [55, 56], the indivisible interpretation assumes that

quantum systems, like classical systems, have definite configurations in configuration spaces, and

does not attempt to derive probability from non-probabilistic assumptions or grapple with funda-

mental aspects of personal identity in a universe continuously branching into large numbers of par-

allel worlds. The approach in this paper is therefore more modest, metaphysically speaking, than

the Everett interpretation. Neither the indivisible interpretation nor the Everett interpretation

satisfies the statistical locality criterion described in Section XVIII, but the Everett interpretation

arguably exhibits a different notion of dynamical locality at a level of description that transcends

its individual world-branches [57]. However, because each individual world-branch looks no more

or less nonlocal than the world according to textbook quantum theory or the indivisible interpre-

tation, it is not clear what concrete benefits the Everett interpretation’s dynamical locality truly



37

provide.

Unlike stochastic-collapse theories [58, 59], the indivisible interpretation does not entail any

fundamental violations of unitarity, nor does it require introducing any new constants of nature to

specify dynamical-collapse rates.

The indivisible interpretation shares some features with the modal interpretations [60–62], in-

cluding an insistence that systems always have definite configurations of some kind at every moment

in time, while assigning at least some forms of probability a law-like, objective role. In particular,

like the minimal modal interpretation [63], the indivisible interpretation uses conditional proba-

bilities in a central way. One difference between the indivisible interpretation and most of the

modal interpretations, however, is the insistence by the indivisible interpretation that the definite

configuration of a given system is an element of a classical-looking configuration space, rather

than corresponding more abstractly to features of a Hilbert space. The indivisible interpretation

also avoids some of the ontological instabilities that are a serious challenge for most of the modal

interpretations [64].

Looking forward, it would be interesting to see what implications the stochastic-quantum cor-

respondence could have for both phenomenological stochastic systems, like those in biology or

finance, as well as for future work in fundamental physics, like quantum gravity.

More broadly, by recasting the Hilbert-space formulation of quantum theory as merely a con-

venient way to represent stochastic processes, one opens the door to searching for totally different

representations that might look nothing at all like Hilbert spaces and that could allow for the

construction of more general kinds of stochastic processes. Perhaps one could even find a way to

generalize beyond stochastic processes altogether.
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