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Abstract

We consider two ways one might use algorithmic randomness to char-
acterize a probabilistic law. The first is a generative chance⋆ law. Such
laws involve a nonstandard notion of chance. The second is a probabilistic⋆

constraining law. Such laws impose relative frequency and randomness
constraints that every physically possible world must satisfy. While each
notion has virtues, we argue that the latter has advantages over the former.
It supports a unified governing account of non-Humean laws and provides
independently motivated solutions to issues in the Humean best-system
account. On both notions, we have a much tighter connection between
probabilistic laws and their corresponding sets of possible worlds. Certain
histories permitted by traditional probabilistic laws are ruled out as phys-
ically impossible. As a result, such laws avoid one variety of empirical
underdetermination, but the approach reveals other varieties of underde-
termination that are typically overlooked.
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1 Introduction

Probabilistic laws, as they are usually understood, involve a variety of under-
determination. This is illustrated by a simple example.

Consider repeated tosses of a coin that produce an infinite ω-sequence of
results ⟨r1, r2, . . .⟩, where ri is the result of the ith coin toss. Each such possible
sequence of tosses gives the history of events of a possible world. LetΩL be the
set of all such worlds that accord with a law L.

Now consider the probabilistic law L:

L: Each element in the ω-sequence of coin tosses ⟨r1, r2, . . .⟩ is determined inde-
pendently and with an unbiased probability of heads and tails.

One might think of L as descriptive of a fundamentally random process, some-
thing like starting with a sequence of spin-1/2 particles each in a eigenstate of
z-spin, then measuring their x-spins in turn.

As probabilistic laws are typically understood, ΩL is the set of all ω-
sequences. That is, L does not rule out any world. A world compatible with L
might exhibit any limiting relative frequency or no limiting relative frequency
at all. As a result, even the full history of a world will fail to determine L in an
continuous cardinality of cases.

And since ΩL is compatible with every probabilistic law with heads and
tails as possible outcomes with positive probability on each toss, even the full
set of worlds compatible with L does nothing to determine L over any other
probabilistic law.

This sort of underdetermination is closely related to a corresponding sort of
empirical coherence.1 A physical law is empirically coherent, in the sense we
are interested in here, only if it is always in principle possible for one to have
empirical support for the law if the law is in fact true.2 If a law is empirically
incoherent, then it may be impossible to learn that the law is true with even
complete evidence. The law L is empirically incoherent in this sense as there
are ω-sequences that might occur if L is true that would provide no empirical
evidence whatsoever for accepting L. In such worlds one would never have
any empirical support for accepting the correct probabilistic law even with full
evidence. Indeed, since worlds compatible with L might exhibit any limiting
relative frequency, there is a continuous cardinality of such worlds.

One might get a tighter fit between probabilistic laws and empirical evidence
by appealing to a stronger conception of probability and a correspondingly
stronger variety of probabilistic laws. Consider the law L⋆:

1See Barrett (1996), (1999) and (2020) for a presentation and discussions of empirical coherence.
2Throughout this paper unless specified otherwise, when we say “L is the true law” or “the

law L is true,” we mean not just L is true but also L is the law. This is compatible with the non-
Humean perspective where laws govern and the Humean perspective where laws form the optimal
description of the mosaic.
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Figure 1: ΩL, the set of worlds compatible with law L, is the set of all ω-
sequences of coin toss results. ΩL⋆ , the set of worlds compatible with law L⋆,
is a proper subset of ΩL. All members of ΩL⋆ exhibit the random pattern and
relative frequencies stipulated by L⋆. ML, the relative complement ofΩL⋆ inΩL,
is the set of ‘maverick worlds,’ i.e. those that are usually regarded as compatible
with L but lack the random pattern or relative frequencies.

L⋆: The ω-sequence of coin tosses ⟨r1, r2, . . .⟩ is random with unbiased relative
frequencies of heads and tails.

Here being random or not is a property of the full ω-sequence. It remains then
to say what it might mean for a sequence to be random.

The notions of randomness we will consider here are algorithmic. They are
defined in terms of statistical tests that determine whether a full ω-sequence
exhibits any specifiable pattern. What matters at present is that each sequence
will either pass or fail the test for being random.

While L is compatible with all ω-sequences of results, L⋆ is not. Let ΩL⋆

be the set of all worlds that accord with the law L⋆. All worlds in ΩL⋆ exhibit
the random unbiased sequences stipulated by L⋆ and hence, unlike ΩL, is a
proper subset of the set of all possible ω-sequences. Specifically, ΩL⋆ contains
no maverick worlds, worlds where the results exhibit a specifiable pattern or fail
to exhibit the right relative frequencies or fail to exhibit any relative frequencies
at all. (See Figure 1.)

If L⋆ is true, then any physically possible world fully determines L⋆. Fur-
ther, no special probabilistic background assumptions or priors regarding what
world one inhabits are required for successful inquiry.3 A non-dogmatic in-
quirer in any physically possible world might determine the truth of L⋆ by
simply conditioning on the results of coin tosses. Indeed, L⋆ is empirically
coherent in the strong sense that, with complete evidence, one will surely
learn it up to an equivalence class of computationally indistinguishable laws,
something we will discuss later. A probabilistic law like L⋆ is much like a

3Both the Principle Principle and Cournot’s Principle are sometimes used for this purpose. See
Diaconis and Skyrms (2018, 66–7) for a brief discussion of the latter. We return to this point in §5.
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deterministic law in that the law is fully determined by the evidence.
In the present paper, we consider how one might understand a ⋆-law like

L⋆ as a generative chance⋆ law or as a probabilistic⋆ constraining law. We will then
discuss the costs and benefits of such an approach. While the two notions are
closely related, we will argue that thinking of L⋆ as a probabilistic⋆ constraining
law that governs the full sequence of coin-tosses has a number of salient virtues.
They are relevant to discussions about the metaphysics of laws. As we explain
in §4, the notion of a probabilistic⋆ constraining law removes a major obstacle
for developing a unified non-Humean account of governing laws, according to
which laws govern by constraining physical possibilities. Such a notion also
provides independently motivated solutions to the issues of the Big Bad Bug
and the definition of fit in the Humean best-system account of laws.

2 Randomness constraints

In order to characterize a⋆-law, one needs a test of randomness forω-sequences.
A random sequence of tosses with an unbiased coin should exhibit an even
relative frequency of heads and tails in the limit. But this, of course, is not
sufficient. The limiting relative frequency of an alternating sequence of heads
and tails will be 1/2 for heads and tails, but this sequence is clearly not random.

There are three further conditions that one should want an unbiased random
sequence to satisfy: a random sequence should be generic, patternless, and not
allow for the success of a fair betting strategy.4 These three conditions are closely
related. The core idea is that an ω-sequence should count as random only if
it exhibits no finitely specifiable regularity that characterizes the sequence and
might consequently be used to make predictions better than chance.

Algorithmic tests are helpful in characterizing what it might mean for an
infinite sequence to be patternless. As a first try, one might take an ω-sequence
to be patternless, and hence random, if and only if there is no finite-length
algorithm that produces the sequence.5 If there is such an algorithm for an
ω-sequence of coin-tosses, then the algorithm expresses a regularity, something
that one might even think of as a deterministic law, that characterizes the
sequence. But that an ω-sequence cannot be represented by a finite algorithm
is again not sufficient for it to be random in the sense we are interested in here.

Consider an infinite sequence that consists of a repeated three-block pattern

4See Li and Paul Vitányi (2008) and Dasgupta (2011) for introductions to algorithmic complexity
and randomness. See also Barrett and Huttegger (2021) for a discussion of these notions and how
they relate to each other. The present section follows part of that discussion. See Eagle (2021) for
an introduction to some of the philosophical issues involving randomness.

5One might think of an algorithm as a program in a Turing-computable language and the length
of the algorithm as the length of the program. Different languages will differ in the length they
assign to an abstract algorithm by no more than the length of a program that translates between
the two languages.
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of one thousand heads followed by one thousand tails followed by one thou-
sand random and unbiased heads and tails. The relative frequency of heads
and tails in the full sequence is unbiased. And since there are an infinite num-
ber of random blocks, such a sequence cannot be represented by a finite-length
algorithm. But the sequence is clearly not random. A good Bayesian inquirer
might quickly learn to bet on heads a thousand times, then bet on tails a thou-
sand times, then bet anything at all a thousand times, then repeat the pattern.
If so, she will enjoy unbounded wealth in the limit.

One way to put the problem is that there is no bound on the amount that
a finite initial segment of this sequence might be compressed. One might
write a very short program that takes advantage of the regularity of the blocks
of heads and tails, then write a program that outputs an initial segment by
alternating that short routine with a routine that just lists each random block. In
this way, one might eventually shorten the algorithmic representation of finite
initial segments of the sequence by more than any constant c. This observation
provides the key idea behind Martin-Löf randomness.

An ω-sequence is Martin-Löf random if and only if there is a constant c
such that all finite initial segments are c-incompressible by a prefix-free Turing
machine.6 This definition also satisfies the two other desiderata for a suitable
notion of randomness. If a sequence is Martin-Löf random, then there is no
fair betting strategy that generates unbounded wealth. And since measure
one of infinite-length sequences are Martin-Löf random in unbiased Lebesgue
measure, it meshes well with the intuition that random sequences are generic.

One might also define what it means for a sequence to be Martin-Löf random
by considering the set of statistical tests that such a sequence will pass. A
Martin-Löf test is a sequence {Un}n∈ω of uniformly Σ0

1 classes such that µ(Un) ≤
2−n for all n, where µ is the unbiased Lebesgue measure over the sequences.
Being uniformly Σ0

1 means that there is a single constructive specification of the
sequence of classes. A constructive specification is one that can be represented
by a ordinary algorithm.7 The idea is that each sequence {Un}n∈ω of uniformly
Σ0

1 classes corresponds to a way that a sequence might be special and thus fail
an associated statistical test of randomness. A sequence passes a particular
Martin-Löf test if it is not special in the specified sense.

Let 2ω be the set of allω-length sequences (infinite-length sequences indexed
by ω). A class C ⊂ 2ω is Martin-Löf null if there is a Martin-Löf test{Un}n∈ω such
that C ⊆

⋂
n Un. A sequence S ∈ 2ω is Martin-Löf random if and only if {S} is

not Martin-Löf null. That is, a sequence S is Martin-Löf random if and only
if it passes every Martin-Löf test. And again, a sequence has this property

6An initial segment is c-incompressible if and only if it is not representable by an algorithm that
is c shorter than the initial segment. A prefix-free Turing machine is a universal Turing machine that
is self-delimiting and hence can read its input in one direction without knowing what, if anything,
comes next. Such a machine provides an even playing field. See Li and Paul Vitányi (2008).

7See Barrett and Huttegger (2021) for further details.
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if and only if there is a constant c such that all finite initial segments are c-
incompressible by a prefix-free Turing machine.

One might use the notion of Martin-Löf randomness to specify the law L⋆

as a constraint on the set of physically possible worlds:

L⋆ML: The ω-sequence of coin tosses ⟨r1, r2, . . .⟩ is Martin-Löf random with unbi-
ased relative frequencies of heads and tails.

Here all of the worlds in ΩL⋆ML are random with well-defined unbiased relative
frequencies. As a result, a non-dogmatic inquirer will surely infer unbiased
relative frequencies in the limit. And inasmuch as all initial segments of her
data will be c-incompressible, she will have as good of evidence as possible that
the data are patternless and are hence randomly distributed.8

3 Alternative algorithmic notions

Martin-Löf randomness is not the only way that one might characterize a prob-
abilistic coin-toss law. There are other algorithmic notions of randomness to
choose from. Schnorr randomness is a closely-related notion with many of the
same virtues.

A Schnorr test is a Martin-Löf test where the measures µ(Un) are themselves
uniformly computable. A class C ⊂ 2ω is Schnorr null if there is a Schnorr test
{Un}n∈ω such that C ⊆

⋂
n Un. And a sequence S ∈ 2ω is Schnorr random if and

only if {S} is not Schnorr null.
Schnorr randomness has similar virtues to Martin-Löf randomness. Initial

segments are patternless in a strong sense, there is a natural sense in which
there is no fair betting strategy, and measure one of infinite-length sequences,
including all those that are Martin-Löf random, are Schnorr random. (See
Figure 2.) And as with Martin-Löf randomness, one might use the notion of
Schnorr randomness to specify a probabilistic constraining law:

L⋆S : The ω-sequence of coin tosses ⟨r1, r2, . . .⟩ is Schnorr random with unbiased
relative frequencies of heads and tails.

One might also consider an associated notion of chance here as well. A chance⋆S
process behaves just like an ordinary chance process except that it can never
produce an infinite sequence that fails to be Schnorr random with well-defined
relative frequencies.

8A probabilistic⋆ law need not presume a fundamental direction of time. In order to determine
an initial segment, the definition of Martin-Löf randomness seems to presuppose an initial time
and a temporal direction. However, one can generalize the notion by requiring that the ordered-
sequence of coin tosses be Martin-Löf random for any specified temporal direction and for any toss
one regards as the “initial” toss.
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Figure 2: L⋆S , which is formulated with Schnorr randomness, is compatible
with more worlds than L⋆ML, which employs Martin-Löf randomness. However,
the two are empirically indistinguishable, if one is limited to Turing-strength
computation.

While Martin-Löf randomness provides a particularly natural notion of
randomness, Schnorr randomness also has conceptual virtues.9 So there is a
choice to make, but it is arguably a choice without empirical consequences.

Since there are sequences that are Schnorr random but not Martin-Löf ran-
dom, L⋆ML and L⋆S are different laws. That said, they are in a strong sense
empirically equivalent since there is no effective procedure that would deter-
mine whether a particular sequence is Martin-Löf random or Schnorr random
but not Martin-Löf random.10 Hence if one is limited to Turing-strength com-
putation, one would never be able to distinguish between L⋆ML and L⋆S no matter
what empirical evidence one had.

The upshot is that moving from a standard probabilistic law to a probabilis-
tic constraining law eliminates one variety of empirical underdetermination,
but it reveals two others. First, insofar as one expects a sequence of coin tosses
governed by a traditional probabilistic law L to be such that one can detect no
discernible pattern, one should expect law L⋆ to be empirically indistinguish-
able from L. And insofar as one is limited to Turing-strength computations, one
will be unable to distinguish between different versions of L⋆ like L⋆ML and L⋆S .
Since Martin-Löf randomness has the sort of properties we want and as it is ar-
guably the standard algorithmic notion (Dasgupta 2011), we shall understand
L⋆ as L⋆ML.

9See Downey and Griffiths (2002) for details regarding the properties of Schnorr randomness
and Downey and Hirschfeldt (2010) for a description and comparison of Martin-Löf and Schnorr
randomness.

10See Barrett and Huttegger (2021) for a proof. The notion of effective procedure here, as
elsewhere in the paper when not explicitly stipulated to be otherwise, is the standard Church-
Turing one.
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4 Probabilities⋆, chances⋆, and laws

What kind of physical law is L⋆? And how does it govern the world? We
suggest that one might think of L⋆ as a generative chance⋆ law or as a probabilistic⋆

constraining law. We will start with the first.
As a generative chance⋆ law, L⋆ tells us that each toss is generated by unbiased

chances⋆, where a chance⋆ process behaves just like an ordinary chance process
except that it can never produce an infinite sequence that fails to be Martin-Löf
random or fails to exhibit well-defined relative frequencies.11 As a result, a
chance⋆ process involves a subtle violation of independence. The sequence of
tosses will pass every finitely specifiable test for statistical independence, but
since the full sequence must exhibit the property of being Martin-Löf random
with unbiased relative frequencies, a chance⋆ process is holistically constrained.
The constraint is not felt on any finite set of tosses, nor is it discoverable by
effective means, but it does require that a relationship hold between the full
sequence of tosses that is generated by the process in the limit. This interde-
pendence between outcomes may be incompatible with the usual intuitions
behind wanting a generative law. It may also be incompatible with how causal
explanation works more generally.

Given this, L⋆ is more naturally regarded as a law that governs by constrain-
ing the entire history of the world—in this case, the fullω-sequence of outcomes.
It tells us which sequences of outcomes are physically possible, namely those
that satisfy the frequency constraint and the randomness constraint imposed
by the law. This understanding of probabilistic laws and their governance also
meshes well with Chen and Goldstein’s (2022) minimal primitivism account
(MinP), according to which laws are certain primitive facts that govern the
world by constraining the physical possibilities of the entire spacetime and its
contents.12

Understood this way, L⋆ addresses problems encountered by both non-
Humean and Humean accounts of laws. We will start with the former.

On non-Humean governing accounts of laws, there is a puzzle concerning
11Alternatively, one might consider a similar algorithmic notion of chance but without requiring

there be well-defined relative frequencies. Here we are assuming well-defined relative frequencies
so that an agent might infer the law given full empirical evidence by conditioning on the results of
coin tosses as she goes. The cost of this further constraint is modest since we are already requiring
the full sequence to be Martin-Löf random.

12Three notes about the literature. (1) The present account fleshes out one of the interpretive
options of probabilistic laws discussed by Chen and Goldstein (2022, §3.3.3, Option 4). (2) In one
respect, the present account is similar to John T. Roberts’s nomic frequentism (2009), as they both
employ frequency constraints. However, Roberts does not appeal to algorithmic randomness. On
nomic frequentism, non-random sequences (such as the alternating heads-tails sequence) are still
physically possible. Inasmuch as any non-random sequence is regarded as evidence against the
probabilistic law and in favor of a deterministic law, it would be better to exclude such sequences
from physical possibilities. (3) Adlam (2022) presents an account of laws of nature as constraints
that is similar to Chen and Goldstein (2022) and contains a helpful discussion of Roberts’s nomic
frequentism.
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precisely how probabilistic laws govern. According to the standard view,
probabilistic laws do not rule out any world. Instead, a probabilistic law such
as L merely assigns some number between zero and one to every (measurable)
subsets in the space of all ω-sequences. This raises a puzzle: what do these
numbers between zero and one represent in physical reality?

Some non-Humeans appeal to gradable notions such as "propensities" (Maudlin
2007, p.20) or "probabilities of necessitation" (Armstrong 1983, p.172). Suppose
a probabilistic law assigns a 0.2 probability to the next outcome being heads.
On the propensities view, the chance setup has a 0.2 propensity to bring about
a heads-outcome in the next toss. On the probabilities of necessitation view,
the current state of affairs necessitates the state of affairs of a heads-outcome
to 0.2 probability. But while one might make sense of non-gradable notions
of physical possibility and impossibility, gradable notions such as propensities
and degrees of necessitation are less clear. This seems undesirable.13

In contrast, probabilistic laws, such as L⋆, can be viewed as a special class
of constraining laws. They constrain what is physically possible by ruling
out certain sequences of outcomes, namely the maverick worlds. A sequence
is physically impossible just in case it fails either the frequency constraint or
the randomness constraint imposed by the law. This allows us to do away
with gradable notions such as propensities or probabilities of necessitation
altogether. In their place, we require only non-gradable notions of physical
possibilities and impossibilities.

Consider MinP as a non-Humean example. We can now employ a single
primitive relation, namely constraining, to understand how both probabilistic
laws and non-probabilistic laws relate to the world. Both types of laws govern
by constraining what is physically possible, thereby ruling out what is physi-
cally impossible. The way that L⋆ constrains the world is not so different from
that of F = ma. L⋆ constrains the physical possibilities to be all and only the
non-maverick worlds. F = ma constrains the physical possibilities to be all and
only the solutions of F = ma. In this way, L⋆ removes a major obstacle to a
unified understanding of probabilistic and non-probabilistic laws.

Humeans may also find it useful to adopt L⋆ for the sort of work we have
been discussing. First, it is relevant to the issue of the Big Bad Bug (Lewis 1986,
pp.xiv-xvi). Lewis notices that the original version of the Principal Principle and
Humean supervenience lead to a contradiction. There are certain histories of the
Humean mosaic, called undermining histories, that are assigned, according to the
Principal Principle, non-zero probability, conditionalized on some probabilistic
theory T being the best system. However, they are also assigned, according
to Humean supervenience, zero probability, because T would not be the best
system had any of its undermining histories been actual.

Now, consider the sort of history that would count as undermining. An

13See Chen and Goldstein (2022, sections 2 and 3.3.3) for discussions.
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undermining history either has the wrong limiting frequencies or no limiting
frequencies or exhibit patterns that can be summarized by a simpler system,
such as a deterministic law in the case of the alternating heads-tails sequence.
Undermining histories, then, are exactly the histories of maverick worlds, as
they lack the frequency or randomness patterns exemplified by typical se-
quences of the standard probabilistic law.

Understanding probabilistic laws as ⋆-laws rules out maverick worlds as
physically impossible. If maverick worlds are physically impossible, then there
are no physically possible undermining histories that can be used to derive the
contradiction, and the Big Bad Bug is eliminated. Inasmuch as restricting to ⋆-
laws is also motivated by considerations of underdetermination and empirical
coherence, a Humean may find this solution particularly natural.

While L⋆ is naturally interpreted as a constraining law that is well-suited for
non-Humean governing accounts such as MinP, Humeans need not interpret
the constraint as something that exists over and above the mosaic. They are
free to translate the present account into their preferred language by regarding
L⋆ as a new type of Humean best-system law. They might then use it to define
a new notion of Humean physical possibilities (ΩL⋆

Humean) and regard both as
supervenient on the Humean mosaic.14

Second, Humeans who understand probabilistic laws as ⋆-laws can also
avoid appealing to fit as a criterion in the best-system analysis of probabilis-
tic laws, which allows them to bypass difficulties with how to characterize
this notion.15 Given an ω-sequence, there is much underdetermination among
probabilistic laws such as L, and one needs something like fit to choose the
winning best system. This is because the standard way of understanding in-
formativeness as the quantity of worlds being excluded does not distinguish
among probabilistic laws like L. In contrast, there is significantly less under-
determination among probabilistic laws like L⋆. If we consider a spectrum of
different probabilistic statements like L⋆ that differ, say, in their specifications
of the relative frequencies in the ω-sequence, then at most one of them is com-
patible with the ω-sequence, and thus at most one of them is an axiom in the
best system of that ω-sequence. The best system analysis of a probabilistic law,
such as L⋆, is much like that of a non-probabilistic law, such as F = G m1m2

r2 . If
we consider a spectrum of different versions of the Newtonian gravitational
law that differ in the value of the gravitational constant G, then at most one of
them is true of the mosaic, and thus at most one of them is an axiom of the best
system of the mosaic. Given any Humean mosaic, one needs criteria such as
simplicity and informativeness, but one does not need the statistical criterion

14Hoefer (2019, pp.156-158) suggests that, in his preferred solution to the Big Bad Bug, we should
conditionalize on the non-occurrence of an undermining history. Thinking of the probabilistic
law as L⋆ provides a principled reason, namely that the undermining histories are physically
impossible.

15For helpful discussions, see Elga (2004).
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of fit, to determine the best system (if there is one). Hence, the usual problems
associated with fit would not arise for such Humeans.16

5 Discussion

We have shown how a ⋆-law may be thought of as either a generative chance⋆

law or a probabilistic⋆ constraining law, where the notions of chance⋆ and
probability⋆ are subtly different from traditional chance or probability. Two
differences are particularly salient.

The first concerns independence. The results of coin tosses on L⋆ satisfy
every computable test for independence and will hence appear to be statistically
independent. One might say that the results are probabilistically⋆ independent.
But inasmuch as some sequences are impossible, there is also a sense in which
the results of tosses in this full ω-sequence are interdependent. To understand
L⋆ as a generative chance⋆ law, one would need to allow for a holistic causal
structure that guarantees random sequences with unbiased relative frequencies
in the limit. Depending on one’s commitments regarding causal explanation,
this may lead one to favor understanding L⋆ as a probabilistic⋆ constraining
law. If one does decide to gives up on a generative chance⋆ law, one is, as we
have just seen, left with a useful option for both proponents of governing-law
accounts and Humeans.

The second difference is that chance⋆ and probability⋆ depend on a choice of
a particular standard of algorithmic randomness. We saw this in the distinction
between Martin-Löf and Schnorr randomness. But if one is limited to Turing-
strength computations, there is no way to distinguish between L⋆ML and L⋆S on
the basis of empirical evidence alone. The result is a computational sort of
empirical underdetermination.17 Since as one can only learn a ⋆-law up to an
equivalence class of computationally indistinguishable laws, one might take
the law L⋆ to be any law in this class.

The possibility of ⋆-laws reveals a further variety of underdetermination.
Inasmuch as one expects the sequence of tosses one gets on a traditional prob-
abilistic law L to be patternless, one expects L to be computationally indis-
tinguishable from both L⋆ML and L⋆S . Of course, these varieties of empirical
underdetermination are not new, they have just gone unnoticed.

That said, ⋆-laws also help to eliminate some forms of empirical underde-
termination. If L⋆ is true as either a generative or constraining law, then if it is
among the laws that one takes seriously, then, unlike traditional probabilistic

16One might wonder that there is now an analogous problem of underdetermination associated
with the choice between, say, L⋆ML and L⋆S . Given this, do Humeans still need something like fit? It
is not exactly analogous. The choice between them is not a problem for an idealized observer with
the full sequence and sufficient computational power.

17See Barrett and Huttegger (2022) for a discussion of this point.
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laws but very much like deterministic laws like F = ma and F = G m1m2
r2 , one will

surely learn it on complete evidence in every physically possible world.
In contrast, if L is the true law, there will be a continuous cardinality of

maverick worlds such that, if one were to inhabit any of them, one could never
learn L from the results of the coin tosses. On the usual approach to thinking
about laws, one needs special background assumptions to overcome this diffi-
culty. Specifically, one needs to argue that inhabiting a maverick world of the
true law is sufficiently unlikely or atypical that one has rational justification for
ignoring the possibility.18 While such assumptions may be warranted given
one’s other commitments, they are not required for empirical coherence if one
restricts one’s hypotheses to ⋆-laws.

In summary, ⋆-laws provide a way of understanding probabilistic laws
as constraints on possible worlds. This helps to clarify how probabilistic laws
might govern. For non-Humeans, they provide a unified way of thinking about
laws as governing by constraints. And for Humeans, they provide a principled
way that they might ignore undermining histories. Specifically, the new notion
of probabilistic law provides a better and independently motivated way to deal
with the Big Bad Bug.

6 Conclusion

We have used algorithmic randomness to characterize two types of probabilistic
laws: a generative chance⋆ law, and a probabilistic⋆ constraining law. We have
argued that ⋆-laws provide a novel way of understanding probabilities and
chances, and help to address one variety of empirical underdetermination, but
they also reveal other varieties that have been underappreciated. For all we
know, our world might be characterized by a traditional probabilistic law or a
⋆-law.

In our view, the notion of a probabilistic⋆ constraining law has advantages
over that of a generative chance⋆ law. It meshes well with the holistic charac-
ter of the randomness and relative frequency constraints, directly supports a
unified governing account of non-Humean laws, and provides independently
motivated solutions to issues in the Humean best-system account. We suggest
that both notions are worthy of study and may lead to new ideas concerning
the nature of laws.

18Such an argument might appeal to background assumptions like the Principal Principle or
Cournot’s Principle. While a discussion of the status of such principles is a topic for another
occasion, note that in the present case every world is a maverick world according to a continuous
cardinality of traditional probabilistic laws. As a result, given sigma additivity, one needs to argue
that one is justified in simply assigning probability zero to almost all probabilistic laws since they
regard the actual world as a maverick world. This point should be uncontroversial, but it is worth
emphasizing.
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