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Abstract 

Bayesian approaches have long been a small minority group in scientific practice, but 

quickly acquired a high level of popularity since the 1990s. This paper shall describe and analyze 

this turn. I argue that the success of Bayesian approaches hinges on computational methods that 

make a class of models predictive that would otherwise lack practical relevance. Philosophically, 

however, this orientation toward prediction comes at a price. The new computational approaches 

change Bayesian rationality in an important way. Namely, they undercut the interpretation of 

priors, turning them from an expression of beliefs held prior to new evidence into an adjustable 

parameter that can be manipulated flexibly by computational machinery. Thus, in the case of 

Bayes, one can see a coevolution of computing technology, an exploratory–iterative mode of 

prediction, and the conception of rationality. 

 

Keywords: Bayes, computational modeling, Markov chain Monte Carlo, philosophy of 

statistics, prediction, rationality, scientific practice 

 

1. Introduction 

If statistics is viewed as a branch of mathematics, it has to be seen as a special branch 

distinguished by the ways in which it is linked to societal practices and to philosophical 

positions.1 Bayesian statistics is exemplary on both counts. Philosophers have discussed Bayesian 

                                                   
1 The history of probability casts light on how science and society, in mutual interrelation, developed ways 

to deal with uncertainties ranging from strategies in games to the prices of annuities. Whereas predicting 

the death of an individual might require divine foresight, estimating the death rate in a large population 
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statistics vigorously and elaborated Bayesianism as a philosophical position.2 Most significantly, 

Bayesian epistemology analyzes how one should deal with new data in a rational way—that is, 

the Bayesian standpoint lays claim to capture scientific rationality. Put simply, Bayes’ rule3 is 

taken as a (normative) principle that prescribes how one should update prior beliefs in the light of 

new evidence. The use of Bayesian approaches in scientific practice shows a remarkable career. 

Despite their philosophical prominence, they remained a small minority group in science—but 

only up to the 1990s when Bayesian methods quickly acquired a high level of popularity in the 

sciences as well. 

This paper shall describe and analyze this turn. I argue that the success of Bayesian 

approaches hinges on computational methods that make a class of models predictive that would 

otherwise lack practical relevance. Philosophically, however, this orientation toward prediction 

comes at a price. The new computational approaches change Bayesian rationality in an important 

way. Namely, they undercut the interpretation of priors, turning them from an expression of 

beliefs held prior to new evidence into an adjustable parameter that can be manipulated flexibly 

by computational machinery—a lubricant for exploratory iteration. Thus, in the case of Bayes, 

one can see a coevolution of computing technology, an exploratory–iterative mode of prediction, 

and the conception of rationality. 

Section 2 briefly introduces the rift in the philosophy and practice of statistics in which 

the Bayesian and the classical accounts were used, elaborated, and defended by different fields 

and disciplines—until the popularity of Bayesian methods unfolded in the 1990s. According to 

the prevailing stance in philosophy, the advantages in terms of rationality account for the 

upswing of Bayesian methods (section 3). Contrary to this view, I claim that it was the move to 

an iterative–exploratory mode of prediction—on the technological base of cheap and easily 

available computers—that drove this upswing. This claim is supported with an analysis of the 

                                                   
can get by with profane data. The historical and philosophical accounts by Daston (1988), Hacking 

(1990), or Porter (1995) cover the seventeenth to nineteenth centuries in admirably sophisticated ways. 
2 The Stanford Encyclopedia of Philosophy has entries on the philosophy of statistics (Romeijn, 2017) and 

a separate one on Bayesian epistemology (Talbott, 2016). Taken together, these provide a guide to the 

large body of philosophical literature on Bayesianism. 
3 This rule follows from the definition of conditional probabilities and is accepted unquestionably across 
all camps. 
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pivotal roles played by Markov chain Monte Carlo methods (section 4) together with software 

packages (section 5). The concluding section 6 gives an outlook on the pragmatic stance that has 

gained ground in philosophy of statistics over the last two decades. 

 

2. Bayes’ Popularity 

Before appreciating its growing popularity, I shall briefly and, as specialists will rightly 

bemoan, superficially describe the situation before it started. Bayes’ rule captures how to 

calculate with conditional probabilities. Let π(H) stand for the probability of a statement or 

hypothesis H, and π (H | D) for the conditional probability of H given D. Now, both H and D 

happen if (for the moment, think of a temporal order) D happens and then H happens given D, or 

equivalently, H happens and then D happens given H. In other signs: π(D) ⋅ π (H | D) = π(H) ⋅ 
π(D | H). Separating π (H | D) on the left side gives Bayes’ rule: 

 

(∗)  π (H | D) = π(H) ⋅ π(D | H) / π(D). 

 

It is named after Reverend Thomas Bayes (c. 1701–1761), a Presbyterian minister, 

philosopher, and statistician. Bayesianism starts out with a special interpretation of this rule. 

Consider you have some hypothesis H—for example, that it will rain tomorrow. You do not 

know for sure, so (in a Bayesian mood) the degree of your belief can be expressed as a 

probability, π(H). Now there arrives new evidence D—say, you stand up next morning and have 

a look at the sky. This should give you additional evidence and will change your (subjective) 

probability of rain on this day. Therefore, π(H) is also called the “prior” that will be updated. The 

updated probability, written πD(H), of your hypothesis given the data is also called the “posterior.” 

Which numerical value does it have? Bayesians take the position that updating needs to happen 

by conditionalization. The posterior is the conditional probability: πD(H) = π (H | D). In other 

words, equation (*) answers the question: The posterior is proportional to the (subjective) prior 

π(H) and to π(D | H), the so-called likelihood—that is, the probability of the data given your 

hypothesis (how likely the sky looks like it does in the morning given that it will rain). The term 

π(D) plays the role of a (normalizing) constant. 
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Bayesianism adopts (*), or a sophisticated variant of it, as a principle that should guide 

inferences. In the entry to the Stanford Encyclopedia, to present a generic point of view,4 W. 

Talbott (2008) identifies the main features of Bayesian epistemology as the introduction of a 

formal apparatus for inductive logic that uses the laws of probability as coherence constraints on 

rational degrees of belief. In particular, it takes Bayes’ rule (a basic rule for conditional 

probabilities) as a norm for probabilistic inference, as a principle of conditionalization. “What 

unifies Bayesian epistemology is a conviction that conditionalizing . . . is rationally required in 

some important contexts—that is, that some sort of conditionalization principle is an important 

principle governing rational changes in degrees of belief.” Famous arguments from Bayesian 

epistemology, such as the Dutch book argument, set out to show that following Bayes’ principle 

is following a demand of rationality.5 

The classical camp of, among others, Fisher, Neyman, and Pearson—despite internal 

differences6—criticized mainly two points: First, Bayesian estimations hinge on subjective priors 

and are therefore not robust. Any robust results would have to take into account the variability of 

priors—that is, other probability measures that do not correspond to the actual beliefs.7 Statistical 

inference should be geared toward the properties of the estimation (such as robustness) rather 

than rationality according to a system of beliefs. Second, the Bayesian assumptions create high 

obstacles for practice. Calculating with (∗) does not only require the specification of all 

probabilities involved: the probability of a hypothesis π(H), the probability of the data π(D) 

(often expressed via conditioning on different possibilities), and the conditional probability π(D | 

H). Crucially, their numerical values have to be computed. In a technical sense, the calculation of 

                                                   
4 A sample of standard accounts from both sides of the Bayesian versus classical divide is Earman (1992), 
Howson and Urbach (1993), and Mayo and Spanos (2009). Hacking (2001) provides an accessible 
introduction. I openly admit that the picture I paint does not match the complexity of extant terminology 
in which subjectivism is pitted against objectivism, frequentist accounts of probability against subjective 
ones, and so on. 
5 Trying to keep things simple, I have glossed over internal differentiations of Bayesians. Neal’s (1998) 
verdict that “there is (in theory) just one correct prior” might be controversial among adherents of 
Bayesianism. Corfield and Williamson (2001), for instance, discern subjective priors from objective 
(pluralist, logical, empirical) ones that, however, add further requirements for being rational while 
maintaining the principle. 
6 On these differences, see, for instance, Lenhard (2006). 
7 Bayes, for instance, had presented an example in which he did not know about priors and assumed equal 
distribution among possibilities. Neyman considered this step illegitimate. 
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posterior probabilities requires an evaluation of very difficult integrals. It is preferable, according 

to the classical camp, to avoid specification and computation of this kind. Classical statistical 

modeling aimed to do without priors—such as the famous “null hypothesis” in significance tests 

that allows researchers to be agnostic.8 

The rift between the Bayesian and classical camps was reflected by a divide of disciplines. 

While economics, and—of course—philosophy have been (and still are) dominated by 

Bayesianism, in most natural sciences, it is classical methods that have a stronger footing, 

although this is certainly not a clean divide. This brought philosophy of science into an odd 

position. Philosophers worked out a Bayesian normative account, whereas large parts of the 

sciences apparently did not care, but rather continued to prefer classical approaches. Here is a 

typical opinion from a Bayesian statistician reasoning about why the uptake in scientific practice 

was so slow. 

Bayesians were still a small and beleaguered band of a hundred or more in the early 

1980s. Computations took forever, so most researchers were still limited to “toy” 

problems and trivialities. Models were not complex enough. The title of a meeting held in 

1982, “Practical Bayesian Statistics,” was a laughable oxymoron. One of Lindley’s 

students, A. Philip Dawid of University College London, organized the session but 

admitted that “Bayesian computation of any complexity was still essentially impossible 

(…). Whatever its philosophical credentials, a common and valid criticism of 

Bayesianism in those days was its sheer impracticability.” (McGrayne, 2011, pp. 213–

214, quote from interview)9 

However, the divide changed in a remarkably swift way. Figure 1 presents some bibliometric 

evidence. The data are from the Web of Science and count papers appearing in one of five major 

statistics journals: The Journal of the Royal Statistical Society B, Annals of Statistics, Journal of 

the American Statistical Society, Biometrika, and Biometrics. Each point shows the percentage of 

papers (in one particular year) whose topic contains “Bayes.” All five journals come from the 

classical side that dominated mathematical statistics. The data confirm the outsider role of 

                                                   
8 Bayesians, in turn, would typically object that such agnosticism ignores relevant knowledge that actually 
is available. 
9 McGrayne’s book is about the eventual success of Bayesian approaches, so the quote does not reflect a 
bias against Bayesianism. 
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Bayesian methods in professional scientific statistics, with a consistent share of only 2–4% up to 

the early 1990s. Then, however, there is a rapid rise to a level of about 20%.10  

 

 

Figure 1. Axes are time (years) and percentage. Ten data points are displayed, one every fifth year, 1970 

to 2015. Straight lines are added connecting these points. 

 

This picture is conservative, because it displays (at least three) very traditional journals that will 

surely not over-represent papers inclined toward Bayes. Newly established journals tend to show 

an even higher share, but cannot provide reference points for the mid-twentieth century.11 

Bayesian methods eked out an existence as a small minority group in the sciences and 

their statistical approaches—up to the early 1990s. After that, Bayesian methods developed 

quickly, indeed almost leapt up to become an intensely researched and widely used approach. 

Since then, the extent of literature on Bayesian methods in the sciences has grown rapidly. One 

can track this in many forms from journal papers and discussion statements to books and 

                                                   
10 This figure resembles the one included in chapter 4 on the rise of density functional methods. Both 
depict a 1990s turn. 
11There are also some areas of statistical work that are closely connected to Bayesian methodology. One 
example would be causal analysis and Bayesian nets, a field following the lead of Judea Pearl (cf. Pearl, 
1995; or Williamson, 2005). At present, it is a subfield of artificial intelligence and also philosophy of 
science. The flourishing of examples of this sort is not included in Figure 1 that is already dramatic 
enough to motivate my analysis. 
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encyclopedia articles. The (Bayesian inclined) statisticians Bradley Carlin and Thomas Louis 

(2000), for instance, note:  

An impressive expansion in the number of Bayesian journal articles, conference 

presentations, courses, seminars, and software packages has occurred in the four years 

since 1996 . . . Perhaps more importantly, Bayesian methods now find application in a 

large and expanding number of areas where just a short time ago their implementation and 

routine use would have seemed a laudable yet absurdly unrealistic goal. (p. xiii) 

Thus, I take it for granted that the uptake and use of Bayesian methods experienced a turn in the 

1990s, and we devote the remaining sections to analyzing this turn. 

 

3. Rationality or computation? 

The turn did not go unnoticed from the side of either Bayesian statisticians or 

philosophers. We shall complement the Carlin and Louis quote above with one taken from the 

philosophical side. In their volume on the foundations of Bayesianism, Corfield and Williamson 

(2001, p. 3) offer an outlook on the field: “Bayesianism has emerged from being thought of as a 

somewhat radical methodology—for enthusiasts rather than for research scientists—into a widely 

applied, practical discipline well-integrated into many of the sciences.” Scientists and 

philosophers agree unanimously that the turn happened. The next question is: Why did it happen? 

A common viewpoint holds that the main reason for the turn is the rationality of 

Bayesianism itself that finally became operational thanks to computational methods. Computer-

based methods rendered feasible the integrations (e.g., when calculating conditional probabilities 

in complex models) that Bayes’ rule requires; and, as a result, the rule’s rationality gained 

traction.12 As Corfield and Williamson (2001) put it (looking back on the 1990s), it is only 

recently that “computers have become powerful enough, and the algorithms efficient enough, to 

perform the integrations” (p. 4). Although this explanation is plausible, it is crucially incomplete 

and can therefore easily mislead. 

The point is that simply using computational tools does not lead straightforwardly to 

obtaining those results that had been too difficult to achieve before. The tools are not strictly 

                                                   
12 Zellner (1988) and Howson and Urbach (1993, 1st ed. 1989) argue for the superior rationality of 
Bayesianism independently of computational methods. Hence, they cannot account for the timeline of the 
upswing (except that it had to happen sometime). 
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neutral. Which mathematical tools are used and how they are used might influence the modeling 

process. This is exactly my key point. The analysis shows that, thanks to new computational 

tools, Bayesian methods changed into a new, exploratory–iterative mode of prediction. 

Furthermore, I argue, this mode of prediction affects the very nature of Bayesian rationality. 

I am well aware that this claim is not easy to substantiate. It ascribes a significance to 

computational methods that has not always been apparent to practitioners. Early appraisals of the 

computer and its powers typically took it for granted that the machine would simply carry out 

logical or arithmetical operations and would not require any new perspective on how 

mathematical tools lead to predictions. For instance, the statistician Dennis Lindley, a leading 

advocate of Bayesianism over almost the entire second half of the twentieth century, had seen 

Bayes’ rule as an arithmetic recipe for producing inferences. He considered this procedure to be 

almost mechanical, given that the integrations could be made feasible (Lindley, 1965) Lindley 

did not see any particular interest in devising computational methods. The next generation of 

Bayesian-minded statisticians, however, saw things differently. The statistician A. F. M. Smith, a 

leading voice, argued in a sort of manifesto that it was efficient numerical integration procedures 

that led to the more widespread use of Bayesian methods (Smith, 1984). 

Even granted the importance of numerical procedures, it was hard to anticipate just how 

such procedures would change the method. Identifying the computational tools on which the 

Bayesian boom is built is straightforward. There is ample evidence in which statisticians write 

about what created the difference in the 1990s. In fact, there is a remarkable consensus on this 

point: It was the Markov chain Monte Carlo (MCMC) method that made the difference—and 

Smith himself provided a key paper. 

When Smith spoke at a workshop in Quebec in June 1989, he showed that Markov chain 

Monte Carlo could be applied to almost any statistical problem. It was a revelation. 

Bayesians went into “shock induced by the sheer breadth of the method.” By replacing 

integration with Markov chains, they could finally, after 250 years, calculate realistic 

priors and likelihood functions and do the difficult calculations needed to get posterior 

probabilities. (McGrayne, 2011, pp. 221–222)13 

                                                   
13 Similar quotes abound. We picked this quote from McGrayne’s book because of its atmospheric 
qualities. Here are two alternative quotes: “In fact, it may be argued that the main reason that the Bayesian 
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Thus, MCMC opened the door for Bayes to become practically relevant. There is agreement on 

this point. Now is where the difficult part begins. I shall analyze how MCMC affects the very 

rationale of Bayesianism. 

 

4. The Markov chain Monte Carlo revolution: Iteration and exploration 

This section bears the main thrust of the argument. Using Markov chain Monte Carlo 

(MCMC) methods, I argue, yields predictions in an iterative–exploratory mode and thus affects 

the rationale of Bayesian methods.  

 

integration and convergence 

I start with a brief summary of what MCMC is about. Although this part will be about 

integration in a technical mathematical sense, I shall keep it on a nonformal level. From the 

outset, MCMC combines Monte Carlo, which stands for iteratively sounding out mathematical 

terms, with Markov chains, a class of random processes. 

Monte Carlo strategies are based on the law of large numbers. This law states that the 

expected value of a random variable is approximated by the average of many random trials (that 

each follow the same probability distribution). In a casino such as the one in Monte Carlo, many 

people gather around a roulette table after a small series of identical outcomes happens—say 

three times “13.” Some think that the next trial is likely to be the number 13 again; others hold 

that a different number has to come now. Nonetheless, to the extent that the owner of the casino 

lets the roulette wheel operate as a (near perfect) generator of random outcomes, the law of large 

numbers will defy any superstitious beliefs and apply relentlessly: In the long run, the number 13 

will make up 1/37 of all numbers (0–36). 

                                                   
approach to statistics has gained ground compared to classical (frequentist) statistics is that MCMC 
methods have provided the computational tool that makes the approach feasible in practice” (Häggström, 
2002, p. 47). The probability theorist here agrees with statisticians: “A principal reason for the ongoing 
expansion in the Bayes and EB [empirical Bayes, jl] statistical presence is of course the corresponding 
expansion in readily-available computing power, and the simultaneous development in Markov chain 
Monte Carlo (MCMC) methods and software for harnessing it” (Carlin and Louis, 2000, p. xiii). 
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It is the simplicity of the example that makes Monte Carlo look trivial. Think of another 

example: A friend gives you a map of Norway—a country with a famously fractal-like 

coastline14—and asks how large is the area of Norway. In mathematical theory, integration 

provides the answer; in practice, however, integration can be carried out only for a narrow (and 

relatively simple) class of functional descriptions. Monte Carlo can help out—just hang the map 

on the wall, paint a big square around it, and throw darts at the wall. The number of darts that hit 

the map relative to the number of darts that hit the square approximates the area of the board 

relative to the square on the wall, which is easy to measure—just count. Of course, this finding 

hinges on two conditions,15 namely, that many darts are thrown and that they are distributed 

randomly across the entire square. For humans, it is hard to fulfill these conditions. But they are 

almost tailor-made for a computer. One can readily simulate the random procedure and iterate it 

millions of times—and thereby approximate the integral.16 Although Monte Carlo is almost 

tailor-made for the computer insofar as it transforms a problem of integration (an operation of 

calculus) into a problem of iteration, it is not immune to the curse of complexity. The simulated 

value—that is, the fraction of hits among all trials, converges only slowly toward the (unknown) 

integral. Even after a large number of iterations, the simulated value might not be very accurate, 

so that, despite the high speed of modern computers, Monte Carlo is, in many instances, 

ineffective. 

This is where the second component of MCMC comes into play. Markov chains are 

processes that move in a space according to rules of a certain type. For every state or location17 in 

this space, there is a list of what the possible locations are that the process can reach with the next 

step, plus a probability distribution according to which the next-step location from this list will be 

chosen. In other words, the next step of the process depends only on its present location (and the 

random choice to be made in this step) and not on the history of the process. One can imagine 

that at each location, the rule for where to possibly move is written on a signpost—such as “with 

probability x go one step north, with probability 1-x jump hundred steps south—also called the 

                                                   
14 For a short discussion on the form, beauty, and creation of Norway, see Adams (1979). 
15 A third condition—that this should be carried out in your friend’s apartment rather than your own—is of 
merely aesthetical concern and mathematically irrelevant. 
16 The term “evaluation of integral” more aptly describes the point than “numerical integration.”  
17 We use the notion of location that suggests a geographical picture. Using the term state would be less 
intuitive, but more apt to the generality of MCMC methods. 
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transition probability for each location. The rules might be complicated, but they never refer to 

where you come from (never state something like “if you are here for the third time, do . . .”). In 

other words, moving according to these rules does not require memory: Just execute the rules 

written on the signpost where you stand. Markov chains are often called random processes 

without memory. 

The basic theorem about Markov chains states that such a chain will converge to its 

stationary (equilibrium) distribution no matter where it started.18 In other words, in the long run, 

the process will visit each location in a certain fraction of all steps. Some locations are visited 

more often; others, only rarely—reflecting the equilibrium distribution. The astonishing and 

crucial observation is that this convergence happens very quickly. MCMC is based on this 

observation. The pieces come together for numerical integration in the following way: First, there 

is an unknown integral one can describe but not evaluate, such as the posteriori probabilities in 

Bayes’ rule. Assume one can refashion this integral as the stationary distribution of a Markov 

chain. Then the recipe is straightforward: Simulate the Markov chain for many steps (easy 

iteration for computers) until it is in equilibrium and record its value. Reiterate this many times 

(Monte Carlo). The average over all values obtained then approximates the (unknown) integral. 

The trick depends on two conditions: First, one must find a way to interpret an unknown integral 

as an (unknown) equilibrium distribution of a Markov chain. Second, the Markov chain must 

have reached its stationary distribution before one samples its value. The first condition sounds 

more difficult than it actually is, whereas the second condition sounds easy but is not. I shall 

discuss both conditions in turn. 

 

application: the MCMC trick 

The MCMC method was invented early on in the pioneering times following the creation 

of the digital computer. It goes back to the work of Nicholas Metropolis, Stanislaw Ulam, and 

others at Los Alamos and received a classical generalization by Hastings (1970). However, it 

took another twenty years before MCMC started to take off when examples became available that 

showed how powerful and flexible the method is—in particular, how doable it is to refashion 

                                                   
18 We greatly simplify matters in this discussion. Questions regarding how the space is defined or which 
technical conditions have to be satisfied are not important for the illustrative task we are pursuing here. 
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complicated integrals as stationary distributions of Markov chains. One famous instance is the 

Ising model that describes how spins (up or down) on a grid interact with their neighbors. The 

model is famous not only because the simple interaction can lead to phase transitions and other 

surprising behavior but also because the problem of determining its equilibrium proved to be 

utterly unsolvable by analytical means and had become a mathematical monument of 

intractability. It turned out that MCMC could approximate this distribution with a surprisingly 

moderate effort in modeling as well as computation.19 

The Ising model is not a singular case. Mathematicians and statisticians quickly realized 

that the wide applicability of MCMC to long-standing problems of integration changed the game 

regarding computational tractability. Restrictions to the mathematically convenient could be 

lowered substantially, and “from now on, we can compare our data with the model that we 

actually want to use . . . This is surely a revolution” (Clifford, 1993, p. 53). Many actors agree 

with seeing this as a revolution. Diaconis (2009), for instance, provides an insightful treatise on 

“The Markov Chain Monte Carlo Revolution.”20 Part of his treatise is worries about the speed of 

convergence (our second condition) that we shall discuss below. Put plainly, the revolution 

consisted in how far the limits of mathematically—and statistically—tractable models have been  

extended. 

On the side of the practitioner, the main benefit is flexibility in modeling. Bayes’ rule 

became practical for a wide array of models. Although it required the evaluation of posteriors, 

thanks to MCMC, they lost their horror. A wide array of Bayesian applications followed the 

availability of MCMC; computational approaches in fields such as statistical physics, molecular 

simulation, bioinformatics, or dynamic system analysis started to flourish. Statistician Jeff Gill 

called the combination of Bayesianism and MCMC “arguably the most powerful mechanism ever 

created for processing data and knowledge” (Gill, 2002, p. 332).21 

                                                   
19 Persi Diaconis, a leading expert on MCMC, describes the jaw-dropping surprise when he first saw how 
MCMC solved this task (2009). R. I. G. Hughes (1999) gives a good account of the Ising model in the 
context of modeling and simulation. 
20 Titterington (2004, p. 192) makes a case about a “Bayesian computational revolution”; Smith and 
Roberts (1993, p. 4) make a similar case. 
21 MCMC is not necessarily Bayesian, but protagonists of Bayesian approaches were often developing 
MCMC methods to make Bayes’ rule more relevant to practice. 
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One prominent example from the growing set of MCMC variants is the “Gibbs sampler” 

for treating inferences involving images with many pixels. 22 It was invented by the Geman 

brothers as a variant of Monte Carlo and gained enormous traction when Gelfand turned it into a 

MCMC method.23  

The trick was to look at simple distributions one at a time but never look at the whole. 

The value of each one depended only on the preceding value [The Markov “no memory” 

property, jl]. Break the problem into tiny pieces that are easy to solve and then do millions 

of iterations. So, you replace one high-dimensional draw with lots of low-dimensional 

draws that are easy. The technology was already in place. That’s how you break the curse 

of high-dimensionality. (Gelfand, quote from interview, McGrayne, 2011, p. 221) 

Thus, the Gibbs sampler construes a Markov process moving through simple distributions. 

Thanks to his inventive imagination, Gelfand saw how an intractable object (a high-dimensional 

distribution) arises from much simpler objects (a process moving through simple distributions). 

Much like the equilibrium distribution of the Ising model is built from a process that moves 

through simple distributions (simple flips of one spin). The MCMC trick replaces a 

computationally intractable object by very many iterations of simpler, tractable objects.24 

 

exploration and flexibility 

MCMC has an iterative nature. It also has an exploratory nature. When proponents such 

as Smith and Roberts (1993) state that MCMC methods are for “exploring and summarizing 

posterior distributions in Bayesian statistics” (p. 3), the point about exploration is important. 

Exploration plays a role on two different levels. Firstly, modeling approaches quite generally 

explore, including Bayesian statistics in particular: You always explore what the data are telling 

                                                   
22 Work on the Gibbs sampler started with Geman and Geman (1984) and gained popularity rapidly after 
the landmark paper of Gelfand and Smith (1990). The hit-and-run algorithm is related to the older 
Metropolis–Hastings and was proposed by Bélisle et al. (1993) and Chen and Schmeiser (1996). Other 
MCMC methods show similar timelines. 
23 McGrayne tells the story in a vivid way on pp. 218 ff. “The minute Gelfand saw the Gemans’ paper, the 
pieces came together: Bayes, Gibbs sampling, Markov chain, and iterations” (p. 221). 
24 Philosophers of science have argued that computer simulation changes mathematics because simulation 
enlarges the realm of tractability (see, e.g., Humphreys 2004). Regarding iteration, this is certainly correct. 
From this perspective, MCMC is a way to utilize the new tractability for problems of modeling. 
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you relative to a model that you confront with those data.25 Exploration of this sort is at the heart 

of modeling—in lack of complete knowledge one explores with the help of models. Exploration 

also happens on a second level, exploring the mathematical model itself. And this is where 

MCMC becomes relevant. 

MCMC methods simulate relevant properties of mathematical objects (such as integrals or 

distributions) in numerous iterated trials to gain a picture or approximation of these properties. 

One can compare MCMC with sounding out unknown territory by taking simulated random 

walks. This modeling approach thus explores the behavior of a (complex) mathematical object, 

like a posterior distribution, with the help of the MCMC machinery. In a way, MCMC explores 

mathematical properties with the help of probabilistic and iterative means. One can see a 

frequentist element here sneaking in. 

However, I want to make an additional point. The speed of MCMC is also an invitation to 

engage in an exploratory mode of modeling in the following sense. Modelers can work with 

incompletely specified models that contain parameters that get adjusted only in a feedback loop 

where model behavior is observed and modified. Researchers do not need to determine 

parameters from the beginning; rather, they can adapt them during the process to obtain a better 

match. For Bayesian modeling, MCMC made exploration on this level feasible. With the help of 

adjustable parameters, a model can be specified in flexible ways. The MCMC trick brings this 

flexibility to Bayesian modeling. 

 A short remark on the timeline. Typically, computational modeling of this explorative 

sort will be done when computational capacity is easily and cheaply accessible—including 

software packages (see section 5 below). On expensive mainframe machines, researchers tend to 

run only their best models with their best guesses. This accessibility condition started to be 

fulfilled in many labs and offices from the early 1990s onward; and this coincides with the 

timeline displayed in figure 1. 

However, the exploratory–iterative mode affects the Bayesian rationale. The core of 

Bayesian epistemology, indeed the defining feature for many philosophers, is the subjective 

stance. The modeling process starts out with one’s degrees of belief. We have seen, however, that 

                                                   
25 I owe this formulation to an anonymous reviewer who helpfully inquired about senses of exploration. 
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this characteristic of Bayesian epistemology is fading away over the course of the development of 

MCMC approaches. Priors now appear as part of the adaptation machinery.26 Importantly, these 

parameters are loose their interpretation as prior knowledge. To the extent that they are treated 

like adjustable parameters, the resulting values no longer express (degrees of) prior belief, but 

rather correspond to an overall fit of model and data, resulting from the exploratory–iterative 

process of modeling. In a nutshell, the priors cease to be prior. 

I have presented the argument over how using MCMC as a tool undermines the perceived 

rationality of Bayesianism. I conclude this section by backing up this argument with a second line 

of thought that supports the claim about the exploratory–iterative nature of MCMC. Now is the 

time to recall the earlier promise, and address the second condition for MCMC. The one that 

looks innocent but is not: namely, that the Markov chain has reached equilibrium. The results 

MCMC provides take for granted that the Markov chain has reached stationarity before sampling. 

If the chain runs one million steps, is that enough? Or, if it is not quite in equilibrium, how does 

that play out in terms of error bars? Answering these questions is arguably the most important 

and intricate problem in the validation of MCMC results.  

First of all, there are various approaches that try to implement a computational forward 

strategy: simulate the chain and observe whether it has reached stationarity. This sort of  

observation remains shaky because there might be relevant areas that the chain has not yet 

visited, or not visited with significant frequency. Maybe waiting twice as long will change the 

observed distribution significantly. As has been mentioned above, the effectiveness of MCMC 

relies essentially on how quickly Markov chains converge to their stationary distribution, 

sometimes called fast mixing. The speed of mixing is relative to the complexity of the space the 

random walk has to explore. The important question is: Exactly how quickly does the chain 

actually converge? 

Answering this question is crucial for any assessment of MCMC results. Fast mixing and 

the rate of convergence have been identified as an important research topic being tackled by some 

of the most prominent researchers in stochastics and statistics.27 Despite a growing number of 

                                                   
26 Consider the chapter by Datta and Sweeting (2005) on matching priors that are used to adjust priors so 
that the posterior distribution has the desired properties. Instances such as this abound—they are 
unavoidable when working in an iterative–exploratory mode. 
27 The monographs by Levin et al. (2009) and Aldous and Fill (2002) document the settled state of the art; 
Diaconis (2013) provides an outlook on current progress and challenges. 
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results and insights, there is still a large lacuna regarding the behavior of chains that move in 

large continuous spaces, as is typical with Bayesian posteriors. In fact, this is the downside of 

MCMC-enhanced modeling flexibility: The menagerie of MCMC-enhanced models is growing, 

whereas knowledge about convergence speed is still lacking. There may be a chance for a 

mathematical theory to eventually provide such a footing; yet up to now, no strong results exist. 

Diaconis reasons that the market may be populated by many applied MCMC algorithms that 

perform well, and that their careful analysis might present useful hints for directing the 

mathematical research toward why these algorithms behave so well (2009, p. 195)—or toward 

why they do not. Diaconis has no illusions about how limited the range of mathematical accounts 

of the validation problem is. He is alarmed by the tendency to build excessively complex models 

for which, thanks to MCMC, the Bayesian machinery still works, whereas considerations (about 

MCMC) that could help regarding validation are largely missing.  

This exemplifies a problem whose significance goes beyond the case of statistics and 

Bayesianism. Namely, a technology-based mode of mathematical modeling pushes the limits of 

modeling so that questions of validation can be addressed only by quasiempirical means—that is, 

by observing the performance of the models. This state of affairs is endemic in computational 

modeling. Many researchers resort to a kind of quasiempirical forward strategy—that is, they 

explore via simulations how the model will behave under varying initial conditions. Carlin and 

Louis, for an instance from Bayesian statistics, argue: 

The most basic tool for investigating model uncertainty is the sensitivity analysis. That is, 

we simply make reasonable modifications to the assumption in question, recompute the 

posterior quantities of interest, and see whether they have changed in a way that has 

practical impact on interpretations or decisions. (2000, p. 194) 

This validation strategy—explore and observe variation in model behavior—can be found in 

many areas of computational modeling. It is characteristic of a field in which predictions are 

created in the iterative–exploratory mode. There is nothing wrong with these strategies; they just 

express that modeling happens under a condition of partial epistemic opacity where model 

behavior is not controlled by clear-cut assumptions, but rather by an assemblage of epistemic and 

instrumental components whose resulting behavior is adjusted.  
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5. Software 

Software plays an important role in the upswing of Bayesian methods. A revolution from 

the perspective of professional mathematicians and statisticians might not necessarily have great 

impact on the methods practitioners use. As with any other instrument, the (perceived) quality of 

the instrument has to attract and hold the interest of an array of potential users; and, furthermore, 

must be usable given their level of expertise. Software packages have been—and still are—key 

for distributing the iterative–exploratory approach inherent in MCMC that is the computational 

backbone of Bayesian modeling. 

Such software is not a neutral framework, because the options it offers and the algorithms 

it implements tend to steer in whatever directions statistical practices move (cf. Mira, 2005). 

Bayesian software has had two major effects: one the flip side of the other. Due to its usability, 

together with the easy accessibility of networked computers, it has triggered a stunning 

distribution of Bayesian modeling far beyond the ranks of those who had a Bayesian inclination 

before the 1990s turn. At the same time, many of these novices in statistical modeling are 

attracted by the software’s capacity to deal with more complex models rather than by the standard 

rationale of Bayesianism. 

When the great potential of MCMC began to become manifest, MCMC pioneers such as 

A. F. M. Smith realized that a software package was the missing ingredient that could turn 

Bayesian modeling into a widely used approach (Smith, 1988). This was exactly what David 

Spiegelhalter and his coworkers at the MRC Biostatistics Unit in Cambridge (UK) were 

developing. In 1991, they rolled out the BUGS program (short for Bayesian Statistics Using 

Gibbs Sampling). It was freely available and popularized Bayesian modeling tremendously. 

BUGS acted as a platform for Bayesian modeling by generating code for MCMC-based analyses 

of models that users could specify (see Gilks et al., 1994, Thomas et al., 1992). It featured 

uncertainty propagation in graphical structures; but the main point, of course, is that modelers 

could use the software to compute a posteriori distributions of their models without having to 

master the mathematics of MCMC.  

Not much later in 1996, now under Nicky Best who had changed from Cambridge to 

Imperial College, London, the descendant WinBUGS was published—a version running under 

Windows reflecting the growing demand from the side of users who had no connection to special 
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computing facilities but worked on (relatively small) desktop computers.28 WinBUGS acted as an 

efficient popularizer, enlarging the variety (and complexity) of possible models as much as the 

variety of users. Textbooks such as Ntzoufras (2009) guided readers into using WinBUGS, with 

the selling point being that this free software “could fit complicated models in a relatively easy 

manner, using standard MCMC methods” (p. xvii). The entire book is devoted to WinBUGS, but 

time runs quickly in software development. By the end of the 2000s, the BUGS program had 

been turned into the open-source code OpenBUGS that is very similar to WinBUGS but also runs 

on Linux, Apple, and other Unix-related operating systems.29 Importantly for computational 

modelers, OpenBUGS can be run from R and from SAS—that is, from the most common 

platforms of statistical analysis, thus creating a software environment for statistical modelers. 

There is a plethora of packages that come into play on different levels. Some scientists 

use MCMC methodology by interfacing their data with a (more or less) complete tool for analysis 

like the BUGS family offers.30 The BUGS family is not the only type of software package. 

Others invest work in developing their own customized MCMC simulations using software 

packages such as Mathematica or MathLab more as a generic tool kit. One important feature of 

“complete tool” software such as BUGS is the way one can make use of it. It not only provides a 

graphical interface, but also comes with a book of examples. Hence, users do not have to learn 

how it works—that is, how to specify their model case. Instead, they can build directly on 

particular examples. As Carlin puts it: “you don’t read the manual; instead, you find the example 

that most nearly matches your situation, copy it, and modify it” (Kass et al., 1998, p. 94; cf. also 

Carlin, 2004). 

Now, however, the flip side comes into play. MCMC has unresolved issues with 

convergence as we have seen above. Standard software has no guardrails that would prevent 

users from ignoring this issue. Jeff Gill (2008), for instance, recapitulates the enormous success 

of software packages in solving the needs of modelers but also warns: 

Unfortunately, these solutions can be complex and the theoretical issues are often 

demanding. Coupling this with easy-to-use software, such as WinBUGS and MCMCpack, 

                                                   
28 Lunn et al. 2000 is the standard reference for WinBUGS. 
29 See Lunn et al. (2009) and, for very brief historical remarks, the official website openbugs.net. 
30 Other popular software includes JAGS (Just Another Gibbs Sampler), Stan (developed at Columbia 
University), MCMCpack, bayesm, or the SAS MCMC. Their differences are of no concern here. 
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means that there are users who are unaware of the dangers inherent in MCMC work. (p. 

xx) 

The OpenBUGS website issues a “Health Warning”: The programs are reasonably easy to use 

and come with a wide range of examples. There is, however, a need for caution. Knowledge of 

Bayesian statistics is assumed, including recognition of the potential importance of prior 

distributions; and MCMC is inherently less robust than analytic statistical methods. The fact that 

there is a (largely) unknown level of uncertainty should sound an alarm. However, there is no 

built-in protection against ignoring this fact. 

Not surprisingly, the convergence problem is a matter addressed in some of the available 

packages. Interestingly, because a mathematical solution of the validation problem is out of 

reach, the software resorts to heuristic strategies to explore model behavior. The software AWTY 

(Nylander et al., 2008) provides a case in point. The acronym expands into “are we there yet?”—

that is, has the chain reached equilibrium? The program is made for graphical exploration of 

convergence in the special case of Bayesian phylogenetics. 

One can ask to what extent the lack of built-in guardrails poses an actual problem in 

statistical practice. This is hard to judge. It is not at all unlikely that practical methods are valid, 

although they cannot be fully justified mathematically. In lieu of a reasoned judgment, I can only 

offer an impression. It looks like the standards of what counts as sound methodology are 

beginning to change. They are moving away from a mathematical paradigm tied to proof to a 

computational paradigm where skillful modification is the key. 

The wide uptake of Bayesian methods reflects the social organization of the field. The 

number of users was able to grow dramatically because—thanks to the software—these users do 

not need to be experts in neither statistics, nor the mathematics of MCMC. Bayesian methods 

have become a pragmatic and flexible tool in statistical practice. At the same time, this flexibility 

leads to an erosion of the original rationale—whether frequentist subparts are utilized, or whether 

priors express a meaningful subjective stance is not per se important if the machinery works. 

 

6. Prediction and Pragmatism 

Bayesian approaches are a success story in statistics that began in the 1990s. I have 

argued that this story pivots on the codevelopment of computational methods and a class of 
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models that, when working together, made predictions possible. From a methodological 

perspective, MCMC was the key factor; from a social perspective, the widely available software 

that runs on networked computers was a key contribution to the success in practice. In a nutshell, 

Bayesian statistics evolved into an exploratory–iterative culture of prediction. This evolution 

affected Bayesian rationality in an important way. From a philosophically somewhat clean 

approach to a pragmatic tool that comes with more philosophical laissez-faire. This pragmatic 

turn has the potential to fundamentally affect the philosophy of statistics. The principled 

interpretation of Bayes’ rule has been the major bone of contention. Statisticians are aware of this 

transformation, not least because elements that formerly counted as incompatible now come 

together in predictive practices. How the new situation should be captured conceptually is not yet 

clear. Some scholars want to restrict the title “Bayesian” to approaches that stick to the Bayesian 

principle. They are critical of the newer, prediction-oriented approaches. Others, who still 

perceive themselves as Bayesians, side with prediction making.31 Here is a sample of responses 

from statisticians. 

According to Bradley Efron,32 classical frequentist and Bayesian approaches work 

together and mutually complement each other in computer modeling. Especially when analyzing 

large amounts of (“big”) data—according to Efron (2005)—it is often hopeless to construe priors 

in a subjective way. Sander Greenland (2010) argues that Efron’s stance on the mutually 

complementing virtues is not correct and that it would be better to use the term “ecumenism” to 

describe how statistical methods come together.33 He traces this back to G. E. P. Box’s (1983) 

plea for ecumenism. Despite its prominent advocates—according to Greenland—ecumenism has 

                                                   
31 To do justice to the full richness of Bayesian approaches, it would be necessary, as noted above, to 
include approaches such as "objective" and "evidentialist" Bayes. Instead of entering a more detailed 
appraisal (see footnote 2), this paper prefers a simplistic approach to Bayesianism and fully concentrates 
on the computational perspective. 
32 Efron is famous for the bootstrap method that works in a frequentist guise. Therefore, he is presumably 
a significant witness in favor of Bayesian approaches. Moreover, he has repeatedly made claims that 
statistical inference has been transformed through computer use (explained in book length in Efron and 
Hastie, 2016). 
33 Gill (2008) also favors “ecumenism.” 
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not yet had a large impact on the teaching or practice of statistics.34 Robert Kass is another 

prominent statistician who reflects on the ongoing changes in a conceptual way. He advocates 

what he calls “statistical pragmatism,” a position that sees modeling as the core activity (Kass 

2011). He makes a careful attempt to sketch the common ground between Bayesian and 

frequentist positions regarding how statistical models are connected with data. Thus, the 

dynamics of computational modeling seem to be a uniting feature of formerly separated camps of 

philosophy of statistics: “The loyalists of the 1960s and 1970s failed to realize that Bayes would 

ultimately be accepted, not because of its superior logic, but because probability models are so 

marvelously adept at mimicking the variation in real-world data” (Kass, cited according to 

McGrayne, 2011, p. 234).35 Steven Goodman (2011) disagrees, because Kass’ pragmatism looks 

like a mere truce rather than a new foundation. Also commenting on Kass, Hal Stern (2011, p. 

17) worries “more broadly that pragmatism might appear to reinforce the notion of statistics as a 

set of techniques that we ‘pull off the shelf’ when confronted with a data set of a particular type.” 

Finally, Andrew Gelman (2011, p. 10) observes that this pragmatism, though thriving on the 

flexibility of methods to obtain calibration between model and data, is still objective. In sum, 

notions such as complement, truce, ecumenism, or pragmatism show that statisticians grapple 

with reflecting on what happens in practice and whether this makes a discussion about the 

foundations dispensable or, on the contrary, downright demands it. 
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