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Abstract

Why does time reversal involve two operations, a temporal reflec-
tion and the operation of complex conjugation? Why is it that time
reversal preserves position and reverses momentum and spin? This
puzzle of time reversal in quantum mechanics has been with us since
Wigner’s first presentation. In this paper, I propose a new solution to
this puzzle. First, it is shown that the standard account of time reversal
can be derived based on the assumption that the probability current is
reversed by the time reversal transformation. Next, this assumption is
justified and the meaning of time reversal is clarified by analyzing the
relationship between the rates of change and the instantaneous quan-
tities which determine them. Finally, I explain how the new analysis
help solve the puzzle of time reversal in quantum mechanics.
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1 Introduction

Why does time reversal involve two operations, a temporal reflection and the
operation of complex conjugation in quantum mechanics? Why is it that
time reversal preserves position and reverses momentum and spin? This
puzzle of time reversal has been with us since Wigner’s (1931) first presen-
tation, although some progress has been made to solve it recently (see, e.g.
Roberts, 2017, 2020; Callender, 2021). According to some authors, time
reversal “can involve nothing whatsoever other than reversing the velocities
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of the particles” (Albert 2000, p.20), and “It does not make sense to time-
reverse a truly instantaneous state of a system” (Callender, 2000).1 While
according to others (Earman, 2002; Malament, 2004; Roberts, 2017), this is
not the case. In this paper, I will try to solve this puzzle of time reversal.
I will first give a new derivation of the standard account of time reversal in
quantum mechanics based on the assumption that the probability current
is reversed by the time reversal transformation. Then, I will argue that this
assumption can be justified by analyzing the relationship between the rates
of change and the instantaneous quantities which determine them. Finally,
I will explain how the new analysis help solve the puzzle of time reversal in
quantum mechanics.

2 A new derivation

Consider the Schrödinger equation for a spin-0 quantum system in an ex-
ternal scalar potential:

i~
∂ψ(r, t)

∂t
= [− ~2

2m
∇2 + V (r, t)]ψ(r, t), (1)

where ~ is Planck’s constant divided by 2π, ψ(r, t) is the wave function of
the system, m is the mass of the system, and V (r, t) is an external scalar
potential. From this equation we can derive the continuity equation:

∂ρ(r, t)

∂t
+∇ · j(r, t) = 0, (2)

where ρ(r, t) = |ψ(r, t)|2 and j(r, t) = ~
2mi [ψ

∗(r, t)∇ψ(r, t)−ψ(r, t)∇ψ∗(r, t)]
are probability density and probability current density, respectively.

Now I will show how the standard account of time reversal in quantum
mechanics can be derived based on the assumption that the probability cur-
rent is reversed by the time reversal transformation. First, according to
this assumption we have T j(r, t) = −j(r,−t), where T is the time rever-
sal operator. Next, it can be argued that time reversal does not change the
probability density. From a physical point of view, the probability density of
finding a particle in certain position in space does not depend on the direc-
tion of time. Moreover, from a mathematical point of view, it can be proved
that any transformation of ρ(r, t), F (ρ(r, t)), which satisfies the nomalized
condition

∫
F (ρ(r, t))dr = 1 for any ρ(r, t), must be an identity transforma-

tion.2 Then, we have Tρ(r, t) = ρ(r,−t). These two transformation rules
ensure the time reversal invariance of the continuity equation.

1It has also been argued that the transformation referred to as ‘time reversal’ in quan-
tum mechanics does not deserve the name, and it should be more appropriately described
as motion reversal (Ballentine, 1998, p.377; Sakurai, 1994, p.266).

2I thank Phil Pearle and Rodi Tumulka for showing me a proof of this result.
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By writing the wave function in the polar form ψ = ReiS/~, where R and
S are real functions, we can obtain the following relation:

j(r, t) =
1

m
ρ(r, t)∇S(r, t). (3)

By using the transformation rules for ρ(r, t) and j(r, t), we have TS(r, t) =
−S(r,−t)+C0, where C0 is a real constant. Then we can obtain the standard
antiunitary transformation rule for the wave function: Tψ(r, t) = ψ∗(r,−t)
when ignoring an overall constant phase. Based on this transformation
rule for the wave function, we can derive the transformation rule for every
observable from its definition (or its operation on the wave function). For
example, for position r, we have TrT−1 = r, and for momentum p = −i~∇,
we have TpT−1 = −p, and for angular momentum L = r × p, we have
TLT−1 = −L.

In addition, by analyzing the probability current acceleration:

∂v(r, t)

∂t
=

1

m
[∇Q(r, t)−∇V (r, t)], (4)

where v(r, t) = j(r,t)
ρ(r,t) is the local velocity for the probability current, and

Q(r, t) = ~2
2m
∇2R(r,t)
R(r,t) , we can obtain the transformation rule for the scalar

potential: TV (r, t) = V (r,−t). Notably this transformation rule applies to
the electric scalar potential Tφ(r, t) = φ(r,−t). Using the definition E =
−∇φ, we can obtain the transformation rule for the electric field TE(r, t) =
E(r,−t). Furthermore, by analyzing the continous equation for a charged
system in an electromagnetic field, we can also obtain the transformation
rules for the magnetic potentials and fields. The probability current density
for a spin-0 system with mass m and charge Q in an external electromagnetic
field is

j(r, t) =
1

m
ρ(r, t)[∇S(r, t)−QA(r, t)], (5)

where A(r, t) is the magnetic vector potential. Then T j(r, t) = −j(r,−t)
requires TA(r, t) = −A(r,−t). Using the definition B = ∇ × A, we can
obtain the transformation rule for the magnetic field TB(r, t) = −B(r,−t).

Lastly, we can also obtain the time reversal transformation rule for spin
in a similar way. The probability current for a spin-s system with mass m
and charge Q and magnetic moment µs in an external electromagnetic field
is

j(r, t) =
1

2m
[(ψ∗(r, t)pψ(r, t)− ψ(r, t)pψ∗(r, t))− 2QA(r, t)ρ(r, t)]

+
µs
s
∇× (ψ∗(r, t)Sψ(r, t)), (6)
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where S is the spin operator. Then T j(r, t) = −j(r,−t) requires TS(r, t) =
−S(r,−t). Based on the transformation rules for spin and the wave function,
we can also derive the result T 2 = −I for spin-1/2 systems.

The above analysis provides a new derivation of the standard time re-
versal transformation rules in quantum mechanics, which ensures that the
Schrödinger equation is time reversal invariant. The analysis can be ex-
tended to relativistic quantum mechanics.

3 Understanding time reversal in quantum me-
chanics

In the following, I will argue that the assumption that the probability cur-
rent is reversed by the time reversal transformation can be justified. I will
also explain how the new analysis help solve the puzzle of time reversal in
quantum mechanics.

First of all, this assumption is in accordance with our intuition that
time reversal reverses the direction of a current. However, it should be
pointed out that unlike the standard velocity in Newtonian mechanics, the
probability current is not defined as the rate of change of an instantaneous
configurational quantity; rather, it is also an instantaneous quantity, though
not configurational. This means that one cannot directly determine the
transformation rule for the probability current by its definition, and this is
different from the situation of standard velocity in Newtonian mechanics.3

Next, as noted before, it has been debated whether an instantaneous
quantity should be changed by time reversal. According to some authors,
it does not make sense to time-reverse a truly instantaneous quantity (Cal-
lender, 2000), and time reversal can involve nothing other than reversing
the rates of change of instantaneous quantities such as velocities of particles
(Albert 2000). This is a nonstandard view of time reversal. On this view,
time reversal will keep the probability current density, as well as the prob-
ability density, unchanged. Then, in the time-reversed world, when the net
probability current flows into a volume, the probability in the volume does
not increase but decrease. In other words, this nonstandard view violates
the continuity equation.

Note that different from the Schrödinger equation for the wave function,
the continuity equation for the probability density and current density has
a direct physical meaning. It is a local and stronger form of the probability

3Note that even though in the de Broglie-Bohm theory we can determine the trans-
formation rule for the velocity of a Bohmian particle by its definition, which is assumed
to be equal to the current velocity, we still need to resort to the time reversal invariance
of the guiding equation to derive the standard transformation rule for the wave function.
Then, why not directly assume the time reversal invariance of the Schrödinger equation?
In my view, the de Broglie-Bohm theory does not help much in solving the puzzle of time
reversal in quantum mechanics (cf. Allori et al, 2008).
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conservation law. A weak version of the probability conservation law says
that the total probability of obtaining all possible results is one. The conti-
nuity equation says that when the probability density changes continuously
or the probability current is continuous, the increase/decrease of the prob-
ability in a volume is equal to the net probability that flows into/out the
volume. The probability conservation law is comprehensible, and its validity
is justified by its physical meaning. The total probability of obtaining all
possible results can only be one, not be any other value such as one third.
And when the net probability current flows into a volume, the probability in
the volume must increase and cannot decrease. This is a requirement of logic
and definition. Thus it is arguable that the continuity equation should also
be valid in the time-reversed world. In other words, the continuity equation
should be time reversal invariant.

Then, what is wrong with the nonstandard view of time reversal? and
why should an instantaneous quantity such as probability current be re-
versed by the time reversal transformation? In my view, when the rate of
change (of a time reversal invariant quantity) is determined by an instanta-
neous quantity, this instantaneous quantity should also be reversed by the
time reversal transformation as the rate of change. If this is not true, then
the reversed rate of change cannot be explained in the time-reversed world.4

The nonstandard view’s violation of the continuity equation is just such a
case. By the continuity equation, the change of the probability density over
time is produced and determined by the probability current. If the rate of
change of the probability density is time-reversed but the probability cur-
rent is not time-reversed, then the change of the probability density over
time cannot be explained in the time-reversed world, and the probability
conservation law will also be violated. For example, in the time-reversed
world, when the net probability current flows into a volume, the probabil-
ity in the volume does not increase but decrease. Then the decrease of the
probability in the volume cannot be explained, and the continuity equation
is also violated. Note, however, that if an instantaneous quantity does not
determine the rate of change of something invariant by time reversal, then it
is arguable that this instantaneous quantity should not be reversed by time
reversal, as the nonstandard view rightly holds.

The above analysis provides a possible way to solve the puzzle of time
reversal in quantum mechanics. First, the probability density is arguably
not changed by the time reversal transformation, and thus the rate of change
of the probability density is reversed by the time reversal transformation.
Next, since the rate of change of the probability density is determined by the

4This argument can also be used in Newtonian mechanics and Maxwell’s theory of
electromagnetism. For example, in Newtonian mechanics, not only the standard velocity,
which is defined as the derivative of position with respect to time, but also the intrinsic
velocity (Tooley, 1988), which determines the standard velocity, should be reversed by the
time reversal transformation.
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probability current according to the continuity equation, it is arguable that
the probability current should be reversed by the time reversal transforma-
tion. Then why time reversal involves complex conjugation is because the
phase of the wave function is an integral of the probability current density
(divided by the probability density) and time reversal reversing the prob-
ability current (and keeping the probability density unchanged) amounts
to taking the complex conjugation of the wave function.5 Moreover, why
time reversal reverses momentum, spin, and magnetic fields is because these
quantities appear in the probability current density, and reversing the prob-
ability current requires reversing them.

Finally, two points need to be emphasized. First, the above solution to
the puzzle of time reversal is independent of the measurability of the prob-
ability current.6 Moreover, the solution is also independent of the physical
meaning of the wave function or the ontology of quantum mechanics (cf.
Struyve, 2020). Next, the density and current density in the continuity
equation can be measured by protective measurements, and the continuity
equation may thus have a deeper ontological meaning. According to the prin-
ciple of protective measurement (Aharonov and Vaidman, 1993; Aharonov,
Anandan and Vaidman, 1993; Gao, 2015; Piacentini et al, 2017), when the
wave function of a single quantum system is known, one can measure both
ρ and j by a series of protective measurements on the system. Let the ex-
plicit form of the measured wave function at a given instant t be ψ(x), and
the measured observable A be (normalized) projection operators on small
spatial regions Vn having volume vn:

A =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(7)

A PM of A then yields

〈A〉 =
1

vn

∫
Vn

|ψ(x)|2dv, (8)

which is the average of the density ρ(x) = |ψ(x)|2 over the small region Vn.
Similarly, we can measure another observable B = ~

2mi(A∇ + ∇A). The
measurement yields

〈B〉 =
1

vn

∫
Vn

~
2mi

(ψ∗∇ψ − ψ∇ψ∗)dv =
1

vn

∫
Vn

j(x)dv. (9)

5Several authors have given a similar account (Earman, 2002; Sebens, 2015; Callender,
2021).

6There have been worries about the measurability of the probability current in the
continuity equation. For example, Sakurai wrote, “we would like to caution the reader
against a too literal interpretation of j as ρ times the velocity defined at every point
in space, because a simultaneous precision measurement of position and velocity would
necessarily violate the uncertainty principle.” (Sakurai, 1996, p.102-3)
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This is the average value of the current density j(x) in the region Vn. Then
when vn → 0 and after performing measurements in sufficiently many re-
gions Vn we can measure ρ(x) and j(x) everywhere in space. When assuming
the psi-ontic view (Pusey, Barrett and Rudolph, 2012), ρ(x) and j(x), when
multiplied by the mass and charge of the system, can be explained as the
mass and charge density and current density (Gao, 2017),7 and the conti-
nuity equation can also be explained as the local form of the conservation
law for mass and charge. This may provide further support for the validity
of the continuity equation.

4 Conclusion

In this paper, I have argued that the standard account of time reversal in
quantum mechanics can be derived based on the assumption that the prob-
ability current is reversed by the time reversal transformation. Moreover,
this assumption is justified and the meaning of time reversal is clarified by
analyzing the relationship between the rates of change and the instantaneous
quantities which determine them. This analysis provides a new solution to
the puzzle of time reversal in quantum mechanics. It remains to be seen
whether this solution is fully satisfying and whether there are other better
and complete solutions.
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