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Abstract

Based on the PBR theorem about the reality of the wave function,
we show that the wave function assigned to a cognitive system, which
is used to calculate probabilities of thoughts/judgment outcomes in
quantum cognition, is a real representation of the cognitive state of the
system. In short, quantum cognition implies quantum minds. How-
ever, this result does not mean that we have quantum minds and our
brain is a quantum computer, since quantum cognition by its stan-
dard formulation has not been fully confirmed by experiments. We
hope that more crucial experiments can be done in the near future to
determine whether or not quantum cognition is real.
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1 Introduction

Quantum cognition is a theoretical framework for constructing cognitive
models based on the mathematical principles of quantum theory. Due to
its success in explaining paradoxical empirical findings in cognitive science,
quantum cognition has been the subject of much interest in recent years
(see Wang et al, 2013; Busemeyer and Bruza, 2014; Yearsley and Buse-
meyer, 2016 for helpful reviews). However, it is still unknown what quan-
tum cognitive models tell us about the underlying process of cognition. It
is widely thought that quantum cognition is only an effective theory of cog-
nition, where the actual brain processing may take place in an essentially
classical way. In this paper, we will address this issue. Based on the re-
cent advances in the research of quantum foundations, especially the PBR
theorem about the reality of the wave function, we will show that the wave
function assigned to a cognitive system such as our brain, which is used to
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calculate probabilities of thoughts/judgment outcomes in quantum cogni-
tion, is a real representation of the cognitive state of the system. We will
also discuss possible implications of this interesting result.

2 The PBR theorem

Quantum theory, in its minimum formulation, is an algorithm for calculating
probabilities of measurement results. The theory assigns a mathematical
object, the so-called wave function or quantum state, to a physical system
prepared at a given instant, and specifies how the wave function evolves with
time. The time evolution of the wave function is governed by the Schrödinger
equation, whose concrete form is determined by the properties of the system
and its interactions with environment. The connection of the wave function
with the results of measurements on the system is specified by the Born
rule, which roughly says that the probability of obtaining a particular result
is given by the modulus squared of the wave function corresponding to the
result.

At first sight, quantum theory as an algorithm says nothing about the
actual state of a physical system. However, it has been known that this is
not true due to the recent advances in the research of the foundations of
quantum mechanics (see, e.g. Leifer, 2014; Gao, 2017). First, a general and
rigorous approach called ontological models framework has been proposed
to determine the relation between the wave function and the actual state
of a physical system (Spekkens 2005; Harrigan and Spekkens 2010). The
framework has two fundamental assumptions. The first assumption is about
the existence of the underlying state of reality. It says that if a physical
system is prepared such that the quantum algorithm assigns a wave function
to it, then after preparation the system has a well-defined set of physical
properties or an underlying ontic state, which is usually represented by a
mathematical object, λ. In general, for an ensemble of identically prepared
systems to which the same wave function ψ is assigned, the ontic states of
different systems in the ensemble may be different, and the wave function
ψ corresponds to a probability distribution p(λ|ψ) over all possible ontic
states, where

∫
dλp(λ|ψ) = 1.

There are two possible types of models in the ontological models frame-
work, namely ψ-ontic models and ψ-epistemic models. In a ψ-ontic model,
the ontic state of a physical system uniquely determines its wave function. In
this case, the wave function directly represents the ontic state of the system,
or it is a mathematical representation of the physical state of the system.1

While in a ψ-epistemic model, there are at least two wave functions which
are compatible with the same ontic state of a physical system. In this case,

1Note that the wave function is not necessarily complete, i.e. it does not necessarily
represent the complete physical state of a system, such as in Bohm’s theory.
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the wave function merely represents a state of incomplete knowledge - an
epistemic state - about the actual ontic state of the system.

In order to investigate whether an ontological model is consistent with
the quantum algorithm, we also need a rule of connecting the underlying
ontic states with measurement results. This is the second assumption of
the ontological models framework, which says that when a measurement
is performed, the behaviour of the measuring device is determined by the
ontic state of the system, along with the physical properties of the mea-
suring device. Concretely speaking, for a projective measurement M , the
ontic state λ of a physical system determines the probability p(k|λ,M)
of different results k for the measurement M on the system. The con-
sistency with the quantum algorithm then requires the following relation:∫
dλp(k|λ,M)p(λ|ψ) = p(k|M,ψ), where p(k|M,ψ) is the Born probability

of k given M and the wave function ψ.
Second, several important ψ-ontology theorems have been proved in the

ontological models framework (Pusey, Barrett and Rudolph, 2012; Colbeck
and Renner, 2012, 2017; Hardy, 2013), the strongest one of which is the
Pusey-Barrett-Rudolph theorem or the PBR theorem (Pusey, Barrett and
Rudolph, 2012). The PBR theorem shows that in the ontological models
framework, when assuming independently prepared systems have indepen-
dent ontic states, the ontic state of a physical system uniquely determines
its wave function, or the wave function of a physical system directly rep-
resents the ontic state of the system. This auxiliary assumption is called
preparation independence assumption.

The basic proof strategy of the PBR theorem is as follows. Assume there
are N nonorthogonal quantum states ψi (i=1, ... , N), which are compatible
with the same ontic state λ.2 The ontic state λ determines the probability
p(k|λ,M) of different results k for the measurement M . Moreover, there is a
normalization relation for any N result measurement:

∑N
i=1 p(ki|λ,M) = 1.

Now if an N result measurement satisfies the condition that the first state
gives zero Born probability to the first result and the second state gives zero
Born probability to the second result and so on, then there will be a relation
p(ki|λ,M) = 0 for any i, which leads to a contradiction.

The task is then to find whether there are such nonorthogonal states and
the corresponding measurement. Obviously there is no such a measurement
for two nonorthogonal states of a physical system, since this will permit
them to be perfectly distinguished, which is prohibited by quantum theory.
However, such a measurement does exist for four nonorthogonal states of
two copies of a physical system. The four nonorthogonal states are the
following product states: |0〉 ⊗ |0〉, |0〉 ⊗ |+〉,|+〉 ⊗ |0〉 and |+〉 ⊗ |+〉, where
|+〉 = 1√

2
(|0〉+ |1〉). The corresponding measurement is a joint measurement

2It can be readily shown that different orthogonal states correspond to different ontic
states. Thus the proof given here concerns only nonorthogonal states.
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of the two systems, which projects onto the following four orthogonal states:

φ1 = 1√
2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),

φ2 = 1√
2
(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉),

φ3 = 1√
2
(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉),

φ4 = 1√
2
(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉), (1)

where |−〉 = 1√
2
(|0〉 − |1〉). This proves that the four nonorthogonal states

are ontologically distinct. In order to further prove the two nonorthogonal
states |0〉 and |+〉 for one system are ontologically distinct, the preparation
independence assumption is needed. Under this assumption, a similar proof
for every pair of nonorthogonal states can also be found, which requires more
than two copies of a physical system (see Pusey, Barrett and Rudolph, 2012
for the complete proof).

To sum up, the PBR theorem shows that quantum theory as an algorithm
also says something about the actual state of a physical system. It is that
under the preparation independence assumption, the wave function assigned
to a physical system, which is used for calculating probabilities of results of
measurements on the system, is a mathematical representation of the actual
physical state of the system in the ontological models framework.

There are two possible ways to avoid the result of the PBR theorem.
One is to deny the preparation independence assumption. Although this
assumption seems very natural, it may be rejected in some ontological mod-
els (Lewis et al, 2012). The other is to deny that an isolated system has a
real physical state, which is objective and independent of other systems in-
cluding observers, i.e. dening the first assumption of the ontological models
framework. Indeed, this assumption is rejected by Quantum Bayesianism or
QBism (Fuchs et al, 2014) and other pragmatist approaches to quantum the-
ory (Healey, 2017), where the wave function represents information about
possible measurement results or it is only a calculational tool for making
predictions concerning measurement results.

3 Implications for quantum cognition

Let’s now analyze the possible implications of the PBR theorem for under-
standing quantum cognition.

In its most conservative form, quantum cognition is only an algorithm for
calculating probabilities of thoughts/judgment outcomes.3 In order to un-
derstand the underlying process of cognition in the brain, we need a similar

3There may exist different formulations of quantum cognition. Our following analysis
is based on the standard formulation given by Busemeyer and Bruza (2014) and Yearsley
and Busemeyer (2016).
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ontological models framework for cognitive systems. The first assumption
of the framework is about the existence of cognitive states. It says that
when quantum cognition assigns a wave function to a cognitive system, the
system has a well-defined cognitive state, which can be represented by a
mathematical object, λc. This assumption is accepted by quantum cogni-
tive models explicitly or implicitly. If one denies this assumption, then it will
be impossible to understand the underlying process of quantum cognition.4

The second assumption is that when a measurement/judgment is made,
the behaviour of a cognitive system is determined by the cognitive state of
the system, along with the concrete measurement setting such as asked ques-
tions or evidence presentation. Concretely speaking, for a measurement M ,
the underlying cognitive state λc of a cognitive system determines the proba-
bility p(k|λc,M) of different results k for the measurement M on the system.
The consistency with the quantum algorithm in quantum cognitive models
then requires the following relation:

∫
dλcp(k|λc,M)p(λc|ψ) = p(k|M,ψ),

where p(k|M,ψ) is the Born probability of k given M and the wave function
ψ. This assumption is necessary for connecting the underlying cognitive
states with the results of measurements. If denying this assumption, then
we cannot investigate whether an ontological cognitive model is consistent
with the quantum algorithm, and as a result, we cannot understand why the
quantum algorithm works and what it tells us about the underlying process
of cognition.

In addition, there is also an auxiliary assumption besides the above on-
tological models framework for cognitive systems, namely the preparation
independence assumption. It says that independently “prepared” cogni-
tive systems such as independent persons have independent cognitive states.
This assumption holds true in quantum cognitive models.

Then, quantum cognition satisfies the three preconditions of the PBR
theorem, namely (1) the quantum algorithm; (2) the ontological models
framework; and (3) the preparation independence assumption. Thus, like
the proof of the PBR theorem, we can prove that the wave function as-
signed to a cognitive system such as our brain, which is used to calculate
probabilities of thoughts/judgment outcomes in quantum cognition, is a real
representation of the cognitive state of the system. This means that the cog-
nitive state of our brain and its dynamics are not classical but quantum in
quantum cognition. In short, quantum cognition implies quantum minds.

4Note that denying this realistic assumption will pose more serious difficulties for un-
derstanding macroscopic cognitive systems than for understanding microscopic physical
systems such as atoms. We cannot directly perceive the microscopic objects after all.
But we can directly perceive macroscopic objects, and we also have self-awareness. Thus
it is arguable that QBism and other pragmatist approaches to quantum theory are not
applicable here.

5



4 Further discussion

Does this result mean that we have quantum minds and our brain is a
quantum computer? Not really. Here is the reasons.

As we have shown above, this result is derived based on three assump-
tions about a cognitive system. Although the ontological models framework
and the preparation independence assumption seem to be uncontroversial,
what quantum cognition really is is a debated issue. Our analysis is based
on the standard formulation of quantum cognition (Busemeyer and Bruza,
2014; Yearsley and Busemeyer, 2016), which is the standard quantum the-
ory applied to cognitive systems. Thus, strictly speaking, the above result
is valid only in this formulation of quantum cognition.

The question is: is the standard formulation of quantum cognition true?
Admittedly, it has not been fully confirmed by experiments, although there
is strong evidence (see Wang et al, 2014). On the one hand, the existing
quantum cognitive models use only a part of the complete quantum formal-
ism. On the other hand, it seems that the models based on the standard
formulation cannot explain some cognitive experiments (see, e.g. de Bar-
ros and Suppes, 2009). This also motivates some researchers to propose
some quantum-like models (Aerts, 2009; Khrennikov, 2010) or generalized
quantum models (Atmanspacher et al, 2002).

We think it is fair to say that existing cognitive experiments have not
conclusively determined whether the standard formulation of quantum cog-
nition is true or false. And thus the above result, which is derived based on
the formulation, does not show that we have quantum minds and our brain
is a quantum computer (Hameroff and Penrose, 1996; Hagan et al., 2002;
Fisher, 2015; Wendt, 2015). We need more crucial cognitive experiments to
support this conclusion. For example, if a violation of the Bell inequality is
found for separated human systems, then it will provide a strong support.5

5 Conclusions

Based on the ontological models framework and the PBR theorem, we have
shown that the wave function assigned to a cognitive system in the standard
formulation of quantum cognition is a real representation of the cognitive
state of the system. This result means that the cognitive state of our brain
and its dynamics are not classical but quantum in quantum cognition. In
short, quantum cognition implies quantum minds. However, it does not
imply that we have quantum minds and our brain is a quantum computer,
since the theory has not been fully confirmed by experiments. We hope

5Note that even if quantum cognition is true, it does not necessarily assume that two
people can get entangled since there may not exist unitary interactions between them to
form the entangled state. I thank ... for this insightful comment.
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that more crucial experiments in cognition can be done in the near future
to determine whether or not quantum cognition is real.
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