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Abstract

It is shown that the collapse dynamics in collapse models such as
the CSL model will entangle two independent systems under certain
condition, and their state after collapse may be an entangled super-
position of spatially separated states. However, the existence of such
macroscopic spatial superposition is not inconsistent with experiments.
One way to avoid this result is to assume that the noise responsible
for the collapse of the wave function of a quantum system comes from
the system itself. In this case, the states of two independent systems
will always collapse independently.

It has been widely thought that the collapse theories of quantum me-
chanics do not permit the existence of macroscopic spatial superposition,
and thus they can solve the measurement problem (Ghirardi, 2016). In this
paper, we will present an interesting counterexample. We will show that the
collapse dynamics in some collapse models such as the CSL model will entan-
gle two independent systems under certain condition, and their state after
collapse may be an entangled superposition of spatially separated states.
This will permit the existence of macroscopic spatial superpositions. How-
ever, since the condition can hardly be satisfied in reality, the occurrence of
such superpositions in Nature is very improbable, and thus these collapse
models still provide a promising solution to the measurement problem.

Take the mass density version of the CSL model as an example (Pearle,
1989; Ghirardi, Pearle and Rimini, 1990; Pearle and Squires, 1994). In the
model, there is a universal noise field in space, denoted by w(x, t), and it
couples with the smeared mass density operator of a quantum system to
produce collapse toward its spatially localized eigenstates. The smeared
mass number density operator for a particle with mass m is
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M(x) =
m

(
√
πa)3m0

∫
dzN(z, t)e−

1
2a2

(x−z)2 (1)

where a ≈ 10−7m is a distance constant of the model, m0 is a reference
mass usually equal to the mass of a nucleon, N(z, t) = ζ†(z)ζ(z) is the
particle number density operator, ζ†(z) and ζ(z) are the particle creation
and annihilation operators at position z. The eigenstates of M(x) are the
position eigenstates of the particle: |xi〉 = ζ†(xi) |0〉, and the eigenequation
is:

M(x) |xi〉 =
m

(
√
πa)3m0

e−
1

2a2
(x−xi)2 |xi〉 . (2)

For N such particles in the same position xi, their joint position eigenstate
|N(xi)〉 = ζ†(xi)...ζ

†(xi) |0〉 is an eigenstate of M(x), and the eigenequation
is:

M(x) |N(xi)〉 =
Nm

(
√
πa)3m0

e−
1

2a2
(x−xi)2 |N(xi)〉 . (3)

For a system containing n different types of particles, the smeared mass
number density operator is

M(x) =
1

(
√
πa)3m0

∫
dz

n∑
j=1

mjNj(z, t)e
− 1

2a2
(x−z)2 (4)

where mj and Nj(z, t) are the mass and particle number density operators
of type j particles.

Now consider two systems A and B which have no interactions and
contain two different types of particles, NA particles with mass mA and NB

particles with mass mB, respectively. Suppose the two systems are initially
in a product state |ψ(0)〉 = 1√

2
[|NA(x1)〉+|NA(x2)〉] 1√

2
[|NB(x1)〉+|NB(x2)〉],

where |NA(xi)〉 and |NB(xi)〉 are the eigenstates of M(x) of A and B at
position xi, respectively.1 According to the CSL model (Pearle, 1999), the
state of the two systems at instant t for a given noise w(x, t) is:

1Note that if the two systems contain the same type of particles, then this initial state
is not permitted since it is not (anti-)symmetrical.
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|ψ(t)〉w = e−
1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λM(x)]2 |ψ(0)〉 (5)

=
1

2
[e−

1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x1)+nB(x1))]2 |NA(x1)〉 |NB(x1)〉

+e−
1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x2)+nB(x2))]2 |NA(x2)〉 |NB(x2)〉

+e−
1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x1)+nB(x2))]2 |NA(x1)〉 |NB(x2)〉

+e−
1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x2)+nB(x1))]2 |NA(x2)〉 |NB(x1)〉]

where λ is a parameter of the model that determines the collapse rate,
M(x) = MA(x) +MB(x), MA(x) and MB(x) are the smeared mass density

operators of A and B, respectively, and nA(xi) = NAmA
(
√
πa)3m0

e−
1

2a2
(x−xi)2 ,

nB(xi) = NBmB
(
√
πa)3m0

e−
1

2a2
(x−xi)2 .2

The evolution equation (5) tells us what the initial wave function evolves
into under a particular w(x, t). The CSL model also requires the second
equation, the probability rule (Pearle, 1999). It gives the probability density
for w(x, t) to be the actual noise that occurs in nature:

Pt{w} ≡w< ψ(t)|ψ(t) >w (6)

=
1

4
[e−

1
2λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x1)+nB(x1))]2

+e−
1
2λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x2)+nB(x2))]2

+e−
1
2λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x1)+nB(x2))]2

+e−
1
4λ

∫ t
0 dt

∫
dx[w(x,t)−2λ(nA(x2)+nB(x1))]2 ].

Eq. (6) says that the wave functions with the largest norm are the most
likely to occur.

Here is how these equations work. From Eq. (5) we can see that the
most probable w(x, t)’s occur if w(x, t) ≈ 2λ[nA(x1) + nB(x1)] or w(x, t) ≈
2λ[nA(x2)+nB(x2)] or w(x, t) ≈ 2λ[nA(x1)+nB(x2)] or w(x, t) ≈ 2λ[nA(x2)+
nB(x1)]. For example, suppose w(x, t) ≈ 2λ[nA(x1) + nB(x2)]. Then, for
large t, Eqs. (5), (6) become

2Here the Hamiltonian is set equal to 0 and the usual Schrödinger dynamics is ignored.
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|ψ(t)〉w ≈ 1

2
[|NA(x1)〉 |NB(x2)〉

+e−
t
2

∫
dx[nB(x2)−nB(x1)]2 |NA(x1)〉 |NB(x1)〉

+e−
t
2

∫
dx[nA(x1)−nA(x2)]2 |NA(x2)〉 |NB(x2)〉

+e−
t
2

∫
dx[nA(x1)−nA(x2)+nB(x2)−nB(x1)]2 |NA(x2)〉 |NB(x1)〉]

Pt{w} ≈ 1

4
[1 + e−t

∫
dx[nB(x2)−nB(x1)]2 + e−t

∫
dx[nA(x1)−nA(x2)]2

+e−t
∫
dx[nA(x1)−nA(x2)+nB(x2)−nB(x1)]2 ]

Thus the probability associated with the w(x, t) approaches 1
4 and the state

approaches |NA(x1)〉 |NB(x2)〉. A similar argument holds for the other three
branches. For other ranges of w(x, t) the associated probability aproaches 0
for large t.

This result is within expectations; the states of two independent systems
collapse independently. However, it is valid only when NAmA 6= NBmB.
When NAmA = NBmB, we have nA(x1) = nB(x1) and nA(x2) = nB(x2).
In this case, when w(x, t) ≈ 2λ[nA(x1) + nB(x2)], for large t, Eqs. (5), (6)
become

|ψ(t)〉w ≈ 1

2
[|NA(x1)〉 |NB(x2)〉+ |NA(x2)〉 |NB(x1)〉

+e−
t
2

∫
dx[nB(x2)−nB(x1)]2 |NA(x1)〉 |NB(x1)〉

+e−
t
2

∫
dx[nA(x1)−nA(x2)]2 |NA(x2)〉 |NB(x2)〉]

Pt{w} ≈ 1

4
[2 + e−t

∫
dx[nB(x2)−nB(x1)]2 + e−t

∫
dx[nA(x1)−nA(x2)]2 ]

This means that the state after collapse is not |NA(x1)〉 |NB(x2)〉, but |NA(x1)〉 |NB(x2)〉+
|NA(x2)〉 |NB(x1)〉 with probability 1

2 . In other words, after the collapse,
each massive system is in an (entangled) superposition of two spatially sep-
arated states, and the separation distance may be arbitrarily large. Such
spatially superposed states are usually avoided in collapse theories.

It can be further shown that this entanglement result holds true for other
collapse models in which there is a universal noise field responsible for the
collapse of the wave function of every quantum system (Bassi et al, 2013).
The essential reason is as follows. The collapse dynamics will collapse the
wave function to certain eigenstates of an operator (e.g. the smeared mass
density operator in the CSL model), while these eigenstates are degenerate
for a many-body system. Then, if the noise field is universal in the collapse
dynamics, the final state after collapse may be a superposition of degenerate
eigenstates, which is an entangled state of the whole system.

In addition, it can also be seen from the above analysis that if a collapse
dynamics keeps the symmetry of the wave function of identical particles, it
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will permit entanglement for non-identical particles. On the other hand, if a
collapse dynamics does not permit entanglement for non-identical particles,
then it will not keep the symmetry of the wave function of identical parti-
cles. The reason is as follows. The entangled branch of two non-identical
particles such as |NA(x1)〉 |NB(x2)〉+ |NA(x2)〉 |NB(x1)〉 has the same form
as a symmetric entangled state of two identical particles. Then, if a collapse
dynamics keeps this entangled branch, it will also keep a symmetric entan-
gled state of two identical particles, and vice versa. This is a more general
argument independent of the noise field and collapse dynamics.

If the noise field in a collapse model is universal, responsible for the
collapse of the wave function of every quantum system, then the above
entanglement result seems inevitable. One way to avoid this result is to
assume that the noise responsible for the collapse of the wave function of a
quantum system comes from the system itself. In this case, two independent
systems will have two independent noises, and thus their states will collapse
independently. An example of such a collapse dynamics is Gao’s collapse
model (Gao, 2017).3

To sum up, we show that the collapse dynamics in some collapse models
such as the CSL model will entangle two independent systems under certain
condition, and their state after collapse may be an entangled superposition
of spatially separated states. This will permit the existence of macroscopic
spatial superpositions. However, since the condition can hardly be satisfied
in reality, the occurrence of such superpositions in Nature is very improbable,
and thus these collapse models still provide a promising solution to the
measurement problem.
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