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Abstract: With special relativity, we seem to be facing a conundrum. It is a very well-tested theory; 
in this way, the Minkowski spacetime must be “capturing” essential features of space and time. 
However, its geometry seems to be incompatible with any sort of global notion of time. We might 
only have local notions of now (present moment) and time flow, at best. In this note, we will explore 
the possibility that a pretty much global notion of now (and time flow) might be hiding in plain sight 
in the geometry of the Minkowski spacetime. 
 
 
The spacetime of special relativity – the Minkowski spacetime – seems to be incompatible, at least, 
with a universal notion of time, as is the case with the spacetime of Newtonian physics. 
      In fact, authors have even proposed that there is no real notion of now (present time), or some 
way to include in the geometry of spacetime what for us is the intuitive notion of the flow of time 
(see, e.g., Petkov 2009). 
      Others have tried to salvage at least a local notion of now and time flow (see, e.g., Dieks 1988, 
2006; Arthur 2019; Savitt 2020). 
      A tentative work has tried to somewhat approach the universal inertial time of Newtonian 
spacetimes (Valente 2016a). We will take the final part of that work as the starting point of this brief 
note. 
      In that work, a global time is approached by considering an “extra hypothesis”; this corresponds 
to a setting of “initial conditions” in which the systems of interest are initially located at the “origin”. 
This enables, e.g., to show that, in this case, the relativity of simultaneity is what some authors call a 
“kinematic effect”, a sort of “make-belief” relativistic effect, like the case of the time dilation or the 
length contraction (see, e.g., Smith 1993). For example, in the case of time dilation, for an inertial 
“observer”, the clocks of other inertial observers, in relative motion, go slower; it is like they go 
through less time when the observer, e.g., goes through one second. Now, all inertial observers 
measure the time passage of the other observers – in relative motion – as being smaller. It is not 
something that is really happening to any of them. The time dilation is due to the fact that the 
measurement of the time of a clock in relative motion by a clock taken to be at rest, is relative to this 
clock. It depends, e.g., on light being sent from this clock to the clock at “motion” and being sent 
back to the clock “at rest”. This measurement procedure is made by taking a particular clock to be at 
rest and light being sent and received by this clock. It is a procedure that is “relative” to this clock; it 
is not a “universal” procedure independent of the adopted inertial observer (see, e.g., Bohm 1996). 
      Regarding the relativity of simultaneity, in Valente (2016a) it is addressed by considered the “extra 
hypothesis” that all physical systems in question coincide at the origin (see figure 1). 
      The usual interpretation of the relativity of simultaneity tells us that while for observer A the 
events in the worldlines of C and D, corresponding to TC and TD, are simultaneous to A (occurring at 
time TA), this is not the case for observer B. In B’s case, the event in the worldline of D occurs at time 
TB1 and the event on the worldline of C occurs at the later time TB2. So, both observers A and B do 
not agree on what events corresponds to the present time. To say it a bit differently, each one has a 
different simultaneity plane (which is usually interpreted as the set of events that an observes takes 
to be simultaneous to him/her). 
      In the case of figure 1, we can see that this interpretation leads us astray. 
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Figure 1. Another perspective on the relativity of simultaneity 
 
As Valente writes: 
 

As it is well known, observer A will take the events along the worldlines of C and D corresponding, e.g., to TC 
= TD = 10s to be simultaneous, having in A’s coordinate system, e.g., the value TA = 12s; due to the time dilation 
even if A takes the now-points of C and D to be simultaneous she attributes to them a value greater than their 
proper time readings. In the case of observer B he considers that the events along the worldlines of C and D 
corresponding to TC = TD = 10s occur at the different moments TB1 and TB2. Regarding the relation between the 
temporal values of the now-points of C and D and A and B, both A and B are in a way wrong! When C and D go 
through 10 seconds, A and B also go through 10 seconds. (Valente 2016a, 31) 

 
So, if we take TC and TD to be 10 seconds as measured by each of C and D’s clocks, then they are 
simultaneous to A and B when each of them also measures 10 seconds; the values TA, TB1, and TB2 
would be an “artifice” of the measurement procedures that are “relative” to each inertial observer. 
The real time-relation between these four inertial observers is that they all measure the same inertial 
time – at the same time. So, if we take an event of say C’s worldline corresponding to his/her clock 
measuring 10 seconds, then this event is really simultaneous (or present) to the events in A, B, and 
D’s worldlines in which each of their clocks measures 10 seconds.1 
      While this work shows us that we can, by adopting the “initial conditions”, approach in the 
Minkowski spacetime, a shared inertial time and some notion of shared now or present (and also of 
time flow), we are still far from the universal inertial time that we have in Newtonian spacetimes. 
      Adopting a four-dimensional formulation of Newton’s space and time, we see that there is a 
natural “foliation” of this spacetime (see, e.g., Friedman 1983). We have a sort of stacking of three-
dimensional spaces as time flows (see figure 2, for the case of one spatial dimension). All events of a 
three-dimensional space share the same inertial time.  
      However, in the case of special relativity, the existence of different simultaneity planes seems to 
make it impossible to have some sort of “stacking” of three-dimensional spaces as universal inertial 
time flows. 
 

 a 
Figure 2. The foliation of Newtonian spacetime 
 

 
1 Another work where the relativity of simultaneity is addressed as a sort of kinematic effect is Valente (2013). In that 
work, the relativity of simultaneity is addressed in terms of the synchronization of clocks. 



 3 

In the present note, we make the case that, contrary to the received view, there is, in fact, a “natural” 
stacking in Minkowski spacetime, which means that there is a shared universal inertial time, as is the 
case with Newtonian spacetimes. So, there is a global now and time flow in the Minkowski spacetime. 
      Let us say that we are considering a flat region of spacetime – the spacetime is locally 
Minkowskian. Now we have a myriad of inertial observers with different velocities sent in all 
directions from the same spatial location (in four-dimensional parlance, we have a spacetime event 
in which inertial observers are “emitted” with different velocities and directions). We will only 
consider one spatial dimension. The set of events corresponding to one “tick” of each observer’s clock 
is a spatial (spacelike) “hyperbolic surface” represented by a hyperbola in a two-dimensional 
Euclidean diagram (see figure 3).2 All the inertial observers have had the same passage of time: the 
flow of time is the same for all; also, all share the same now: the inertial time is the same for all of 
them. 
 

 a 
Figure 3. The hyperbola corresponding to one time unit of all inertial clocks 
 
If we consider another “tick” of inertial time, we will have another non-Euclidean space stacked on 
top of the first, and so on (see figure 4). Contrary to the case of the length contraction, in which 
lengths are relative to an observer, a length along the arc of the hyperbola is not dependent on the 
adopted observer. That is, if instead of an inertial observer A we adopt an inertial observer B (moving 
relative to A) to be our observer “at rest”, the relative distance along the hyperbola between, e.g., A 
and B is the same, as is the case of the distance between any other inertial observers (or more generally 
any events in the non-Euclidean space constituted by the hyperbolic surface).3 
 

 a 
Figure 4. The foliation of the Minkowski spacetime 
 
So, in each of the non-Euclidean spaces, there are universal distances (not relative to any adopted 
observer), and the time is the same for all observers (or, more generally, events on the surface). As 
the inertial time “unfolds” (“as time goes by”), we have a stacking of successive non-Euclidean spaces, 
exactly like in the case of Newtonian spacetime (the main difference is that in Newtonian spacetime 
the stacking is of Euclidean spaces and here of “hyperbolic” spaces). 

 
2 Regarding spacetime diagrams, it is important to take into account that we are representing in a Euclidean plane the 
geometry of the Minkowski spacetime. In this way, “a spacetime diagram is a projection of a two-dimensional section of 
spacetime with a geometry summarized by Ds2 = – (cDt)2 + Dx2 on the plane of a sheet of paper whose geometry is 
summarized by Ds2 = Dx2 + Dy2” (Hartle 2003, p. 57). 
3 The distance between two events along a hyperbola (i.e., the Minkowski length of the arc of the hyperbola) is given by 
r(b – a), where a and b are the hyperbolic angles of the events, and r is the “radius” of the hyperbola (e.g., one, for the 
hyperbola corresponding to one unit of inertial time) (see, e.g., Dray 2012). 
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      Before considering a criticism of this view, let us look at a simple example of this view “at work”. 
The key is that we have to address the Minkowski diagrams in terms of the hyperbolas (see figure 5). 
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Figure 5. An example of the foliation of spacetime at work 
 
In figure 5, we depict two hyperbolas corresponding to one “tick” of inertial time and two “ticks” of 
inertial time. The events OD and OE, corresponding say to the “emission” of inertial clocks, are in the 
one “tick” hyperbola; they coincide with the events corresponding to observers D and E having their 
clocks ticking one unit of time. Their real time is not that attributed by A to them (time tA); their real 
time is one, the same as that of observers D and E. In fact, the real time of A corresponding to these 
events is not tA (a time that is relative to A), but also one, as we can check in the hyperbola. Let us 
say that after a passage of time of one unit as measured by the emitted inertial clocks, they are 
“absorbed” by the inertial observers C and B (at spacetime events OC and OB). What is the time of A, 
B, C, D, and E corresponding to these events? It is, checking with the second hyperbola, two units of 
time. 
      From the perspective of the relativity of simultaneity, events OD and OE are only simultaneous 
(present to each other) for observer A; the other observers in relative motion will consider that they 
occur at different times. However, these events are present with all the events of the one-hyperbola. 
In the same way, events OC and OB are present with all events of the two-hyperbola. All the inertial 
observers (or events) of each spatial non-Euclidean space (represented in the Euclidean diagram as a 
hyperbola) share the same present and all the inertial observers go through the same flow of time. For 
example, in the two-hyperbola, they all have gone through two units of time. 
      We will make the case that this is enough to consider that in the Minkowski spacetime there is a 
universal inertial time like in Newton’s case; and, in this way, a clear global notion of now (or present) 
and of the flow of time. 
      To show this, let us address an argument by Dieks (2014), in which he criticizes a possible 
interpretation along the lines of what we are presenting here. According to Dieks, the events one time 
unit later than the event at the “origin” are not just the events in the hyperbola but all the events in 
the hyperbola and above it (see figure 6). In this way, Dieks considers that in the Minkowski 
spacetime, there is “no global time function defined on it” (Dieks 2014, 100). 
 

 a  
Figure 6. The events corresponding to the passage of one time unit according to Dieks (2014) 
 
Dieks makes his argument by taking into account non-inertial motion. Let us consider, e.g., events O 
and A in figure 7, one unit of time “away” from each other, as measured by the inertial observer 
connecting these two events. If we now take an accelerated clock connecting these two events, the 
time (t1) it measures is smaller than that of the inertial observer. If we consider another clock with a 
larger acceleration, the elapsed time (t2) is even smaller (see figure 7). 
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Figure 7.  Timelike worldlines of an inertial and non-inertial clocks (t2 < t1 < 1) 
 
This implies, as Dieks remarks, that “by traveling fast enough […] along a non-inertial path we can 
push the event at which one time unit has passed arbitrarily far into the future” (Dieks 2014, 101); 
i.e., further into the “shaded” area inside the hyperbola in figure 6. Dieks concludes that “the locus of 
events one time unit later than a given event does not define a sensible notion of simultaneity” (Dieks 
2014, 101). This would imply that no meaningful foliation of the Minkowski spacetime is possible 
after all. 
      Let us counter-argue this with the help of figure 8. Again, the key is to take into account the 
successive hyperbolas (the one-hyperbola, the two-hyperbola, and so on). 
 

 a 
 

Figure 8. The worldline of a non-inertial clock superposed to the hyperbolas for one and two time 
units of inertial time (and the worldlines of two inertial clocks, C and D) 
 
The elapsed time along a non-inertial path connecting two events is distinct from that of an inertial 
path connecting these same events. That is a given. However, every non-inertial timelike worldline is 
crossing a hyperbola. This means that independently of how time is elapsing for an accelerated clock, 
each event along the clock’s worldline belongs to a “hyperbolic space” characterized by a universal 
inertial time. The “beating” of the accelerated clock is slower than that of the inertial clocks, but, e.g., 
in events OD and OC the “beating” is “happening” in a “hyperbolic space” corresponding first to one 
time unit and then to two time units. At event OD the accelerated clock (whatever its “beating” is) is 
simultaneous (present to/with) the clock of D that has just ticked one time unit; in the same way, in 
event OC the accelerated clock is present to/with the clock of C that has just ticked two time units. 
We can describe the non-inertial worldline in terms of the inertial time associated to each of the space-
time events along the worldline (independently of how slowly the non-inertial clock is beating).4 

 
4 In fact, the accelerated clock’ measured time – its proper time – is calculated in terms of the “underlying” inertial time. 
One way to see this is that an infinitesimal element of proper time is given by an infinitesimal inertial time interval 
multiplied by sqrt (1 – v2/c2) (see, e.g., Valente 2016b, 2019). Another way is to consider light clocks (basically two 
mirrors, at a small distance, parallel to each other and exchanging light “pulses”). The propagation of light is closely 
related to inertial time. If two mirrors are a distance d apart, taking into account the constant two-way speed of light c, as 
light is “emitted” by one mirror, bounces in the other, and returns to the first, “the inertial time associated with the 
propagation of light is 2d/c” (Valente 2019, 17). Along a non-inertial worldline, we have “little” (infinitesimal) bounces 
of light corresponding to “little” (infinitesimal) intervals of inertial time (since we always have an inertial propagation of 
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      In special relativity inertial observers are special; we should not put accelerated clocks at the same 
level as inertial clocks in our arguments. 
      Giving primacy to inertial clocks, arising from the primacy of inertial time (Valente 2019), we 
can see that there is a “natural” foliation of the Minkowski spacetime made in terms of a universal 
inertial time.5 
 
 
References 
 
Arthur, R. T. W. (2019). The reality of time flow. Local becoming in modern physics. Cham: Springer. 
Bohm, D. (1996 [1965]). The special theory of relativity. London and New York: Routledge. 
Dieks, D. (1988). Special relativity and the flow of time. Philosophy of Science 55, 456-60. 
Dieks, D. (2006). Becoming, relativity and locality. In, D. Dieks (ed.), The ontology of spacetime, pp. 157-176. Amster-
dam: Elsevier.  
Dieks, D. (2014). Time in special relativity. In, A. Ashtekar, and V. Petkov (eds.), Springer handbook of spacetime, pp. 
91-113. Berlin: Springer. 
Dray, T. (2012). The geometry of special relativity. Boca Raton: CRC Press.  
Friedman, M. (1983). Foundations of space-time theories: relativistic physics and philosophy of science. Princeton: 
Princeton University Press. 
Hartle, J. B. (2003). Gravity. An introduction to Einstein’s general relativity. San Francisco: Addison Wesley 
Petkov, V. (2009). Relativity and the nature of spacetime. Berlin: Springer. 
Savitt, S. (2020). In search of passing time. In, R. J. Slagter and Z. Keresztes (eds.), Spacetime 1909-2019, pp.  87-100. 
Montreal: Minkowski Institute Press. 
Smith, J. H. (1993 [1965]). Introduction to special relativity. New York: Dover Publications. 
Valente, M. B. (2013). The relativity of simultaneity and presentism. ArXiv: 1302.2603 
Valente, M. B. (2016a). The flow of time in the theory of relativity. Disputatio. Philosophical Research Bulletin 5, 11-36. 
Valente, M. B. (2016b). Proper time and the clock hypothesis in the theory of relativity. European Journal for Philosophy 
of Science 6, 191-207. 
Valente, M. B. (2017). Time in the theory of relativity: inertial time, light clocks, and proper time. ArXiv: 1610.08131v2 
Valente, M. B. (2019). Time in the theory of relativity: inertial time, light clocks, and proper time. Journal for General 
Philosophy of Science 50, 13-27. 
 
 

 
light). We can see that “the total time read off by a light clock along a non-inertial worldline results from the (inertial) 
propagation of light; it is “built” from inertial time” (Valente 2017, footnote 19).  The notions of inertial motion and time 
and of (inertial) propagation of light are more fundamental in the theory than the notion of clock (see Valente 2019).  
5 Notice that in this work we do not adopt any extra hypothesis like it is done in Valente (2016a). The adoption of inertial 
observers/clocks (and their coincidence at the origin) is simply an artifice that (hopefully) makes the presentation clearer 
to the readers. We can reframe the argumentation in terms of the geometry of the Minkowski spacetime and its physical 
interpretation. In particular, the existence of invariant non-Euclidean hyperbolic spaces for which the relative lengths 
between events are independent of the adopted inertial frame and for which there is a unique value of inertial time shared 
by all space-time events of a hyperbola (notice that a space-time event takes for us precedence over a particular physical 
system called clock). This enables a “natural” stacking/foliation of spacetime by hyperbolas. The present hyperbola (as 
the reader is reading this) corresponds to our space “now”, at this present moment; as time flows, we have successive 
hyperbolas corresponding to successive “nows”. 


