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Diagnosing errors in climate model intercomparisons 29 

Abstract. I examine error diagnosis (model-model disagreement) in climate model intercomparisons 30 
including its difficulties, fruitful examples, and prospects for streamlining error diagnosis. I suggest that 31 
features of climate model intercomparisons pose a more significant challenge for error diagnosis than do 32 
features of individual model construction and complexity. Such features of intercomparisons include, e.g., 33 
the number of models involved, how models from different institutions interrelate, and what scientists 34 
know about each model. By considering numerous examples in the climate modeling literature, I distill 35 
general strategies (e.g., employing physical reasoning and using dimension reduction techniques) used to 36 
diagnose model error. Based on these examples, I argue that an error repertoire could be beneficial for 37 
improving error diagnosis in climate modeling, although constructing one faces several difficulties. 38 
Finally, I suggest that the practice of error diagnosis demonstrates that scientists have a tacit-yet-working 39 
understanding of their models which has been under-appreciated by some philosophers.   40 

1. Introduction   41 

Scientists investigate Earth’s climate via simulation models run on supercomputers. Sometimes 42 

these climate models give results that are at odds with each other. To climate modelers, such 43 

disagreements, as well as discrepancies between model results and other data sources, may suggest that 44 

there is something wrong in one or more models. I call these potential sources of disagreement “model 45 

errors.” Clearly, diagnosing these errors and understanding how to fix them are important to climate 46 

modeling and to knowledge generation more generally. One endeavor to diagnose such errors is through 47 

the climate model intercomparison projects. In this paper, I address the following questions: how are 48 

model errors diagnosed? Why are diagnoses difficult? How can they be improved? 49 

Climate model error diagnosis is either misunderstood or has been given little attention in 50 

philosophy of climate science. Many scholars have discussed the significance of model agreement (e.g., 51 

Parker 2011, 2018a; Lloyd 2015a; Winsberg 2018; Odenbaugh 2018; O’Loughlin 2021) and also 52 

interpretations and statistical evaluations of climate model ensembles (Annan and Hargreaves 2010, 2017; 53 

Jebeile and Barberousse 2021; Dethier 2022). Yet not many have discussed climate model error 54 

diagnosis. Lenhard and Winsberg (2010) are one major exception. They claim that it is impossible to say 55 

which part of a climate model is responsible for a particular error given the complexity of the model and 56 

how it was developed. However, given the prevalence of model error diagnosis in the scientific literature 57 

and practice, their skepticism is either unwarranted or its scope must be clarified and potentially revised.   58 
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My analysis is based on concrete examples from the scientific literature.1 Scientists have 59 

diagnosed model errors by employing physical reasoning about model output and based on their 60 

knowledge of the climate system. Expectations about known behaviors of particular components of 61 

climate models are also drawn upon to explain model errors, and there are other strategies besides. These 62 

methods help scientists locate the source of errors and improve climate models as the models are further 63 

developed. In addition, since the 1970s, the infrastructure for intercomparing climate models has become 64 

larger and more diverse, and knowledge of individual models has become more dispersed across the 65 

growing number of experts helping build climate models. I suggest that the increasing complexity of 66 

model intercomparison practices is an alternative explanation for why model error diagnosis is difficult in 67 

practice, in contrast to Lenard and Winsberg’s (2010) emphasis on individual model complexity and the 68 

historical legacy of code.  69 

Further, to improve error diagnosis, I suggest that scientists should clearly state their expectations 70 

for likely model error and compile an “error repertoire” (inspired by and adopted from Mayo 1996) as 71 

reference and guidance for future model error analysis. Scientists’ success in model error diagnostics, 72 

despite the complexity of models and the complexity of model intercomparisons, may suggest that 73 

scientists have a tacit-yet-working knowledge2 about climate models’ behavior—a kind of Duhemian 74 

“good sense”—that is worthy of future philosophical analysis. 75 

In section 2, I review the current discussion of climate model error diagnosis by focusing on 76 

Lenhard and Winsberg (2010). In section 3, I describe the increasing complexity of climate model 77 

intercomparison practices that has occurred over time which makes error diagnosis more difficult. In 78 

 
1 The examples (and my emphasis in this paper) are focused on multi-model disagreement. For work centered on 
model-observation discrepancies, including examples of models being used to correct errors in observational and 
other data, see Lloyd 2012; Abraham et al. 2013; Mann 2018; Weart 2020; and Li (2022). 
2 By “tacit” I have in mind a sort of practice-based knowledge which scientists could perhaps explain to others if 
pressed but which they typically do not explain to others. Thanks to Matthew Mayernik for prompting me to clarify 
my use of this term and for pointing me to the work of Schmidt (2012) who discusses how, in many scientific and 
academic contexts, “tacit” is a “conceptual muddle that mystifies the very concept of practical knowledge” (163). 
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section 4, based on several examples of model error diagnosis, I distill general strategies behind error 79 

diagnostic practices. In section 5, I suggest an error repertoire as guidance for future error diagnosis.  80 

 81 

2. Confirmation Holism and analytic understanding of climate models 82 

The models we are concerned with are general circulation models (GCMs). GCMs simulate the 83 

atmospheric and oceanic circulatory patterns on earth and are used for applications in both weather and 84 

climate. GCMs are run on supercomputers and consist of computer code representing mathematical 85 

equations based on physical principles, such as classical physics (e.g., Navier-Stokes equations). These 86 

governing equations describe mass and energy transfer in the atmospheric, oceanic, ice, and land 87 

components of the climate system. For reasons of computational efficiency and due to the very small 88 

scales of certain physical phenomena, some processes (e.g., cloud physics, turbulence) are not explicitly 89 

represented in the model but are instead parameterized. Parameterizations—which we can think of as sub-90 

models—are used to represent the effect of small-scale processes “at the grid scale of the model” 91 

(Gettelman and Rood 2016, 46). These sub-models come in varying degrees of complexity and may have 92 

empirical support or be derived from theory (Lloyd 2015a). 93 

 Lenhard and Winsberg (2010) claim that climate scientists do not have analytic understanding of 94 

their GCMs, meaning that scientists cannot “identify the extent to which each of the sub-models of a 95 

global model is contributing to its various successes and failures” (258). These “failures” include cases 96 

where a climate model’s results are at odds with the results of other climate models, and so their account 97 

implies that error diagnosis in climate modeling is impossible. Their reasons for thinking this are fourfold, 98 

which I will explain in the following two subsections. The first three reasons concern what they claim are 99 

features of climate models and their development: fuzzy modularity, kludging, and generative 100 

entrenchment. Their fourth reason concerns examples from climate modeling wherein model error 101 

diagnoses were apparently either not possible or were severely limited. 102 
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2.1 Fuzzy modularity, kludging, and generative entrenchment 103 

 Let’s begin with the notion of fuzzy modularity. “Modularity” refers to the fact that GCMs are 104 

composed of sub-models (the atmosphere module, the cloud parameterization, sub-parameterizations, the 105 

land module, etc.). Climate modelers typically differentiate between parameterizations, which represent 106 

specific processes at sub-grid scales, and modules, such as an atmosphere module, which themselves 107 

contain a host of parameterizations, but we can regard them all as different types of sub-models in that 108 

they are all parts of a whole GCM.3 Lenhard and Winsberg use the term “fuzzy” to capture two different 109 

ideas about climate models. The first is that, as a GCM simulates climate, it is the interaction of the sub-110 

models that jointly produce the model output. In their words,  111 

The overall dynamics of one global climate model is the complex result of the interaction of the 112 
modules—not the interaction of the results of the modules. For this reason, we like to modify the 113 
word “modularity” with the warning flag ‘fuzzy’: due to interactivity, modularity does not break 114 
down a complex system into separately manageable pieces (Lenhard and Winsberg 2010, 256). 115 

 116 

 This makes it difficult to isolate components of a GCM and infer exactly how they modify its 117 

overall behavior. For instance, if one is interested in diagnosing how a new cloud parameterization will 118 

change a GCM’s response to aerosol forcing, it is not enough to examine both the GCM and the cloud 119 

parameterization independently—one also needs to examine how the model output changes after 120 

implementing the new parameterization. However, Lenhard and Winsberg emphasize that it is not 121 

possible to tell whether the behavior of the ‘GCM + new cloud parameterization’ is due to the interaction 122 

of the new cloud parameterization with the chemistry sub-model, with the vegetation sub-model, or some 123 

other component (or combination of components) in that GCM.  124 

 
3 Lenhard and Winsberg seem to use “sub-model” and “module” interchangeably. In contrast, I adopt climate 
scientists’ typical usage of these terms, except when directly quoting Lenhard and Winsberg. Effectively this means 
that sub-models are parameterizations or sub-parameterizations, and the term “modules” is (usually, but not always) 
reserved for larger pieces of a GCM such as the atmosphere module or ocean module.  
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 The second notion of “fuzzy” relates to the development of sub-models (discussed further below). 125 

Lenhard and Winsberg claim that parameterizations are built and tested “on the basis of the 126 

parameterizations that are already part of the concrete model under construction” which means that later 127 

modeling “steps” are influenced by the “accumulated effects of previously implemented steps” (256).4 128 

This creates a “‘fuzzy’ kind of modularity: normally, [sub-models] are thought to stand on their own. In 129 

this way, modularity should have the virtue of reducing complexity. In our present case, however, the 130 

[sub-models] are interdependent and therefore lack this virtue” (256).  131 

 Another key idea Lenhard and Winsberg discuss is called “kludging,” which was originally a 132 

slang term in the computer programming world. As philosopher Andy Clark describes it, a kludge is “an 133 

inelegant, ‘botched together’ piece of program; something functional but somehow messy and 134 

unsatisfying” (1987, 278). Moreover, a kludge may be poorly understood such that its limitations and 135 

range of applications are unknown. Kludges are relevant to GCMs, because GCMs are run on computers. 136 

As Lenhard and Winsberg say, “A kludge is built to optimize the performance of the overall model as it 137 

exists at that particular time, and with respect to the particular measures of performance that are in use 138 

right then. There is no guarantee that an implemented kludge is optimal in any general sense” (2010, 257).  139 

 Kludges also relate to Lenhard and Winsberg’s claim that path-dependency and the historical 140 

character of climate model development can best be understood in terms of William Wimsatt’s notion of 141 

“generative entrenchment” (Wimsatt 2007). The basic idea is that some components in climate models, 142 

including kludges and model components “that are not related to principled considerations,” may have 143 

other model components functionally depending on them and may therefore constrain the ability of the 144 

GCMs’ development at later stages (257).5  145 

 
4 Compare with Morrison (2021). Lenhard and Winsberg’s description of model development appears reasonable 
but may not be accurate to practice.  
5 But see Morrison (2021) for a practice-informed study of how climate modelers prioritize, research, and implement 
updates to their model over the course of development. Also, large-scale rewrites of GCM code are sometimes done 
in practice, contrary to Lenhard and Winsberg’s description of climate model development (e.g., see Neale et al. 
2012).  
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 Lenhard and Winsberg claim that the above-described features of GCMs—fuzzy modularity, 146 

kludging, and generative entrenchment—jointly result in a form of confirmation holism that imposes 147 

severe limitations for climate scientists who wish to isolate specific components of GCMs that are 148 

responsible for specific instances of the models’ successes and failures. 149 

 The result, according to Lenhard and Winsberg, is a failure of analytic understanding, which is 150 

the level of understanding one has “when one is able to identify the extent to which each of the sub-151 

models of a global model is contributing to its various successes and failures” (258). The problem 152 

Lenhard and Winsberg claim to identify is that, due to the complexity of interactions between sub-153 

models, “it becomes impossible to independently assess the merits or shortcomings of each sub-154 

model…The ideal of analytic understanding is profoundly impeded by what appears to be a particularly 155 

vicious form of confirmation holism” (258).  156 

2.2 Examples of alleged failure to diagnose model error 157 

 Lenhard and Winsberg supplement their argument by discussing some empirical evidence, i.e., 158 

examples from the climate model intercomparison literature of a failure to identify model error by 159 

attributing it to specific sub-models. The examples they cite include the Atmospheric Model 160 

Intercomparison Project (AMIP) (Gates 1992), phase 1 of the Coupled Model Intercomparison Project 161 

(CMIP) (Meehl et al. 2000), and the Aqua-Planet Experiment Project (APE) (Neale and Hoskins 2000).  162 

 Lenhard and Winsberg note that one of the aspirations expressed early in the model 163 

intercomparison literature, especially AMIP, was to be able to “make inferences about the performances 164 

of the various sub-components of the models and to attribute the diagnosed strengths and weaknesses of 165 

the different models” (259). However, Lenhard and Winsberg note, “In their voluminous 1998 review of 166 

AMIP, Gates et al. conceded that there were still errors revealed—but not accounted for—by the 167 

intercomparison” (259). Lenhard and Winsberg say that in AMIP such diagnoses were achieved only to a 168 

limited degree and largely had to be postponed (259). Moreover, according to Lenhard and Winsberg, the 169 
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situation did not improve all that much by the time the first two phases of CMIP were undertaken (around 170 

the year 2000). They go on to say that, following CMIP2, “One of the central original goals—deepened 171 

understanding of simulation mechanisms via attribution—was greatly downsized, indeed disappeared 172 

nearly entirely from the proposals of the [then-]recent CMIP3” (259).6 Similarly, with APE, an 173 

intercomparison effort which imposed more boundary conditions and therefore simplified the GCMs, the 174 

scientists’ goal to understand “the causes of differences in model performance…[was] postponed to a 175 

later stage (see APE, 2008)” (259). This brief description represents virtually all of the empirical evidence 176 

presented by Lenhard and Winsberg to show that climate scientists failed to diagnose model errors.  177 

 While Lenhard and Winsberg grant that the sources of some model errors were tracked down 178 

throughout these intercomparison efforts, they regard the attribution of model error as remaining largely 179 

out of reach and suggest that such limitations will persist going forward. From their perspective, such 180 

“failures seem to point to a systematic cause that pushes analytic understanding of these models out of 181 

reach…this failure is best understood as a form of confirmation holism arising from the need modelers 182 

face to adapt their efforts, often with kludges, to generatively entrenched features of GCMs” (259). In 183 

agreement with my analysis, Frigg et al. (2015, 967) read Lenhard and Winsberg as defending “the more 184 

radical claim that one will never be able to say where the successes and failures of climate models come 185 

from.” 186 

2.3 Inconsistency, obscurity, and mismatch 187 

In sum, analytic understanding is argued to be unachievable due to fuzzy modularity, kludges, 188 

and generative entrenchment, which are all claimed to be features of GCMs and their development. This 189 

argument is supplemented with some examples from the climate model intercomparison literature. On 190 

Lenhard and Winsberg’s view, then, scientists cannot diagnose model errors.7   191 

 
6 Here “attribution” refers to attributing the sources of success and failure in climate models to sub-components of 
those models. This should not be confused with detection and attribution work in climate science. 
7 Lenhard and Winsberg’s account also implies that scientists cannot attribute sources of model success, however, 
that is the topic for another paper.  
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However, there are several problems facing Lenhard and Winsberg’s account. I will highlight and 192 

explain three of them here.  193 

The first problem is one of inconsistency. Lenhard and Winsberg themselves admit that some 194 

errors were tracked down, as mentioned above in section 2.2. This is obviously not consistent with the 195 

radical claim they seem to be defending, as articulated at the end of section 2.2 above, i.e., the "claim that 196 

one will never be able to say where the successes and failures of climate models come from" (Frigg, 197 

967).8  198 

A second problem is about obscurity. That is, it is unclear what counts as analytic understanding 199 

on Lenhard and Winsberg’s view. According to Lenhard and Winsberg (2010), to have analytic 200 

understanding is to be able to “identify the extent to which each of the sub-models of a global model is 201 

contributing to its various success and failures” (258). However, this “extent to which” language is 202 

somewhat obscure and difficult to apply in practice, i.e., when looking at examples of error diagnosis in 203 

the climate science literature. To see this, let us briefly look at a recent high-profile example of error 204 

diagnosis. In a contemporary, single-model study, scientists at the National Center for Atmospheric 205 

Research iteratively ran their model nearly 300 times to determine why the model’s surface temperature 206 

output was too high when initialized with new emissions input data (including greenhouse gas and aerosol 207 

emissions data).9 They ran the model “with varying configurations and outputs” and ultimately arrived at 208 

a diagnosis: “the cloud production components of the model were the primary cause of output changes, as 209 

cloud generation is tied to the presence of aerosols within the atmosphere” (Mayernik 2021, emphasis 210 

added; see also Hoesly et al. 2018 and Gettelman et al. 2019). Gettelman et al. (2019) also detail how 211 

model behavior is impacted by changes to specific sub-models. These scientists are aware not only of the 212 

changes made to their model as it underwent development, but also the various sources of observational 213 

 
8 Thank you to an anonymous reviewer for prompting me both to think through these issues more carefully and to 
explicitly highlight this inconsistency. 
9 This episode has a fairly broad audience, as it was written up at the Wall Street Journal (Hotz 2022). Additionally, 
Castillo Brache (2022) uses this example to critique Lenhard and Winsberg’s (2010) account. 
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and theoretical evidential support for the sub-models (e.g., see Bogenschutz et al. 2013; Gettelman & 214 

Morrison 2015; Gettelman et al., 2015). It is unclear, however, whether Lenhard and Winsberg would 215 

regard this example as demonstrating analytic understanding. For example, they could claim that the 216 

modelers only identified model components (e.g., the cloud sub-model) that produced certain results in 217 

conjunction with the rest of the model, and that we can’t say for sure whether the cloud sub-model itself is 218 

truly to blame and, if so, whether it is 100% to blame, 50% to blame, etc.10 In other words, Lenhard and 219 

Winsberg could argue that, while this case exemplifies some sort of helpful analysis, it does not amount 220 

to showing the “extent to which” certain sub-models contributed to model error. If this is the right way to 221 

understand Lenhard and Winsberg, then this response seems available to refute any alleged example of 222 

error diagnosis. This would imply that climate model error diagnoses which appeal to specific model 223 

components are impossible in principle because one could always respond along holist lines and one 224 

could always question whether an identified error source is the primary culprit, a secondary (lesser) cause 225 

of error, and so on. There would be no need to even look at the scientific literature or to attempt to acquire 226 

empirical evidence of error diagnoses in practice. However, since Lenhard and Winsberg (2010) 227 

themselves consider empirical evidence by looking at the climate model intercomparison literature (see 228 

Section 2.2 above), they clearly do not want to rule out the possibility of error diagnosis in this way. 229 

In light of the above analysis, and because they do not offer any detailed positive examples of 230 

error diagnosis, Lenhard and Winsberg’s notion of analytic understand remains obscure.11 I suggest that 231 

philosophers of science instead focus on the strategies scientists use to diagnosis (or ostensibly use to 232 

diagnose) model errors, the associated explanations scientists offer (if any), and determine what type(s) of 233 

understanding this practice amounts to in climate modeling.   234 

The third problem is one of mismatch. That is, the examples Lenhard and Winsberg (2010) 235 

discuss all come from climate model intercomparison projects which involve dozens of distinct models 236 

 
10 Thanks to an anonymous reviewer for prompting me to think more critically about this.  
11 They also do not offer any detailed positive examples of attributing sources of model success.  
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and yet their version of confirmation holism is a skeptical claim about scientists being unable to achieve 237 

analytic understanding of individual climate models. This is because their argument is rooted in alleged 238 

features of individual GCMs, such as fuzzy modularity, kludges, and generative entrenchment. However, 239 

in the context of climate model intercomparisons, the failure to diagnose model error could also be 240 

explained by features of the intercomparison effort itself. Thus, I claim that there is a social epistemology 241 

element to the problem of error diagnosis—it’s not just about simulations governed by complex 242 

intermingled computer code. Let’s explore this idea further.  243 

3. Model intercomparisons old and new  244 

Here I show that features of model intercomparison practices, rather than the features of climate 245 

models that Lenhard and Winsberg focus on, may better explain difficulties in diagnosing model error. 246 

Recognizing this allows us to give a more fine-grained account of how error diagnosis should be 247 

approached in future analyses of climate models.  248 

I contrast the early and informal model intercomparisons (section 3.1) with those which began circa 1989 249 

with AMIP (section 3.2).12  250 

3.1 Early and informal climate model intercomparisons 251 

 Climate model intercomparisons were informally conducted at least as early as the 1970s, during 252 

which time computationally simpler and more understandable models were compared to GCMs. While 253 

agreement between the more understandable simpler models and the more complex GCMs was taken to 254 

be epistemically significant (e.g., see Schneider and Dickinson 1974, 456), diagnosis of model differences 255 

also sometimes figured into climate scientists’ analysis, e.g., differences in representation of both 256 

radiative processes and atmospheric stratification at the poles figured into an analysis of why 1-D models 257 

diverged from a GCM in their estimate of climate sensitivity (see Schneider 1975).   258 

 
12 For further historical reading, see Gates 1979; Arakawa 2000; Washington 2006; Edwards 2010, 2011; Randall et 
al. 2018; Weart 2020.  
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 Further climate model intercomparisons were made in 1978, at the Global Atmospheric Research 259 

Programme conference in Washington, DC where scientists met to discuss, present, and compare climate 260 

models and modeling results. This was “the first of many ‘intercomparison’ meetings” (Weart 2020, 21), 261 

and included 81 scientists from 10 countries. Comparisons between a single GCM and one or two simpler 262 

models were presented, and further model-model discrepancies figured into many presentations (Gates 263 

1979). Additionally, at this conference, climate scientist Stephen Schneider suggested a possible “first law 264 

of climate modeling” to ensure that only one change at a time be made when constructing hierarchies of 265 

climate models, so that cause and effect relationships would be understandable (Schneider 1979). As 266 

Schneider put it: 267 

…[T]he field of climate modeling needs to “fill in the blanks” at each level in the hierarchy of climate 268 
models. For only when the effect of adding one change at a time in models of different complexity 269 
can be studied, will we have any real hope of understanding cause and effect in the climatic system. 270 
The comparison, both across the hierarchy of models and with [independent] data…can provide 271 
improved confidence in the sensitivity performance of a model. In essence, we can conclude by 272 
stating what could be called a “first law of climate modeling.” That is: To use climatic models to 273 
understand cause and effect linkages in the climatic system, it is necessary to make no more than one 274 
change at a time in a model, be it a boundary condition, numerical scheme, or physical 275 
parameterization. (1979, 748, original emphasis) 276 

 277 

This “first law” was implicitly followed (and still is) in some cases of model development and in 278 

perturbed physics ensembles (in which a single parameter is varied across a range of plausible values) but 279 

is not true of the multi-model intercomparisons such as AMIP, where GCMs differ from one another in a 280 

multitude of ways.13 I will return to this point in section 3.2 below.   281 

 In the 1979 Charney Report, which compared results from two structurally different GCMs (and 282 

some simpler models) there weren’t any in-depth model error diagnoses. However, the authors did 283 

highlight model differences at a coarse level and, regarding global-scale changes under projections of 284 

increasing CO2, they noted that “CO2-induced climate changes made with the various models examined 285 

 
13 For more on climate model hierarchies, see Held (2005) and Jeevanjee et al. (2017). 
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are basically consistent and mutually supporting… [and] differences in model results are relatively small 286 

and may be accounted for by differences in model characteristics and simplifying assumptions” (National 287 

Academy of Science 1979, 17). These two GCMs came from two research groups, one model was 288 

developed by Syukuro Manabe and colleagues at the National Oceanic and Atmospheric Administration 289 

and the other was developed by James Hansen and colleagues at NASA Goddard Institute for Space 290 

Studies.14 291 

 The GCM used by Hansen and colleagues was also the subject of an intergenerational model 292 

intercomparison a few years later, in 1983. By “intergenerational intercomparison” I mean the evaluation 293 

of a GCM during and after model development—the comparison between an earlier and later version of a 294 

model. Hansen et al. very explicitly evaluate the changes in model output as a function of singular 295 

changes to the model physics, i.e., to the model’s parameterizations, as they developed their “model II” 296 

from “model I” (see Figure 1 below). Note that such intergenerational intercomparisons of a single GCM 297 

with its predecessor is a common practice in climate modeling for model developers today (e.g., see 298 

Neale et al. 2012; Danabasoglu et al. 2020).15  299 

[Insert Figure 1 here – for pre-print version, see end of document] 300 

 Thus, a defining feature of these early model intercomparisons is that they were between a 301 

relatively small number of models. Moreover, in these intercomparisons some diagnoses of model error 302 

(and model behavior more generally) were in fact possible. Finally, these model intercomparisons were 303 

not coordinated, in contrast to AMIP. 304 

 305 

3.2 Coordinated Model Intercomparisons 306 

 
14 These two GCMs were configured in a total of five different ways (e.g., varying in terms of how snow and ice 
were represented, whether a deep ocean was used, and whether seasonal change was represented) to make five 
distinct projections.  
15 These exploratory activities fall under what Wilson (2021) refers to as “Model dynamic exploration.”  
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 With the Atmospheric Model Intercomparison Project (AMIP), which began in 1989, 307 

intercomparison practices changed dramatically. AMIP was “coordinated” in the sense that: (i) each 308 

participating modeling group was required to run its model according to certain boundary conditions, in 309 

this case, sea surface temperatures and sea ice extent were prescribed from observational data; (ii) each 310 

modeling group had to submit their model output data in a specified gridded format to facilitate model-311 

model and model-observation comparisons; and (iii) each modeling group had to submit data for specified 312 

variables over the prescribed time period (e.g., monthly averages at each grid point for sea-level pressure 313 

for the years 1977-1988) (Gates 1992).  314 

 Despite this coordination, differences between models (i.e., concerning how they were developed, 315 

what their resolutions were, what parameterizations they used, etc.) were not systematic or prescribed. 316 

The different modeling groups didn’t coordinate with the other modeling groups about how to build their 317 

respective models in systematically different ways to explore structural model uncertainty in a principled 318 

fashion. For these reasons and others, the multi-model ensembles that began with AMIP and now 319 

continue to today in various forms, are often referred to as “ensembles of opportunity” (Tebaldi and 320 

Knutti 2007). Moreover, with AMIP, 31 modeling groups participated in total, “representing virtually the 321 

entire international atmospheric modeling community” at the time (Gates et al. 1999, 29). Thus, instead of 322 

comparing one or two GCMs to each other and to simpler models, the coordinated model intercomparison 323 

projects involve dozens of models (and now, around 100 models) hailing from a growing number of 324 

institutions.  325 

These realities of scientific practice are important for understanding why model error diagnosis 326 

was more difficult to achieve than anticipated in the examples described in section 2.2 above. These 327 

realities include the increasing number of participating models, the messy relationships between these 328 

models, and the increasing number of model developers and developing centers.  329 

 First, AMIP, and the many other coordinated model intercomparison projects that followed 330 

involved more models than previous intercomparisons (31 atmospheric GCMs being jointly analyzed in 331 
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AMIP vs. a handful of GCMs being analyzed one at a time at the 1978 conference). Second, the 332 

relationships across the AMIP models were neither hierarchical nor systematic—they have diverged from 333 

the prescriptions of Schneider’s “first law.” One clear example of this is in chapter 9 of the 334 

Intergovernmental Panel and Climate Change’s fourth assessment report, where different treatments of 335 

aerosols are described (Hegerl et al. 2007, see especially their figure 9.5). Instead of a hierarchy of 336 

models which differ from one another only with respect to aerosol representations, these models also 337 

exhibit structural differences (e.g., in terms of which processes are omitted vs. parameterized), differences 338 

in resolution, and others. Third, individual model development knowledge is epistemically dispersed 339 

across multiple teams because models consist of multiple modules and dozens or more process 340 

representations (sub-models) requiring experts from a diverse range of fields (e.g., see National Research 341 

Council 2012).  342 

More generally, the conceptualization, implementation, tuning, and testing that goes into building 343 

a particular state-of-the-art GCM is not fully known by any individual scientist on the development team, 344 

let alone scientists working at other modeling institutions. In other words, the facts of model development 345 

(e.g., concerning which parameterizations were used for various processes and how they, or other parts of 346 

the model, were tuned, measured, and empirically or theoretically supported) were more widely 347 

epistemically dispersed than previous model intercomparisons, largely as a consequence of there being 348 

more GCMs and more scientists working to develop them.  349 

Until fairly recently, climate model tuning (also known as model calibration) was a fairly opaque 350 

and under-discussed practice.16 Tuning involves adjusting parameters or individual model components in 351 

order to improve the fit with observational data of interest. Model tuning is sometimes discussed as a 352 

hindrance to determining model skill—the worry is that a model which performs well is doing so for the 353 

wrong reasons, i.e., that a models parameters/components were adjusted without sufficient justification 354 

 
16 For examples of candid discussions of model tuning by climate scientists, see Mauritsen et al. 2012; Schmidt and 
Sherwood 2015; Schmidt et al. 2017; Hourdin et al. 2017.  
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and only in order to fit observations.17 As Parker (2018b, section 4.2, par. 6) notes, matters become more 355 

complicated when one considers that more generally (i.e., aside from actually tuning the model), 356 

“modelers can be familiar with [certain observational] data and may well make choices in model 357 

development—choices which could reasonably have been somewhat different—with the expectation that 358 

they will improve the model’s performance with respect to those already-seen data.” In the context of 359 

difficulties facing error diagnosis, the main issues are that each modeling group tunes their GCM at least 360 

somewhat differently, the way a model is tuned may impact its biases, and the knowledge of how a given 361 

GCM was tuned largely remains local to that model’s home institution.  362 

It’s also worth noting that the climate modeling community was fairly small in the early days 363 

(e.g., see Edwards 2010; 2011), such that individual scientists could claim to know all the ins and outs of 364 

their GCM and potentially compare it with their colleague’s model by discussing it one-on-one. The fact 365 

that GCMs continued to increase in complexity (i.e., increasing the number of physical processes 366 

represented by adding more and more sub-models) while the climate modeling community also grew, 367 

means that the expertise required for diagnosing errors because more and more dispersed and diagnosing 368 

model errors likely became much more challenging.18   369 

These features of scientific practice shed some additional light on why diagnosing model errors 370 

may have been so difficult in the examples Lenhard and Winsberg (2010) discuss. Imagine trying to tease 371 

apart every single difference between each GCM. Even if the models individually were fully understood 372 

by the scientists who developed them, we would expect difficulties in diagnosing model-model 373 

discrepancies during intercomparison because inter-model differences were so numerous. Moreover, the 374 

iterative re-running of a GCM hundreds of times (recall the example from section 2.3 above) to conduct a 375 

sensitivity test is not an option in the multiple model context, or at least it is not at all clear how to 376 

 
17 See Steel and Werndl (2013), Frisch (2015), and Schmidt and Sherwood (2015) for a philosophical discussion.  
18 The analysis in Cess et al. (1989) serves as a sort of midpoint between the uncoordinated model intercomparison 
and the coordinated ones. This intercomparison included some closely related models (i.e., from the same 
institutions) as well as more distinct models and analyses of the former were more fine-grained than those of the 
latter (e.g., see their discussion of GFDL I and II on their page 515). Moreover, many of the scientists involved 
helped develop the models being analyzed.  
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conduct one given numerous and nonsystematic inter-model differences. Failing to diagnose model 377 

disagreement in AMIP was thus underdetermined—perhaps the failure was due to individual model 378 

complexity, but it also may have been due to the dispersal of facts across hundreds of practitioners 379 

concerning how the different models were developed, tested, etc.  380 

There are additional factors that could explain the failure to diagnose errors in AMIP, making the 381 

issue even more underdetermined. E.g., there was a limitation of available observational data to compare 382 

model simulations against (e.g., see Gleckler et al. 1995, 793). This could have hampered error diagnosis 383 

efforts: e.g., if scientists thought a particular model-observation discrepancy was caused by X, and X is 384 

thought to impact the simulation of Y, then a lack of observational data to compare Y against is a major 385 

problem. Perhaps another relevant factor was the comparative ease of compiling output data from the 386 

models (which was then becoming available in a uniform format) and analyzing the statistical features of 387 

the whole model ensemble. The thinking could be: “why diagnose the causes of model disagreement 388 

when we can easily aggregate and statistically analyze the model results?” 389 

 Climate scientists and philosopher of science Touzé-Peiffer et al. (2020) reinforce the point I am 390 

making. They analyze the history of the coupled model intercomparison project (CMIP) and its structural 391 

effects on climate research. In their analysis, Touzé-Peiffer et al. characterize a climate model as “not just 392 

the sum of the code” and associated assumptions, but as a “dynamical entity with which it is possible to 393 

interact” (9). By this, Touzé-Peiffer et al. mean that through the trial-and-error use of a climate model 394 

(initialize it, run it, compare it to observations and other model output, make tweaks to the model, repeat) 395 

“climate scientists can acquire …knowledge about the behaviour of a climate model, what it is doing and 396 

why” (9). This knowledge is collective, resulting from collaborative efforts of scientists working within a 397 

single modeling institution who focus on “separate but complementary aspects of the same climate 398 

model” (9).  399 

 Touzé-Peiffer et al. further claim that if knowledge about a given climate model is collective, it 400 

typically stays at the level of one research team working on one model. Indeed, as they note, “due to the 401 

complexity of the models involved in CMIP, acquiring knowledge about the behavior of a climate model 402 
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takes time and scientists generally focus their efforts on one particular model” (9). Under these 403 

circumstances, it would be unsurprising for model error diagnosis in a case such as AMIP to be severely 404 

limited, as such diagnosis would require the synthesis of several dispersed sets of collective knowledge 405 

about each GCM under consideration.  406 

 However, I think it is fair to ask: was there really such a failure to diagnose model error as 407 

Lenhard and Winsberg suggest? In fact, AMIP spawned 26 diagnostic subprojects aimed at analyzing the 408 

various sources of model error and model differences, and several of these subprojects were successful in 409 

identifying some sources of model error.19 In the next section we consider two examples from these 410 

diagnostic subprojects, and then we look at two contemporary examples of model error diagnosis.20  411 

 Before proceeding, I should note that several philosophers and other scholars of climate modeling 412 

(e.g., Frigg et al. 2015; Baumberger et al. 2017; Carrier and Lenhard 2019; Touzé-Peiffer et al. 2020) 413 

have also responded to Lenhard and Winsberg (2010) by pointing out clear examples of error diagnosis in 414 

the climate modeling literature. I will not merely be adding to these examples: I will also explore the 415 

different strategies scientists use when making these diagnoses and I will explore the possibility of an 416 

error repertoire for climate modeling (Section 5 below). 417 

 418 

4 AMIP-era and contemporary examples of successful model error diagnosis 419 

 420 

4.1 Isolating cloud radiative effects using observational data 421 

 
19 A list of publications from these diagnostic subprojects can be found here: 
https://pcmdi.llnl.gov/mips/amip/abstracts/abhme.html 
20 Touzé-Peiffer et al. (2020) also give examples of successful model error diagnosis, saying “In fact, in the 
literature, we can find many studies investigating the link between the results of a model and its parameterizations 
(e.g., Hourdin et al., 2013; Notz et al. 2013).” They also mention “studies comparing radiation codes in different 
climate models, such as Oreopoulos et al. (2012) and Pincus et al. (2015), where the authors analyze not only the 
model results, but also the corresponding parameterizations and the assumptions they make” (9). 

https://pcmdi.llnl.gov/mips/amip/abstracts/abhme.html
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First, there is Gleckler et al.’s (1995) study, in which scientists attribute differences in derived 422 

ocean heat transport across 15 GCMs to differences in how these models represent cloud radiative 423 

feedbacks.  424 

These scientists use results from model simulations of radiative fluxes at the surface of the ocean 425 

to calculate what ocean heat transport (from the tropics to the poles) would look like in each of the 426 

models if ocean surface temperatures weren’t prescribed.21 They find that calculated ocean heat transport 427 

in some of the GCMs is in the wrong direction for some latitudes—i.e., Northward in much of the 428 

Southern Hemisphere. They suspect that cloud feedbacks were relevant to this discrepancy based on 429 

previous modeling results (i.e., Cess et al. 1990).  430 

To investigate whether cloud feedbacks really were the culprit for this discrepancy, Gleckler et al. 431 

calculate cloud radiative forcing both in the models and in observations. Cloud radiative forcing is 432 

defined as the difference between net top-of-the-atmosphere [TOA] radiation and a “clear sky” (i.e., 433 

without clouds) TOA radiation (Ramanathan et al. 1989). They find important differences in observation-434 

derived and model-derived cloud radiative forcing, as well as differences across the models. Moreover, 435 

they find that the strength of cloud radiative forcing correlates with ocean surface radiative fluxes both in 436 

models and in observations (they explain why this is to be expected based on certain TOA and surface 437 

energy budget equations; see Gleckler et al. 1995, 791-792). From this they suggest that the GCMs’ 438 

“inadequate simulations” of cloud radiative forcing are to blame for the discrepancies between calculated 439 

ocean heat transport in the models and in observations (794). To informally test this, they recalculate 440 

ocean heat transport using a combination of model data and cloud forcing “corrections” from 441 

observational data. The resultant ocean heat transport is no longer in the wrong direction in the southern 442 

hemisphere, which these scientists take as a positive sign that their error diagnosis was correct.  443 

 
21 Recall: in AMIP, sea surface temperatures were prescribed. But these scientists still wanted to know what this 
heat transport would look like because future applications of these models would include coupling them to ocean 
models.   
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 While the analysis does not go model by model and look at how each individual GCM represents 444 

cloud radiative forcing, their analysis does diagnosis a cause for why models disagreed with known data. 445 

They began with a certain expectation about the source of model error and then used physical reasoning 446 

(using energy budget equations and finding a correlation between cloud radiative forcing strength and 447 

ocean transport), and finally they tested their diagnosis.  448 

 449 

4.2 Using dimension reduction techniques 450 

 Second, there is Sengupta and Boyle’s (1997) analysis which employs a dimension reduction 451 

technique to compare GCMs both with observations and with one another. This technique, common 452 

principal component analysis, allows scientists to reduce the dimensionality of data while preserving as 453 

much variance as possible. Scientists compute a few of the largest orthogonal (i.e., independent) 454 

components that maximally preserve the original variance of the data. These components are assumed to 455 

be statistically representative characteristics of the original data. In this way, they can compare the 456 

identified components of different data sources and show whether and how model output and 457 

observational data are similar, as defined with the components. In one part of this study, Sengupta and 458 

Boyle look at the differences in 200-hpa (atmospheric pressure) output from four GCMs compared to 459 

observations. This subset of models “a priori were expected to have some common type of error patterns,” 460 

because the models all started from the same code (1997, 826). Of the four models, all but one used the 461 

same convective parameterization (a sub-model which calculates the effects of convective clouds, which 462 

form through vertical motion of humid air parcels). The authors note that one may expect that “the 463 

convective parameterization might play an overwhelming role in determining the model characteristics,” 464 

(826) and thus that the models which shared this parameterization would be grouped together (i.e., have 465 

the same principal components “explaining” their variance). However, this turned out not to be the case 466 

and other model differences (i.e., two of the models represented land-processes and radiation differently) 467 

apparently were more important reasons for why those models differed from the observational data. In 468 
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this way, they were able to identify specific sources potentially responsible for model-model and model-469 

observation discrepancies.  470 

 These two examples show that in AMIP climate scientists did point to specific aspects of models 471 

as the source of model error. In the Gleckler et al. example this involved physical reasoning about the 472 

effect of clouds on Earth’s energy budget, and in the Sengupta and Boyle example dimension reduction 473 

techniques were utilized. The next two examples are more contemporary.  474 

 475 

4.3 Utilizing background knowledge and assessing dynamic simulations in regional climate models 476 

 Our third example concerns a study of regional climate models (RCMs) and comes from 477 

Bukovsky et al. (2017). These scientists look at RCM mean model output of projected changes in spring 478 

and summer precipitation in the southern great plains in the United States. These RCMs are driven by 479 

(i.e., fed input data from) four different GCMs at their boundaries. The RCM results are compared and 480 

differences in the driving GCMs and some GCM projections were also analyzed.  481 

 Regarding the GCM comparison, Bukovsky et al. draw from past modeling studies to suggest that 482 

for two of the GCMs, “it is likely that the projected increase” in precipitation by these GCMs is due to the 483 

type of convective parameterization scheme used by both GCMs (8281). While this diagnosis makes 484 

physical sense based on the process of convective precipitation, Bukovsky et al. also note that a 485 

characteristic response of this convective parameterization scheme is to “convect too easily to allow 486 

CAPE [convective available potential energy] to build up in the environment (as illustrated by 487 

consistently low CAPE values in [the Community Climate System Model] CCSM in Marsh et al. 488 

(2007))” (8283). They further note that similar problems have been discovered in previous analyses (e.g., 489 

Zhang and McFarlane 1995; Zhang 2002). Thus, a known behavior of a specific sub-model (the 490 

convective parameterization) is identified as likely to be causally relevant to the GCM’s too-high 491 

projection of precipitation. Here the diagnosis is tentative, but the authors explicitly make a connection 492 

between the behavior of a parameterization and the consequences of that parameterization’s behavior for 493 

the climate model projection, i.e., certain precipitation patterns.  494 
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 In the same study, Bukovsky et al. also look at RCM projections and tie the differences to their 495 

respective driving GCMs. There is a discussion of an outlier: the RCM projections driven by one of the 496 

GCMs (namely, HADCM) give a very different picture concerning changes in the upper-level jet stream 497 

compared to the RCM projections driven by the other GCMs.  498 

Bukovsky et al. identify the cause of this discrepancy as the simulation of the jet stream in 499 

HADCM and HADCM-driven RCMs. They note that the jet stream “is not realistically simulated to start 500 

with over North America, so the changes do not represent changes to a realistically simulated 501 

phenomenon. It is too weak, positioned incorrectly, and does not evolve properly through the summer” 502 

(8286). In other words, the poor performance of HADCM in simulating jet streams in a control scenario 503 

was used to explain (and was thought to be causally relevant to) the poor performance of the HADCM-504 

driven RCMs in the climate change scenario. In this case, the error diagnosis involved pointing to the 505 

incorrect or inaccurate dynamic representation of a process and its consequences.22   506 

 507 

4.4 Focusing on singular model differences in a small geoengineering modeling intercomparison 508 

  A fourth example is found in the Geoengineering Model Intercomparison Project (GeoMIP), in 509 

which GCMs simulate climate scenarios with decreased incoming solar radiation to offset warming from 510 

continued increases in CO2 concentrations. Pitari et al. (2014) evaluate GCMs simulating stratospheric 511 

aerosol injections (i.e., spraying SO2 into the stratosphere) as specified under two different GeoMIP 512 

experiments, paying particular attention to model projections of ozone. What is striking about their 513 

analysis is that they only focus on four models, and they give an in-depth characterization of the features 514 

of each model, as well as the differences between the models (see Pitari et al. 2014, 2631). Recall the 515 

explanation in section 3 above of why error diagnosis was so difficult in AMIP: there were too many 516 

models which differed from one another non-systemically and knowledge of individual model behavior 517 

and development was widely dispersed. One way to address this is to intercompare smaller numbers of 518 

 
22 For philosophical discussions of dynamical sufficiency in modeling (which concerns the representation of how a 
system changes over time) see Lloyd et al. (2008) and Kawamleh (2022).  
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models and to include relevant model developers in the intercomparison analysis. In the below example, 519 

we can see the payoff of evaluating models in this way. 520 

A key uncertainty in modeling stratospheric aerosol injections concerns representations of aerosol 521 

chemistry and aerosol microphysics due in part to insufficient observational data (Kravitz and MacMartin 522 

2020). Thus, it is important for Pitari et al.’s analysis to highlight the differences in aerosol microphysics 523 

representations across models. For example, they note that only one model “includes a module for aerosol 524 

microphysics for the explicit prediction of the aerosol size distribution” while the “other models prescribe 525 

fixed aerosol size distributions” (Pitari et al. 2014, 2631). Further details about aerosol characteristics in 526 

the models are then given. As we’ll see in more detail below, crucial to their analysis is that only one of 527 

the four models omits the representation of heterogeneous chemical reactions on the surface of sulfate 528 

aerosols.  529 

 Pitari et al. also describe model diagnostics from previous modeling studies on projections of 530 

ozone depletion and ozone mixing ratios compared to observational data. They note several strengths and 531 

limitations of the models related to ozone, e.g., how “all models agree well” with the satellite 532 

observational data concerning ozone levels in the tropical lower stratosphere between 100 and 30 hPa, as 533 

well as limitations, e.g., how at “altitudes above 7 hPa [two of the models] slightly overestimate the 534 

observations” (2635). Pitari et al. conclude their description of model diagnostics: 535 

A full set of diagnostics covering radiation, stratospheric dynamics, transport and chemistry, upper 536 
troposphere and lower stratosphere features, natural variability and long-term projections of 537 
stratospheric ozone, and stratosphere-troposphere interactions, have been used in previous 538 
intercomparison projects developed in the context of WMO [World Meteorological Organization] 539 
activities. These diagnostics enabled the use of the participating models as tools to predict the future 540 
evolution of stratospheric ozone and for future sensitivity studies and climate change scenarios… 541 
(2636) 542 

The above alludes to how much background knowledge about the models being evaluated was seriously 543 

considered by these scientists. This background knowledge includes not only facts about model 544 

components such as aerosol chemistry representations etc., but also about past model performance. The 545 

importance of expert background knowledge in understanding climate model evaluations has been noted 546 
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elsewhere in the philosophical literature (e.g., Winsberg 2018; Jebeile and Crucifix 2020) and is also 547 

evident in some of the other examples of model error diagnosis discussed above.   548 

 This expert background knowledge was brought to bear in a very detailed example of model error 549 

diagnosis, which relates to how atmospheric chemistry is represented by the each of the models. More 550 

specifically, Pitari et al. note that all three “models with heterogeneous chemistry simulate a significant 551 

increase in ozone depletion in the Antarctic region” and they attribute this to “a combination of increasing 552 

sulfate aerosol [surface area density] …and enhanced formation of [polar stratospheric clouds] produced 553 

in turn by local adiabatic and nonadiabatic cooling…the latter due to the feedback of photochemical 554 

ozone losses” (2645). In contrast, one of the models “does not include heterogeneous chemistry on the 555 

surfaces of the aerosols,” and, so the “missing heterogeneous chemical reduction” of nitrogen oxides on 556 

aerosol surface area density “does not allow in this model a limitation of the ozone loss above 50 hPa” 557 

(2645). They continue by explaining that this ozone parameterization difference leads to polar 558 

temperature decreases that exceed that of the other models (at least above 50 hPa).  559 

 We thus have yet another example of model-model discrepancy being diagnosed. Here the 560 

interesting features include a small number of models, a sophisticated level of physical reasoning which 561 

relates model components to model output which is likely only possible because of the expert background 562 

knowledge about the models in question, as well as knowledge of their past performance.  563 

 5. Forward: An error repertoire for climate modeling  564 

From section 4 above it should be clear that model error diagnosis is not only possible, but also 565 

practiced. Based on the scientific literature reviewed above, error diagnosis is conducted with varying 566 

degrees of both precision and confidence, and the explanations that result may sometimes only be 567 

comprehensible to other experts (e.g., the diagnosis in Pitari et al. 2014). Recall that Lenhard and 568 

Winsberg argue that error diagnosis is not possible due to the characteristics they take to be part and 569 

parcel of climate models: generative entrenchment, fuzzy modularity, and kludges. Yet, a more grounded 570 
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argument runs in the opposite direction: we begin with successful examples of error diagnosis, such as 571 

those described above, and see what we can learn from them. With the above examples of error diagnosis 572 

in mind, let’s take a step back for a moment and think about error diagnosis in broader terms.  573 

In the introduction to her 1996 book, Error and the Growth of Experimental Knowledge, 574 

philosopher Deborah Mayo discusses everyday strategies that humans use to detect errors in the world 575 

around us. Summarizing and slightly modifying the terminology used in Mayo (1996, 4-7), two that stand 576 

out as relevant to our discussion are:  577 

(i) Building and consulting a list of errors that are expected or commonly encountered. E.g., 578 
the last time the coffee maker didn’t work, it was because I forgot to fill it with water. Perhaps 579 
that’s the case this time, too.  580 
 581 
(ii) Recognizing errors based on their plausible effects and identifying instances of those 582 
effects. E.g., if my car’s tire pressure is too low, one likely effect is that my gas mileage will be 583 
worse. Given my bad gas mileage on yesterday’s trip, I should check the tire pressure.  584 
 585 

Both of these strategies are part of what we can call an “error repertoire”. While Mayo (1996) restricts the 586 

specific notion of an “error repertoire” to (i), we can broaden the notion to include (ii), and we can also 587 

include other specific strategies that scientists use to diagnosis model error, such as those documented 588 

above.  589 

Both (i) and (ii) are exemplified in section 4 above. In the Gleckler et al. example, it was 590 

anticipated that differences in cloud parameterizations would be a source of error. As they note, 591 

atmospheric GCMs “are known to disagree considerably in their simulations of the effects of clouds on 592 

the Earth’s radiation budget (Cess et al. 1990), and hence the effects of simulated cloud-radiation 593 

interactions on the implied meridional energy transports are immediately suspect” (Gleckler et al. 1995, 594 

793). Similarly, in Bukovsky et al. (2017), previously known behaviors of different convective 595 

parameterizations are identified. These expectations, combined with physical reasoning about convective 596 

precipitation, allowed Bukovsky et al. to identify a source of anomalous model behavior. They also had 597 

reasons to expect regional models driven by HADCM to perform poorly when it came to simulating 598 
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changes to the upper-level jet stream: those regional models did a poor job of simulating that process 599 

(when driven by HADCM) in the first place!  600 

 The point here is that scientists expect certain broad types of errors even before they occur, and 601 

the effects of errors can provide clues to their source(s). In some instances, scientists’ expectations may 602 

be based on tacit expert knowledge, e.g., concerning the idiosyncratic behavior of a particular convective 603 

parameterization based on its construction or past uses. This convective parameterization may have a 604 

known impact on modeling results (e.g., a telltale bias in precipitation trends), thus providing a further 605 

clue.23 In other instances, expectations may be informed primarily by climatic knowledge, e.g., 606 

background about the impact of clouds on the earth’s energy balance (based on observations and theory) 607 

which may lead scientists to anticipate certain types of errors related to cloud parameterizations.24   608 

 Lenhard and Winsberg may respond by saying that these examples are too speculative to count as 609 

error diagnoses that demonstrate analytic understanding (setting aside, for a moment, the obscurity of this 610 

notion highlighted in section 2.3 above). Indeed, Lenhard and Winsberg may say “sure, scientists have 611 

hunches and arguments to support them, but this is not the same as definitively saying exactly why a 612 

model erred by pointing to a specific model component.” Note that this is stronger than Lenhard and 613 

Winsberg’s original skeptical claim about error diagnosis, but I believe the weaker skeptical claim—that 614 

model errors simply cannot be diagnosed because scientists are unable to say where the sources of model 615 

failure come from—has been debunked by the examples given in section 4 above. One reply to this 616 

stronger skeptical claim is to note that there are no guarantees in science, so “definitive” is an 617 

inappropriate standard. It is also worth noting, however, that other cases of error diagnosis do seem 618 

definitive, at least based on the language used by scientists, especially the descriptions used by Pitari et al. 619 

(2014) in describing one model’s ozone parameterization and in Bukovsky et al.’s description of the 620 

upper-level jet stream simulation. Moreover, in the Sengupta and Boyle example, the influence of 621 

 
23 E.g., see Sun et al. (2006); Birch et al. (2015). 
24 Examples of early work on clouds in relation to the Earth’s radiation budget include theoretical work (e.g., 
Schneider 1972) and observational work (e.g., Hartmann and Short 1980).  
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identified common principal components are quantified, which, while perhaps not “definitive,” is 622 

nonetheless very specific information about divergences in model behavior.25 Of course, this doesn’t 623 

automatically mean that these diagnoses are definitive (quantitative or not), but they have at least passed 624 

muster as required by peer review and they are clear examples of scientists expressing the view that a 625 

given model’s error(s) are, at least in part, attributable to a particular model subcomponent.   626 

One may still insist that scientists are often too loose with their diagnoses, e.g., saying that a 627 

particular model error results from poor representations of clouds (an admittedly common “diagnosis”) 628 

doesn’t provide us with details explaining the exact extent to which, or way in which, a specific cloud 629 

parameterization leads to such an error. While such information may be difficult to acquire, scientists do 630 

have some methods at their disposal that are superior to the loose diagnosis that “the clouds are to blame.” 631 

More specifically, in some cases, error diagnoses can be tested by postulating that, e.g., “if X is the cause 632 

of this discrepancy, then we expect to also find A.” We see something like this in the example from 633 

Gleckler et al. in section 4.1 above. The cause of the discrepancy was thought to be GCMs’ poor 634 

simulations of cloud radiative forcing, and one expectation of this was that substituting observation-based 635 

cloud radiative forcings would correct for the discrepancy (i.e., would result in agreement across models 636 

and between models and observations for inferred ocean heat transport). They found that the substitution 637 

did result in a correction, thereby providing additional evidence that their diagnosis was correct. 638 

 Based on the discussion so far, we may be able to make some recommendations for how error 639 

diagnosis can be fruitfully applied in climate modeling intercomparisons. Some strategies may be 640 

relatively straightforward to apply, and indeed, are likely commonly applied in practice.26 These include, 641 

for example, employing reasoning about known physical relationships, making use of tacit expert 642 

 
25 See Kuo et al. (2020) for a recent statistical analysis of models which differed in their deep convective 
parameterizations. So-called “process-level” analyses which use statistical methods as well as physical arguments 
also becoming more common (e.g., see Maloney et al. 2019).  
26 Indeed, the practice of tinkering with a single model over the course of model development and iteratively making 
changes may also involve error diagnosis (e.g., see Hansen et al. 1983; Danabasoglu et al. 2020; Mayernik (2021), 
although such a strategy may only work for single-model evaluations.   
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knowledge concerning previous model behavior, and using dimension reduction analysis to identify 643 

explained variance.  644 

However, it may be worth considering whether scientists can construct an “error repertoire,” as 645 

mentioned above, to guide error diagnosis in climate modeling. The idea would be to combine (i) and (ii) 646 

from above, along with several of the specific strategies scientists already use to diagnose model errors, to 647 

help diagnose model error more systematically.   648 

 The error repertoire I have in mind would consist of something like the following:  649 

(a) A list of previously encountered model errors and the source(s) of those errors, with an 650 
explanation of how the error was detected (including which model output variables were used), how it 651 
was dealt with, and how localizable it was.  652 

(b) A set of guidelines for doing error diagnostics in various contexts (e.g., single model, global 653 
multi-model ensemble, high resolution regional model ensemble, etc.). This might involve combining 654 
several of the strategies identified in section 4 above. E.g., a dimension reduction technique could 655 
first give a quantitative picture of which model components are (apparently) most responsible for 656 
model error. Then a physical explanation could be offered after analyzing the dynamical simulation of 657 
specified variables and whether they are sufficiently realistic or have telltale biases. Finally, a test 658 
could be done, to see of the suspected error source is indeed the culprit.27  659 

(c) A deliberate effort to hypothesize about model errors prior to analyzing the model output. E.g., 660 
“we expect vegetation sub-model X to cause bias Y, which we should be able to detect by comparing 661 
several GCMs (some which have X, some which don’t) to observations Z.” If hypotheses about 662 
model errors are made prior to analyzing the results from model ensembles, error diagnosis can be 663 
conducted in a less post-hoc fashion.28 Ideally, then, this would be completed before (b), directly 664 
above. 665 

The above, I submit, would provide further opportunities for scientists to demonstrate an understanding of 666 

specific pieces of their models and how those pieces relate to model performance, akin to the “analytic” 667 

type of understanding that Lenhard and Winsberg claim is out of reach.  668 

Granted, given the multitude of obstacles that make error diagnosis difficult (see sections 2 and 3 669 

above), one may think it is not worthwhile (or even possible) to construct such a repertoire.29 That is, 670 

given the complexity of current individual models, the idea that knowledge about a model is collective, 671 

 
27 A "crucial test” would be superior, i.e., a test which distinguishes between the primary suspected error source in 
question and the other suspected error sources. 
28 Thanks to Ben Kravitz for inspiring this suggestion.  
29 Thanks to an anonymous reviewer for emphasizing this point.   
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the increasing number of models, and the highly non-systemic relationships between these models, etc., 672 

we ought to be very skeptical that an error repertoire could be constructed in the first place. For this 673 

reason, I think an error repertoire could begin with just a few models and could begin by drawing from 674 

strategies scientists already use to diagnose model errors. Thus, analyzing model differences across a 675 

smaller number of models, as Pitari et al. (2014) did, may have multiple payoffs: it can allow for more in-676 

depth analyses (as we saw in section 4.4 above), and it can provide a testbed for a climate model “error 677 

repertoire.” The idea would be to intercompare three or four distinct models (from different institutions) 678 

using (a) – (c) above, with relevant climate model developers also weighing in to highlight important 679 

inter-model differences. I suspect this endeavor would yield benefits with respect to both the quality of 680 

error diagnoses, and to the understanding scientists’ gain regarding their respective models. 681 

Unfortunately, this testbed strategy also comes with downsides: by focusing only on a small number of 682 

models, model structural error would be poorly sampled (i.e., it would be a very small “ensemble of 683 

opportunity” (Tebaldi and Knutti 2007)). Further, the direct benefits of this error repertoire would likely 684 

be limited to the specific models that are part of the testbed, and there are other challenges besides.30  685 

However, there are also reasons to expect that an error repertoire (of some form – perhaps not the 686 

exact one I outlined) would be of genuine scientific interest. First, there is much interest in the recent “hot 687 

model” problem (Gettelman et al. 2019; Voosen 2021; Hausfather et al. 2022; see also section 2.3 above), 688 

which involves figuring out why some models which are more realistic are, at the same time, too 689 

sensitive to greenhouse gases (far more so than many other models). This research shows both that 690 

scientists really do care why their models give incorrect results and that there is currently no agreed upon 691 

framework to assess model error. Perhaps an error repertoire could be beneficial here. Second, there has 692 

 
30 A big challenge concerns resource availability. When presenting some of these ideas at [omitted for review], a 
climate modeler asked whether error diagnosis efforts should be focused on errors that have clear solutions vs. errors 
that are significant but difficult to understand or fix. Even if it is agreed that an error repertoire would be valuable, 
this doesn’t mean that the resources are available to construct or implement one.  
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been a push to conduct “process-level” or “process-oriented” diagnoses of model biases (e.g., see 693 

Bukovsky et al. 2017; Maloney et al. 2019; Eyring et al. 2019).31 In particular, Maloney et al. describe: 694 

[P]rocess-oriented diagnostics (PODs) that are designed to inform parameterization improvements to 695 
address…long-standing model biases (e.g., Eyring et al. 2019). A POD characterizes a specific 696 
physical process or emergent behavior that is hypothesized to be related to the ability to simulate an 697 
observed phenomenon (2019, 1665). 698 

Their emphasis is on quantifying model biases systematically and ranking models across different metrics 699 

(i.e., across different variables related to processes of interest). This goes some way towards the error 700 

repertoire I described above, and my specific recommendations of looking at a small number of models, 701 

hypothesizing about model errors prior to analyzing model results, and testing suspected sources of model 702 

errors, can all complement (and potentially improve) the process diagnostics that Maloney et al. discuss. 703 

 In sum, based on the empirical evidence from model comparisons I’ve considered, I suggest that 704 

when we think about model error diagnosis in climate modeling, we should ask not whether model error 705 

diagnosis is possible, because it obviously is. In place of this black and white question32, I have suggested 706 

questions such as: why is model error diagnosis so difficult? What methods do scientists use to diagnose 707 

model errors? How might error diagnosis be improved? Further, what does the practice of error diagnosis 708 

tell us about how (or whether) scientists understand their models?  709 

From my analysis in this paper, we can take a significant step towards answering these questions. 710 

First, features of model intercomparisons are important for understanding why model error diagnosis is so 711 

difficult. Models inter-relate to one another in a highly non-systemic way and the number of experts 712 

required to understand a single model—never mind the 100+ GCMs now being used for research—means 713 

that knowledge of different sub-models, facts of model development, testing history, etc. is highly 714 

dispersed. Second, the methods scientists use to diagnose model errors include physical reasoning, 715 

iteratively running simulations making only small changes each time, employing dimension reduction 716 

 
31 This emphasis on process representations in climate models has also inspired some philosophical accounts, e.g., 
Lloyd et al. 2021; Kawamleh 2022. 
32 My suggestion here is influenced by Lloyd’s logic of research questions (Lloyd 2015b) as well as van Fraassen’s 
pragmatic theory of explanation (van Fraassen 1980).  
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techniques, forming expectations about model error based on past studies, utilizing expert knowledge of a 717 

specific model or sub-model’s behavior, and testing error diagnosis by examining the consequences of 718 

correcting for the diagnosed error. Third, error diagnosis can be improved by constructing an error 719 

repertoire as outlined above and by intercomparing a few models at a time rather than dozens or more. 720 

Finally, the practice of error diagnosis in climate model intercomparisons tells us that scientists 721 

do have some understanding of their models: they anticipate certain problems (e.g., related to convective 722 

parameterizations and to cloud representations) and they provide explanations as to why these problems 723 

occur. Some of these explanations and diagnoses may seem so esoteric as to not be worth philosophers’ 724 

time. Indeed, in his recent book, Winsberg says, 725 

I think that when we look on the work of those who are in the business of modeling highly complex 726 
non-linear systems, the best we are ever going to be able to do is to arrive at a situation 727 
where “a simulation modeler could explain to his peers why it was legitimate and rational to use a 728 
certain approximation technique to solve a particular problem” by appealing to “very context specific 729 
reasons and particular features.”33  730 
 731 

However, there may be philosophical benefit in paying further attention to the working knowledge that 732 

climate modelers have about the behaviors of their models and trying to characterize what they are doing 733 

in broader terms. One way to do this is by examining how scientists diagnose, communicate, explain, and 734 

(hopefully) correct for errors in complex modeling.  735 

 736 
 737 
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Figure 1. Changes of model physics from Model I to Model II (excerpted from Hansen (1983)). 
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