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Abstract. Relative motion of particles is examined in the context

of relational space-time. It is shown that de Broglie waves may

be derived as a representation of the coordinate maps between

the rest-frames of these particles. Energy and momentum are not

absolute characteristics of these particles, they are understood as

parameters of the coordinate maps between their rest-frames. It is

also demonstrated the position of a particle is not an absolute, it is

contingent on the frame of reference used to observe the particle.

1. Introduction

1.1. Relational space-time. In this paper we consider the relative

motion of material point particles in the context of relational space-

time and aim to show that de Broglie waves1 may be deduced as a

representation of these point particles. In [3] Barbour examines in

detail the development of relational concepts of space and time from

Leibniz [11] up to and including his own work on relational formula-

tions of dynamics [2, 4, 5]. A central point of discussion in [3] is that

the uniformity of space means its points are indiscernible, which are

made discernible only by the presence of “substance.”2 This relational

understanding of space and time supposes it is the varied and changing

distribution of matter which endows space-time with enough variety to

distinguish points therein.

Figure 1 illustrates point-like observers Oa and Ob with associated

rest-frames Ka and Kb, in a state of relative motion. In the frame Ka

it appears the observer Ob moves between space-time locations (t1, x1)

Date: 10 March 2023.
1de Broglie waves as defined by Dirac [10] p.120
2In the sense used by Minkowski, Cologne (1908) [13]
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Figure 1. The relative motion of Oa and Ob and the coordinate displace-
ments this defines in the reference frames Ka and Kb.

and (t2, x2) , while Oa “moves” between locations (t1, 0) and (t2, 0). On

the other hand the observer Ob is seen to “move” in its rest-frame Kb

between space-time locations of the form (τ1b, 0) and (τ2b, 0) while Oa
moves between (τ1a, ξ1) and (τ2a, ξ2). The spatial separation between

the points (t1, x1) and (t2, x2) is simply not recognised in the rest frame

ofOb in the relational framework. On the contrary, the locations x = x1

and x = x2 are made discernible only because the material point Ob is

observed to move between these locations.

Furthermore the instants t = t1 and t = t2 are made discernible only

by the changing location of Ob with respect to Oa. Indeed it is such

material re-configurations which allow for the measurement of time

intervals in practice. For instance, the motion of a sprinter between two

fixed positions on a race-track is compared to the number of periodic

vibrations of a quartz crystal, typically oscillating at 215 Hz in modern

watches. The relational viewpoint suggests that the instants t = t1

and t = t2 have no intrinsic separation (or indeed meaning) without

reference to the observed motion of Ob between the locations x = x1

and x = x2.
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The distinction between instants t1 and t2 and the spatial locations

x1 and x2 is made discernible only because the observer Ob has been

observed to move between these space-time locations. Likewise, the

distinction between the locations (τ1b, 0) and (τ2b, 0) in Kb is made

physical only becauseOa is observed to move between locations (τ1a, ξ1)

and (τ2a, ξ2), which are themselves made discernible in Kb only because

of the observed motion of Oa. In particular, it is clear that space-time

locations in the frames Ka and Kb only become physically manifest

by the reconfiguration of material observers Oa and Ob. This in turn

implies that each location in (t, x) ∈ Ka becomes physically manifest

only if it has a counterpart (τ, ξ) ∈ Kb, and vice-versa.

On the other hand, it is understood that the coordinate differences

in each frame of reference serve to characterise the relative motion, for

instance it is the coordinate difference (t2 − t1, x2 − x1) which serve to

define the velocity and related energy-momentum of Ob with reference

to Ka. It is these coordinate differences and their transformation be-

tween reference frames which contains all physical information about

the system of observers Oa and Ob. In other words, the space-time

locations labelled by Ka and Kb are not in themselves fundamental,

however, the transformation of coordinate differences from one refer-

ence frame to another is fundamental.

1.2. Relativity and de Broglie waves. It is assumed the observer

Ob moves with reference to Ka at constant velocity v = βc, where β ∈
(−1, 1) and c is the speed of light. The coordinate map Ξ : Ka → Kb

takes the form

(1) τ = γ

(
t− β

c
x

)
ξ = γ (x− cβt) ; γ =

1√
1− β2

.

The point emphasised by de Broglie [7, 8] is Ob has an associated

angular frequency

(2) ω0 =
E0

~
,
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which may be obtained from the Planck and Einstein relations E = ~ω
and E0 = mc2, where m is the rest mass of Ob.

Given this angular frequency, de Broglie postulated that the wave-

form ψ(τ, ξ) = eiω0τ is naturally associated with the observerOb. Mean-

while (1) ensures this wave-form with respect to Ka is of the form

(3) ψ(t, x) = eiω0γ(t−βc x) = ei(ωt−kx),

where ω = γω0 and k = ω0βγ
c

= β
c
ω. The relativistic energy and

momentum of Ob with reference to Ka are given by E = mc2γ and

p = mcβγ, and as such the wave-form ψ(t, x) may be also written as

(4) ψ(t, x) = ei(ωt−kx) := e
i
~ (Et−px).

Thus the relativistic energy-momentum (E, p) of the observer Ob are

related to the angular frequency ω and wave-number k of the associated

wave-form ψ.

A point of importance for de Broglie was that the wave form ψ(t, x)

is always in phase with a clock of period T0 = 2π
ω0

= mc2

~ at rest in the

frame Kb. This clock is shown in Figure 2 as an oscillator moving along

the y-axis of the frame Kb with angular frequency ω0. The period and
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Figure 2. Snapshots of the relative motion of Oa and Ob, their local clocks
with frequencies ω and ω0 and the wave-form ψ(t, x) = cos(ωt− kx). A
related animation may be found at: de Broglie wave animation

angular frequency of this clock relative to Ka are

(5) T = γT0 Ω =
2π

T
=
ω0

γ
.

https://zenodo.org/record/7315544
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The angular frequency Ω is not to be confused with the angular fre-

quency of ψ(t, x) which is ω = γω0 and for reference Figure 2 also

shows a similar clock at rest in Ka with angular frequency ω.

The clock co-moving with Ob moving between (t, x) and (t+ dt, x+

βcdt) in Ka will undergo a phase-shift dΦ = Ωdt = ω0

γ
dt. Meanwhile,

the phase difference of the wave ψ(t, x), between (t, x) and (t+ dt, x+

βcdt) is

(6) ω0γ

(
dt− β

c
βcdt

)
=
ω0

γ
dt = dΦ,

so the moving clock and wave-form ψ(t, x) are in phase, see Figure

2. It is clear then that de Broglie waves are closely connected with

the Lorentz transformation between local inertial reference frames Ka

and Kb, in particular with the coordinate map τ(t, x). The aim now

is derive the existence of such a wave-form as a representation of this

coordinate map between the rest-frames of the observers Oa and Ob.

2. Coordinate maps and their governing equations

2.1. Motion and coordinate maps. At any instant of its motion

through Ka, the observer Ob is following a trajectory with tangent

vector (dt , dx), while the corresponding trajectory with reference to

Kb is of the form (dτ , 0). Correspondingly, the observer Oa must be

travelling along a trajectory in Kb whose tangent vector is of the form

(dτ , dξ), while this tangent vector has counterpart (dt , 0) with refer-

ence to Ka, cf. Figure 1.

In general, coordinate differences (dτ , dξ) with reference to Kb are

related to their counterparts (dt , dx) with reference to Ka according

to [
dτ

dξ

]
=

[
τt τx

ξt ξx

][
dt

dx

] [
dt

dx

]
=

[
tτ tξ

xτ xξ

][
dτ

dξ

]
,

where sub-scripts denote differentiation with respect to the relevant

variable. To ensure consistency with the special theory of relativity,

it is required that tangent vectors of the form (dt , βc dt), (dt , 0) and
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(dt , c dt) have counterparts (dτ , 0), (dτ ,−βc dτ) and (dτ , c dτ) re-

spectively. This requires the Jacobian matrices of the coordinate maps

to be of the form

(7)

[
dτ

dξ

]
=

[
τt τx

c2τx τt

][
dt

dx

]
⇐⇒

[
dt

dx

]
=

[
tτ

1
c2
xτ

xτ tτ

][
dτ

dξ

]
,

In addition it is required that the Jacobian of each coordinate map

should satisfy

(8) J = τ 2
t − c2τ 2

x = t2τ −
1

c2
x2
τ = 1

2.2. The Hamilton-Jacobi Equations. The action for the coordi-

nate map X : Kb → Ka, associated with the motion (t1, x1)→ (t, x) in-

duced by the motion of Ob along the corresponding trajectory (τ1, 0)→
(τ, 0) is given by

(9) S[x] =
E0

2c2

∫ τ

τ1

xτ .xτ dτ =

∫ τ

τ1

L[x, xτ ] dτ .

The notation means x(τ) ≡ (ct(τ, 0), x(τ, 0)) ∈ Ka which is the image

of the map X : Kb → Ka applied to the trajectory ξ(τ) ≡ (τ, 0) ∈ Kb.

The inner-product is given by

xτ .xτ = c2t2τ − x2
τ = c2J

where J is the Jacobian of the coordinate map X : Kb → Ka (cf.

equation (8)). The constraint J = 1 is interpreted as a weak equation,

to be applied after variational derivatives are calculated, in line with

the terminology of Dirac (cf. [9]).

Under a variation of the form x(τ)→ x(τ) + εu(τ), Hamilton’s prin-

ciple is simply the requirement d
dε
S[x+ εu]

∣∣
ε=0

= 0, and can be written

for a general Lagrangian L[x, xτ ] according to

(10)

∫ τ

τ1

[
∂L

∂x
− d

dτ

∂L

∂xτ

]
.u dτ +

∫ τ

τ1

d

dτ

(
∂L

∂xτ
.u

)
dτ = 0
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after integration by parts. Imposing the boundary conditions u(τ1) =

u(τb) = 0 to an otherwise arbitrary variation u(τ), yields the Euler-

Lagrange equations

(11)
∂L

∂x
− d

dτ

∂L

∂xτ
= 0.

When L = E0

2c2
(c2t2τ − x2

τ ) specifically, the Euler-Lagrange equations for

the coordinate map X : Kb → Ka satisfies d2

dτ2
X(τ, 0) = 0.

The Hamilton-Jacobi equation follow from the condition x(τ) is a

physical path (i.e. satisfying (11)), while the variation is now required

to satisfy u(τ1) = 0 only, while u(τ) may be arbitrarily chosen. The

variation of the action under this perturbation is obtained from (10)

(12) lim
ε→0

S[x+ εu]− S[x]

εu
=
∂S

∂x
=

∂L

∂xτ
.

The canonical energy-momentum associated with the trajectory of Ob,
with reference to the frame Ka, is given by

∂S
∂t

= Ep = E0tτ =⇒ tτ = Ep
E0

∂S
∂x

= −p = E0

c2
xτ =⇒ xτ = c2p

E0

(13)

The Hamiltonian associated with coordinate map X : Kb → Ka along

(τ, 0) is

H = p.xτ − L =
E2
p − c2p2

2E0

,

which of course is conserved.

Upon imposing the constraint J = 1, it follows that

(14)

(
∂S

∂t

)2

− c2

(
∂S

∂x

)2

= E2
0 .

Conservation of energy-momentum in the form 1
c2
∂tEp + ∂xp = 0 or

equivalently

(15)
∂2S

∂t2
− c2∂S

∂x
= 0,

is consistent with this constraint, since ∂t
∂S
∂t

= ∂t
∂L
∂tτ

= ∂2L
∂t∂tτ

= 0 and

likewise for ∂2S
∂x2

.
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Upon using the relations (13) and the constraint (14), we also find

(16)
dS

dτ
=
∂S

∂t
tτ +

∂S

∂x
· xτ = E0,

and so integrating with respect to τ yields S[x] = E0τ(x) up to an

additive constant. Given S[x] = E0τ(x), it follows the system (14)–

(15) governing the action S[t, x] also governs the component τ(t, x) of

the coordinate map Ξ : Ka → Kb, which similarly satisfies

∂2
t τ − c2∂2

xτ = 0(17a)

(∂tτ)2 − c2(∂xτ)2 = 1.(17b)

Solutions of the system (17a)–(17b) will form representations of the

coordinate map τ(t, x).

3. Coordinate maps and their representations

3.1. Linearity of the coordinate maps. The main result of this

section is that the system (14)–(15) only admits solutions S[t, x] which

are linear in t and x. However, it will also be shown that S as a solution

of (17a)–(17b) may be represented as an exponential function of t and

x (cf. [14]).

Without imposing assumptions or restrictions, we consider a general

solution of the form

(18) S(t, x) = E0Θ(ψ(t, x)),

where Θ(ψ(t, x)) = τ(t, x) with ψ(t, x) being a representation of τ(t, x).

Substituting (18) into the governing equations (14)–(15) yields[
∂2
t ψ − c2∂2

xψ
]

Θ′(ψ) +
[
(∂tψ)2 − c2 (∂xψ)2]Θ′′(ψ) = 0(19a) [

(∂tψ)2 − c2 (∂xψ)2]Θ′(ψ)2 = 1,(19b)

where Θ′(ψ) = dΘ
dψ

.

Equation (19b) applied to equation (19a) now yields

(20) ∂2
t ψ − c2∂2

xψ +
Θ′′(ψ)

Θ′(ψ)3
= 0.
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Multiplying by ∂tψ, it now follows that

(21)
1

2
∂t

[
(∂tψ)2 − 1

Θ′(ψ)2

]
− c2∂2

xψ∂tψ = 0,

while substituting from equation (19b) we deduce

∂xψ∂x∂tψ − ∂tψ∂2
xψ = 0

from which it follows ∂x

(
∂xψ
∂tψ

)
= 0. Multiplying equation (20) by ∂xψ

we also deduce ∂t

(
∂xψ
∂tψ

)
= 0, and as such ∂xψ

∂tψ
is constant.

This means the functions ∂tψ and ∂xψ are linearly dependent. It

follows that ψ may be written according to

ψ(t, x) = φ(ωt− kx) =⇒ ∂xψ

∂tψ
= −k

ω
,

where φ(·) is yet to be determined while ω and k are constants. The

constraint (17b) or equivalently (19b) now requires

(22)

(
ω0

dφ

ds

dΘ

dφ

)2

= 1, ω2
0 = ω2 − c2k2 > 0,

where we introduce s = ωt−kx. Taking the square-root of (22) we now

have ±ω0
dφ
ds

dΘ
dφ

= 1 and so integrating it follows that Θ(φ(s)) = ± s
ω0

,

or equivalently

(23) τ(t, x) = Θ(ψ(t, x)) = ±ωt− kx
ω0

.

Formally, we have applied the inverse function theorem to equation

(22) which ensures ±ω0Θ(·) = φ−1(·) (see [18] for instance). It also

follows from (13) and (23) with S = E0τ that

(24)


∂S
∂t

= E =⇒ ω
ω0

= E
E0

∂S
∂x

= −p =⇒ k
ω0

= p
E0
.

3.2. Representations of the coordinate map. As a functional equa-

tion for Θ(φ), we note that under the re-scaling φ→ rφ for a non-zero

constant r, equation (22) also requires

(25) r2Θ′(rφ)2φ̇(s)2 = Θ′(φ)2φ̇(s)2 = 1.
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It follows r2Θ′(rφ)2 is independent of r and so Θ′(rφ) ∝ 1
rφ

from which

it follows

(26) E0Θ(ψ(t, x)) = α lnψ = ±E0
ωt− kx
ω0

,

where α is a constant action parameter. The representation ψ(t, x) of

the coordinate map τ(t, x) is now explicitly:

(27) ψ(t, x) = e±
1
α

(Et−px),

having used equation (24) to re-write the ratios E0ω
ω0

= E and E0k
ω0

= p.

The other possible solution of (22) is simply

(28)
φ(s) = κs

ω0Θ(φ) = ±φ
κ

 =⇒ Θ(φ(s)) = ± s

ω0

where κ is constant, thereby ensuring d2φ
ds2

= 0 and d2Θ
dφ2

= 0. This in

turn ensures (19a) is satisfied while (19b) is satisfied by definition of

ω0 and s.

3.3. Momentum measurement & de Broglie waves. In §§3.1–3.2

it has been shown that the coordinate map S = E0τ(t, x) governed

by (17b)–(17a), is necessarily linear E0τ(t, x) = ±(Et − px) and has

a representation of the form E0τ(t, x) = α lnψ(t, x). Combining these

observations then it is necessary that the representation ψ(t, x) is of

the form

ψ(t, x) = exp

{
± 1

α
(Et− kx)

}
.

It is already clear α must have the units of action, so the choice ~
is obvious. To ensure the representation ψ(t, x) corresponds to a de

Broglie wave of the form (4), it is also necessary to show α is imaginary,

which is the aim of the current section.

Figure 3 shows a very simple apparatus consisting of two massive

plates Pl and Pr, both initially static at xl = 0 and xr = λ with

reference to the frame K, with rest energy E0 each. It is supposed the

point-like observerOb is located at some x ∈ (xl, xr), and interacts with

either plate only by collision. Upon collision Ob undergoes a change
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of momentum, thereby imparting momentum to one of these plates.

Measurement of momentum means Ob impacts one of the plates and

x = 0 x =

K

ppp p +

b

Figure 3. The measurement of Ob’s momentum by collision with massive
plates of equal rest-energy E0.

sets it in motion relative to the other. Immediately after impact the

plates are again inertial observers, since there is no further interaction

to impart momentum to either plate.

If Kl 3 (t′, x′) denotes the rest-frame of Pl, then its coordinates with

reference to this frame will always be of the form (t′, 0); those of Pr
will be of the form (t′, λ) prior to collision. Similarly, Kr 3 (t∗, x∗) is

the rest-frame of Pr whose coordinates are always of the form (t∗, 0);

those of Pl are of the form (t∗,−λ) initially. Prior to collision it makes

sense to identify coordinates (t, x) ∈ K, (t′, x′) ∈ Kl and (t∗, x∗) ∈ Kr

since all three frames see the observers Pl and Pr at rest, and so all are

equivalent up to constant translations.

At the moment of measurement as observed from the frame Kl,

it appears the observer Pr changes energy-momentum according to

(E0, 0)→ (E ,P) where E 2 = P2c2+E 2
0 and P > 0 is assumed. Mean-

while the momentum of Ob changes according to (E, p)→ (E1, p−P)

(cf. Figure 3). Naturally, the energy-momentum of Pl is always (E0, 0)

in the frame Kl while the observer Ob is interpreted to occupy the loca-

tion x′ = λ upon collision. Conversely, in the frame Kr the observer Pl
changes its energy-momentum according to (E0, 0)→ (E ,−P) and the

energy-momentum ofOb changes according to (E,−p)→ (E1,−p+P).
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In this frame of reference the observer Ob is interpreted to appear at

x∗ = −λ upon impact, and by definition the energy-momentum of Pr
is always (E0, 0).

Given that Pl and Pr are in uniform relative motion before and after

collision with Ob, it follows from §3.2 the component t∗(t′, x′) of the

coordinate map X∗ : Kl → Kr has representation

ψ(t′, x′) =

e
1
α

E0(t′−t′0), t′ < t′0

e
1
α(E (t′−t′0)−Px′) t′ ≥ t′0

where the impact occurs at time t′0 with reference to Kl. Upon impact

the proper-time t∗ of the observer Pr changes according to

α

E0

ln e
1
α

E0(t′−t′0) → α

E0

ln e
1
α(E (t′−t′0)−Px′),

from the perspective of the observer Pl. However, according to the

observer Pr its own time coordinate is continuous, while it is the time

coordinate of Pl which undergoes a corresponding change during colli-

sion with Ob. Continuity of the t∗-coordinate now requires

(29) lim
t′→t′0

e
1
α

E0(t′−t′0) = lim
t′→t′0

e
1
α(E (t′−t′0)−Pλ) ⇐⇒ e−

Pλ
α = 1.

Since λ 6= 0 and P > 0 by assumption, continuity of ψ(t, x) at t′0 is

satisfied only when the argument of the exponential is of the form 2πni

for n ∈ Z. Hence, we deduce

α = −i~, P =
2πn~
λ

,

and so the action parameter α is imaginary as anticipated.

With α = −i~ it is now clear that the coordinate transformation

between the rest frames of inertial observers may be represented by

wave-forms

(30) ψ(t, x) = e
i
~ (Ept−px),

whose eigenvalues may be defined as

(31) Ep = ψ̄(−i~∂t)ψ p = ψ̄(i~∂x)ψ,
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where ψ̄ denotes the complex conjugate of ψ. Both representations ψ

and ψ̄ satisfy the Klein-Gordon equation

(32)
1

c2

∂2ψ

∂t2
− ∂2ψ

∂x2
+
m2c2

~2
ψ = 0.

Thus, de Broglie waves as per Dirac’s terminology (see [10], p. 120)

emerge as a representation of the τ -component of the coordinate map

Ξ : Ka → Kb, and so represents to trajectory of Ob (i.e. (τ, 0) ∈ Kb

with reference to Ka.

The existence of de Broglie waves was confirmed almost immediately

after de Broglie’s first prediction [7], with the interference experiments

of Davisson & Germer [6] and the contemporaneous experiments of

Thomson & Reid [21]. In the years since, the experimental evidence

supporting de Broglie’s conjecture has accumulated steadily (see [1, 19,

20] among others).

3.4. Energy-momentum eigenfunctions. The τ -representation given

in equation (30) is an eigenfunction of the linear operators −i~∂t and

i~∂x, whose corresponding eigenvalues are simply the energy-momentum

of the observer Ob with reference to the frame Ka. The nonlinear con-

straint (17b) has a particularly elegant geometric interpretation in the

relational context, since one may reformulate the coordinate map (7)

according to

(33)

[
dτ

dξ

]
=

[
τt τx

ξt ξx

][
dt

dx

]
=

[
τt τx

c2τx τt

][
dt

dx

]

in which case τ 2
t − c2τ 2

x = 1 is equivalent to det

[
τt τx

ξt ξx

]
= 1.

Hence, the Jacobian of the coordinate transformation Ξ : Ka → Kb

is required to be one, thus ensuring this map is invertible. Specifically,

it means that a trajectory (dt , dx) in Ka has as counterpart (dτ , dξ)

with reference to Kb and vice-versa. In particular it means that a

trajectory of Ob in Kb given by (dτ , 0) has a counterpart (dt , dx) in

Ka, while simultaneously the trajectory of Oa in Ka given by (dt , 0)
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has a counterpart (dτ , dξ) in Kb, cf. Figure 1. As such, these ob-

servers appear as point-like bodies moving with reference to the rest-

frame of their counterpart (cf. Figure 1). This is only possible since

the conditions (17a)–(17b) are both satisfied for the coordinate map

E0τ(t, x) = −i~ lnψ(t, x) when ψ(t, x) is an energy-momentum eigen-

function.

Contrarily, given the linearity of (32) it is clear that superpositions

of the form ϕ(t, x) =
∫∫

δ(E2−E2
p)a(E, p)e

i
~ (Et−px)dEdp are also valid

solutions of this wave equation. Such a superposition cannot represent

a physically realisable coordinate map from Ka to Kb since the non-

linear constraint (17b) is not satisfied for −i~ lnϕ. This is not to say Ob
becomes somehow de-localised, it always has a precise location (τ, 0) ∈
Kb. Rather, it is the case there is no longer a precise correspondence

of the form (7) between the frames Ka and Kb, and so the trajectory

(dτ , 0) in Kb no longer has a precise counterpart with reference to Ka

satisfying all the required axioms of special relativity.

4. Discussion

A central point of the argument in §3.3 is that the observers Pl and Pr
are both always inertial in their own rest-frames, and the acceleration

of the pair upon impact with Ob is only defined in relative terms. This

is apparently consistent only in the relational space-time framework.

Moreover, the derivation presented here appears to be consistent with

Rovelli’s Relational Quantum Mechanics (RQM) [15, 17], whereby the

properties of a system are not absolutes. In particular, the perceived

location and momentum ofOb upon impact with the apparatus depends

on the frame of reference adopted for the measurement.

Indeed the physical properties of a system, in this case the energy-

momentum of Pl and Pr, is a characteristic of interaction between the

observers, specifically it is a property of the coordinate maps between

their respective rest-frames (cf. [12]). It is also clear the observer

Ob does not have an absolute location in this experiment, its apparent



RELATIONAL SPACE-TIME AND DE BROGLIE WAVES 15

location is contingent on the frame of reference used for the observation.

Thus the derivation presented here also appears to lend support to

Rovelli’s hypothesis (see [16] pp. 220–221) that the relational character

of states in RQM is connected to the relational framework of space and

time.
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