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Abstract. Scoring rules measure the deviation between a forecast,
which assigns degrees of confidence to various events, and reality.
Strictly proper scoring rules have the property that for any forecast, the
mathematical expectation of the score of a forecast p by the lights of p is
strictly better than the mathematical expectation of any other forecast
q by the lights of p. It has recently been shown that any strictly proper
scoring rule that is continuous on the probabilities has the property that
the score for any forecast that does not satisfy the axioms of probability
is strictly dominated by the score for some probabilistically consistent
forecast. I shall show that in the case of a finite score, continuity on the
regular probabilities—those that assign assign a non-zero value to every
point—suffices for the result, and more generally it suffices to have con-
tinuity at the regular probabilities and at any infinite-scoring irregular
ones.

1. The main results

Scoring rules measure the deviation between a forecast, which assigns de-
grees of confidence or credence to various events, and reality. Strictly proper
scoring rules have the property that for any forecast, the mathematical ex-
pectation of the score of a forecast p by the lights of p is strictly better
than the mathematical expectation of any other forecast q by the lights of
p. Forecasts need not satisfy the axioms of probability, but under some con-
tinuity conditions, the score of a forecast that does not satisfy the axioms
of probability is strictly dominated by the score of a forecast by that does
satisfy these axioms. This result has been interpreted by epistemologists as
supporting the idea that reasonable forecasts will always be probabilistically
consistent (e.g., [4], [2], [6]).

To be precise, let Ω be a finite sample space, encoding the situations
being forecast. Let C be the set of all forecasts or credence functions, i.e.,
functions from the power set of Ω to the reals. Let P be the set of those
credences that satisfy the axioms of probability. An accuracy scoring rule
is a function s from a set F ⊇ P of credence function to [−∞,M ]Ω for some
finite M , where AB is the set of functions from B to A, and where s(c)(ω)
represents the epistemic utility of having credence c when in fact we are at
ω ∈ Ω. Higher accuracy scores are better in this terminology and measure
closeness to truth.

Given a probability p ∈ P and an extended real function f on Ω, let Epf
be the expected value with respect to p defined technically as follows to
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avoid computing 0 · (−∞).

Epf =
∑

ω∈Ω,p({ω})6=0

p({ω})f(ω).

A scoring rule s is proper on F ⊇ P provided that for every p ∈ P and every
c ∈ F , we have Eps(p) ≥ Eps(c), strictly proper on F provided the inequality
is always strict when p 6= c, and quasi-strictly proper there provided that it
is proper and the inequality is strict when p ∈ P and c ∈ F\P.

Given propriety, if an agent adopts a probability function p as their fore-
cast, then by the agent’s lights there can be no improvement in the expected
score from switching to a different forecast. Strict propriety captures the
idea that an agent who has adopted a probability function p as their fore-
cast will think other forecasts to be inferior. Proper and strictly proper
scoring rules have been widely studied: for a few examples, see [1], [3], [6],
[8], [11]. Some of the literature concerns inaccuracy scores, which measure
deviation from truth or epistemic disutility, but one can easily translate: −s
is a proper, strictly proper or quasi-strictly proper inaccuracy scoring rule
on F if and only if s is respectively a proper, strictly proper or quasi-strictly
proper scoring rule on F .

The probabilities P can be identified with the set of points of Rn with non-
negative coordinates summing to 1, where n is the number of points in Ω.
Specifically, given p ∈ P, we can think of p as a vector p̂ with the coordinates
p̂i = p({i}). This embedding provides P with a topology. Also, the score s(c)
of c is a function from Ω to [−∞,M ], and the set of all such functions can be
identified with the product space [−∞,M ]n and thereby gets a topology. We
then say that s is probability-continuous at p provided that p is a probability,
and s restricted to the probabilities is continuous at p in this topology. This
is equivalent to requiring that whenever (pn) is a sequence of probabilities
converging to a probability p, then limn s(pn)(ω) = s(p)(ω) for every ω ∈ Ω.

Predd, et al. [8] showed that if s is a probability-continuous strictly proper
scoring rule that can be expressed as a sum of single-proposition scores, then
for any non-probability c, there is a probability p such that s(c) is strictly
dominated by s(p), i.e., s(c)(ω) < s(p)(ω) for all ω in our accuracy setting.
In other words, any forecaster whose forecast fails to be a probability can find
a forecast that is a probability and that is strictly better no matter what.
The more recent Pettigrew [7], Nielsen [5] and Pruss [9] theorem shows
that this is true without the restriction to scores that are sums of single-
proposition scores. Nielsen’s proof also extended the result to the quasi-
proper case. A philosophical upshot of these results is that we can get an
argument in favor of probabilistic consistency in one’s credence assignments
under much weaker conditions than the additivity assumed by Predd, et al.

Say that a proper scoring rule s defined on the probabilities has the dom-
ination property provided that any extension of s to a quasi-proper scoring
rule on all credences makes every non-probability be s-dominated by some
probability, i.e., for any c /∈ P, there is a p ∈ P such that s(c)(ω) < s(p)(ω)
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for all ω. Pruss [10] gave a set of necessary and sufficient conditions for a
proper scoring rule to have the domination property. However, one of these
conditions is geometric and difficult to apply.

The purpose of this paper is to give a sufficient condition that is of philo-
sophical interest. As a motivating philosophical point, note that one might
think that a scoring rule that models reasonable intuitions about epistemic
value could have a discontinuity when the probability in some proposition
hits zero or one. For one might have the Cartesian intuition that there is
something particularly valuable about being certain of a truth, and that
this value is not just the limit of the value of high probability in the truth.
And, perhaps even more intuitively, we might have the converse intuition
that there is something particular disvaluable about being certain of a false-
hood, again in a discontinuous way. Thus a reasonable philosophical condi-
tion on a scoring rule is that the scoring rule be continuous at the regular
probabilities—those that assign non-zero values to all events (and hence
that do not assign one to any event other than the trivial event of the whole
space).

It turns out that this condition is insufficient on its own for the domination
property, but becomes sufficient when we require the scores to be finite.
More precisely, we have the following, where we say that the score of c is
finite just in case s(c)(ω) is finite for all ω.

Theorem 1. Suppose s is probability-continuous on the regular probabili-
ties and for any sequence (pn) in P that converges to a non-regular prob-
ability p such that s(pn) is finite for all n while s(p) is not finite, we have
limnEpns(pn) = Eps(p). Then s has the domination property: for any ex-
tension of s to a quasi-strictly proper scoring rule on all credences and any
non-probability c, there is a probability p such that s(c)(ω) < s(c)(ω) for all
ω.

By [10, Lemma 3], if pn converges to p and s(pn) converges to r, we have
limnEpns(pn) = Epr, so the limit condition in Theorem 1 is met if s is
continuous at p. Thus:

Corollary 1. If s is probability-continuous on the regular probabilities and
at all the irregular probabilities where it’s infinite, then it has the domination
property.

In particular, if s is probability-continuous on the regular probabilities
and finite everywhere, then it has the domination property.

Note that as long as s has any quasi-strictly proper extension to non-
probabilities, the score of any regular probability must be finite, since if
p is regular and s(p)(ω) = −∞, then Eps(p) = −∞ and so we cannot
have Eps(c) < Eps(p). Further, note that by [10, Lemma 3], limnEpns(pn)
always exists for a proper scoring rule s if (pn) is a convergent sequence of
probabilities.
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By the main theorem of [10], the limit condition in the Theorem is nec-
essary for the domination property except in the trivializing case where
Eps(p) = −∞ for some probability p. In that trivializing case, there is no
quasi-strictly proper extension to non-probabilities, since we cannot have
Eps(c) < Eps(p).

There do exist unbounded scoring rules that are strictly proper on the
probabilities, continuous on the regular probabilities, but do not satisfy the
limit condition and do not have the trivializing condition and hence do not
have the domination property. For instance, let Ω = {1, 2} and let δ1 be the
probability such that δ1({1}). Let s(p)(i) = log p({i}) for i = 1, 2, whenever
p 6= δ1, and let s(δ1)(1) = 1 and s(δ1)(2) = −∞. It’s easy to see that Eps(q)
is the same as for the logarithmic rule λ (where λ(p)(i) = log p({i}) in all
cases) except when p = q = δ1 in which case Eps(q) = 1 > 0 = Epλ(q). Thus
s is strictly proper because λ is. The rule s does not have the trivializing
condition and it is continuous except at δ1. But it does not satisfy the
limiting condition since limEpns(pn) = Epλs(p) if pn → p = δ1 and the pn
are regular, but Eδ1λ(δ1) 6= Eδ1s(δ1).

Our result implies that if a philosopher can argue that the correct scoring
rule should be strictly proper, finite and continuous on the regular probabili-
ties, then they have an argument for probabilism—the thesis that an agent’s
credences should be probabilities—because it is very plausible that one is
not rationally permitted to have credences that are dominated by another
set of credences. And finiteness has some plausibility to it. If the score of,
say, certainty in a falsehood is infinitely bad, then we cannot say that it’s
worse to be sure of two falsehoods than of one.

2. Proofs

Without loss of generality suppose Ω = {1, ..., n}. Identify a score
s(p) with the extended-real “vector” (s(p)(1), . . . , s(p)(n)) in [−∞,M ]n.
Let F be the set of finite scores of probabilities, i.e., F = {s(p) : p ∈
P and s(p) is finite}. On our identification, F is a subset of Euclidean space
Rn. Write 〈v, z〉 for the inner product on Rn. Note that Eps(p) = 〈p̂, s(p)〉
if s(p) is finite, given our identification.

Lemma 1. Let C ⊆ Rn for n ≥ 2 and let f be a function defined from
an open subset U of the sphere Sn−1 = {v ∈ Rn : |v| = 1} to C such
that 〈v, z〉 ≤ 〈v, f(v)〉 for all v ∈ U and z ∈ C. Suppose that v0 ∈ U
and there is a point z1 6= f(v0) in the closed convex hull of C such that
〈v0, z1〉 = 〈v0, f(v0)〉. Then f is not continuous at v0.

Proof. Without loss of generality, assume that C is closed and convex, since
the inequality 〈v, z〉 ≤ 〈v, f(v)〉 extends to all z in the closed convex hull of
C. We now have z1 ∈ C.

Let V = {v ∈ Rn\{0} : v/|v| ∈ U}. This is also open. Letting f(v) =
f(v/|v|) for v ∈ V \U extends f to a function on V , which is continuous at
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v if and only if the original function was as well, and continuous to satisfy
the inequality 〈v, z〉 ≤ 〈v, f(v)〉 for z ∈ C.

Let z0 = f(v0). Fix ε > 0. Let wε = v0 + ε(z1 − z0). Suppose ε
is sufficiently small that the vector wε is in V . I claim that |f(wε) − z0| ≥
|z1−z0|. If that’s correct, that implies f is discontinuous at v0, since wε → v0

as ε→ 0+.
To prove the claim, without loss of generality by rotating C if necessary

about the origin, we can assume that v0 lies on the first coordinate axis,
i.e., v0 = (1, 0, . . . , 0). Since 〈v0, z0〉 = 〈v0, z1〉, the first coordinate of z0 is
the same as that of z1. Thus by a rotation that leaves the first coordinate
axis fixed, we can assume that zi = (x, yi, 0, . . . , 0) for i = 1, 2 and for some
fixed x, y0 and y1, with y1 > y0. Let t = y1 − y0 = |z1 − z0|. Note that
wε = (1, εt, 0, . . . , 0).

Write f(wε) = (α1, . . . , αn). Note that α1 = 〈v0, f(wε)〉 ≤ 〈v0, f(v0)〉 = x.
Since 〈wε, z1〉 ≤ 〈wε, f(wε)〉, we have:

x+ εty1 ≤ α1 + εtα2 ≤ x+ εtα2.

Hence α2 ≥ y1. But |f(wε)−z0| ≥ |α2−y0|, and |α2−y0| ≥ y1−y0 = |z1−z0|
since α2 ≥ y1 > y0. Thus |f(wε)− z0| ≥ |z1 − z0|, as desired. �

Proof of Theorem 1. Assume the non-trivializing condition that Eps(p) is
finite for all probabilities p, and hence that s(p) is finite for any regular p.

By the main theorem of [10], to get the domination property under the
other conditions assumed in our Theorem 1, we only need to show that F is
dense in ∂+ ConvF , where ConvF is the convex hull of F and ∂+U is the
“positive-facing boundary” of U , i.e., the set of topological boundary points
z of U such that there is a vector v ∈ (0,∞)n (i.e., a positive-facing vector)
with the property that 〈v, w〉 ≤ 〈v, z〉 for all w ∈ F , where 〈·, ·〉 is the dot
product on Rn.

We now show that this is true in the special case where s is strictly
proper. Suppose z1 ∈ ∂+ ConvF . Let v be a positive-facing vector such
that 〈v, w〉 ≤ 〈v, z1〉 for all w ∈ F . Rescaling if necessary, we may suppose
v = p̂ for a regular probability p. If s(p) = z1, then we are done, so suppose
s(p) 6= z1.

I now claim that 〈p̂, z1〉 = 〈p̂, s(p)〉. For we have 〈v, s(p)〉 ≤ 〈v, z1〉 and
v = p̂, and conversely z1 is a limit of convex combinations of s(qi) for qi ∈ P,
and 〈p̂, s(qi)〉 ≤ 〈p̂, s(p)〉.

Let v0 = p̂/|p̂|. Let U be a neighborhood of v0 such that all the coordinates
of all the vectors in U are strictly positive. For x = (x1, . . . , xn) ∈ U , let x̌
be the regular probability such that x̌({i}) = xi/

∑n
k=1 xk. Let f(x) = s(x̌).

Then f satisfies the conditions of the Lemma with C = F . Hence f is
discontinuous at v0, which implies s is discontinuous at p, a contradiction.

It remains to prove the result in the case where s is only quasi-strictly
proper. Fix a non-probability c0. Let F be the set of s(p) for p ∈ P, and
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for p ∈ P let
f(p) = Eps(p)− Eps(c0).

Note that Eps(p) = supz∈F Epz by propriety, and hence p 7→ Eps(p) is lower
semicontinuous, since it is the supremum of continuous functions (this uses
the finiteness of all the members of F ). Thus f is lower semicontinuous.
Moreover, by quasi-strict propriety, f is strictly positive on P, and hence
by lower semicontinuity and the compactness of P we have ε = min f > 0.
Let t be any strictly proper probability-continuous scoring rule such that
|t(c)(i)| < ε/2 for all c and 1 ≤ i ≤ n. Let s′(p) = s(p) + t(p) for p ∈ P and
s′(c) = s(c0) + ε/2 for c /∈ P. Then

Eps
′(p) > Eps(p)−

ε

2
≥ Eps(c0) + ε− ε

2
= Eps

′(c0),

where the first inequality follows from the bounds on t and the second follows
by the fact that ε = min f . Moreover, s′ is strictly proper on the probabilities
as there it is the sum of a proper scoring rule and a strictly proper one.
Hence s′ is strictly proper, and it is finite everywhere and continuous on the
regular probabilities. Thus by what we have proved before, s′(c0) is strictly
dominated by s′(p) for some p. Then:

s(c0)(i) = s′(c)(i)− ε

2
< s′(p)(i)− ε

2
< s(p)(i) +

ε

2
− ε

2
= s(p)(i),

and so s(c0) is strictly dominated by s(p) as desired. �
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