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Abstract

It is usually thought that decoherence is necessary for the emer-
gence of many worlds. In this paper, I propose a thought experiment
and argue that the decoherence requirement leads to a contradiction.

The many-worlds interpretation of quantum mechanics (MWI) assumes
that the wave function of a physical system is a complete description of the
system, and it always evolves in accord with the linear Schrödinger equation.
In order to solve the measurement problem, MWI further assumes that after
a measurement with many possible results there appear many equally real
worlds, in each of which a definite result occurs (Everett, 1957; Barrett,
2018; Vaidman, 2021). This many-worlds assumption is supported by an
extensive analysis of decoherence and emergence in the modern formulations
of MWI (Wallace, 2012). In this paper, I will propose a thought experiment
and argue that if the decoherence condition is required for the emergence of
many worlds, then there will be a contradiction.

Suppose there is a closed system containing two experimenters Alice and
Bob. They are initially in an entangled state:

|0〉Alice |1〉Bob + |1〉Alice |0〉Bob , (1)

where |0〉Alice and |1〉Alice are two result states of Alice in which she obtains
the results 0 and 1, respectively, and |0〉Bob and |1〉Bob are two result states
of Bob in which he obtains the results 0 and 1, respectively.

Consider a unitary time evolution operator UN which changes |0〉Alice to
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|1〉Alice and |1〉Alice to |0〉Alice after a time interval T .1 Then by the linearity
of the dynamics, the time evolution of the initial state under UN is

|0〉Alice |1〉Bob + |1〉Alice |0〉Bob → |1〉Alice |1〉Bob + |0〉Alice |0〉Bob (2)

At each instant t ∈ [0, T ] during the evolution, UN (t) can be defined as
follows:

UN (t) |0〉Alice = α(t) |0〉Alice + β(t) |1〉Alice , (3)

UN (t) |1〉Alice = α′(t) |0〉Alice + β′(t) |1〉Alice , (4)

where α(0) = 1, α(T ) = 0, α′(0) = 0, α′(T ) = 1, β(0) = 0, β(T ) = 1,
β′(0) = 1, and β′(T ) = 0. Note that the unitarity of UN (t) will keep the
orthogonality of the two states of Alice during the evolution.

Now the state of Alice and Bob at each instant t during the evolution is

[α(t) |0〉Alice + β(t) |1〉Alice] |0〉Bob + [α′(t) |0〉Alice + β′(t) |1〉Alice] |1〉Bob (5)

This state can also be written as follows:

[α(t) |0〉Bob + α′(t) |1〉Bob] |0〉Alice + [β(t) |0〉Bob + β′(t) |1〉Bob] |1〉Alice (6)

Then, UN (t) will equivalently evolve the states of Bob as follows:

UN (t) |0〉Bob = α(t) |0〉Bob + α′(t) |1〉Bob (7)

UN (t) |1〉Bob = β(t) |0〉Bob + β′(t) |1〉Bob (8)

This means that the unitarity of UN (t) will ensure that the two states of
Bob are also orthogonal during the evolution.2

Now an interesting question arises: what worlds does the state (5) or (6)
correspond to in MWI? By (5), since the two states of Alice, α(t) |0〉Alice +

1For a Hilbert space with dimension greater than two, the swap operator UN can
be accomplished in many ways, such as with a 180 degree rotation about the ray halfway
between the two state vectors. Admittedly UN involves anti-thermodynamic manipulation
of macrocopically many degrees of freedom. But for a unitary theory like MWI, UN can
be accomplished in principle, although the accomplishment is extremely difficult. Note
that a similar thought experiment involving the swap operator UN was first proposed and
discussed by Gao (2019).

2In a two-dimensional Hilbert sub-space, UN (t) can be represented as

(
α(t) α′(t)
β(t) β′(t)

)
.

Then its unitarity implies the relation α(t)β∗(t)+α′(t)β′∗(t) = 0, which means that the two
states of Bob, α(t) |0〉Bob + α′(t) |1〉Bob and β(t) |0〉Bob + β′(t) |1〉Bob, are also orthogonal.
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β(t) |1〉Alice and α′(t) |0〉Alice + β′(t) |1〉Alice, are orthogonal and thus Bob’s
two result states are decohered,3 there are two (or two sets of) worlds, in
one of which Bob obtains a definite result 0, and in the other Bob obtains a
definite result 1. This is the answer from the point of view of Bob. On the
other hand, by (6), due to the similar reason, there are also two (or two sets
of) worlds, in one of which Alice obtains a definite result 0, and in the other
Alice obtains a definite result 1. This is the answer from the point of view
of Alice. Since the two answers are incompatible with each other, there is a
contradiction here.

It is worth emphasizing that the state (5) or (6) only corresponds to
two worlds and it does not correspond to four worlds according to the de-
coherence requirement. For example, the first two terms in (5), namely
[α(t) |0〉Alice + β(t) |1〉Alice] |0〉Bob does not correspond to two worlds for Al-
ice, since the decoherence condition is not satisfied for her.

There is another formulation of the contradiction concerning the changes
of worlds. According to MWI, the initial state of Alice and Bob corresponds
to two worlds. In one world, Alice obtains a definite result 0 and Bob obtains
a definite result 0, and in the other world, Alice obtains a definite result 1
and Bob obtains a definite result 1. Similarly, the final state of Alice and
Bob also corresponds to two worlds. In one world, Alice obtains a definite
result 0 and Bob obtains a definite result 1, and in the other world, Alice
obtains a definite result 1 and Bob obtains a definite result 0. Then, how
do the states of Alice and Bob change in each world during the above time
evolution?

Since the states of Alice and Bob in the branches of both the initial state
and the final state are symmetrical, the answers to this question for Alice
and Bob must be the same. But, as we will see, this is impossible. By
Eqs. (3) and (4), since the states of Alice, α(t) |0〉Alice + β(t) |1〉Alice and
α′(t) |0〉Alice +β′(t) |1〉Alice, are always orthogonal during the time evolution
and thus the decoherence condition is satisfied for Bob, Bob’s state should
not change in each world during the evolution. On the other hand, by
Eqs. (7) and (8), since the states of Bob, α(t) |0〉Bob + α′(t) |1〉Bob and
β(t) |0〉Bob + β′(t) |1〉Bob, are always orthogonal during the time evolution
and thus the decoherence condition is also satisfied for Alice, Alice’s state
should not change in each world during the evolution either. However, the
time evolution (2) shows that Alice’s and Bob’s states cannot both keep
unchanged in each world; when Alice’s state keep unchanged, such as from
|0〉Alice to |0〉Alice, Bob’s state must change, such as from |0〉Bob to |1〉Bob,
and vice versa. This is a contradiction.4

It can be seen that the above contradiction results from the decoherence

3We can regard Alice as Bob’s environment, and vice versa.
4The contradiction can also be formulated in a higher-dimensional Hilbert space. For

example, in a 3D Hilbert space, the time evolution will be |0〉Alice |1〉Bob + |1〉Alice |2〉Bob +
|2〉Alice |0〉Bob → |1〉Alice |1〉Bob + |2〉Alice |2〉Bob + |0〉Alice |0〉Bob.
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condition required for the emergence of many worlds. If the requirement is
dropped, then we can avoid the contradiction by assuming that the state
(5) or (6) corresponds to four worlds, in each of which Alice and Bob both
obtain a definite result, either 0 or 1. In other words, for example, the first
two terms in (5), namely [α(t) |0〉Alice+β(t) |1〉Alice] |0〉Bob correspond to two
worlds for Alice, even if the decoherence condition is not satisfied for her.

To sum up, I proposed a thought experiment and argued that the deco-
herence condition is not necessary for the emergence of many worlds; other-
wise there will be a contradiction.
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