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Abstract

The implications for the substantivalist–relationist controversy of Bar-
bour and Bertotti’s successful implementation of a Machian approach to
dynamics are investigated. It is argued that in the context of Newtonian
mechanics the Machian framework provides a genuinely relational interpre-
tation of dynamics and that it is more explanatory than the conventional,
substantival interpretation. In a companion paper (Pooley 2001), the im-
plications of the Machian approach for the interpretation of relativistic
physics are explored.

1 Introduction

A brief summary of the recent history of the substantivalist–relationist debate
might go as follows:

The late 1960s and the 1970s saw the rise of the modern form of substantival-
ism. With the demise of logical empiricism, and with the rise of scientific realism,
the spacetime manifold started to be seen as a respectable entity. It appeared
integral to our best physical theories and thus we were justified in postulating
its existence (Earman 1970, Stein 1970). Relationist1 critics of realistically con-
strued spacetime, while able to offer a clear account of the relational content of
substantivalist models (at least in the prerelativistic context), were exposed as

∗e-mail: oliver.pooley@philosophy.oxford.ac.uk.
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1Here and throughout, we conform to the standard practice of using “relationist” to stand

for someone who denies that space, or spacetime, is a basic entity, ontologically on a par with
matter. An alternative use of the word also has some currency according to which “relationism”
is roughly synonymous with “anti-haecceitism”. For more on these two senses of the term, see
Pooley (2001, Section 3.1).
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unable to offer a formulation of physics which did not, at least tacitly, involve
primitive spacetime structures. Consider John Earman:

. . . the absolutist claims that the laws of physics cannot be stated
without the use of an apparatus that carries with it a commitment to
substantivalism. In this the absolutist may be wrong, but he is right
in holding that the relationist must meet the challenge of formulating
a relationally pure physics. The history of relationism is notable for
its lack of success in meeting this challenge. (Earman 1989, 135)

This confidence in spacetime was shaken in the 1980s when philosophers reac-
quainted themselves with Einstein’s “Hole Argument” (Stachel 1989). It was
now feared that any commitment to spacetime as a real entity involved embrac-
ing indeterminism. But surely, the argument went, the issue of determinism is
to be settled by the specific details of physics, not on the basis of such a general
ontological commitment (Earman & Norton 1987).

The substantivalist responses were swift and, despite some important dissent-
ing voices, a certain unanimity has emerged: spacetime realism does not entail
indeterminism. Most endorse a sophisticated substantivalism: they claim that
the spacetime realist is entitled to and should count spacetime models related by
“hole” diffeomorphisms as representing the same state of affairs (Mundy 1992,
Brighouse 1994, Rynasiewicz 1994, Hoefer 1996, Bartels 1996).2 Many claim, for
example, that it is a mistake to view the bare spacetime manifold, stripped of its
affine and metrical properties, as representing spacetime (Mundy 1992, DiSalle
1994, Hoefer 1996).

Two more recent developments are worthy of note. Some philosophers have
started to question whether the debate truly transfers from its historical setting—
of persisting matter in space—to the modern context of fields and spacetime. It
is argued that it is a matter of whim whether one sees classical general rel-
ativity as vindicating Newton’s absolute space or Descartes’ relational ethers
(Rynasiewicz 1996). Others, by contrast, now see current research programmes
which attempt to unify quantum mechanics and general relativity in a coher-
ent theory of quantum gravity as the proper testing ground for the age-old
debate, arguing that relationist and substantivalist interpretations of classical
general relativity are allied to different approaches to quantizing the theory
(Barbour 1986, Hoefer 1998, Belot & Earman 2000, Belot & Earman 2001). Cer-
tainly many of the research workers in one of the main approaches to quantum
gravity see the debate between the relationist and the substantivalist as of rele-
vance to their enterprise (e.g. Rovelli 1997, Smolin 1991).

2The main dissenting voices those of Gordon Belot and John Earman (Belot 1999, Belot
2000, Belot & Earman 2001) who coin the disparaging phrase “sophisticated substantivalism”.
For a defence of sophisticated substantivalism in the face of Belot’s and Earman’s objections,
see Pooley (2001, Section 3.1). Note that Butterfield (1989) and Maudlin (1990) are substan-
tivalists who also deny the physical equivalence of diffeomorphic models but without accepting
indeterminism. For different reasons they argue that only one model in each equivalence class
is to be regarded as representing a genuine physical possibility.
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We subscribe to the view that the debate is not outmoded (for an incisive
rejoinder to Rynasiewicz’s scepticism, see Hoefer 1998). The question of what
constitutes the ‘correct’ interpretation of classical general relativity is still open
and is surely one that has ramifications for contemporary physics. But in ad-
dressing it, philosophers would also be well-advised to re-examine the received
wisdom concerning prerelativistic physics first. Contrary to orthodox opinion
(Friedman 1983, Earman 1989, Maudlin 1993, DiSalle 1994, Rynasiewicz 1995a),
it has been shown, by Julian Barbour and Bruno Bertotti, that in the context of
prerelativistic physics relationism is a viable option (Barbour & Bertotti 1982).
What little attention this work has received in the philosophical literature has, for
the most part, been cursory and misleading.3 Indeed, the relational, “Machian”
theories are arguably more explanatory than their conventional rivals. The main
object of this paper is to advertise this fact, and to draw out some of the philo-
sophical consequences. Recently, aside from Barbour himself, Gordon Belot has
been the principle advocate of the viability of relationism in the context of clas-
sical mechanics (Belot 1999, Belot 2000). We agree with his positive assessment.
However, for reasons spelled out below, we believe that Barbour’s formulation of
relational mechanics is both more fundamental and more illuminating than the
Hamiltonian formulation that Belot discusses.

2 Newton versus Leibniz

The true home of the substantivalist–relationist controversy is prerelativistic clas-
sical mechanics. Things are far less clear-cut as soon as one considers more con-
temporary branches of physics. The following brief and selective survey of the
historical origins of the debate provides a context for our discussion of Barbour
and Bertotti’s intrinsic particle dynamics in Section 7. Our concern is to highlight
the important philosophical issues, not to achieve historical accuracy.

Newton recognised that Descartes’ particular relational concept of motion
was inadequate for the formulation of Descartes’ own law of inertia. Newton
effectively postulated a preferred equilocality relation between the points of space
at different times and a primitive measure of the temporal ‘distance’ between them
in order to associate with every body an unambiguous measure of its motion.
His equilocality was defined by the simple persistence of the points of space:
“Absolute space, in its own nature, without relation to anything external, remains
always similar and immoveable. Relative space is some moveable dimension or
measure of the absolute spaces; which our senses determine by its position to
bodies” (Newton 1729).

It is perhaps possible to quibble over whether Newton’s points of space are

3As will become clear in Section 5, Gordon Belot (1999, 2000) is a notable exception. Earman
also deserves much credit for bringing Barbour’s early work to the attention of the philosophical
community (Earman 1989, Ch. 5). However, he confines his discussion of Barbour and Bertotti’s
1982 paper to a footnote and claims that “this new theory seems to amount to a reworking of
the approach of Zanstra (1924)” (1989, 212, n. 5). In what follows, we hope to show that this
influential assessment is far from being correct.
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genuinely ‘substantival’ but the important point is that the Newtonian equilocal-
ity relation is determined entirely independently of the nature of matter and its
relative motion. That space and duration have their ‘own natures’ which are not
determined by ‘anything external’ (i.e., by matter in any shape or form) clearly
makes Newton some brand of spacetime realist.4

Leibniz rejected the reality of both of these aspects of space and time. In his
third reply to Clarke, he writes:

As for my own opinion, I have said more than once, that I hold
space to be something merely relative, as time is; that I hold it to be
the order of coexistences, as time is an order of successions. For space
denotes, in terms of possibility, an order of things which exist at the
same time. (Alexander 1956, 25–26)

For Leibniz there was nothing more to space than the fact that the spatial
relations of any possible instantaneous extended material configuration—the rel-
ative distances between material objects (“things”) at any given instant—possess
a very particular order: they conform to Euclidean geometry. Similarly, time
is nothing more than the linear succession of such highly ordered instantaneous
material configurations.

3 Absolute space versus an affine connection

Relationists were quick to seize upon a problematic aspect of Newton’s postula-
tion of a single, privileged equilocality relation. From the point of view of classical
mechanics there is an infinite family of such relations (given by the world lines of
the points of the relative spaces of the full family of inertial frames) which are each
fully capable of doing the job of Newton’s supposedly unique one. There are no
principled empirical criteria which pick out a preferred set of inertial trajectories
as the world lines of the points of absolute space.

This fact is often presented as a problem for the historical substantivalist who
is meant to be faced with the following dilemma: either all motion is relative or
it is motion with respect to absolute space. The equivalence of inertial frames
militates against the existence of absolute space; therefore all motion must be
relative. On the other hand there exist empirical criteria which allow one to
determine the absolute acceleration of a system—the inertial frames are empir-
ically identifiable—, so motion cannot be analysed simply as relative motion.5

The story goes that it is only once we learned to do differential geometry and to

4We thus side with Rynasiewicz (1996) over DiSalle (1994) on the issue of Newton’s sub-
stantivalism.

5Global inertial frames are operationally identifiable from relative motions alone in finite
Newtonian universes. If the universe is infinite, one may adopt the perspective of Newton-
Cartan theory in which a unique set of local inertial frames for every point of spacetime is
identifiable. If gravity is regarded as a force and the universe is infinite, then the equivalence
principle prevents one from identifying the ‘true’ global inertial frames because the presence of
a uniform gravitational field in a locality is not detectable from local relative motions alone.
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view spacetime as a four-dimensional differentiable manifold that we saw how one
could deny both that all motion is relative and that a particular inertial frame
has a privileged status. An affine connection on the spacetime manifold suffices
to determine all the inertial trajectories in a democratic way.6

But this is surely too simplistic. Ignorant of the concept of an affine connec-
tion, one might still believe that the equivalence of inertial frames undermines
the notion of absolute space and at the same time believe that the inertial struc-
ture in the world—the existence of a privileged family of reference frames—is
not dependent on, and is perhaps ‘prior to,’ all matter. While Earman might be
correct in judging that Poincaré’s writings indicate he is captive in a “conceptual
box” in thinking that “either the motion of a body is judged solely with respect
to other bodies or else with respect to absolute space” (1989, 85), other authors
writing at the end of the nineteenth century, such as James Thomson, clearly do
not make this mistake (cf. DiSalle 1994, 284).

4 Antirelationist Arguments

Notoriously Leibniz failed to formulate an empirically adequate physics that does
away with inertial structure and a temporal metric. To do so has generally been
judged to be a hopeless task, for two main reasons. First, the distinction between
inertial and non-inertial motion introduced by Newton’s laws—a distinction that
prima facie cannot be accounted for in terms of purely relative motion—is empiri-
cally well-founded. This is the moral usually (and correctly) drawn from Newton’s
bucket experiment and his thought experiment involving the two globes attached
by a cord.7

This consideration certainly do not prove the impossibility of a relational
classical physics. As Mach famously conjectured, the well-confirmed local iner-
tial structure displayed by the rotating bucket might actually arise through the
bucket’s interaction with the rest of the universe. But such a response has force
only if an alternative constructive relationist explanation of the phenomena is
available. Newtonian mechanics in its standard form does have an explanation of
the correlation between the concavity of the water in the bucket and the sequence
of the water and bucket’s relative rotation. Only a relational theory predicting
the same phenomena would constitute a genuine alternative. This is a point that
Earman rightly stresses again and again (1989, e.g., 65, 135).

The second reason why the prospects for a relational classical physics might
seem doubtful is well-illustrated by the initial value problem. Many suppose that

6Nice examples of the argument can be found in Rynasiewicz (1995a, 679) and Belot (1999,
39).

7In Newton’s hands, the bucket experiment is used to demonstrate the inadequacy of
Descartes’ relational definition of motion. The globes thought experiment takes Newton’s defi-
nition of absolute motion (as motion with respect to absolute space) for granted and is designed
to demonstrate the extent to which absolute motion can be empirically determined despite the
invisibility of absolute space. For two excellent, historically sensitive commentaries on the
arguments of Newton’s Scholium, see Barbour (1989, Chapter 11) and Rynasiewicz (1995b).
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if one accepts Leibniz’s ontology, one should expect that the relative configura-
tion of an isolated system at an instant and the relative rate of its change should
be sufficient to determine its future evolution. This point of view lies behind
Poincaré’s discussion of absolute space (Poincaré 1952, Chapter 7) and, following
Barbour, we will refer to the condition that a truly relational theory should have
such initial data as Poincaré’s Criterion.8 However, assuming that Newtonian
mechanics correctly predicts which future sequences of relative configurations are
possible, such information turns out to be insufficient. While the overall position
and orientation of the system with respect to an inertial frame is dynamically in-
significant, and while its overall velocity within that inertial frame is insignificant
also, the rate of change of its orientation—its angular velocity—does have an ef-
fect on the relative distances between the system’s constituent particles at future
times.9 If the equations of motion of a Newtonian system are re-expressed in
terms of relative distances rather than inertial frame positions, the equations can
involve ‘accidental constants’ (encoding the angular momentum of the system)
and some will be of greater than second order.

5 Rehabilitating Relationism

There is, however, a subset of the solutions to any Newtonian theory that displays
an interesting property. If the total angular momentum of the system as measured
in its centre-of-mass inertial frame (the centre-of-mass system or cms) is zero,
then specification of the relative quantities is sufficient to determine its future
evolution. In this case, the equations of motion in terms of relative distances
are all of second order. Relational conclusions were first drawn from this result
by Zanstra (1924) who attributes to Föppl the hypothesis that the universe has
zero angular momentum. Earman, however, is sceptical that this situation has
any relational implications. In his opinion, “it is no big surprise to find that the
relationist has an easy time of it when troublesome rotation is absent” (1989, 88).

Fortunately for the relationist, much more can be said. In two recent articles,
Gordon Belot discusses the same result in terms of a Hamiltonian formulation of
classical mechanics (Belot 1999, Belot 2000). He stresses that the move from the
full Newtonian theory to the zero cms angular momentum solutions “can be given
a number of elegant, autonomous formulations—each a fitting competitor to the
standard formulation, rather than a parasite” (2000, 571). It will be convenient
for what follows to mention some of the details of Belot’s discussion. As an
illustrative example, we concentrate on the particular system of N gravitating
point particles of fixed masses mi, i = 1 to N .

8Note that Poincaré does not actually require that one should only need to know the relative
changes of the relative distances and thus does not confront the prima facie non-relational
character of Newton’s absolute time.

9Poincaré, after posing the problem in this way, disputes the conclusion that standard New-
tonian dynamics is not relational. His argument is dismissed by Earman (1989, 87) but since
it is not obvious that relational initial data can include only relative distances and their first
derivatives, Poincaré’s conclusion deserves more sympathetic attention.
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In Hamiltonian mechanics the history of a system is represented by a curve
in the system’s phase space T ∗Q, each point of which encodes the positions and
momenta of the particles of the system in some inertial frame. The Leibnizian
relationist, who believes that only the instantaneous relative distances are phys-
ically real, might seek to formulate a Hamiltonian theory on the relative phase
space T ∗Q0. Here points in the standard 3N -dimensional configuration space Q
which correspond to the same relative configuration, and which are thus trans-
formable into one another by the action of the 6-dimensional Euclidean group
E3, have been identified to form the (3N − 6)-dimensional relative configuration
space Q0. Each point of T ∗Q0 only encodes information about the relative dis-
tances and the relative velocities of the particles.10 A curve in T ∗Q0 represents
a sequence of such relative configurations.

The conclusion of the discussion so far is that only in the case of vanish-
ing cms angular momentum is the information given by a point in T ∗Q0 suf-
ficient to predict the evolution of a Newtonian system. Dynamically possible
sequences of relative configurations for Newtonian systems with non-vanishing
angular momentum cannot be derived from a Hamiltonian theory on T ∗Q0. But
sequences corresponding to systems with zero angular momentum can be ob-
tained as the solutions of a “Hamiltonian theory on the relative phase space,
employing the canonical symplectic structure on T ∗Q0, and the projection of the
standard Hamiltonian” (Belot 1999, 43). Belot claims, contra Earman, that such
sequences admit of a “strict relationist interpretation” (1999, 43).11

All of this would be of less than academic interest were it not for evidence that
our universe is not rotating. In the inertial frame obtained by astronomers from
the relative motions of our solar system, the average observed rotation of galaxies
with respect to any axis through the sun is less than about 1 arc-sec/century
(Schiff 1964). Analysis of the microwave background radiation also suggests that
the angular momentum of the universe vanishes (Barrow, Juszkiewicz & Sonoda
1985). Belot regards the non-rotation of the universe as a “contingent fact”
which allows a strict relationist interpretation of cosmological applications of
Newtonian gravitation to get off the ground. He is thus slightly worried that the
substantivalist can accuse the relationist of employing an ad hoc manoeuvre in
restricting his attention to a proper subset of the full Newtonian theory.

In contrast, we believe that the fact that relational classical mechanics is
only consistent with a non-rotating universe is a potential strength of the theory.

10Recall footnote 8. These “relative velocities” are still the rates of change of the relative
distances with respect to absolute time. We return to this point in Section 6.

11In an appendix Belot discusses a standard procedure which allows one to factor out sym-
metries of a given Hamiltonian theory to derive a Hamiltonian theory on a reduced phase space.
One performs a different reduction for each conserved quantity associated with the symmetries
of the original theory. In the case of conserved linear momentum, the reduction leads to the
same theory in each case, which one can view as a theory defined on T ∗Qcms. In the case of
angular momentum one obtains a different theory for each value of angular momentum. More-
over, only in the case of zero cms angular-momentum is the resulting theory a theory on the
relative phase space T ∗Q0. In the other cases the theory is defined on a sphere bundle over
T ∗Q0, corresponding to the need to specify the direction of angular momentum (given by a
point on the 2-sphere) as well as its magnitude. (Cf., also, Belot 2000, 572–3; 581–2.)
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From the point of view of the relational theory, the non-rotation of the universe
with respect to the operationally definable centre-of-mass inertial frame is not
contingent; it is something that the theory predicts. If it turns out that the
measured angular momentum of the universe is not zero then relationism, or at
least the variety we have been considering, must be rejected. But if the angular
momentum of the universe is found to be zero then, since this is a prediction of the
relational theory, it is also something which the relational theory explains. From
the substantivalist perspective, on the other hand, that the angular momentum
of the universe is zero is contingent and, in fact, rather extraordinary (given the
range of possible values it might have had according to the substantivalist).12

In fact, although Belot regards the non-rotation of the universe as a contin-
gent fact, he also admits that “the relationist ploy threatens to convert this into
a physical necessity.” His considered conclusion is that ultimately the relationist
should regard rotating universes as physically possible; they are simply ones “in
which space had to be absolute after all”. Nonetheless, the relationist will regard
such possibilities as less like the actual world than the substantivalist holds them
to be: “There is a sense in which worlds governed by the same laws but instan-
tiating distinct ontologies are more remote possibilities than worlds which agree
with ours both about laws and about ontology” (1999, 44).

We, on the other hand, are happy to embrace the restriction on physical
possibility that relationism appears to involve and we regard such restriction
as the prime advantage that relationism has over substantivalism in the pre-
relativistic context. We also must confess that it is opaque to us how two possible
worlds can differ so fundamentally in their ontologies and yet be held to obey the
same laws. Surely it is more natural to rule that such worlds differ with respect to
both laws and ontology. Newtonian gravitation and the relationist interpretation
of the zero-angular momentum fragment of it should be regarded as distinct
theories which properly receive distinct mathematical formulations: for example,
one might be formulated as a Hamiltonian theory defined on T ∗Q (or perhaps as
theory set in ‘Galilean’ or ‘neo-Newtonian’ spacetime), while the other might be
formulated as a theory defined on T ∗Q0.

The relationist must also establish his right to the full theory when it comes
to modelling subsystems of the universe for these, manifestly, can have non-zero
angular momentum. Belot believes that “it is still cogent for them [relationists] to
insist that when it comes time to interpret the theory, we need only make sense of
its application to the entire universe” (1999, 44). We would add that the cogency
of this position is highlighted when one notes that it follows from the relational
theory (held to describe the universe) that effectively isolated subsystems are
correctly described by the full Newtonian theory, subsystems which can thus

12This claim can be questioned. Belot reports Frank Arntzenius as suggesting that Newtonian
theory also predicts that there will be no observable universal rotation: “as N →∞, the measure
of the set of random distributions of N particles with discernible angular momentum goes to
zero (angular momentum requires correlations between velocities)” (Belot 2000, fn. 18). We see
a problem with this line of argument. According to Newtonian mechanics, the actual initial
conditions of the universe, with its low entropy and ubiquitous velocity correlations, must come
from a rather special set of measure zero. We do not, after all, live in a heat bath.
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have non-zero angular momentum.
Despite all that has been said so far, a certain caution concerning the viability

of a relational interpretation of the T ∗Q0 theory can remain. The source of the
scepticism is that this theory has been defined via the standard theory. In his
(1999), for example, Belot begins with the full Newtonian theory and then factors
out its symmetries; it turns out that the result obtained for systems with zero
angular momentum can be reinterpreted relationally. There are two responses to
this worry. First, one can insist that the historical details of a theory’s discovery
do not dictate how it should be interpreted.13 It might be required of a revisionary
interpretation that it can accommodate, and perhaps explain, those historical
details. But this the relationist interpretation can readily do. As noted above,
it accounts for the applicability of the ‘substantivalist’ theory to subsystems of
the universe and this suffices to explain why the substantivalist formulation was
discovered first. Second, and more importantly, Barbour and Bertotti’s derivation
of the relational theory goes via relationally motivated first principles. They do
not begin with the standard theory or restrict themselves to the non-rotating
subset of its solutions. In fact, from their perspective, non-rotation can even be
seen as a novel prediction.

There is one final aspect of Belot’s discussion that we wish to address and it
is one that will serve to introduce our discussion of Barbour’s work. Belot seeks
to distinguish two strains of relationism about motion. According to one, the
relationist should seek to implement the programme that originates in Mach’s
remarks: one should aim to derive the local inertial frames from the relative
positions of all the masses in the entire universe and their relative motions (cf.
page 5 above). According to the other, one need only construct a theory meeting
Poincaré’s criterion (in its unmodified form). Belot himself views the first of these
as “daunting and poorly defined” (Belot 2000, 570). But can such a distinction
between two varieties of relationism be drawn so clearly? In particular, given that
the inertial frames are an empirical fact, any empirically adequate theory meeting
Poincaré’s criterion can either be interpreted as providing a genuinely relational
account of them or it will be revealed as little more than a “cheap instrumental
rip-off.”14

In fact, after disavowing the Machian programme, Belot does not remain
silent on inertia. In his earlier paper, he comments in a footnote that he suspects
that the derivability of a subset of Newtonian solutions from a theory on the
relative phase space tells against the anti-relationist argument that is based on
the empirical fact of the local definability of non-inertial motion (the argument is

13In fact, we believe that Belot would endorse this line of thought. In his most recent paper,
we take him to be considerably more sanguine about the viability of the relationist interpretation
of the theory he discusses (cf. Belot 2000, fn. 20). He also acknowledges that factoring out the
symmetries of the standard T ∗Q is but one way to arrive at the T ∗Q0 theory.

14To borrow Earman’s now much-quoted phrase. For example, this might well be the correct
assessment of Zanstra’s ‘derivation’ of the zero angular momentum fragment of Newtonian
theory. Of course, that the fragment satisfies Poincaré’s criterion is extremely suggestive in
itself. But an autonomous formulation of a theory yielding this fragment as its complete set of
solutions seems required before a relationist interpretation of them can get off the ground.

9



rehearsed above, page 5). His reason is that “the geometrical structures of T ∗Q
and T ∗Q0 encode an awful lot of information about ‘inertial structure’ without
appealing to any notions of absolute motion” (1999, fn. 5). Belot is of course
right that the T ∗Q0 theory undermines the anti-relationist argument. But we
believe that inertial structure does not enjoy the same status in both the T ∗Q
and T ∗Q0 theories. In particular, while the T ∗Q does employ, if tacitly, a notion
of absolute motion, the T ∗Q0 theory, when understood correctly, does not.

In his (2000) Belot returns to the subject, again in a footnote which we quote
in full:

What is the connection between this brand of relationism, and the
sort more often considered by philosophers? How does this theory
account for inertial forces in terms of relational variables? As in any
simple mechanical system, here the inertial effects derive from the
metric on configuration space, which is inherited from the metric on
standard configuration space, which is induced by the Euclidean met-
ric on physical space. We can talk about the structure of the reduced
configuration space, and its relation to the structure of the physi-
cal space in which the particles move, without referring to an affine
structure on spacetime. This is one of the reasons why questions
about classical mechanics are sometimes better posed in terms of the
structure of Hamiltonian systems, rather than in terms of ‘spacetime
theories’. (2000, 573, fn. 29)

But is reference to the affine structure of spacetime so easily avoided? In par-
ticular, how should one understand “the structure of the physical space in which
the particles move”? The particles move in the persisting relative space of an
inertial frame (or even, to adopt a more literal interpretation of the formalism, in
persisting absolute space). The structure of this space is exactly (in part) affine
structure on spacetime.15 If the only way to understand the metric of the relative
configuration space is as “inherited” from the metric on the standard configura-
tion space then the T ∗Q0 Hamiltonian theory is starting to look decidedly less
relational than it at first appeared.

Fortunately, there is an alternative. When introducing the idea of a Hamil-
tonian theory defined on the relative phase space, Belot notes that there are two
ways of proceeding. One can first equip the relative configuration space with a
metric is such a way that the solutions of the resulting Hamiltonian theory coin-
cide with zero angular momentum solutions of a Newtonian theory. Alternatively

15The same point can be made in the context of the Lagrangian rather than the Hamiltonian
formulation of classical dynamics, formulated in QT , the space formed by adjoining the space
of absolute times T to the standard configuration space Q. Pairs of curves in QT can be
assigned different values of the action despite corresponding to the same sequence of relative
configurations. This is how the equilocality relation of Newtonian spacetime is stipulated to
make a dynamical difference. We therefore hold that it is quite misleading to claim that no
appeal to notions of absolute motion is made in the T ∗Q theory. (Recall that Lagrangian
mechanics associates with every curve between any two appropriate points (q1, t1) and (q2, t2)
in QT a quantity called the action S =

∫ t2
t1

L(q, q̇, t)dt. The curve which represents the genuine
dynamical history connecting the two points is one for which δS = 0.)
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one can start with the Newtonian theory, restrict ones attention to the subspace
of the phase space for which the angular momentum is zero and then factor out
the symmetries of the original theory.16

It is the first of these perspectives which the relationist should embrace. Doing
so would appear to be a prerequisite to viewing the T ∗Q0 theory as providing a
relational reduction of the inertial frames rather than as encoding the remnants
of non-relational structure. This is a first step. One also needs to give a posi-
tive relational account of the metric of the relative configuration space and the
equilocality relation it encodes.17 To see how this can be achieved one needs to
consider Barbour’s work. We present the central ideas in the remainder of this
paper. We deal first with issues concerning the temporal metric and return to
the issue of equilocality in Section 7.

6 Dynamics on the relative configuration space

There is one important respect in which the Hamiltonian theory on T ∗Q0 dis-
cussed by Belot fails to be relational. Points in the (3N−6)-dimensional cotangent
spaces T ∗

q associated with each point of q ∈ Q0 encode the rates of change of the
relative distances with respect to absolute time. Only 3N−7 numbers are required
to specify the relative rates of change of the relative distances. That is to say,
the natural ‘Leibnizian’ initial data consist solely of a point and a direction in
Q0. Possible Leibnizian histories consist of curves in Q0. Just as the Leibnizian
relationist believes that, from a kinematical point of view, there is no privileged
embedding of the curve in the larger space Q, so too he believes that, from the
point of view of fundamental kinematics, there is no preferred parametrization of
the curve.18

In constructing a genuinely relational theory, the Lagrangian framework for
mechanics is arguably more apt than the Hamiltonian. Whereas standard Newto-
nian theory can be formulated as an action principle on QT , the relationist seeks
a theory that can be formulated as a variational principle on Q0 alone. The initial
data of such a theory will meet Poincaré’s Criterion modified to take account of
the fact that the relationist should not postulate a temporal metric.

One family of theories of this type has been repeatedly rediscovered through-

16One also needs to fix on an arbitrary value of linear momentum to define the appropriate
subspace of the original phase space. For more details see Belot (2000, 572–3) and references
therein.

17Perhaps it is open to the relationist to take the Q0 metric as primitive. The point that he
should not understand it as encoding structure of the larger space, Q, remains valid.

18We use phrases such as “Leibnizian relationist” to denote someone who believes that the
only objective spatial and temporal quantities are instantaneous (Euclidean) relative distances.
This is the classical relationist familiar from the contemporary philosophical literature. (Recall
that for present purposes we simply assume that such a relationist is correct in seeking a theory
meeting Poincaré’s criterion.) What contact such a position (which, for example, treats spatial
and temporal relations very differently) has with Leibniz’s philosophical principles is a moot
question (see Saunders forthcoming).
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out the century.19 As the rediscovery indicates, the theories never became widely
known; but their treatment at the hands of Barbour and Bertotti in the 1970s
is discussed by Earman (1989, Chapter 5). The theories involve a Lagrangian
defined directly in terms of the particles’ masses and relative distances. The
particular action discussed in Barbour & Bertotti (1977) is:

SBB1 =

∫
dλ
√
−V TBB1,

where V = −
∑
i<j

mimj

rij

and TBB1 =
∑
i<j

mimj

rij

(
drij

dλ

)2

.
(6.1)

V is proportional to the standard Newtonian gravitational potential which is
already defined solely in terms of relative distances. TBB1 is a relational or
‘Machian’ kinetic energy term. λ is an arbitrary, monotonically increasing pa-
rameter labelling the points of trial curves in Q0. The action is invariant under
the reparametrization λ → λ′ = f(λ), df

dλ
> 0.

Newtonian-like behaviour can be derived from this action principle and de-
viations from standard Newtonian mechanics can be tailored to achieve some
welcome results. Schrödinger, for example, showed how the theory can yield an
anomalous advance of the perihelia of the planets exactly matching that predicted
by general relativity. Ultimately, though, the theory is empirically inadequate,
most strikingly in its prediction of mass-anisotropy effects. The inertial mass of
a body will be larger in the direction towards the centre of mass of the Galaxy
than in perpendicular directions.

Additionally a serious problem faces any theory defined directly in terms the
relative distances between point objects: how can such a theory be extended
to the field ontology of modern physics? There are obvious field analogues for
the rijs (see Pooley 2001, Section 2.1). What is missing is an a priori way of
identifying some part of a matter field at one instant with a part of the matter
field at a later instant: there are no field analogues of drij/dλ. In the next section
we describe a different approach, discovered by Barbour and Bertotti (1982), to
constructing a relational particle theory. Their purpose, in part, was to devise a
framework that could be generalized to field theories.

If TBB1 is replaced in SBB1 by the standard kinetic energy term,

T =
1

2

N∑
i=1

mi
dxi

dλ
· dxi

dλ
, (6.2)

one obtains an action principle defined on Q rather than Q0; xi is the ith particle’s
position in an inertial frame. This action principle is actually a special case of
Jacobi’s Principle which has as solutions the standard Newtonian orbits of a

19Noteworthy examples are Reissner (1914), Schrödinger (1925), Barbour (1974a), Barbour
& Bertotti (1977) and Assis (1989). For further discussion see Barbour & Pfister (1995) and
Barbour (1999). These theories, with the exception of Barbour and Bertotti’s, do not question
Newton’s absolute time and are thus effectively formulated in Q0T .
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system of gravitating particles of one particular energy, in this case zero energy.
The full range of Jacobi’s Principle actions representing a system of Newtonian
gravitating particles is given by:

SJac =

∫
dλ
√

FET , where FE = E − VG = E + G
∑
i<j

mimj

rij

(6.3)

and where E is the (constant) total energy of the system.
The conventional interpretation of a variational principle based on such an

action is that it is a tool which can be used to find the orbits in Q of the truly
fundamental variational principle δS = 0 for S :=

∫
dt(T − V ), defined on QT .

For the latter, where duration enters at the level of kinematics, the system is
not restricted to any particular energy. However, an alternative interpretation is
possible. An action principle based on (6.3) can be interpreted as fundamental
when applied to the entire universe. It will, of course, involve a particular value
of E which is now to be regarded as a constant of nature. Newton’s absolute time
is then seen as having a dynamical origin.

The equations of motion which follow from the variational principle δSJac = 0
are:

d

dλ

(√
FE

T
mi

dxi

dλ

)
=

√
T

FE

∂FE

∂xi

. (6.4)

These reduce to a simple and familiar form for a particular choice of λ. If it is
chosen so that T = FE then, writing t for this special choice of λ, (6.4) becomes:

mi
d2xi

dt2
= −∂V

∂xi

, (6.5)

i.e., Newton’s second law. One should not see the imposition of T = FE = E−VG

as an application of the energy conservation law, derivable from a variational
principle in QT . From the current perspective it defines a temporal metric.

This special choice of parameter λ = t does not merely simplify the equations.
It follows from the structure of the variational principle, here taken to describe
the universe, that effectively isolated subsystems will also obey a Jacobi principle.
However, unlike the universe as a whole, where E is regarded as a fixed funda-
mental constant, these subsystems can in principle have any constant value of E.
If one considers the temporal parameters defined by imposing T = FE for each
such subsystem, one finds that they differ by at most a constant of proportional-
ity. It is only if a time parameter is chosen in this way that the times defined by
different subsystems of the universe are consistent. In Barbour’s phrase, λ = t is
the “uniquely useful” choice of time parameter. This point is closely related to
another which is most significant when it comes to an evaluation of the viability
of the relationist interpretation: if (6.3) did represent the basic law governing
the universe, then it is clear why one might erroneously come to believe in the
existence of absolute time from the study of effectively isolated subsystems.

Jacobi’s principle is actually a geodesic principle. The kinetic term (6.2) de-
fines a flat Riemannian metric on Q.

√
FE is a conformal factor which transforms
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the flat metric into a new, non-trivial metric. The extremal curves of δSJac = 0
are the geodesics of this metric.

7 Intrinsic Particle Dynamics

We now return to the problem of constructing a theory on Q0 in a way which
can be generalized to field theories. Consider a relative configuration of N point
particles. 1

2
N(N − 1) Euclidean relative distances rij define the configuration.

(Only 3N − 6 of these are independent since they must satisfy the algebraic
relationships of Euclidean geometry.) These relative distances can be represented
in terms of a Cartesian coordinate system: if xi is the position vector of the
ith particle in this coordinate system, then one requires that |xi − xj| = rij.
The ‘positioning’ of the relative configuration with respect to the origin and
coordinate axes of the coordinate system is entirely arbitrary : we emphasize that
the xi are not particle positions in some inertial frame. All coordinate axes that
are transformable into the original ones by a member of the improper Euclidean
group encode the same relative distances.20

Now consider two such relative configurations which differ intrinsically. These
correspond to two points q1

0 and q2
0 ∈ Q0, q1

0 6= q2
0. In order to set up a geodesic

principle on Q0 one requires a measure of the intrinsic difference between q1
0

and q2
0. Let us coordinatize q1

0 and q2
0 with two Cartesian coordinate grids, as

described above, and consider the function

D =

√√√√1

2

N∑
i=1

miδxi.δxi, (7.1)

as a candidate measure of the difference between the two configurations. Here
δxi is defined as follows. If xi is the position of the ith particle with respect to the
coordinate system freely chosen to represent the relative distances of q1

0 and x′
i

is the position of the ith particle with respect to the different coordinate system
freely chosen to represent the relative distances of q2

0, then δxi := x′
i − xi.

21

D clearly does not give a measure of the intrinsic difference between the
two relative configurations, for its value depends on the arbitrary placement of
the coordinate grids used to describe the configurations. However, D can be
used to define an objective, coordinate-independent difference. There is always
complete freedom in the positioning of the first coordinate grid relative to the
first configuration. However, given such a choice of coordinates for q1

0, the second
coordinate grid can be rigidly shifted relative to the second configuration q2

0 so
that (7.1) is minimized. If coordinates for q2

0 are initially chosen so that the δxi

20The improper Euclidean group is obtained from the Euclidean group by the addition of the
discrete transformation of parity inversion: xi → −xi.

21Note that at this stage, there is simply no sense in which one could refer them to the same
coordinate system. q1

0 and q2
0 are autonomous entities which, we are assuming, do not live in

some substantival embedding space or spacetime.
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are small, this shifting can be represented as:

x′
i →

(
1−

∑6
α=1εαOα

)
x′

i = (1−
∑

αεαOα) (xi + δxi)

≈ xi + δxi −
∑

αεαOαxi

(7.2)

⇒ δxi → δxi −
∑

αεαOαxi, (7.3)

where the Oαs are the six generators of the Euclidean group. The minimization
of (7.1) by this procedure can then be written:

δD = 0, D =

√
1

2

∑N
i=1mi (δxi −

∑
αεαOαxi) · (δxi −

∑
αεαOαxi), (7.4)

where the minimization is with respect the auxiliary variables εα.
The process defines a metric on Q0. The ‘distance’ between q1

0 and q2
0 is given

by

DIntr =

√
1

2

∑
imi (δxi −

∑
αε0αOαxi) · (δxi −

∑
αε0αOαxi), (7.5)

where the εα0 are the minimizing values of the auxiliary variables. It is already
a curved, non-trivial metric,22 and if it is used in the formulation of a geodesic
principle on the relative configuration space, it accounts for the inertial (uniform,
rectilinear) motions of N force-free bodies. Note that, in contrast to the standard
treatment of Newton’s first law, the masses of the particles here play an essential
role in defining such inertial behaviour. This is because the inertial motions are
automatically constrained by the above best matching procedure to have zero
total angular momentum relative to the centre-of-mass frame, as will become
apparent.

Of course, what is desired is something less trivial than pure inertial motion.
Just as the standard kinetic metric on Q can multiplied by a conformal factor
to yield Jacobi’s geodesic principle (6.3), multiplying DIntr by a conformal factor
defines a new action principle on Q0. Specifically, consider:

δSBB2 = 0, SBB2 =

∫
dλ
√

FETBB2,

TBB2 =
1

2

n∑
i=1

mi

(
dxi

dλ
−
∑

αaα(λ) Oαxi

)
·
(

dxi

dλ
−
∑

αaα(λ) Oαxi

)
,

(7.6)

with FE as given in (6.3).23 This variational principle is formally a principle on
a 3N -dimensional space Q. However, the points of this Q do not represent the

22See Gergely & McKain (2000) for a discussion of some of the geometric properties of the
metric DIntr for three bodies.

23The reader will have noticed that our notation for the auxiliary variables has changed: in
(7.4) they were εα, in (7.6) they are aα(λ). The λ-dependent correction term in (7.6) must be
such that, when integrated along a curve joining two points of Q, q1(λ) and q2(λ), it yields an
element of the Euclidean group. For two nearby points q1(λ)|λ=λ0 and q2(λ)|λ=λ0+δλ, one has∑

α ε0αOαxi ≈
∑

α a0α(λ)Oαxiδλ.
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inertial frame positions of the particles. Rather, as explained above, they are
simply a convenient way of representing the relative distances. Note also that it
is a significant feature of this construction that the masses that occur in FE are
the same as those that occur in TBB2: as in the standard treatment of Newtonian
gravity, the proportionality of gravitation charge and inertial mass is postulated
rather than explained.

For each trial curve xi(λ) in Q, SBB2 is first minimized with respect to the aα.
This gives six functions a0α(λ) for each curve. The value of SBB2 associated with
every curve is then only based on the intrinsic differences between the constituent
configurations; all curves in Q which correspond to the same sequence of relative
configurations are assigned the same value of SBB2. The standard variational
procedure then picks out the unique sequence of such relative configurations be-
tween two given relative configurations which is to constitute the genuine physical
history.

What do the solutions of this theory look like? In Barbour’s words,

the really remarkable and ironic fact is that the relative motions pre-
dicted by the BB2. . .model are identical to the relative motions in
Newtonian mechanics for a system having vanishing centre-of-mass
angular momentum. . . and one fixed total energy E. (Barbour 1995,
224)

To see why, recall the definition of DIntr (equation 7.5). This involved the
arbitrary coordinatization of two relative configurations which differ intrinsically
and then the adjustment of the coordinate system of the second of the configura-
tions to minimize a certain quantity (D of equation 7.1). This “best matching”
adjustment defines an equilocality relation between the relative spaces of the two
configurations: points are to be regarded as equilocal when they are given the
same coordinates in pairs of coordinate systems which minimize D.

(7.5) is written in terms of two arbitrary coordinate systems, hence the ap-
pearance of the

∑
α ε0αOαxi correction terms in order to achieve minimization.

If the second configuration is recoordinatized in terms of the coordinate system
found by the minimization procedure, these terms vanish. If such coordinate sys-
tems are chosen for an entire sequence of relative configurations, the expression
for the action assigned by (7.6) becomes formally identical to that of Jacobi’s
Principle.

Call the curve in Q which coordinatizes a particular sequence of relative con-
figurations in this way the “stacked curve”. Now suppose that a particular stacked
curve in Q minimizes the standard Jacobi’s Principle action (6.3). A little re-
flection shows that it also minimizes (7.6); for when the second variation of (7.6)
takes place we can afford to consider only each stacked curve representative of a
possible sequence of relative configurations. The action that (7.6) assigns to these
is identical to the action Jacobi’s Principle assigns to them. However, when the
action of Jacobi’s Principle is mimimized all relevant curves in Q are considered,
including those considered in the (7.6) variation. So a stacked solution of (6.3)
minimizes (7.6).
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But not all curves which minimize (6.3) minimize (7.6), for not all curves
which minimize (6.3) are stacked curves. In fact, the variation with respect to
the aα(λ) implies that, with respect to the stacked coordinate system, the linear
and angular momentum of the system vanishes (see Barbour & Bertotti (1982,
298–9) and Barbour (1994, 2862–3)). The solutions to (7.6) thus match those
of the Hamiltonian theory discussed by Belot for the fixed energy E. But just
as with Jacobi’s principle, the variational principle based on (7.6) also gives us a
dynamical understanding of Newton’s absolute time: it is reduced to an emergent
feature of the dynamical evolution of purely relational entities. The theory also
give us a relational reduction of the inertial frames.

It is worth stressing this last point. At the end of Section 5, we noted the need
for a way to understand the metric on Q0 as genuinely relational. Best matching
provides exactly this. Recall the trial measure D of the difference between two rel-
ative configurations (equation 7.1). We noted that it depended systematically on
the arbitrary way the two configurations had been coordinatized. By minimizing
(7.1) to obtain a coordinate independent measure of the difference between two
relative configurations, the relationist is defining a measure that depends solely
on the intrinsic nature of the objects being compared. This is stark contrast to
the Newtonian solution. Here a primitive preferred coordinatization of the two
configurations is simply postulated : to obtain the Newtonian measure of the dif-
ference between the configurations, one chooses coordinate systems adapted to
the same inertial frame. This highlights both the way in which a theory based
on the standard metric on Q does involve primitive notions of absolute motion
and spacetime structure and the way in which a theory based on best matching
does without them.

Finally, it might be worth noting that the form of the action principle given
in (7.6) is by no means the only one that meets Poincaré’s criterion and that is
thus potentially compatible with a relationist treatment of classical gravitation.
Adding a term to the square-root integrand in the expression for SBB2, provided
that this new term is a total derivative with respect to λ of some function of the
xi and λ, will make no change to the ensuing equations of motion. This modified
action principle will not necessarily correspond to a geodesic principle on Q0, and
nor, in general, will the modified action be reparameterization invariant.

8 Conclusion

The foregoing makes it clear, we hope, that Barbour and Bertotti’s intrinsic parti-
cle dynamics is a genuinely relational theory with certain advantages over the full,
substantival Newtonian theory. It is completely consistent with the empirically
identifiable inertial equilocality relation and temporal metric; indeed it reduces
these aspects of the world to emergent features of the dynamical evolution of
the relative configurations of the entire universe alone. In this way it succeeds
in implementing Mach’s idea that the local inertial properties of a test body are
dependent on the remainder of the masses in the universe. Additionally, the fact
that it yields only the zero angular momentum subset of full Newtonian theory
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means that, potentially, it has more predictive and explanatory power than stan-
dard classical dynamics. So far the prediction that the universe is not rotating is
consistent with the evidence.
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