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Abstract

A recent flurry of work has addressed the question whether Maxwell

gravitation and Newton-Cartan theory are theoretically equivalent.

This paper defends the view that there are plausible interpretations

of Newton-Cartan theory on which the answer to the above ques-

tion is “yes”. Along the way, I seek to clarify what is at issue in

this debate. In particular, I argue that whether Maxwell gravitation

and Newton-Cartan theory are equivalent has nothing to do with

counterfactuals about unactualised matter, contra the appearance

of previous discussions in the literature. Nor does it have anything

to do with spacetime and dynamical symmetries, pace recent claims

by Jacobs (2023). Instead, it depends on some rather subtle ques-

tions concerning how facts about the geodesics of a connection ac-

quire physical significance, and the distinction between dynamical

and kinematic possibility.
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1 Introduction

It is well known that Newtonian gravitation admits, in addition to its usual static

and kinematic shift symmetries, a symmetry known as Trautman gauge symme-

try, in which the connection and gravitational potential are altered. Moreover,

it is often claimed that just as kinematic shift symmetry motivates the transi-

tion from Newtonian to Galilean spacetime, so does Trautman gauge symmetry

motivate the transition to a geometrised formulation of Newtonian gravitation,

known as Newton-Cartan theory.1

Recently however, Saunders (2013) and Dewar (2018) have challenged this

orthodoxy – arguing that Maxwellian spacetime is the appropriate setting which

encapsulates the lessons of Trautman gauge symmetry. But whilst the re-

lationship between Newton-Cartan theory and Galilean gravitation has been

widely discussed, aspects of the relationship between Newton-Cartan theory and

Maxwell gravitation remain unclear. In particular, there is little consensus on

the extent to which Maxwell gravitation has less structure than Newton-Cartan

theory, or whether the two should be viewed as competitors at all.2 Moreover,

such questions have important implications for wider debates about theoretical

equivalence, theoretical underdetermination, and how symmetries bear on the

interpretation of theories.

Here, I aim to address some of these issues. First, I review some details

of Maxwell gravitation and Newton-Cartan theory, as well as some preliminary

results concerning the relationship between them. I then, in section 3, turn to

the interpretation of these results. I discuss the fact that the models of these two

theories are not in one-to-one correspondence, and clarify how this relates to the

issue of test particles and counterfactuals about unactualised matter. Section

4 aims to diffuse Jacobs’s (2023) recent argument that Maxwell gravitation

and Newton-Cartan theory have different spacetime and dynamical symmetry

groups. Finally, in sections 5 and 6, I use the resources of category theory

to discuss how this relates to the question of theoretical equivalent. Section 7

concludes.

1. See for example Stachel (2007), Knox (2014), Read & Møller-Nielsen (2020).
2. A recent selection of competing views on the subject: Saunders (2013), Knox (2014),

Weatherall (2016), Dewar (2018), Wallace (2020), Jacobs (2023).
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2 Maxwell gravitation and Newton-Cartan the-

ory

Let M be a smooth four-manifold (assumed connected, Hausdorff, and para-

compact). A temporal metric ta on M is a smooth, closed, non-vanishing 1-

form;3 a spatial metric hab on M is a smooth, symmetric, rank-(2, 0) tensor

field which admits, at each point inM , a set of four non-vanishing covectors
i
σa,

i = 0, 1, 2, 3, which form a basis for the cotangent space and satisfy hab
i
σa

j
σb = 1

for i = j = 1, 2, 3 and 0 otherwise. A spatial and temporal metric are compat-

ible iff hantn = 0. We say that a vector field σa is spacelike iff tnσ
n = 0, and

timelike otherwise. Given the structure defined here, ta induces a foliation ofM

into spacelike hypersurfaces, and relative to any such hypersurface, hab induces

a unique spatial derivative operator D such that Dah
bc = 0.4 We say that hab

is flat just in case for any such spacelike hypersurface, D commutes on spacelike

vector fields, so that D[aDb]σ
c = 0 for all spacelike vector fields σ. Finally, let

∇ be a connection on M . We say that ∇ is compatible with the metrics just in

case ∇atb = 0 and ∇ah
bc = 0.

The first spacetime setting we will consider for Newtonian gravitation theory

is Galilean spacetime. This is a structure ⟨M, ta, h
ab,∇⟩, where ∇ is a flat, com-

patible connection. Let ⟨M, ta, h
ab,∇⟩ be a Galilean spacetime, T ab the New-

tonian mass-momentum tensor for whichever matter fields are present, and ϕ a

scalar field (which represents the gravitational potential). Then ⟨M, ta, h
ab,∇, T ab, ϕ⟩

is a model of Galilean gravitation just in case

∇nT
na = −ρ∇aϕ (1a)

∇n∇nϕ = 4πρ (1b)

where ρ := Tnmtntm is the scalar mass density field.

In what follows, we will be interested in the following transformation one can

3. Here and throughout, abstract indices are written in Latin script; component indices
are written in Greek script, with the exception of i, j, k, which are reserved for the spatial
components of tensor fields in some coordinate basis; and the Einstein summation convention
is used. Round brackets denote symmetrisation, square brackets antisymmetrisation.

4. See Weatherall (2018, 37-38) and Malament (2012, §4.1) for further details.
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make on models of Galilean gravitation, known as Trautman gauge symmetry :

∇ → (∇, tbtc∇aψ) (2a)

ϕ→ ϕ+ ψ (2b)

where ∇a∇bψ = 0.5 This is a symmetry of Galilean gravitation, in the sense

that M is a model of Galilean gravitation just in case all its Trautman gauge

symmetry-related cousins are. Trautman gauge symmetry-related models agree

on T ab, so at least appear to be empirically indistinguishable.6 One might

therefore wonder if there are theories of Newtonian gravitation which collapse

the distinction between Trautman gauge symmetry-related models of Galilean

gravitation. As is well known, the answer to this question is “yes”, and there

are in fact two such theories – Maxwell gravitation, and Newton-Cartan theory.

I will begin by introducing Newton-Cartan theory. Let ⟨M, ta, h
ab⟩ be a

non-relativistic spacetime, ∇ a compatible derivative operator on M , and T ab

the mass-momentum tensor for whichever matter fields are present. Then

⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory just in case

∇nT
na = 0 (NCT1)

Rab = 4πρtatb (NCT2)

Ra c
b d = Rc a

d b (NCT3)

Rab
cd = 0. (NCT4)

Maxwell gravitation requires some further groundwork. This theory is set

on Maxwellian spacetime, which is supposed to be equipped with a standard of

rotation, but not a standard of absolute acceleration. But whilst the metrics

and connection are by now standard notions, the rotation standard is not, and

5. For details, see Malament (2012, §4). The notation here follows Malament (2012, propo-
sition 1.7.3): ∇′ = (∇, Ca

bc ) iff for all smooth tensor fields αa1...ar
b1...bs

on M ,

(∇′
n −∇n)α

a1...ar
b1...bs

= αa1...ar
mb2...bs

Cm
nb1

+ ...+ αa1...ar
b1...bs−1m

Cm
nbs

− αma2...ar
b1...bs

Ca1
nm − ...− α

a1...ar−1m

b1...bs
Car

nm .

6. As such, Trautman gauge symmetry is at least an epistemic symmetry in Dasgupta’s
(2016) sense.
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stands in need of further comment. This was originally introduced byWeatherall

(2018): if ta, h
ab are compatible temporal and spatial metrics onM , a standard

of rotation ⟳ compatible with ta and hab is a map from smooth vector fields ξa

on M to smooth, antisymmetric rank-(2, 0) tensor fields ⟳b ξa on M , such that

1. ⟳ commutes with addition of smooth vector fields;

2. Given any smooth vector field ξa and smooth scalar field α, ⟳a (αξb) =

α ⟳a ξb + ξ[bda]α;

3. ⟳ commutes with index substitution;

4. Given any smooth vector field ξa, if da(ξ
ntn) = 0 then ⟳a ξb is spacelike

in both indices; and

5. Given any smooth spacelike vector field σa, ⟳aσb = D[aσb].

One can then define a Maxwellian spacetime as a structure ⟨M, ta, h
ab,⟳⟩, where

⟳ is compatible with ta and hab.

Now fix a spacetime ⟨M, ta, h
ab⟩, and let ∇ and ⟳ be a connection and

standard of rotation on M , both compatible with the metrics. Following March

(2023), I will say that a standard of rotation and connection are compatible just

in case they agree with one another in the following sense: for any vector field ηa

onM , ∇[aηb] = ⟳a ηb.7 Likewise, a connection∇ is compatible with a spacetime

⟨M, ta, h
ab,⟳⟩ just in case it is compatible with the metrics and ⟳. Finally, a

spacetime ⟨M, ta, h
ab,⟳⟩ is flat derivative operator compatible just in case some

flat derivative operator is compatible with ⟨M, ta, h
ab,⟳⟩. As Weatherall (2018,

proposition 1) proves, a spacetime is flat derivative operator compatible just in

case hab is flat and there exists a unit timelike vector field ξa on M such that

⟳a ξb = 0 and £ξh
ab = 0.8

Finally, we need to say something about the Newtonian mass-momentum

tensor T ab. We have already seen that we can extract the scalar mass density

field ρ from T ab using the temporal metric. But in both Galilean gravitation

and Newton-Cartan theory, we also used derivative operators to extract vector

7. See Weatherall (2018) for details; the basic fact is that any connection determines a
unique compatible standard of rotation, but a standard of rotation does not similarly deter-
mine a unique compatible connection.

8. Here and throughout, £ denotes the Lie derivative.
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fields from T ab. In Maxwell gravitation, we will likewise want to extract vector

fields from T ab, but without the use of derivative operators. To do this, we first

impose the “Newtonian mass condition”: whenever T ab ̸= 0, Tnmtntm > 0.

This captures the idea that the matter fields we are interested in are massive,

in the sense that there can only be non-zero mass-momentum in spacetime

regions where the mass density is strictly positive. Since T ab is symmetric, the

Newtonian mass condition guarantees that whenever T ab ̸= 0, we can uniquely

decompose T ab as

T ab = ρξaξb + σab (4)

where ξa = ρ−1tnT
na is a smooth unit timelike future-directed vector field

(interpretable as the net four-velocity of the matter fields F ), and σab is a

smooth symmetric rank-(2, 0) tensor field which is spacelike in both indices

(interpretable as the stress tensor for F ).

We can now introduce Maxwell gravitation. Let ⟨M, ta, h
ab,⟳⟩ be a Maxwellian

spacetime, and T ab the Newtonian mass-momentum tensor for whichever mat-

ter fields are present. Then ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell gravitation

just in case

(i) ⟨M, ta, h
ab,⟳⟩ is flat derivative operator compatible; and

(ii) For all points p ∈M such that ρ ̸= 0, the following equations hold at p:

£ξρ−
1

2
ρĥmn£ξh

mn = 0 (MG1)

1

3

3∑
i=1

i

λrξ
n∆n(ξ

m∆m

i

λr) = −4

3
πρ− 1

3
Dm(ρ−1Dnσ

nm) (MG2)

£ξ(⟳
c ξa) + 2(⟳n ξ[c)ĥnm£ξh

a]m+ ⟳c (ρ−1Dnσ
na) = 0, (MG3)

where ĥab is the spatial metric relative to ξa,9 the
i

λa are three orthonormal

connecting fields for ξa, and ∆ is the “restricted derivative operator” defined in

Weatherall (2018). This acts on arbitrary spacelike vector fields σa at a point

9. That is, the unique symmetric tensor field on M such that ĥanξn = 0 and hanĥnb =
δab − tbξ

a.
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p according to

ηn∆nσ
a := £ησ

a + σn ⟳n ηa − 1

2
σn£ηh

an (5)

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect

to any extension of ηa off of p). It also has the property that ηn∆nσ
a = ηn∇nσ

a

for any derivative operator ∇ compatible with ⟳ (Weatherall 2018, 37).10

The relation between Maxwell gravitation and Newton-Cartan theory is

characterised by the following two results (March 2023):

Proposition 1. Let ⟨M, ta, h
ab,∇, T ab⟩ be a model of Newton-Cartan theory.

Then there exists a unique standard of rotation ⟳ such that ∇ is compatible with

⟳ and ⟨M, ta, h
ab,⟳, T ab⟩ is a model of Maxwell gravitation.

Proposition 2. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation.

Then there exists a unique equivalence class of derivative operators [∇] such

that:

• All the ∇ ∈ [∇] are compatible with ⟳;

• For any two ∇, ∇′ ∈ [∇], ∇′ = (∇, tbtcσa), where σa is a spacelike and

twist-free vector field which satisfies ∇nσ
n = 0 and ρσa = 0;

• For any ∇ ∈ [∇], ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory.

Corollary 2.1. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation such

that at all points p ∈ M , ρ ̸= 0. Then there exists a unique derivative operator

∇ such that ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory.

3 On geodesics, counterfactuals, and surplus struc-

ture

As such, the relationship between Maxwell gravitation and Newton-Cartan the-

ory is not altogether straightforward. Whenever ρ is nowhere vanishing, each

10. For further details on this way of presenting Maxwell gravitation, including the inter-
pretation of the equations (MG) and its relation to Dewar’s (2018) theory by the same name,
see March (2023).
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model of Maxwell gravitation is uniquely associated with a model of Newton-

Cartan theory, and vice versa. But typically, a model of Maxwell gravitation

does not carry enough information to fix a unique Newton-Cartan connection

in regions where ρ = 0. And given the geodesic principle, these models of

Newton-Cartan theory prima facie disagree as to the allowed trajectories for

test particles in regions where ρ = 0. As a result, one might think that Newton-

Cartan theory draws its distinctions finer than Maxwell gravitation; such is

precisely Saunders’s concern when he writes

Take possible worlds each with only a single, structureless parti-

cle. Depending on the connection, there will be infinitely-many dis-

tinct trajectories, infinitely-many distinct worlds of this kind. But in

[Maxwellian terms], as in Barbour-Bertotti theory, there is only one

such world – a trivial one, in which there are no meaningful predica-

tions of the motion of the particle at all. Only for worlds with two or

more particles can distinctions among motions be drawn. From the

point of view of the latter theories, the fault lies with introducing a

non-trivial connection – curvature – without any source, unrelated

to the matter distribution. At a deeper level, it is with introducing

machinery – a standard of parallelism for time-like vectors, defined

even for a single particle – that from the point of view of a rela-

tionalist conception of particle motions is unintelligible. (Saunders

2013, 46-47)

This has lead a number of authors to suggest that the difference between

Maxwell gravitation and Newton-Cartan theory has to do with counterfactuals

about the behaviour of unactualised matter. For example, Dewar (2018, 266)

claims that “the distinction at issue [in whether Newton-Cartan theory draws its

distinctions finer than Maxwell gravitation] is whether unactualised dispositions

may properly be considered as empirically respectable properties.” Similarly,

Wallace (2020, 29) attempts to diffuse Saunders’s concern by noting that the

models of Newton-Cartan theory which correspond to a single model of Maxwell

gravitation disagree only as to the unactualised trajectories of test particles

in regions where ρ = 0, so that “insofar as these counterfactuals [about the
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behaviour of unactualised test matter] are indeterminate (perhaps because a

Humean view of laws [...] is assumed) so is the Newton-Cartan connection.”

However, this cannot be the whole story. After all, if we wish to evaluate

counterfactuals about what would happen were matter introduced to empty

spacetime regions, there is another obvious strategy – which is to note that,

in realistic cases, introducing matter into empty regions will perturb the mass-

momentum tensor slightly, so that ρ is no longer vanishing. If we wish to account

for this perturbation to the mass-momentum tensor, then this requires that we

move to a different model of Newton-Cartan theory from whichever one we are

taking to represent the actual world – which will give determinate predictions

for the behaviour of this unactualised matter. Indeed, this is precisely the strat-

egy one must take when evaluating counterfactuals about unactualised matter

within Maxwell gravitation, since the theory does not equip empty spacetime

regions with test particle trajectories.

Note that whilst this strategy for evaluating counterfactuals about unactu-

alised matter is at odds with physics practice, it is strikingly similar to possible

worlds analyses of counterfactuals familiar from metaphysics. As an example,

consider Lewis’s (1973, 1973, 1979) account. According to Lewis, the counter-

factual ‘If it were the case that A, then it would be the case that C.’ is true just

in case some world where both A and C are true is more similar to the actual

world than any world where A is true but C is false. Similarity amongst worlds,

for Lewis, is to be evaluated using the following criteria, in order of most to

least importance (Lewis 1979):

• Avoid widespread, diverse violations of actual law.

• Maximise the region of perfect match of particular fact.

• Minimise small, simple violations of actual law.

In practice, then, Lewis’s prescription for evaluating counterfactuals about

the behaviour of unactualised matter is as follows: take a world which is a perfect

duplicate of the actual world before some time t,11 insert a small violation of

11. Lewis (1979) claims that his similarity ordering ensures that worlds which are perfect
duplicates before time t but diverge thereafter will be more similar than worlds which differ
before t but are perfect duplicates after t. Whilst this is controversial (see Elga 2001), I am
assuming that this does in fact work as intended.
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actual law at t to introduce unactualised matter into the region of interest, and

then evolve the laws forward. But now compare this to how one must evaluate

counterfactuals about unactualised matter in Maxwell gravitation. We take the

model that we are using to represent the actual world. We discontinuously

modify T ab at some time t to insert unactualised matter into the region of

interest – thereby violating at least (MG1). And then we evolve the laws forward

to examine how it behaves. If one thinks that Lewis’s account is adequate, then

it is this method – and not the use of test particles – which is the correct way

to evaluate counterfactuals about unactualised matter.

All this suggests that what is at issue, in discussions of whether Newton-

Cartan theory draws its distinctions finer than Maxwell gravitation, is nothing

to do with counterfactuals about the behaviour of unactualised matter per se.

Given a suitably realistic treatment, both Newton-Cartan theory and Maxwell

gravitation are able to make perfectly good sense of such counterfactuals, and

to do so without invoking test particles. As such, the relevant question is not

whether counterfactuals about unactualised matter are indeterminate in either

of the two theories, pace Wallace. Nor is it whether unactualised dispositions

constitute empirical content, pace Dewar.

Rather, the salient difference is that in Newton-Cartan theory, it is not

only facts about the mass-momentum tensor and standard of rotation which

are represented explicitly in the theory’s formalism, but also facts about the

Newton-Cartan connection. Moreover, these facts about the Newton-Cartan

connection are equipped, via the geodesic principle, with a physical interpreta-

tion in terms of test particle trajectories. At issue is precisely the legitimacy of

including these facts as a fundamental part of our physical theories. Providing

that ρ is nowhere vanishing, this is harmless – but as we have seen, there is

no unique way to draw in these trajectories in regions where ρ = 0. And then

the introduction of a Newton-Cartan connection to regions where ρ = 0 begins

to look like surplus structure, and disagreements about the geodesics of this

connection like distinctions without differences.

As I see it, this way of stating the concern seems much closer to Saunders’s

comments than the readings offered by Dewar (2018) and Wallace (2020) in
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terms of counterfactuals about unactualised matter. After all, as the foregoing

analysis shows, proponents of Maxwell gravitation as much as anyone are able to

make sense of counterfactuals about unactualised matter. They may not think

that this constitutes empirical content, but then again they may – nothing in

the theory mandates either view. However, what does not make sense, from

the perspective of Maxwell gravitation, is talk of test particle trajectories which

cannot be defined from those of material bodies.12 And this is precisely where

Saunders locates the source of the problem – “with introducing a non-trivial

connection curvature without any source, unrelated to the matter distribution.”

Nevertheless, one might wonder: what is the closest we can get to test par-

ticle trajectories in empty spacetime regions within Maxwell gravitation? For

this, it is instructive to recall how it is that test particle trajectories are derived

in Newton-Cartan theory. The central result here is Weatherall’s (2011) New-

tonian geodesic theorem (where I have modified his statement of the theorem

slightly to match the terminology used here):

Proposition 3 (Weatherall, 2011). Let ⟨M, ta, h
ab⟩ be a non-relativistic space-

time, ∇ a compatible derivative operator on M and suppose that M is oriented

and simply connected. Suppose also that Rab
cd = 0. Let γ : I →M be a smooth

curve. Suppose that given any open subset O of M containing γ[I], there exists

a smooth symmetric field T ab on M such that:

• T ab satisfies the Newtonian mass condition;

• ∇nT
na = 0;

• supp(T ab) ⊂ O; and

• There is at least one point in O at which T ab ̸= 0.

Then γ is a timelike curve that can be reparametrised as a geodesic.

Corollary 3.1 (Weatherall, 2011). Let ⟨M, ta, h
ab⟩ be a non-relativistic space-

time, ∇ a compatible derivative operator on M and suppose that M is oriented.

12. Note that this is not in conflict withWallace’s (2020, §4) argument that vector relationism
– of which Maxwell gravitation is the continuum limit (see March 2023) – contains emergent
inertial structure. The inertial structure which Wallace considers is defined by considering the
behaviour of a dynamically isolated system of particles embedded in a larger universe; clearly
this construction fails in regions where there is in fact no matter present.
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Suppose also that M is spatially flat and Rab
cd = 0. For any p ∈ M , there

exists a neighbourhood of p, Q, such that if γ : I → Q is a smooth curve, and

for any open subset O of Q containing γ[I] there exists a smooth symmetric field

T ab on M satisfying the above conditions, then γ is a timelike curve that can be

reparametrized as a geodesic (segment).

The interpretation of proposition 3 is as follows. Fix a Newton-Cartan space-

time which satisfies (NCT4). Then the only curves in that spacetime which are

apposite to represent the worldlines of test particles, in the sense that they

may be traversed by an arbitrarily small, non-interacting mass distribution, are

timelike geodesics. Corollary 3.1 states that, without imposing global topologi-

cal constraints on M , the same result holds locally.

We can then use a similar construction to Weatherall’s geodesic theorem

to say something about how we might recover an analogue of test particles

within Maxwell gravitation. However, the result is limited in a significant way.

In Weatherall’s geodesic theorem, we consider the behaviour of test matter

in a fixed Newton-Cartan spacetime ⟨M, ta, h
ab,∇⟩. If we are imagining that

this spacetime is a model of Newton-Cartan theory for some T ab, then this

amounts to choosing a fixed background matter distribution. But we cannot

straightforwardly do the same in Maxwell gravitation. This is for two reasons.

First, we cannot use the spacetime structure of Maxwell gravitation to encode

facts about the background matter distribution as we can in Newton-Cartan

theory. Secondly, even if we fix a background matter distribution, we cannot

express the condition that the test matter T ab satisfies ∇nT
na = 0 with respect

to (one of) the Newton-Cartan connections induced by this background matter

distribution using only the structure of Maxwellian spacetime. We can, however,

do so indirectly – by modelling both the test and background matter separately

and demanding that the resulting structure be a model of Maxwell gravitation

(and invoking proposition 2). Thus we have the following result:

Proposition 4. Let ⟨M, ta, h
ab,⟳, T ab⟩ be a model of Maxwell gravitation, and

suppose that M is oriented and simply connected. Let γ : I → M be a smooth

curve, and let T ab = T̃ ab + τab with supp(T̃ ab) ∩ supp(τab) = ∅. Moreover,

suppose that given any open subset O of M containing γ[I], we have:
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• supp(τab) ⊂ O; and

• There is at least one point in O at which τab ̸= 0.

Then there exists a unique equivalence class of derivative operators [∇] such that

• All the ∇ ∈ [∇] are compatible with ⟳;

• For any two ∇, ∇′ ∈ [∇], ∇′ = (∇, tatbσc), where σa is a spacelike and

twist-free vector field such that ∇nσ
n = 0 and ρσa = 0;

• For any ∇ ∈ [∇], ⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory;

• γ[I] is a timelike curve which can be reparametrised as a geodesic with

respect to any ∇ ∈ [∇]; and

• σa = 0 on γ[I].

Proof. That there exists a unique equivalence class of derivative operators sat-

isfying the first three conditions follows immediately from proposition 2. So

let ∇ be an arbitrary member of [∇], and consider the tuple ⟨M, ta, h
ab⟩.

Clearly, this is a non-relativistic spacetime, with M oriented and simply con-

nected; moreover, ∇ is a compatible derivative operator on M which, since

⟨M, ta, h
ab,∇, T ab⟩ is a model of Newton-Cartan theory, satisfies Rab

cd = 0.

And since supp(T̃ ab) ∩ supp(τab) = ∅, τab is a symmetric tensor field which

satisfies the Newtonian mass condition and ∇nτ
na = 0. It follows that, since all

the conditions of Weatherall’s geodesic theorem are met, γ is a timelike curve

that can be reparametrised as a geodesic with respect to ∇. Moreover, since ∇

is arbitrary, we must have that for any two ∇, ∇′ ∈ [∇], if ξa is the tangent

vector field to γ, then

ξn∇′
nξ

a = ξn∇nξ
a − ξnξmtntmσ

a

= −σa

= 0,

so that σa = 0 along γ[I].
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On the face of it, proposition 4 appears very similar to Weatherall’s geodesic

theorem. However, there is a significant disanalogy. In proposition 3, the deriva-

tive operator ∇ with respect to which γ is a geodesic is relatively unconstrained.

In particular, it can be a Newton-Cartan connection for any given matter dis-

tribution. But this is not the case in proposition 4. Here, ∇ can only be

a Newton-Cartan connection for some matter distribution if that distribution

also includes the test matter represented by τab. Whereas Weatherall’s geodesic

theorem applies to test matter which has not already been explicitly represented

in the formalism, proposition 4 does not.

As such, it is important to be clear as to what proposition 4 allows us to say.

As τab becomes arbitrarily close to zero, the connection will become arbitrarily

close to a Newton-Cartan connection for the background matter distribution,

which does not include test particles. And in each case, the curve γ traversed

by τab will be a geodesic of that connection. So γ will become arbitrarily close

to a geodesic of some Newton-Cartan connection for the background matter

distribution.

But proposition 4 does not tell us which Newton-Cartan connection this will

be. To see this, note that although all the connections in proposition 4 agree

on γ (and anywhere else where ρ ̸= 0), they need not agree off of γ. So the

connection that ∇ most closely approximates, as τab becomes arbitrarily small,

will depend on how one initially chooses ∇ in regions where ρ = 0. And here,

we have exactly the same freedom as in proposition 2. As a result, proposition 4

does not provide a means of recovering a unique congruence of geodesic curves,

for some given matter distribution.

Now consider what we should say about models of Newton-Cartan theory

which differ only as to the connection in regions where ρ = 0. On the face of

it, these represent physically distinct possibilities. After all, given the geodesic

principle, these models literally interpreted make different predictions for the

behaviour of test particles in regions where ρ = 0.

But in virtue of what do facts about the behaviour of test particles in empty

spacetime regions count as physical facts? A natural answer would be: in

virtue of the fact that test particles represent the limiting case of the kind of
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construction used in proposition 4, as the influence of test matter on non-test

matter becomes negligible. That is, we model the behaviour of some particle

plus background matter distribution, and then consider what happens as the

particle mass becomes much smaller than that of the rest of the matter. But we

have just seen that this procedure fails to fix a unique Newton-Cartan connection

in regions where ρ = 0. Moreover, pairs of models which disagree only as to the

connection in these regions are not guaranteed to be isomorphic (since σa need

not be rigid). This suggests that the physical significance of the Newton-Cartan

connection in regions where ρ = 0 is more subtle than it first appears.

We can also say something more in support of this worry. As March (2023,

24) argues, the equations (NCT) are equivalent to the conjunction of the equa-

tions (MG), the flat derivative operator compatibility condition, and (the ge-

ometrised version of) Newton’s second law

ρξn∇nξ
a = −∇nσ

na, (NII)

with ⟳ now interpreted as the unique standard of rotation compatible with

∇. From this perspective, the only difference between Maxwell gravitation

and Newton-Cartan theory is the presence of (NII), whose role is essentially to

provide a partial gauge-fixing of the connection. In regions where ρ ̸= 0, this

furnishes the connection with a physical interpretation – namely, as the unique

connection relative to which fluid elements obey (the geometrised version of)

Newton’s second law. But in regions where ρ = 0, (NII) fails to provide any

additional constraint on the connection at all.13 So we cannot give an analogous

physical interpretation to the connection in regions where ρ = 0. And we have

just seen that models which differ as to the connection in regions where ρ = 0

can both lay equal claim to represent the limiting case of the construction used

in proposition 4.

How else might the Newton-Cartan connection in regions where ρ = 0 ac-

quire physical significance? An obvious response would be to say that the

Newton-Cartan connection in regions where ρ = 0 represents counterfactuals

about unactualised matter. But as discussed earlier, this would be a mistake:

13. Given the Newtonian mass condition, that is.
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counterfactuals about unactualised matter can be represented perfectly well else-

where in the theory, without invoking test particles. Moreover, if we do insist

on evaluating counterfactuals about unactualised matter using test particles,

then we seem to face a troubling indeterminism as to which Newton-Cartan

connection is the physically salient one.

This suggests a view on which the Newton-Cartan connection only has phys-

ical significance in regions where ρ ̸= 0. In these regions, it can be given an

interpretation through the equation (NII). As a result, models which differ

only as to the Newton-Cartan connection in regions where ρ = 0 represent the

same physical state of affairs. Under this interpretation, Newton-Cartan theory

might exhibit representational redundancy, but would draw its distinctions no

finer than Maxwell gravitation.

Of course, there are other interpretations available. We could say that the

geodesics of the Newton-Cartan connection in empty spacetime regions represent

physical structure, but that models which differ only as to the connection in

regions where ρ = 0 represent the same physical state of affairs. Or, we could say

that these models represent distinct physical states of affairs, and look for some

other interpretative principle to justify this. However, both these approaches

face the problem of articulating just what physical structure the Newton-Cartan

connection in empty spacetime regions is supposed to represent. Clearly, it is

nothing to do with the matter distribution in question. Nor is it anything to do

with counterfactuals, as emphasised above.

There are two plausible options here. We have seen that the ρ → 0 limit of

the kind of construction used in proposition 4 to model test particles fails to fix

a unique connection in regions where ρ = 0. But we could still say that this limit

is represented equally, but redundantly, by each of these models. The immediate

difficulty here would be to explain what the physical significance of this limit

is, if it is not unique. This is particularly severe once we have recognised that

test particles need not be used to evaluate counterfactuals about unactualised

matter.

The other option would be to appeal to the fact that one way of fixing a

unique Newton-Cartan connection in regions where ρ = 0 is via a choice of
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boundary conditions. If we expect these to come endowed with a physical inter-

pretation (perhaps because we are modelling a subsystem of a larger universe),

then at least in practice, this would explain why it is sometimes appropriate

to interpret models which differ only as to the Newton-Cartan connection in

regions where ρ = 0 as physically distinct. However, it is not then clear what

we are supposed to say about the fact that models of Newton-Cartan theory can

also be used to represent complete physical histories. Given these problems, I

take it that the first view – on which the geodesics of the Newton-Cartan con-

nection in regions where ρ = 0 do not represent anything physical – is the most

attractive.

As such, the position defended here parts company from those of Wallace,

Dewar, and Saunders in an important respect. For these authors, it is as-

sumed from the outset that facts about the geodesics of the Newton-Cartan

connection automatically have physical significance. Hence, Saunders claims

that Newton-Cartan theory draws distinction without differences, Dewar sug-

gests that at issue is whether or not such differences are empirical (rather than

physical) differences, and Wallace claims that we may avoid Saunders’s conclu-

sion by declaring the Newton-Cartan connection indeterminate in regions where

ρ = 0. By contrast, I have argued that the problem arises at an earlier stage.

Proper attention needs to be paid to how it is that the geodesics of the Newton-

Cartan connection come to have physical significance, and how differences in the

geodesics of the Newton-Cartan connection come to represent physical differ-

ences, in deciding whether or not Newton-Cartan theory draws its distinctions

finer than Maxwell gravitation. One could simply declare at the outset that

facts about the geodesics of the Newton-Cartan connection are physical facts.

But once we pay proper attention to the details of Newton-Cartan theory, it is

less clear that this interpretation is tenable.14

14. Though it is worth noting that there are other considerations one might bring to bear
on this. For example, considered as the non-relativistic limit of GR, one might think that the
Newton-Cartan connection inherits physical significance from the fact that the connection in
GR arguably does represent physical structure (perhaps because it can sustain gravitational
wave solutions in vacuum regions). For further discussion of the use of intertheoretic relations
to constrain interpretative judgements, see Linnemann & Read (2021).
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4 On spacetime and dynamical symmetries

The foregoing discussion suggests that there are plausible interpretations of

Newton-Cartan theory on which models which disagree only as to the connec-

tion in regions where ρ = 0 represent the same physical state of affairs. This

would avoid the worry that Maxwell gravitation and Newton-Cartan theory are

inequivalent because Newton-Cartan theory draws its distinctions finer than

Maxwell gravitation.

However, Jacobs (2023) has recently presented another argument that Newton-

Cartan theory and Maxwell gravitation are inequivalent, on the basis that the

two theories have different spacetime and dynamical symmetry groups. Ja-

cobs begins his analysis by defining an “active” version of the dynamic shift –

analogous to the standard kinematic and static shifts – which produces a lin-

ear time-dependent acceleration of the matter content of the original solution.

Since these active dynamic shifts are a dynamical symmetry but not a spacetime

symmetry of Galilean gravitation, the theory violates Earman’s (1989, 46) “ad-

equacy conditions” on the construction of spacetime theories. These demand

that there be a match between the spacetime and dynamical symmetries of a

theory, in the following sense:

SP1: Any dynamical symmetry of T is a spacetime symmetry of T .

SP2: Any spacetime symmetry of T is a dynamical symmetry of T .

Jacobs then goes on to argue that, although both Newton-Cartan theory and

Maxwell gravitation restore SP1, they do so in different ways. In moving to

Maxwell gravitation, we enlarge the spacetime symmetries from the Galilei to

the Maxwell group. Meanwhile, in moving to Newton-Cartan theory, we em-

ploy the opposite strategy – restricting the dynamical symmetries to the Galilei

group. For Jacobs, this means that Maxwell gravitation and Newton-Cartan

theory are inequivalent: the two theories disagree as to what the dynamical

symmetries are, and even if it is sometimes possible to define a unique Newton-

Cartan connection from a model of Maxwell gravitation, this is not true of all

models of the theory, even less so the kinematically possible models (KPMs).
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Never mind the question whether theories with different spacetime and dy-

namical symmetry groups can be equivalent (I for one would not question this).

Instead, I wish to focus on Jacobs’s technical claim here, viz. the symmetry

groups of Maxwell gravitation and Newton-Cartan theory. I claim that this rests

on a mistake. The spacetime symmetries of a theory are standardly defined as

the automorphism group of its absolute objects, where the absolute objects “are

supposed to be the same in each dynamically possible model” (Earman 1989,

45). In arguing that the spacetime symmetries of Newton-Cartan theory are the

Galilei group, Jacobs assumes that the Newton-Cartan connection is an absolute

object (Jacobs 2023, proposition 3). But in Newton-Cartan theory, much like

in general relativity, the connection is not an absolute object; its value depends

on the matter distribution we are considering.15 Wallace (2020, 28) makes a

similar observation, noting that “in Newton-Cartan theory, the connection does

double duty, imposing both the rotation standard (a piece of absolute structure)

and the inertial structure (something dynamical and contingent)”.16

This presents a serious problem for Jacobs’s argument that Maxwell gravita-

tion and Newton-Cartan theory are inequivalent, and likewise for his claim that

the two theories represent different ways of restoring Earman’s SP1. If only the

standard of rotation associated with ∇ is invariant across the DPMs of Newton-

Cartan theory, then its spacetime symmetry group is in fact the same as that

of Maxwell gravitation. Not only that, but the two theories also share the same

dynamical symmetry group. In particular, if h : M → M is a diffeomorphism

generated by an arbitrary Maxwell transformation,17 then the induced map

⟨M, ta, h
ab,∇, T ab⟩ → ⟨M, ta, h

ab, h∗∇, h∗T ab⟩ preserves both solutionhood of

the equations (NCT), and all the absolute objects.

Of course, this requires that we allow dynamical symmetry transformations

to act on the connection – a piece of spacetime structure – as well as the mat-

15. As is obvious from (NCT2). To put the point pithily, taking the Newton-Cartan con-
nection to be an absolute object would mean taking there to be only one nomically possible
mass density field according to the theory.
16. To see this, note that any pair of compatible connections which determine the same stan-

dard of rotation are related by a transformation of the form ∇ → (∇, tbtcσ
a), for some space-

like σa (Weatherall 2018, proposition 1). Meanwhile, any pair of compatible connections which
satisfy (NCT3) and (NCT4) are related by a transformation of the form ∇ → (∇, tbtcσ

a),
where σa is spacelike and twist-free (Dewar 2018, proposition 4).
17. That is, transformations of the form t → t+ τ , xi(t) → Ri

jx
j(t) + ai(t), where xµ is an

arbitrary Maxwellian coordinate system on M .
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ter distribution. I will merely point out that this is completely standard; it

is precisely the notion of dynamical symmetry implicit in the claim that the

dynamical symmetries of general relativity are the full diffeomorphism group.

Still, there is one part of Jacobs’s analysis which does carry over intact.

Arbitrary Maxwell transformations of the mass-momentum tensor preserve so-

lutionhood of the equations (MG). But they do not preserve solutionhood of

the equations (NCT). In general, if ⟨M, ta, h
ab,∇, T ab⟩ is a solution of the

equations (NCT), then ⟨M, ta, h
ab,∇, h∗T ab⟩ will violate at least (NII), where

h :M →M is a diffeomorphism generated by an arbitrary Maxwell transforma-

tion. Prima facie, this reveals an important difference between the two theories:

once we move to consider the entire space of KPMs, there will be non-solutions

of Newton-Cartan theory which correspond to solutions of Maxwell gravitation.

I will return to this argument in section 6.

5 Maxwell gravitation, Newton-Cartan theory,

and categorical equivalence

The foregoing discussion suggests that there are plausible interpretations of

Newton-Cartan theory on which models which disagree only as to the connection

in regions where ρ = 0 are physically equivalent. It also suggests that the

spacetime and dynamical symmetry groups of both Maxwell gravitation and

Newton-Cartan theory are the Maxwell group. What, in this case, should we say

about whether Maxwell gravitation and Newton-Cartan theory are equivalent?

For this, it will be useful to have a formal standard of theoretical equivalence

to hand. The standard of theoretical equivalence which I will employ here is

one which has been brought to bear on a number of debates in philosophy of

physics in recent years,18 and it is called categorical equivalence. This requires

some groundwork. The use of category theory as a tool for investigating the

relationships between physical theories is motivated by the fact that the class

of a theory’s models often has – or can be given – the structure of a category.

18. See Rosenstock, Barrett, & Weatherall (2015), Weatherall (2016), Barrett (2019),
Nguyen, Teh, & Wells (2020).
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Whilst there is some variance in how exactly this category is defined,19 one

straightforward way of doing this is to take the objects of this category to

be the theory’s models, and its arrows to be inter-model relationships which

preserve physical content.

According to the criterion of theoretical equivalence we will consider, two

theories are equivalent just in case their associated categories of models are

“isomorphic” in the following precise sense:

Categorical equivalence: theories T1 and T2 are equivalent just in case there

exists an equivalence of categories between the categories of models of T1 and

T2 which preserves empirical content.

Two categories T1 and T2 are equivalent just in case there exist functors

F : T1 → T2, G : T2 → T1 such that FG is isomorphic to idT2
, and likewise

GF is isomorphic to idT1
.20 As such, one might take categorical equivalence to

capture the idea that we can translate between T1 and T2, in a way that pre-

serves empirical content, and that these translations are – up to isomorphism

– inverses of each other. But categorical equivalence does not require that the

translation between the models of T1 and T2 be unique. For example, con-

sider the relationship between Galilean gravitation and Newton-Cartan theory.

We know (from the Trautman geometrisation and recovery theorems) that each

model of Galilean gravitation is uniquely associated with a model of Newton-

Cartan theory, but not vice versa. Typically, we can only recover a model

of Galilean gravitation from a model of Newton-Cartan theory up to Trautman

gauge symmetry – transformations of the form (2). But if we interpret Trautman

gauge symmetry-related models of Galilean gravitation as physically equivalent

– which amounts to taking the arrows in our category-theoretic representation

of Galilean gravitation to include not only diffeomorphisms, but also transfor-

mations of the form (2) – then as Weatherall (2016) shows, the two theories

will still be categorically equivalent. Whether this is sufficient for theoretical

19. For example, when Barrett and Halvorson (2022) talk about theories as categories, they
have in mind specifically first-order theories, and categories whose objects are the theory’s
models, and whose arrows are elementary embeddings. My approach here is more in the spirit
of Weatherall (2016), Barrett (2019), Nguyen, Teh, & Wells (2020).
20. Or equivalently, just in case there exists a functor F : T1 → T2 which is full, faithful,

and essentially surjective. For details, see for example Weatherall (2017) and the references
therein.
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equivalence is an issue which we will return to in section 6.

In order to say whether Maxwell gravitation and Newton-Cartan theory are

categorically equivalent, we first need to say something about the categories of

models associated to these theories. I will take these to include two kinds of

arrows:

• Isomorphisms induced by automorphisms of the theory’s absolute objects

• Gauge transformations which do not fall under the above

For Maxwell gravitation, this gives us the following category:

MG: Objects are models of Maxwell gravitation, arrows are diffeomorphisms

which preserve the metrics and standard of rotation.

However, for Newton-Cartan theory, the views considered here suggest four pos-

sible categories. On the one hand, there is the (more straightforward) question

about the absolute objects of Newton-Cartan theory – namely, the metrics, and

the standard of rotation associated to ∇. However, we have seen that Jacobs in-

correctly takes the Newton-Cartan connection itself to be an absolute object in

his analysis, and it is of some interest to see what happens if we do so here. On

the other hand, there is the question about whether models of Newton-Cartan

theory which differ only as to the connection in regions where ρ = 0 represent

the same physical state of affairs. I have argued that these models are physically

equivalent, but one might also take them to be inequivalent (for example, as

Saunders does). Together, this gives us the following categories:

NCT1: Objects are models of Newton-Cartan theory, arrows are diffeomorphisms

that preserve the metrics and Newton-Cartan connection.

NCT2: Objects are models of Newton-Cartan theory, arrows are pairs (χ, σa),

where σa is a spacelike and twist-free vector field which satisfies ∇nσ
n = 0

and ρσa = 0, and χ is a diffeomorphism which preserves the metrics and

(gauge-transformed) Newton-Cartan connection (∇, tbtcσa).

NCT3: Objects are models of Newton-Cartan theory, arrows are diffeomorphisms

which preserves the metrics and standard of rotation associated with ∇.
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NCT4: Objects are models of Newton-Cartan theory, arrows are pairs (χ, σa),

where σa is a spacelike and twist-free vector field which satisfies ∇nσ
n = 0

and ρσa = 0, and χ is a diffeomorphism which preserves the metrics

and standard of rotation associated with the (gauge-transformed) Newton-

Cartan connection (∇, tbtcσa).

Categories NCT1 and NCT2 result from (incorrectly) taking the Newton-

Cartan connection to be an absolute object; in NCT3 and NCT4 only the

metrics and standard of rotation associated with ∇ are absolute objects. In

NCT1 and NCT3, models which differ only as to the connection in regions

where ρ = 0 are interpreted as physically inequivalent; in NCT2 and NCT4

they are equivalent.

I will begin by considering NCT1 and NCT2. It is straightforward to show

that neither of these categories are equivalent to MG:

Proposition 5. Let F : NCT1 → MG be the functor which takes each model of

Newton-Cartan theory to its corresponding Maxwell model, as given in proposi-

tion 1, and takes each arrow to an arrow generated by the same diffeomorphism.

Then F is not full.

Proof. Let M = ⟨M, ta, h
ab,∇, T ab⟩ be an object in NCT1, and let χ : M →

M be any diffeomorphism which preserves the metrics and satisfies χ∗∇ =

(∇, tbtcσa), where σa is a (non-zero) spacelike vector field.21 By construction,

χ : F (M) → χ∗F (M) is an arrow in MG which is not the image of any arrow

in NCT1 under F .

Proposition 6. Let F : NCT2 → MG be the functor which takes each model

of Newton-Cartan theory to its corresponding Maxwell model, as given in propo-

sition 1, and each arrow (χ, σa) → χ. Then F is not full.

Proof. This is almost identical to the proof of proposition 5. LetM = ⟨M, ta, h
ab,∇, T ab⟩

be an object in NCT2, and suppose that T ab ̸= 0. Let χ : M → M be any

diffeomorphism which preserves the metrics and satisfies χ∗∇ = (∇, tbtcσa),

where σa is a spacelike vector field such that σa ̸= 0 for at least one point p

21. Such exist. For example, if xµ is a Maxwellian coordinate system on M , then in general,
diffeomorphisms induced by arbitrary Maxwell transformations have this property.
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where ρ ̸= 0 (again, such exist). Since arrows in NCT4 at least preserve the

Newton-Cartan connection in regions where ρ ̸= 0, χ : F (M) → χ∗F (M) is an

arrow in MG which is not the image of any arrow in NCT2 under F .

Propositions 5 and 6 capture Jacobs’s argument that Maxwell gravitation

and Newton-Cartan theory are inequivalent. In taking the Newton-Cartan con-

nection to be an absolute object in NCT1 and NCT2, we have taken the

spacetime and dynamical symmetries of the theory to be the Galilei group. But

precisely what goes wrong in propositions 5 and 6 is that there are non-trivial

automorphisms of Maxwellian spacetime which correspond neither to Galilean

transformations, nor gauge transformations of the Newton-Cartan connection,

nor compositions of the two. In both cases, this means that F fails to be full, and

so in the terminology of Baez et al. (2006) forgets structure.22 This might be

taken to vindicate Jacobs’s claim that theories with different symmetry groups

are inequivalent because they have “different structures” (Jacobs 2023, 13).

However, as argued in section 4, there are convincing reasons to think

that the Newton-Cartan connection is not an absolute object, and hence that

Maxwell gravitation and Newton-Cartan theory have the same spacetime and

dynamical symmetry groups. This means that it is not NCT1 and NCT2, but

NCT3 and NCT4 which are the appropriate category-theoretic representations

of Newton-Cartan theory:

Proposition 7. Let F : NCT3 → MG be the functor which takes each model of

Newton-Cartan theory to its corresponding Maxwell model, as given in propo-

sition 1, and each arrow to an arrow generated by the same diffeomorphism.

Then F is not full.

Proof. Let T ab = 0 and consider the objects M = ⟨M, ta, h
ab,∇, T ab⟩ and

M′ = ⟨M, ta, h
ab, (∇, tbtc∇aϕ), T ab⟩ in NCT3, where ϕ = exeysin(

√
2z) in some

Maxwellian coordinate system xµ onM and ∇ is flat.23 Now consider the arrow

id : F (M) → F (M′) in MG. I claim that this is not the image of any arrow

χ : M → M′ in NCT3. For this, note that ∇ transforms as ∇ → (∇, tbtcσa)

22. For more on the connection between the failure of F to be full and (amount of) structure,
see Barrett (2022).
23. I take this example from Dewar (2018, 265).
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under the action of any Maxwell transformation on ∇, where σa is a spacelike

vector field which is twist-free and rigid (∇aσb = 0). ∇aϕ is not rigid.

NCT3 and MG are not equivalent as categories. This is a result of the

failure of unique recovery we see in proposition 2. Since F is not full, one might

take this to capture Saunders’s idea that the fact that we cannot in general de-

fine a unique Newton-Cartan connection from a model of Maxwell gravitation

means that Newton-Cartan theory has surplus structure over Maxwell gravita-

tion. However, NCT4 and MG are equivalent as categories:

Proposition 8. There exists an equivalence of categories between NCT4 and

MG which preserves empirical content.

Proof. Let F : NCT4 → MG be the functor which takes each model of Newton-

Cartan theory to its corresponding Maxwell model, as given in proposition 1, and

each arrow (χ, σa) → χ. F preserves empirical content since it preserves T ab,

and by proposition 4 is essentially surjective. It remains to show that F is full

and faithful. First, let M = ⟨M, ta, h
ab,∇, T ab⟩, M′ = ⟨M ′, t′a, h

′ab,∇′, T ′ab⟩

be two objects in NCT4. Suppose that there exist distinct arrows (χ, σa),

(χ′, σ′a) : M → M′, and suppose for contradiction that χ = χ′. Then σa ̸= σ′a,

since the arrows were assumed distinct. But then (∇, tbtcσa) ̸= (∇, tbtcσ′a), so

that χ∗(∇, tbtcσa) ̸= χ′
∗(∇, tbtcσ′a), so by contradiction χ ̸= χ′ and F is faithful.

Finally, let χ : F (M) → F (M′) be an arrow in MG. Since χ∗⟳ = ⟳′, we know

that χ∗∇ and ∇′ are rotationally equivalent, so that χ∗∇ = (∇′, t′bt
′
cσ

′a), where

σ′a is a spacelike vector field on M ′ (Weatherall 2018, proposition 1). It follows

that ∇′ = χ∗(∇,−tbtcχ∗σ′a), where we have used the fact that χ preserves the

metrics. Now consider the tuple ⟨M, ta, h
ab, (∇,−tbtcχ∗σ′a), T ab⟩. This is an

object in NCT4, since it maps to M′ under χ. Moreover, it agrees with M on

the metrics and mass-momentum tensor. It follows that χ∗σ′a is spacelike, twist-

free, and satisfies ρχ∗σa = 0 and ∇nχ
∗σ′n) = 0 (see the proof of proposition

2). So (χ,−χ∗σ′a) : M → M′ is an arrow in NCT4 which maps to χ under F .

Hence F is full.
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6 Categorical equivalence and theoretical equiv-

alence

We have seen how propositions 5, 6, and 7 can be used to give category-theoretic

realisations of Jacobs’s and Saunders’s arguments that Newton-Cartan theory –

interpreted after NCT1, NCT2, or NCT3 – is inequivalent to Maxwell gravi-

tation. But the interpretation of Newton-Cartan theory which I have advocated

for here isNCT4. Proposition 8 tells us that we can, in a precise sense, translate

between this theory and Maxwell gravitation up to physical content preserving

(i.e. gauge) transformations. Is this sufficient for theoretical equivalence?

The issue is fraught. For example, Glymour (1977) suggests a stronger def-

initional equivalence criterion, according to which two theories are equivalent

just in case we can define from each model of the first theory a unique model of

the second, and vice versa.24 In particular, Glymour wants to claim that a the-

ory with gauge freedoms cannot be equivalent to any rival theory in which these

gauge freedoms are eliminated. This is because the former theory will contain

additional untested hypotheses regarding the existence (and determinate magni-

tudes) of the gauge quantities. As an example, he takes Newton-Cartan theory

and Galilean gravitation, noting the non-uniqueness of Trautman recoveries.

However, in my view, there remains more to be said. If we think that the con-

nection and gravitational field in Galilean gravitation represent physical fields

– which take physically distinct configurations in Trautman gauge symmetry-

related models of the theory – then Glymour’s claim might well be compelling.

But this interpretation of the theory is not mandatory. For example, Knox

(2011, 2014) argues that even within Galilean gravitation, the Newton-Cartan

connection encodes the (local) structure of inertial frames. As a result, for

Knox, the best interpretation of Galilean gravitation is one in which only the

Newton-Cartan connection has physical significance; the Galilean connection

and gravitational field are merely a less-than-perspicuous way of stating facts

about the Newton-Cartan connection. And under this kind of interpretation,

24. Strictly speaking, this is not definitional equivalence proper, but rather the analogue of
definitional equivalence which Glymour suggests for theories “formulated as sets of covariant
equations” (Glymour 1977, 230).
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it does seem appropriate to regard Newton-Cartan theory and Galilean gravi-

tation as equivalent – a result which definitional equivalence seems unable to

capture.

Now, there is room to argue that I have not been entirely fair to Glymour

here. What motivates Glymour’s definitional equivalence criterion is the thought

that equivalent theories ought to be intertranslatable. But if one thinks that

only the Newton-Cartan connection has physical significance in Galilean grav-

itation, then presumably one only ought to demand translatability up to the

Newton-Cartan connection. As such, one can implement Glymour’s criterion

as follows. First, we reformulate Galilean gravitation in terms of the Newton-

Cartan connection (the result is just Newton-Cartan theory under a different

name), and only then appeal to Glymour’s criterion – which of course now judges

the two theories equivalent.

But once the problem has been stated in these terms, it should be clear that

it is really an instance of a more general worry. Definitional equivalence leaves

no conceptual room for us to interpret theories as containing structure which

does not represent anything physical, nor for us to interpret gauge symmetry-

related models of a theory as physically (rather than merely empirically) equiv-

alent. Hence why, if we interpret Galilean gravitation a la Knox, definitional

equivalence demands that we first reformulate the theory to remove the gauge

quantities. Meanwhile, our interpretative practices do seem to make room for

theories which do not wear their interpretation on their sleeve in this way. As

such, the concern here is not merely that Glymour’s criterion presents a problem

for Knox’s interpretation of Galilean gravitation; rather, it is that if Glymour is

correct, then Knox’s view does not even make sense. More generally, it is that

to endorse definitional equivalence as a criterion of theoretical equivalence is to

place unreasonable restrictions on interpreting a theory.

Of course, the interpretation of a theory is not unconstrained by its formal-

ism. This is precisely why formal criteria of theoretical equivalence have been so

fruitful. But despite this, there is a good deal of flexibility in how we interpret

theories – which elements of a theory’s formalism we take to represent elements

of reality, and which differences between a theory’s models we take to represent
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physical differences. It is this flexibility which definitional equivalence fails to

capture.

Which takes us back to category theory, and categorical equivalence. Cat-

egory theory has the resources to distinguish between theories which share the

same formalism but have different interpretations, insofar as these interpreta-

tions can be realised through different choices of arrows. And if categorical

equivalence is our standard of theoretical equivalence, then this choice of arrows

does sometimes make a difference to whether or not two theories are equivalent.

As such, my final aim here is to say something in support of the verdict

which categorical equivalence gives us in proposition 8, in much the same way

as we did for Newton-Cartan theory and Galilean gravitation. There, we made

use of Knox’s interpretation of Galilean gravitation, on which only the Newton-

Cartan connection has physical significance, to motivate the idea that the two

theories are equivalent. But this has an obvious analogy for NCT4. For this, it

is instructive to recall some of the discussion in section 3. There, we noted that

we are always free to rewrite the equations of Newton-Cartan theory as follows:

we replace the equations (NCT) with the equations (MG), the flat derivative

operator compatibility condition, and (NII) (with ⟳ now interpreted as the

unique standard of rotation compatible with ∇) (March 2023). This makes

it apparent that only the standard of rotation, rather than the connection, is

needed for the internal dynamics of the matter distribution. Moreover, the

degrees of freedom of ∇ not fixed by ⟳ now figure only in the equation (NII).

As such, we are always free to interpret (NII) as providing a (partial) fixing of

these remaining degrees of freedom, rather than as a constraint on T ab itself.

Should we say that Newton-Cartan theory is equivalent to Maxwell grav-

itation, in this case? I will approach this question roundaboutly, beginning

with a remark made by Dewar (2018). In his discussion of Maxwell gravitation

and Newton-Cartan theory, Dewar notes that a model of Newton-Cartan theory

where ρ ̸= 0 “carries a [...] form of redundancy: provided we know the standard

of rotation associated to ∇, and provided we know the character of T ab, we

can “fill in the blanks” to reconstruct ∇ itself” (Dewar 2018, 264). He likens

this feature of Newton-Cartan theory to comments made by Pooley (2013, §4.5)
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about the redundancy of standard presentations of Newtonian spacetime: given

a Newtonian spacetime ⟨M, ta, h
ab,∇, ξa⟩, we are always free to define ∇ from

the remaining structure in the theory.

However, I would like to suggest that the kind of redundancy we see in

Newton-Cartan theory is much more akin to the fact that Newtonian gravita-

tion – restricted to the island universe sector, and coupled with the additional

assumption that the centre of mass of the universe is at absolute rest – also has a

certain redundancy to it. Given a Galilean spacetime and the mass-momentum

tensor, we can always define ξa as the unique vector field which results from

parallel transporting the centre of mass velocity field throughout all spacetime.

ξa is irrelevant to the internal dynamics of the matter distribution, just as the

irrotational degrees of freedom of ∇ are in Newton-Cartan theory. Notice also

that in both cases, the choice of gauge sometimes results in a failure of unique

recovery. Just as (NII) does not fix a unique connection when ρ = 0, so does

the demand that ξa is the centre of mass velocity field fail to fix a unique vec-

tor field outside of the island universe sector, where the centre of mass is not

well-defined. And there is also an obvious parallel to Jacobs’s discussion of

Maxwell gravitation and Newton-Cartan theory. Kinematic shift symmetry in

Newtonian gravitation is – via Earman’s SP1 – standardly taken as motivation

for the move from Newtonian to Galilean spacetime. But we can also restore

SP1 by restricting the dynamical symmetries to the Newtonian group. Now, it

might appear that we can accomplish this by demanding that the centre of mass

of the universe be at absolute rest. But by tying the standard of rest to facts

about the matter distribution in this way, it is no longer an absolute object. As

a result, the spacetime (and dynamical) symmetries of the theory remain the

Galilei group.

Now, compare this version of Newtonian gravity theory, in which we demand

that the centre of mass of the universe is at absolute rest, to Galilean gravita-

tion. The only difference between the two is that in the former theory, we have

promoted a particularly convenient choice of gauge – the practice of taking the

centre of mass of the universe as a reference frame – to a dynamical law. Clearly

this is harmless, providing that we do not then interpret the centre of mass ve-
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locity field as ontologically subsistent spacetime structure. Moreover, the fact

that the “standard of rest” so defined is not an absolute object guards against

precisely this mistake. Rather, it suggests an interpretation on which the vec-

tor field ξa is simply an additional piece of structure introduced to represent

(somewhat redundantly) the centre of mass velocity of the universe.

The analogy to Newton-Cartan theory and Maxwell gravitation is immedi-

ate. From the perspective of Maxwell gravitation, the decision to work with

a connection with respect to which (NII) holds amounts simply to a choice of

gauge. But in moving to Newton-Cartan theory, we promote this gauge-fixing

to a dynamical law. My claim is just that to the extent that one thinks that this

modified version of Newtonian gravitation is equivalent to Galilean gravitation,

one should also think that Newton-Cartan theory, interpreted after NCT4, is

equivalent to Maxwell gravitation.

One final point. At the end of section 6, we noted that there appear to

be non-solutions of Newton-Cartan theory which correspond to solutions of

Maxwell gravitation, so that we cannot translate between Maxwell gravitation

and Newton-Cartan theory in a way that preserves solutionhood. The view

developed here points to one possible response to this concern. Thus far, I

have described the move from Maxwell gravitation to Newton-Cartan theory

as a matter of gauge-fixing the Newton-Cartan connection by imposing (NII)

as a dynamical constraint. But we could go further, and interpret (NII) as a

kinematic constraint. This would avoid the problem of non-solutions of Newton-

Cartan theory in which the centre of mass of the universe is accelerated mapping

to solutions of Maxwell gravitation. It would be consistent with the idea that

the move from Maxwell gravitation to Newton-Cartan theory simply involves

a choice of gauge, this time imposed equally across the KPMs. And it fits

naturally with the suggestion that the Newton-Cartan connection should not

be interpreted as ontologically subsistent spacetime structure, but rather has

its physical significance in virtue of the equation (NII). If (NII) is a dynamical

constraint, then it is not clear how we should interpret ∇ outside of the DPMs.

But if (NII) is a kinematic constraint, then ∇ can be given a consistent physical

interpretation throughout the entire space of KPMs.
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If this is right, then the suggestion that (NII) should be interpreted as a

choice of gauge is more radical than it first appears. It also requires a discussion

of the distinction between kinematic and dynamical possibility, which I do not

have space to attempt here. A proper treatment of these issues will have to wait

for another time.

7 Conclusions

The appropriate spacetime setting for Newtonian gravitation theory has long

been a topic of foundational interest in philosophy of physics. Moreover, the task

of finding this spacetime is often seen as a straightforward matter of following

Earman’s principles, alongside standard “symmetry-to-(un)reality” inferences,

wherein the symmetry-variant structure of a theory is interpreted as physically

unreal, and excised from the theory’s formalism. On the orthodox view, different

theories of Newtonian gravitation are seen as successive improvements upon one

another, as more and more spacetime structure is eliminated.

However, Maxwell gravitation and Newton-Cartan theory suggest a more

nuanced picture. Both can motivated by the symmetries of Galilean gravitation.

But they differ as to how the symmetry in question should best be formalised

(as Trautman gauge symmetry, or dynamic shift symmetry), and they differ

as to what the moral of this symmetry should be. Whereas Newton-Cartan

theory reconceptualises the Galilean connection and gravitational potential as

redundantly describing a single entity, Maxwell gravitation eliminates both from

the formalism altogether.

I have argued that there are plausible interpretations of Maxwell gravitation

and Newton-Cartan theory on which they are equivalent. But the question

is subtle. Above all, there remains further work to be done. How does the

distinction between kinematic and dynamical possibility relate to questions of

interpretation and theoretical equivalence? What is the relationship between the

KPMs of Maxwell gravitation and Newton-Cartan theory, if (NII) is a kinematic

constraint? And what, if anything, is the connection between the suggestion

that (NII) should be taken as a choice of gauge, and the well-worn debate over
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the status of Newton’s second law? The work raised by Newtonian gravitation

theory, it appears, is far from over.
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