Abstract: It is argued that once biological systems reach a certain level of complexity, mechanistic explanations provide an inadequate account of many relevant phenomena. In this paper, I evaluate such claims with respect to a representative program in systems biological research: the study of regulatory networks within single-celled organisms. I argue that these networks are amenable to mechanistic philosophy without need to appeal to some alternate form of explanation. In particular, I claim that we can understand the mathematical modeling techniques of systems biologists as part of a broader practice of constructing and evaluating mechanism schemas. This argument is elaborated by considering the case of bacterial chemotactic networks, where some research has been interpreted as explaining phenomena by means of abstract design principles.
1 Introduction

The last two decades have seen a widening embrace of the mechanistic perspective among philosophers of biology. This view, which received early contributions from Bechtel and Richardson ([1993]), Glennan ([1996]), and Machamer, Darden, and Craver ([2000]), holds that much of the research being done in the life sciences is best understood as a search for the mechanisms responsible for phenomena. Explaining phenomena using mechanisms is considered an alternative to the traditional deductive-nomological or unificationist models of scientific explanation, which, because of the scarcity of general, exceptionless laws in biology, fail to adequately characterize these fields (Bechtel and Abrahamsen [2005]; Beatty [1995]). In contrast, the ‘new mechanistic philosophy of science’ (Skipper and Milstein [2005]) emphasizes the practice of specifying organized complexes of entities and activities that produce phenomena as an explanatory strategy. i

Yet it is still developing as a perspective and there is disagreement over how broadly this notion of explanation can or ought to be applied. ii Mechanistic philosophy draws heavily from examples in the fields of molecular biology, neuroscience, and basic cell biology. While authors acknowledge its adequacy for such fields, they frequently contend that, as biological systems approach higher levels of behavioral and compositional complexity, the explanatory purchase of standard mechanistic concepts and strategies begins to falter (see, for example, Brigandt [2013]; Andersen [2012]; Ramsey [2008]; Weiskopf [2011]). In particular, the sufficiency of mechanistic philosophy is currently being disputed for research that falls under the banner of ‘systems biology’. This term refers to a collection of research programs, largely outgrowths of molecular and cell biology but also including studies at the population level, that share a certain methodological overlap. Unlike much of biology, the use of quantitative models predominates, especially those of dynamic systems theory and advanced statistics. This results
in a greater emphasis on computational models and experiments \textit{in silico}. Affiliated authors call for a 'holistic', 'synthetic', 'antireductionist', or 'integrative' conception of biology (Boogerd et al. [2007a]). While some hold that systems biology is mechanistic (Boogerd et al. [2007b]; Bechtel [2011]; Bechtel and Abrahamsen [2013]; Richardson and Stephan [2007]), others argue that it involves a distinct, non-mechanistic form of explanation. The authors that I will consider (Braillard [2010]; Kuhlmann [2011]; Silberstein and Chemero [2012]) take a similar stance on the status of systems understood through network modeling. The sense that such research falls outside of the mechanistic purview is, I think, motivated by three factors:

(1) A tendency in the mechanistic literature to privilege linear sequential processes that produce a phenomenon as their end state over those that are cyclic and underlie or maintain phenomena. The belief that these are the fundamental forms of mechanisms is perhaps exacerbated by the phrasing of the oft-cited MDC definition, according to which they are “are productive of regular changes from start or set-up to finish or termination conditions” (Machamer et al. [2000]).

(2) The emphasis in the early work of Bechtel and Richardson ([1993]) on the strategies of decomposition and localization, by which one partitions a complex system into its spatial components and divides up the functions of the mechanism in terms of them. This has led some authors to believe that mechanistic explanation is strictly \textit{downward-looking}: describing the functioning of the whole in terms of the combined properties of its lower-level parts.

(3) The methodological differences between systems biology and other biological fields. Some claim that the heavy use of mathematics for modeling purposes, which runs counter to the standard reliance on visual, pictorial diagrams in biology, conflicts with mechanistic
reasoning. In particular, the predictions made on the basis of model structures are viewed as explanations that are not strictly mechanistic.

In what follows, I will evaluate these latter claims with respect to a representative program in systems biological research: the study of regulatory networks within single-celled organisms. I argue that these networks are amenable to mechanistic philosophy without need to appeal to some alternate form of explanation. I intend to show how commonly accepted postulates and procedures of mechanistic philosophy apply to and are referenced within the study of cellular networks. In addressing the critics, I aim to advance a picture of mechanistic science that is in accord with the methodology of those studying cellular networks. For this I will draw on a depiction of the explanatory strategies of mechanistic science, which I owe to Craver and Darden ([2013]) and who cover it in greater detail. After briefly arguing for the compatibility of systems biology with these strategies, I will consider and reject an alternative view of systems biology, which I associate with the notion of design explanation.

2 The strategies of mechanistic science in the study of cellular networks

The search for mechanisms can be presented as three general stages: characterization of the phenomena, construction of schemas, and evaluation of schemas. The aim of this process is to establish a representation of a mechanism that captures all of the features contributing to the phenomenon under consideration. Once a relatively complete representation has been constructed, it enables one to give a mechanistic explanation of the phenomenon. Such explanations refer to the manner in which the phenomenon is constituted by what the schema represents, namely, the productive continuity and organization of the entities and activities that comprise the mechanism.iv

Making sure one accurately characterizes the phenomenon is a crucial initial step as it serves as a guiding norm for the following stages. Following Craver and Darden ([2013], Ch. 4), I take a
phenomenon to be a regular natural occurrence, 'a repeatable type of event or product.' Data collected through observation and experimentation aid in the characterization of phenomena. William Bechtel ([2007]; [2011]; with Abrahamsen [2013]) has noted that the phenomenon of life, at its most basic level, involves the maintenance of a system that is autonomous from its environment. Living organisms resist entropic forces, which tend toward disorder, by continually drawing energy from their surroundings and directing it toward processes that uphold their internal organization. Organisms manifest robustness in various ways by maintaining their structure and behaviors with relative consistency within varying environmental or internal conditions. Accounting for these and related phenomena is one of the aims of systems biology. The systems studied often involve multiple entities interacting in causal cycles. As a result, the systems as a whole tend to exhibit non-linear dynamics—that is, their behavior fluctuates at a non-constant rate and may involve complex oscillations or deterministic chaos (Strogatz [1994]). Researchers often employ computational modeling of the systems dynamics due to the complexity of these phenomena, which cannot be precisely captured by verbal or diagrammatic reconstruction alone.

Cells are maintained by multilevel systems composed of different molecular entities and their interactions. These regulatory networks of genes, transcribed RNA, proteins, and metabolites function in highly complex, coordinated ways. They thus fortify basic cell activities against changes in the cell's environment. The guiding aim of those who study cellular networks is the construction of a complete model of such self-regulating behavior (Herrgard et al. [2004]). While comprehension of relevant intracellular processes—transcription, protein modification, ribosome assembly, and so on—provides a conceptual underpinning, the study of cellular networks regularly abstracts from the details in order to precisely describe the quantitative relations between their products. For instance, researchers focus on relative rates at which genes are being expressed by measuring the concentration levels of transcribed mRNA or synthesized proteins within a cell. By mapping these relations, they aim to determine the
corresponding network of interactions by means of which regular cell activity is maintained: gene-gene, gene-protein, protein-protein, and the like. Moreover, this will allow for more accurate characterization of the specific functional role of each gene within the cell.

In contrast to point (1) above, Craver and Darden ([2013]) distinguish between three relations that a mechanism may have to a phenomenon (Figure 1).

[FIGURE 1 AND CAPTION]

The mechanism may produce a phenomenon at the end of a continuous process; it may underlie it as a number of organized working parts that give rise to a phenomenal whole; or it may maintain a phenomenon by counterbalancing forces that shift some process away from a homeostatic steady-state point. I want to suggest that cellular networks are mechanisms that are best thought of as underlying and maintaining phenomena. That is, an underlying organization of genes, transcription factors, proteins, and metabolites constitutes the observed behavior of a cell. This underlying organization is given schematically in terms of a network graph. The complex regulatory relations existing between network constituents maintains the cell's stable functioning under shifts in environmental or internal conditions. This functional maintenance is given schematically in terms of the system-level dynamics derived from the network representation.

The task of schema construction works to determine the components and organization of the mechanism that produces a phenomenon. The result is a representation of how a collection of entities and activities are organized in a manner that displays the productive continuity underlying the phenomenon—a mechanism schema. Schemas can be thought of along similar lines as models in other areas of science; they are objects, more or less abstract, whose parts stand in some kind of representational relation to things in the world and which are not strictly reducible to linguistic
description, instead often drawing upon mathematical or diagrammatic presentations (Teller [2001]; Frigg and Hartmann [2012]).

Schema construction is the main stage in the mechanistic logic of discovery. It is oriented by a focused, pragmatic interest in the particular phenomenon under concern and the levels of organization within which the relevant mechanism or mechanisms are individuated. Analogical reasoning may play an important role here (Hanson [1961]): researchers may enter the construction stage with a stockpile of mechanism types known to operate in structurally or environmentally similar phenomena. They use this stock to help generate hypotheses about constitutive entities or activities or, abstracting from particular details, it may give clues as to the spatial, temporal, or causal organization of the mechanism (Craver and Darden [2013], Ch. 5). The specific advantages of such abstraction have been noted recently by Levy and Bechtel ([2013]), who note that a high degree of abstraction often helps in determining the contributions of causal organization to system-level behaviors.

An initial step in schema construction for systems biology researchers is that of network inference. Given a set of data, a number of statistical methods are available for the construction of cellular network models, many of which involve building point-and-line graphs in which the nodes represent genes, proteins, or other cell products and the edges stand for some form of dependency relation (derived algorithmically from the data) between them. The use of Bayesian statistical methods, one of the most computationally rich means of determining regulatory relations, ensures that only those genes that are found to show a strong form of stochastic dependence have their representative nodes linked in the graph. In this way, network graphs can represent key mechanistic features: nodes standing for the networks components and directed edges standing for their functional interactions while indicating direction of causal influence.

Initial models may not accurately depict an underlying mechanism, but instead present how-possibly explanations of a phenomenon. They show, given the available evidence, researchers’
hypotheses for how a phenomenon could arise. There may be multiple competing how-possibly mechanisms for a single phenomenon. During schema construction, constraint-based reasoning helps researchers pare down the space of models by eliminating those that are deemed unrealizable on the basis of accepted physical or biochemical principles. Available models are then evaluated and tested in an effort to better represent the mechanism.

These constructive and evaluative techniques come together in systems biology when network graphs inferred through statistical methods are analyzed and subjected to algorithmic or manual selection procedures. Researchers attempt to give a more accurate rendering of the actual network by integrating additional data about cell structures, such as analyses of gene location. Such a practice is indicative of the merging of top-down approaches (constructing approximate networks based on large-scale data describing functional relations) with bottom-up approaches (building up from detailed data describing molecular components of a system) (De Backer et al. [2010]).

An inferred network graph typically extends beyond observed data, allowing for the prediction of a large number of regulatory interactions between genes. Computational analysis of the graph enables the identification of numerous structural features. For example, Bechtel and Abrahamsen ([2013], p. 15) mention topological analyses which indicate that many biological networks are characterized by 'small-world organization' in which there are a number of distinct highly-connected clusters with fewer links in between them; these can operate with lower energy costs than highly connected networks and 'allow for specialized subpopulations that differ from the overall population.' Likewise, network analysis allows researchers to note the presence of 'network motifs'—subsystems such as feedforward or feedback loops whose recurrence may play a functional role in the overall structure (Alon [2006]; Albert [2007]). These and other global patterns of connectivity among network components contribute to inferences regarding system behavior.

The 'fit' of the organization that the schema imputes to the mechanism can be further tested by
interventions; precisely altering the mechanistic process at one point should yield predictable alterations in those points that model shows are causally downstream. Such experiments enable one to update a schema, further specifying the organization and functional role of the mechanism’s components, or consider more serious revisions (Craver and Darden [2013], Ch. 8). Obtaining a better representation of the functional organization of the actual network often requires the implementation of dynamic modeling. Models of this sort supplement an interaction network graph with functions describing how the state of a given node depends on the state of those to which it is connected. This may be achieved by assuming that the regulatory network can be represented in terms of a system of differential equations and measuring its response to perturbations (as in Gardner et al. [2003]).

As Bechtel and Abrahamsen ([2013]) have argued, there is a close relation between, on the one hand, the parameters and variables of the differential equations and, on the other hand, the mechanistic entities and activities being modeled. In the case of network dynamics, variables can stand for the individual expression rates of the genes (equivalently, the concentration of different mRNAs) and parameter coefficients describe the regulatory interactions between the genes (Gardner et al. [2003]). Schematizing the system-level dynamics generated by a cellular network provides a model of how these underlying mechanisms collectively function to maintain observed states or behaviors of the organism by showing how the combined interactions of network components tend toward certain system-level equilibria.

3 Are mechanisms insufficient?

Thus one can detect a methodology among systems biologists that can be subsumed under the general strategies of mechanistic science. A phenomenon is characterized: the robust, self-regulating behavior of living systems—single cells, in our case—with respect to their environment. This is done by integrating knowledge of distinct intra-cellular processes with the assumption that the interlocking
effects of their combined activity regulate the cell. Any reasonably accurate schema has to incorporate advanced mathematical modeling techniques due to the complexity of the mechanisms and the difficulty in mentally simulating constitutive interactions. Researchers then use algorithms to infer a network graph from data tracking component interactions. Because of relative limitations in data and computational technologies (there are far more genes than measurement samples; there are multiple models that fit the data), the how-possibly schemas must be analyzed in terms of correctness, that is, how realistic they are for a biological system. This is done by incorporating informed assumptions (for example, economy of regulation (Cf. Albert [2007], p. 3332)) and integrating additional information (for example, genomic location data) into the process of model selection. Finally, researchers evaluate and further specify schemas by testing predictions derived from network inference analysis and determining causal networks through perturbational interventions.

A dynamic model of the whole system, given by a system of differential equations, can be developed from these interventions. Just as suggested as a strategy for constructing a mechanism schema (Craver and Darden [2013], Ch. 5), systems biologists reason analogically, predicting system-level properties and dispositions from the dynamic systems encountered in other fields, such as engineering and control theory (drawing on Ljung [1999], for instance). They thereby construct a representational schema of the underlying aspects (the nodes and edges of a network graph representing network components and their regulatory relations) as well as maintaining aspects (the variables and parameters of system-level dynamics representing expression rates and interaction strengths of network components) of the complex mechanism which can itself be tested by further experimental intervention. Throughout the field, careful researchers do not appear to lose sight of the fact that they are detailing the active organization of specific entities and the interactions between them.⁵

The claims made here and in the previous section constitute a response to point (1) of the introduction. In contrast to the linear, sequential notion of mechanisms, systems biology can be
understood as a practice of constructing and evaluating schemas for complex mechanisms that underlie and maintain the phenomena of self-regulating states and behaviors in organisms. I can now address point (2) regarding the downward-looking characterization of mechanistic explanation. Silberstein and Chemero ([2012], p. 3) state, 'Localization and decomposition are universally regarded as the *sine qua non* of mechanistic explanation.' They and others assert that mechanistic explanations take the intrinsic properties of a system's components as the basis from which the overall behavior is derived. This view of mechanistic explanation as essentially reductionist allows authors to frame complex dynamics as outstripping its resources; in dynamically complex systems 'most facts about the nature of these components as well as their initial arrangement have no bearing on the complex system behavior one wants to explain' (Kuhlmann [2011], p. 4). The reasons for this are two-fold: first, dynamics at the level of the whole system have properties and functions (sometimes called emergent) that result from the global structure of its components' interaction network. It follows that these properties and functions are, in a way, distributed throughout the entire system and cannot be located in one place or another. Second, the properties of network components—gene expression rates, rates of enzyme activity, and so on—cannot be adequately described through intrinsic features, but are determined holistically as the result of their place in an entire network. Because mechanistic explanation is based on localization of functions in spatial components, because its explanations depend on the intrinsic properties of these components, and because such a task is not possible in the analysis of dynamically complex systems, they claim that any explanation based on this method must not be mechanistic.

Drawing on Craver and Darden ([2013]), I have suggested an alternate account of mechanistic explanation as rooted in the elaboration of a schema that adequately describes the manner in which the organization of entities and activities constitute and maintain a phenomenon. Their account fits well with the intuition that there is no need to give a complete characterization of every aspect of every component when one is seeking to explain a higher-level organization; this is the pragmatic element of
mechanistic explanation. Against the reductionist notion of mechanisms, Craver ([2007]) has argued that articulating what he calls the *active organization* of systems is a crucial norm of mechanistic explanation. In contrast to spatial and temporal organizations, the active organization of a mechanism is described in terms of the functional role that each entity plays with respect to one another. In particular, the concept indicates the relevance of cooperative or inhibitory interactions between constituents to the net behavior of the system. Mechanisms, as Craver notes, 'are not mere static or spatial patterns of relations, but rather patterns of allowance, generation, prevention, production, and stimulation' (Craver [2007], p. 136).

It is because mechanisms do not just function in a single context but interact with the larger systems in which they are situated that such patterns can be identified at different levels of organization. Observing these patterns may not depend directly on the specification of the activities and entities that comprise a component mechanism. This is clearly the case even in examples that are undeniably mechanistic. For example, there is no need to refer to the properties of every individual cell when explaining how the heart pumps blood (Craver and Darden [2013], Ch. 7). We can readily understand, without any apparent change to the character of the explanation, that tissues behave in ways that their constituents cannot and that these constituents are affected by this behavior. Similarly, we can understand that any attempt to explain a phenomenon like the heart pumping blood through the activities of individual cells alone would be overly complicated and serve only to obscure the pattern of interest. As I said before, we must bear in mind that mechanistic explanation is oriented by a pragmatic interest in the particular phenomenon under concern and the levels of organization within which its mechanism or mechanisms are individuated.

Philosophers have noted that certain real patterns of phenomena only become salient under certain conditions of abstraction (Dennett [1991]). Scientific models may employ abstraction in order to more accurately characterize the core causal properties underlying a phenomenon of interest.
If mechanism schemas are kinds of models, as I have suggested, then we should not be surprised to see similar techniques at work in their construction. This point has been made explicitly by Levy and Bechtel [2013]. They note that, when considering the dynamic behavior of mechanisms, 'abstract models, such as models of connectivity [...] highlight the features of that specific system that make a difference in it—namely, its pattern of internal causal connections' (Levy and Bechtel [2013], p. 259). Further, it is hard to see how a component's properties being affected by its role in a higher level causes trouble for mechanistic explanation. Mechanists can recognize the independence of causal relations within a given level from the constitutive relations holding between upper and lower levels. Their explanations may thus be upward- as well as downward-looking, aiming to characterize the activity of a mechanism in terms of its functional role as a constituent of a higher-level mechanism, especially when 'the behavior of this system determines the causal factors impinging on it in a systematic manner' (Bechtel [2008], p. 156).

Biologists may often work at a high degree of abstraction when considering system-level dynamics, but what they are doing is not different in kind from other mechanistic strategies—they draw on data to develop schemas that are then evaluated internally and through experimental interventions. While systems biologists studying cellular networks clearly acknowledge the constitutive role of the detailed processes involved in individual instances of protein synthesis, RNA transcription, and the like for the maintenance of a cell, they can also abstract away from these details when considering the regulative roles that these entities play in a higher-level system. Moreover, they often recognize that current techniques are insufficient for the ultimate explanatory task at hand:

To understand the complexity of living cells future research will need to build models including all these layers [genomic, transcriptomic, proteomic, and so forth]. Statistical inference on parts of the system will not provide the mechanistic insights functional genomics is seeking for (Markowetz and Spang [2007], p. 13).

A degree of functional localization is possible in the case of cellular networks. By means of network
analysis, researchers are able to identify distinct functional roles with subnetwork clusters and interaction motifs. Contrary to the claim that localization can be wholly disregarded, authors argue for the use of location data to assist in selecting an accurate model (Herrgard [2004], p. 72). It is this bidirectional aspect of schema construction that provides the grounds for systems biological explanations.

4 Design explanations and bacterial chemotaxis

In point (3) of the introduction I noted that the modeling methods of systems biologists have inspired authors to posit distinct, non-mechanistic explanatory strategies in the field. In opposition to the compatibility with mechanistic science that I have been claiming, critics argue for an alternate notion: structural or design explanation. An important feature of these explanations is that they are not causal. According to Braillard ([2010], p. 56), design explanations reveal functional constraints for the systems to which they apply: 'What is at stake is that some specific design principles might be necessary for a biological function to be performed or for the entire system to be able to exist in a changing environment independently from the evolutionary path taken.' Since functional constraints are not the product of evolution, they 'have their origin in the functioning of the whole system in the context of some environment.'

As an example, Braillard refers to a design explanation given for an aspect of bacterial chemotaxis. Chemotaxis is the process by which motile bacteria sense changes in their chemical environment and move to more favorable conditions (Bren and Eisenbach [2000]). Motion is directed toward areas with a greater concentration of particular chemoattractants or a lesser concentration of repellants. For organisms like E. coli, motion occurs by means of alternating clockwise and counterclockwise rotation of a flagellum, cycling between directed ‘runs’ and redirecting 'tumbles'. The network of molecules that compose the chemotactic signaling pathway mediating chemical
environment and flagellar motion in *E. coli* have been studied since the work of Julius Adler in the 1960's (Baker et al. [2005]). It is now one of the best-understood networks of its kind and homologues of the genes known to encode its components are found in most motile bacteria (Wadhams and Armitage [2004]; Porter et al. [2008]). Add in its relative simplicity with regard to the number and kind of interacting elements and we have excellent reason to use this as a case study for how cellular networks are explained in systems biology.

[FIGURE 2 AND CAPTION]

Figure 2 is one of many similar diagrammatic representations of the chemotaxis network in *E. coli* that are found in scientific texts. It shows transmembrane chemoreceptors (methyl-accepting chemotaxis proteins, or MCPs) spanning the cell membrane, several intra-cellular chemotaxis proteins (Ches), and a flagellar motor. The interactions are as follows: CheA is able to draw phosphate molecules off of ambient ATP in the bacterial cell, a process called autophosphorylation. These can then phosphorylate CheY or CheB, passing the phosphate to one of these proteins. Phosphorylated CheY, CheYP, is able to bind to the flagellar motor, causing it to reverse its motion from the default counter-clockwise to clockwise rotation. This induces tumbling in the bacterium, altering the direction of its next run.

CheW links the CheAs to MCPs to form a molecular complex such that, when an environmental attractantxiii binds to an MCP, this brings about a conformational shift in the receptor that is transmitted through CheW, ultimately suppressing the CheAs’ capacity for autophosphorylation. As the concentration of environmental chemoattractants increases, more bind to the receptors, reducing the frequency of reorientations.xiv Thus the concentration of CheYP serves as an internal measure of the bacterium’s environment, inducing it to engage in longer runs according to the chemical gradient of its
environment, thereby promoting movement toward areas of higher attractant concentration. Several molecular mechanisms are in place to mitigate these longer runs so that the bacterium may adapt to new environmental concentrations. CheRs act on a cytoplasmic signaling domain of the receptors, adding a methyl group that alters the protein’s conformation. This increases CheA activity, which thereby counteracts the effect of attractant binding. This is balanced by a negative feedback loop: CheBs demethylate receptors and do so at a much higher rate when phosphorylated by CheA, counteracting increases in CheA activity caused by CheR. Lastly, while CheR and CheB intervene on receptors at the beginning of the signaling chain to effect signal adaptation, CheZ promotes signal termination by intervening near the end. It acts on CheY$_P$’s, dephosphorylating them so that they can no longer bind to the motor.

While this schema allows for a thorough characterization of the individual components and interactions of the network, it fails to provide a rich sense of how multiple interactions take place and affect one another as a dynamic system. In particular, it cannot fully account for a noteworthy characteristic observed in bacterial chemotaxis: the behavior of the flagella is able to adapt to changes in environmental conditions with near perfect precision. That is, flagellar activity remains extremely consistent over large variations in concentration of a surrounding chemoattractant or repellant as long as this concentration is homogeneous. This behavior, termed robust perfect adaptation, allows *E. coli* to remain sensitive to small gradations in its chemical environment regardless of the overall concentration.

Differential equations allow for a more exact understanding of synchronic network interactions. Using these, Barkai and Leibler [1997] presented a model where robust adaptation is achieved in such a way that the action of internal proteins that modify system activity is determined by the net activity of the system itself:

A mechanism for robust adaptation [...] can be obtained when the rates of the
modification and the reverse-modification reactions depend solely on the system activity, \(A \) [the total amount of active proteins], and not explicitly on the concentrations \(E_m \) and \(E \) [proteins whose presence depends on environmental factors]. This system can be viewed as a feed-back system, in which the output \(A \) determines the rates of modification reactions, which in turn determine the slow changes in \(A \) (Barkai and Leibler [1997], pp. 915-6).

According to the Barkai-Leibler model, robust perfect adaptation does not depend on specific values of internal parameters, but is built into the network structure itself.

That this is the case in \(E. coli \) was subsequently confirmed experimentally (Alon et al. [1999]). Authors reported that varying the concentration of receptors, CheB, or CheY altered adaptation time and steady-state tumbling frequency, but the bacteria would still reliably return to this steady-state behavior over a range of attractant concentrations. The Barkai-Leibler model was later analyzed by Yi et al. ([2000]). They determined, by means of the analytical techniques of control theory, that the model exhibited a precise level of control over system output (flagellum activity) due to its inclusion of a specific control structure, an integral feedback loop (Figure 3).

[FIGURE 3 AND CAPTION]

Braillard takes this to mean that the particular organization of the chemotaxis pathway governing flagellar behavior in \(E. coli \) is explained by the identification of a feedback loop in the Barkai-Leibler model because only this could produce robust perfect adaptation. 'Furthermore, and this is crucial, [the researchers] claim that integral feedback control is not only sufficient but also necessary for robust perfect adaptation' (Braillard [2010], p. 49). Yi et al. claim not only that the structure is necessary for robust perfect adaptation, but that 'if [Barkai and Leibler's] specific model is later found to be contradicted by experimental data, another mechanism implementing integral feedback is likely to be present' (Yi et al. [2000], p. 4652). But this is not an independent explanation. While the
discovery of integral feedback helps to explain how the flagellum behavior could alter so smoothly, it is only the beginning of the explanation. Knowledge of the specific molecular components, their network of interactions, and how those interactions are mediated—in other words, mechanistic details—are all crucial to precisely characterizing how exactly this behavior can be produced in this organism.

Take, for instance, a thermostat that can precisely adjust the activity of a heater based on a continuous temperature reading. From the perspective of control theory, there is no difference between this behavior and that of the *E. coli*’s flagella insofar as they both involve integral feedback control.\(^v\) If identifying the dependence of robust adaptation on integral control counts as explanation, then we must say that bacterial chemotaxis and thermostats are here explained in the same way. Such is the generality of design explanation that Braillard celebrates, but surely we want our sciences to employ a form of explanation that enables us to distinguish between these systems. This can only occur if models are understood to be based on and correspond to the actual organization of such systems. Only then can we understand how underlying mechanistic interactions give rise to certain abstract patterns of behavior and are capable of maintaining them. Otherwise, we are simply characterizing *abstracta* and their properties, not explaining particular phenomena.

Braillard holds that there are general design principles that can be observed in the functional relations between a whole system and its environment from which one can explain why the system is structured as it is. As his commentary on Yi et al.’s work shows, he holds this explanation to reside in the necessity (or high preferability) of a particular design for a particular biological function to occur, a necessity that he claims can hold without reference to evolutionary theory. The idea is that, regardless of the exact process by which an organism comes to have the functions that it does, these functions can only be realized if they constrain the structure of the organism in ways that accord with general design principles.
Braillard’s appeal to the 'transcendence of design principles' over their material instantiation thus appears to be a claim that the need for organism structure to conform to design principles comes from the necessity of design principles themselves, just as natural laws have sometimes been described as ‘bestowing’ necessity. Given an environmental function, design explanations are taken to show ‘why a certain structure is present’ (Braillard [2010], p. 50). They achieve this by ‘point[ing] to synchronic and non-causal functional dependences between the system’s structure and its environment’ (Braillard [2010], p. 51). But this turns out to be trivial, simply explaining structure by structure. It is hardly clear that noting the contribution of organismal structure to environmental functions can sufficiently explain why that structure is present to begin with.

Consider our case study: the apparent explanation for why the chemotactic network is organized such that it must contain an integral feedback loop is that, by design constraints, this organization is necessary to achieve the observed function of robust perfect adaptation. Such an explanation need not specify the actual system of interacting molecules in the organism under consideration, but is satisfied in showing that a general principle is hereby instantiated. Yet, foregoing evolutionary reasoning, the only available explanation for why this particular organism possesses integral feedback—why the principle is instantiated in this case—is 'because it exhibits robust perfect adaptation.' One cannot help but feel that this ricochet from the phenomenon of the organism’s environmental function to general design and back is vacuous, failing to fully explain either.

I grant that the work of Yi et al. does not look like mechanistic explanation. They analyze a model for a phenomenon, identify a necessary structural feature, and predict that models for similar phenomena will require this structural feature. But it is not clear that they intend to give a full explanation of why the chemotactic network is structured in the way that it is. In fact, they appear to be working at one particular stage of mechanistic science: schema construction. 'The recognition that integral control is responsible for the robustness of perfect adaptation in the Barkai-Leibler model
allows one to evaluate the importance of the various assumptions of the model' (Yi et al. [2000], p. 4650). From this they determine constraints for the construction of future mechanism schemas: ‘When combined with biological realizability, this may greatly constrain, on the basis of external behavior, the possible internal mechanisms that can be used to achieve the observed behavior’ (Yi et al. [2000], p. 4651, emphasis added). Analyzing models allows researchers to prune down the space of how-possibly mechanisms, contributing to a more exact determination of the causal and functional organization of the relevant entities and interactions.

It is important to retain this sense that explanations in biology are constantly oriented toward particular phenomena. Models serve as representations, more or less abstract, of the real systems in which these phenomena occur. Observation of model properties alone does not guarantee that they accurately represent the properties of the system. While experimentation on *E. coli* did show that adaptation is robust under internal parameter change, Barkai and Leibler's model does not settle all of the questions regarding the organization and functionality of the chemotactic network. First note that, while highly abstract, their model is clearly developed out of prior mechanistic understanding. This much is said by the authors in their paper with Alon: ‘Once the components of a biochemical network are isolated and their interactions characterized, the mechanisms of the network’s functioning can be addressed’ (Alon et al. [1999]). Certain mechanistic details are also assumed in the model itself. For instance, it depends on the assumption that CheB only demethylates actively bound receptors and that receptor-attractant binding happens on a faster timescale than methylation/demethylation (Tindall et al. [2008]).

Recently, there has been reason to doubt the notion that Barkai and Leibler's model sufficiently characterizes the active organization of the *E. coli* network. Modelers aim to account not only for the system's capacities for adaptation and robustness, but also its sensitivity and gain (Tindall et al. [2008]). One cannot assume that these capacities function independently of one another and so a
failure to correctly model one may produce inaccuracies in another. For example, Barkai and Leibler's model left out phosphorylation interactions between CheA and CheY or CheB, which are thought to play a role in the system's sensitivity and gain (Tindall et al. [2008]). Attempts to expand on their model by including these interactions found that if, as Barkai and Leibler's model requires, CheR is active at saturation levels and acts on both bound and unbound receptors, then perfect adaptation cannot take place (Morton-Firth et al. [1999]). Other authors, citing all of the work that Braillard takes to support his claims, contest the importance of perfect adaptation:

Each individual in a population of bacteria exhibits its own characteristic flagella switching frequency. This variability is often not addressed in discussions of 'perfect adaptation' of the chemotaxis system. Even in a constant environment, the behavior of an individual fluctuates too much over time to indicate a perfectly adapted state (Baker et al. [2006]).

Braillard claims generality as a distinct virtue of design explanations contra mechanistic ones, yet there is reason for skepticism here as well. He fails to explicitly point out that the network in Barkai, Leibler, and Yi et al.'s work is that of a single species, E. coli, and not a model of bacterial chemotaxis tout court. Further, the article (Rao et al. [2004]) cited in Braillard’s claim that 'different species have mechanisms that are different, but the design principles are the same' uses a model of the bacteria B. subtilis that is openly based on the Barkai-Leibler model of E. coli. Thus the finding that both adapt to the environment robustly is deemed a 'somewhat unsurprising result' and the model fails to shed light on why B. subtilis has been observed to be the far more robust of the two (Tindall et al. [2008], p. 1540). One possible explanation for this is the added complexity of its signaling pathway.

[FIGURE 4 AND CAPTION]

Studies of the B. subtilis network (Figure 4) show that it employs three different adaptation systems (Rao et al. [2008]). Interestingly, removal of any two of these has been found to severely impact
bacterial motility, suggesting that it is their integrated, coordinated activity that results in robust adaptive behavior. The control system, observationally comparable to that found in *E. coli*, appears to require a much more involved, distributed organization in this case. The authors note that 'An open question is why does *B. subtilis* need three adaptation systems when organisms such as *E. coli* require only one' (Rao et al. [2008], p. 484). For these biologists, noting similar design principles, as Rao and co-authors did in 2004, does not exhaust the question of why organisms have the particular organization that they do. Yet this is precisely the question that Braillard takes design principles to answer.

More generally, the literature since Barkai and Leibler's work speaks to a burgeoning awareness of the diversity in chemotactic systems. With respect to *E. coli*, 'it is becoming increasingly apparent that chemotaxis in other bacteria, although based on similar principles, might be far more complex' (Wadhams and Armitage [2004]). Others write, 'Although the chemistry of the signalling reactions is conserved across all known chemotaxis pathways, the way in which these reactions are assembled to produce functional pathways differs between species' (Porter et al. [2011]). Divergences like those between the *E. coli* and *B. subtilis* networks become even more pronounced when one considers organisms that are, unlike these two, non-enteric. While *B. subtilis* differs in having multiple adaptation systems, many bacteria have multiple chemotaxis pathways. The non-enteric bacteria *R. sphaeroides*, for instance, is estimated to have three, including one triggered by wholly internal, cytoplasmic chemoreceptors (Porter et al. [2011]). Cross-talk between these pathways and other sensory systems allows the bacterium to integrate complex information regarding its external environment and internal metabolic state in determining motile behavior. I take such diversity to raise doubt regarding the claim that highly general design principles alone will sufficiently answer the question that Braillard takes them to: 'why it is this particular organization and not another one' (Braillard [2010], p. 58).
In sum, Braillard sees systems biology as engaging in explanatory projects that deviate from mechanistic concerns. Instead of seeking explanations of how a phenomenon arises through an account of constituent entities, their activities, and their organization, design explanations use mathematical abstractions to locate general principles determining the structural organization of living creatures. I have questioned the explanatory adequacy of this approach and have given some reasons to doubt its ability to give an independent unifying account of diverse species’ organizations. On the contrary, I find the strategies and orientation of research among systems biologists to largely support the claim that they are engaged in mechanistic inquiry rather than treating model analysis as a separate practice. As one group of authors puts it,

What is the future of mathematical modeling in helping to understand bacterial chemotaxis? In order to answer this question, we reflect upon the exact goal of understanding bacterial chemotaxis systems. Is it not to elucidate the mechanisms of sensing and moving in order that we may be able to predict the behavior of bacterial chemotactic systems in the environment? (Tindall et al. [2008], emphasis added)

The analysis of mathematical models is compatible with mechanistic explanation not because it is complementary to it, but because it is part of the general strategy of schema construction and evaluation. This is echoed by the same authors who gave the control theoretic analysis of the Barkai-Leibler model: 'A promising aspect of this broader theory is in providing further necessity results to help biologists greatly narrow their search for specific mechanisms' (Yi et al. [2000], p. 4652).

Rather than affirm the explanatorily vacuous 'transcendence of design principles', we may note their positive role in enabling certain inferences about the active organization of a mechanism's components. Assuming that design principles help us systematically predict functional constraints in a system's organization, one might consider an alternate strategy of using them as evidence in constructing a plausible mechanism schema. Since constraint-based reasoning is regularly employed in schema construction, specification of necessary limitations on the structural possibilities of a mechanism would seem to work well here. Kuhlmann, although he also ascribes to the functionalist
language of design explanations, can help me make this point. He states that 'the reason why the same explanatory [design-based] strategies can successfully be applied [in diverse fields...]' is the observable fact that there are structural similarities in the dynamics of compound systems with completely different kinds of subunits' (Kuhlmann [2011], p. 21). Again, I am inclined to think that he is not really describing a form of explanation here, but a stage in the logic of discovery.

Reasoning using abstract structural analogies is rightly identified as a useful and sometimes powerful heuristic for schema construction, but explanation cannot stop there. Fascination with the apparent autonomy of design should be tempered by a realization that abstract principles bar us from explaining the actual workings of any given system of sufficient complexity. Knowing that diverse biological processes employ integral feedback without knowing the functional role of the entities involved prevents researchers from being able to understand the most basic effects of intervention into the system. Systems biologists are concerned not only with the possible ways a structure may be realized, but how it is actually realized in a living system. As a consequence, they are aware of how the field is still afflicted with a poverty of data and complications involving the construction of accurate models. They are aware, that is, of how much more work is needed before they possess full-fledged explanations of the phenomena of life.

5 Concluding remarks

I have used cellular regulatory networks as an example to show how the type of model-based reasoning involved in systems biology corresponds to mechanistic strategies. In response to point (1) of the introduction, I claimed that cellular networks are best understood as complex mechanisms that underlie and maintain phenomena. In response to point (2), I argued that this mechanistic view of cellular networks is compatible with the forms of abstraction and holism used to analyze them. And in response to point (3) I argued that it is more plausible to think that this program is guided by mechanistic
explanatory strategies than by an entirely separate kind of explanation. Due to the sheer complexity of the subject matter and the current impossibility of collecting sufficiently precise data, much of the work in the field centers on techniques of adequate modeling. What critics refer to as an alternate form of explanation by design is better understood as a contribution to the analogical and constraint-based reasoning involved in mechanistic schema construction.

Acknowledgements

My sincere thanks to Lindley Darden for offering her time and patience to read, discuss, and reread this paper. I also want to thank Carl Craver for answering questions via video conference, both authors for making available the manuscript of their collaborative effort, and three anonymous reviewers for their informative and insightful comments.

Georgetown University, Department of Philosophy
Box 571133
New North 215
Washington, DC 20057-1133

References

Wimsatt, W. C. [1997]: 'Aggregativity: Reductive Heuristics for Finding Emergence', Philosophy of Science, 64 (Supplement), pp. S372-84.

Figure Captions:

Figure 1: Three mechanism-phenomenon relations

Figure 2: The phosphorelay signaling network governing flagellum activity in E. coli

Figure 3: A block diagram of integral feedback control. \(u \) is the input for a process with gain \(k \). The difference between the actual output \(y_1 \) and the steady-state output \(y_0 \) represents the error, \(y \). Integral control arises through the feedback loop in which the time integral of \(y \), \(x \), is fed back into the system (Yi et al. [2000]).

Figure 4: The phosphorelay signaling network governing flagellum activity in B. subtilis

\[i \] This is the terminology introduced in the 'MDC' variant of mechanistic philosophy (Machamer et al. [2000]). Other authors make use of other terms with slightly different connotations and uses, although all retain the basic dualism between entities and activities. Bechtel and Richardson ([1993]) prefer 'parts and operations,' while Glennan ([1996]) cites 'parts and their interactions.'

\[ii \] For this reason, some authors have voiced concern over the perceived excesses of 'mechanistic imperialism' (Cf. Weiskopf [2011]).

\[iii \] It should be noted that each author varies slightly in their terminology. Only Braillard speaks directly of systems biology. Kuhlmann instead describes 'dynamically complex systems' and Silberstein and Chemero are more directly concerned with systems neuroscience. That said, I believe the substantial similarity in the form of their arguments and the suggestion that one can draw implications for systems biology from them justifies this admitted act of lumping.

\[iv \] I sometimes make reference to 'components' instead of entities and activities. I think of these as discrete, intra-mechanism complexes of entities and activities, although a single entity could also constitute a component.

\[v \] Due to the predominance of the term 'model' in discussions of systems biology, I'll tend to use it instead of Darden and Craver's 'schema'. For my purposes, they are interchangeable.

\[vi \] Research in cellular networks has been spurred by the increased availability of high-throughput data gathering given by measurements such as gene expression profiling, which employs robotics to gauge the expression activity of prepared mRNA samples. Multiple parallel experiments may be carried out at once, yielding very large quantities of data. So much data is produced that curated databases are used to store the results, but it is important to note that difficulties in accuracy attend to this process. Most databases are not designed to account for context-sensitive gene activity; high-throughput analyses often fail to detect rare events or unstable interactions; and the data available for model organisms usually address a small number of cell processes and experimental conditions (De Backer, et al. [2010]). The challenge for researchers is finding an appropriate way to infer the actual network of interactions from data drawn from experiments, mined from databases, and sourced from extant publications.

\[vii \] Bayesian networks are those in which nodes \(X_i \) and \(X_j \), which represent molecules (genes, proteins, metabolomes, etc.), are only connected by an edge if the corresponding molecules’ activities are correlated and, knowing the behavior of all
other relevant molecules and subsets thereof in the system, the behavior of X_i still yields additional information about X_i (Markowetz and Spang [2007]). Formally, the relation of conditional independence (written $X \perp Y \mid Z$) is given when the following evidential probabilities hold: $P(X=x, Y=y \mid Z=z) = P(X=x \mid Z=z) \cdot P(Y=y \mid Z=z)$. Nodes X_i and X_j in Bayesian networks are thus only connected by an edge when their observed activity is correlated and one has:

$$-(X_i \perp X_j) \mid X_k \text{ for all } S \subseteq \{i, j\}$$

where V is the complete set of nodes, S is a subset of nodes, and X_S is the collective activity of this subset. This technique allows for the construction of graphs with directed edges showing determinate pathways of influence.

These determine the DNA binding sites of proteins, providing physical evidence for regulatory relations between a gene and its transcription factors. Moreover, this technique allows for the construction of graphs with directed edges showing determinate pathways of influence.

In this approach the dynamics of the system under perturbation are described using a system of ordinary differential equations, $dx/dt = Ax + u$. While the authors recognize that correlations between networks components are typically non-linear, they reason that a system near a steady-state point is stable enough to be approximated by linear equations. For example, x is an n-dimensional vector, the n components of which stand for the concentration of different mRNA, u is a vector representing an external perturbation, offsetting the concentration of one or more distinct mRNA sequences, A is an $n \times n$ matrix of parameter coefficients that weigh how much the presence of each mRNA depends on the presence of the others. By assuming that the system is perturbed from a steady-state point (so $dx/dt = 0$), researchers can make a series of small determinate perturbations (u), measure the resulting levels of mRNA (x), and solve $Ax = -u$ for A. After data has been gathered from numerous perturbations, multiple linear regression is applied to numerically determine the correlation coefficients relating gene concentrations (A).

Consider Albert ([2007], p. 3336), for whom 'one needs to know (1) the identity of the components that constitute the biological system; (2) the dynamic behavior of these components of these components (i.e., how their abundance or activity changes over time in various conditions); and (3) the interactions among these components'—all of which are basic mechanistic details.

In citing their work, I do not mean to wholly endorse some of Levy and Bechtel's conclusions. In particular, I think there are reasons to be suspicious of the sufficiency of fully general explanations of mechanistic phenomena. As I will attempt to show with the case of Braillard and chemotaxis, explanations relying on general formal principles alone deprive us of the ability to sufficiently explain any particular phenomenon, even in systems biology.

As an addendum to this argument, I'd like to point out that there are several articles that try to show that emergence is compatible with mechanistic philosophy. See (Westerhoff and Kell [2007], p. 58): 'The cases where macromolecules are not separable from their environment would lead to strong emergence. We would here suggest that it will be possible to make all essential properties of living organisms emerge from silicon-cell-type models. This then implies that all functional properties of living systems come from weak emergence. We base this conjecture on the experience that free-energy transduction, gene expression, cell cycling and developmental biology can be generated by such models (cf. www.siliconcell.net)' and (Boogerd et al. [2005]).

These are mainly amino acids, sugars, and oxygen (Porter et al. [2008]).

As should be expected, environmental repellants have the reverse effect.

This happens to work in thermostats because temperature is proportional to the integral of heat.

Where *E. coli* realizes adaptation through the CheA-activating methylation of receptors by CheB and deactivating demethylation by CheR, methylation both activates and deactivates CheA in *B. subtilis* depending on the receptor binding sites that methyl groups are shuffled between—a process that cannot yield robust adaptation on its own.