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Abstract

Supposing that one is already familiar with special relativistic physics, what constitutes
the best route via which to arrive at the architecture of the general theory of relativity?
Although the later Einstein would stress the significance of mathematical and theoretical
principles in answering this question, in this article we follow the lead of the earlier Ein-
stein (circa 1916) and stress instead how one can go a long way to arriving at the general
theory via inductive and empirical principles, without invoking presumptions concerning
the geometrical structure of the final theory. We focus on the construction of the kinemati-
cal structure and the terms describing the coupling of matter to gravity. General covariance,
understood and employed as a straightforward extrapolation of empirical considerations, is
central to our derivation, together with what we dub the ‘Methodological Equivalence Prin-
ciple’. We argue that our approach has a number of virtues, both for one’s understanding
of the general theory of relativity, but also for pedagogy, since it stresses—to the great-
est extent possible (a lesson which we inherit from Bell [1976])—both the methodological
precedence of dynamical considerations to interpretative issues and the theoretical continu-
ity between general relativity and its precursors. We conclude by comparing our approach
to other philosophical approaches to general relativity and discussing the significance of
empirically motivated methodological principles in the philosophy of science.
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1 Introduction
Einstein’s construction of the general theory of relativity is arguably the paradigm case of
successful theorizing in physics: a process whereby persistent application of theoretical
considerations with minimal empirical input leads to an empirically successful and math-
ematically unambiguous completed theory, the structure of which should be regarded as
being exemplary for future theorising. However, almost every single aspect of the method-
ological and theoretical foundations of the theory soon became a matter of serious and
ongoing controversy: the controversial issues included general covariance [Norton, 1993],
the principle of equivalence [Norton, 1985], the status of geometry [Lehmkuhl, 2014], and
the role of Mach’s principle [Barbour and Pfister, 1995]. Nevertheless, what appears to be
far less controversial is that general relativity brought a methodological shift into theoreti-
cal physics, pushing it away from the realm of experience and into that of mathematics and
abstract theorizing. This shift includes an emphasis on (i) mathematically-based patterns of
reasoning, (ii) construction of mathematical structures shaped by conceptions of simplicity
and naturalness, and (iii) non-empirical guiding principles (e.g. general covariance) in the
context of discovery. This shift is often associated with a philosophical acknowledgement
of the role of a priori reasoning in science [Friedman, 1983, Ryckman, 2005]. The early de-
bates on this issue between positivist, neo-Kantian, and conventionalist approaches shaped
in a fundamental way the philosophy of science which was to follow.

In his later reflections, Einstein embraced and promoted the view of there being a radical
shift in methodology which occured during the development of general relativity. In his
Oxford talk of 1933, for instance, he argued that

[t]he scientists [of the eighteenth and nineteenth centuries] were for the most
part convinced that the basic concepts and laws of physics were [...] derivable
by abstraction, i.e. by a logical process, from experiments. It was the general
theory of relativity which showed in a convincing manner the incorrectness of
this view. [...] The axiomatic basis of theoretical physics cannot be an infer-
ence from experience, but must be free invention [...] [E]xperience of course
remains the sole criterion of the serviceability of a mathematical construction
for physics, but the truly creative principle resides in mathematics. [Einstein,
1934, pp. 166–167]

And a year later,
[t]he theory of relativity is a fine example of the fundamental character of the
modern development of theoretical science. The initial hypotheses become
steadily more abstract and remote from experience. [...] The predominantly
inductive methods appropriate to the youth of science are giving place to ten-
tative deduction. [Einstein, 1954a, p. 282].

By ‘inductive methods’, Einstein means the development of physical theories on the ba-
sis of extrapolation from observed empirical regularities—his 1905 formulation of special
relativity, identified later by Einstein [1919] as a ‘principle theory’, would fit this mould.
Indeed, the later Einstein was consistent in his devaluation of inductive reasoning in favor
of mathematical forms of reasoning, and applied this view in his research programs. Ar-
guably for these reasons, he misrepresented his earlier derivations of general relativity [van
Dongen, 2010], which he described in his [1919] as based on “empirically discovered” ele-
ments formulated as principles. In contrast to other views presented by Einstein, including
his portrayal of the individual principles of general relativity as well as the later ideas un-
derlying his unified field program, the view presented in the text above is in harmony with
the views and practice of other prominent contemporary physicists—for example, Weyl,
Eddington, and Dirac—and, furthermore, would become increasingly dominant in the de-
velopment of later physical theories.

The shift in the theoretical physics is often associated with a corresponding shift in
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the philosophy of science. The appeal to the a priori on the one hand, and on the other
hand the gap between the relevant a priori notions and the ones that were familiar from the
Kantian program, presented an epistemic challenge that had a fundamental influence on the
philosophy of science from the 1920s onwards. Accordingly, the different schools offered
competing views on the epistemological foundations of the theory. The neo-Kantian pro-
gram appealed to the newly-introduced notion of the relativized a priori, starting with early
Reichenbach [1921/1965] and Cassirer [1922], leading in turn to more recent accounts of
advance and knowledge in physics [Ryckman, 2005, Friedman, 1983]. A different approach
was taken by later Reichenbach [1924/1969], who aimed to suggest a more rigorous ver-
sion of Einstein’s construction, which, in light of logical positivism, replaced the principles
with axioms allegedly extrapolated from ‘elementary facts’, supported by coordinative (op-
erational) definitions. A more rigorous approach by Ehlers et al. [2012] applied operational
definitions for the various geometrical structures of general relativity, based on trajectories
of freely falling bodies and light rays.

In this paper we highlight a path to general relativity that draws as much as possible
from empirical considerations and from the already established special relativity, thus pro-
viding an alternative to the view that the theory necessarily calls for a radical break in the
methods of physics. Our approach does not fall under any of the philosophical approaches
mentioned above. Instead of aiming to connect the concepts of the new theory directly to
either experience, fundamental principles, or hypotheses, it aims to derive and construct as
much as possible from familiar theories (special relativity in this case). In offering a way
into general relativity that maintains continuity with later as well as earlier theories and
emphasizes the role of experience, we aim to reflect on a methodological question which
precedes the other epistemological and interpretative issues debated in the context of that
theory—but one which can nevertheless shed light on them.

Claims for a radical conceptual break arose already in the case of the special theory of
relativity. John Bell [1976] complained in the opening paragraph of his famous paper on
the theory, “[u]sually it is the discontinuity which is stressed, the radical break with more
primitive notions of space and time”. Bell suggested an alternative reconstruction of the
theory, aiming to “emphasize the continuity with earlier ideas”. While today Bell’s paper
is often identified with a dynamical (rather than geometrical) approach to special relativity,
Bell’s paper in fact does not mention or criticize a geometrical (or ‘Minkowskian’) reading
of the theory. Indeed, Bell distances his claim from interpretational or ontological issues
by emphasizing that “the facts of physics do not oblige us to accept one philosophy rather
than the other. And we need not accept Lorentz’s philosophy to accept a Lorentzian ped-
agogy.” Bell’s point, however, goes beyond the pedagogical message of his title ‘How to
teach special relativity’ (hence our homage in the title of the current article); his paper can
naturally be read as an essay on forms of reasoning and theory construction. Bell identifies
the radical break view with Einstein’s famous style of deriving the theory from hypotheses
(more commonly referred to as postulates or axioms). This reasoning stands in contrast to
the Lorentzian style of the approach presented by Bell, in which the lion’s share of the road
to the theory is straightforwardly paved by familiar preceding theories. While our message
does not depend in any way on Bell’s view of special relativity,1 we follow him in regard-
ing theoretical and methodological continuity as a key to conceptual clarity. Moreover, we
regard the project of revealing the particular ways in which a theory is continuous with
earlier (and later) theories as an important part of the foundational understanding of the
theory, without which the discussion on the relation between the concepts of a theory and

1The tenability of Bell’s approach to special relativity can be questioned, e.g. due to Bradley’s [2021] claim that
Lorentz’s approach does not provide a way to Einstein’s special relativity but rather to a distinct theory. Since the
relation to our claims is merely that of an analogy, such claims do not directly impact the message of the current
paper. Note also that in contrast to Bell, our aim is not to dispel misunderstanding of the theory itself such as the one
demonstrated by his spaceship example, but rather to reflect on the methodological lesson as in the rest of his paper.
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its empirical content, or between a theory and the axioms or hypotheses that give rise to it,
is essentially incomplete.

While it is debatable whether the introduction of general relativity involves a similar
discontinuity in the concepts of space and time, when it comes to the methods of theoret-
ical physics the break appears far more radical than that in special relativity. Riemannian
geometry cannot simply be derived from experience, it seems to many—rather, it must ei-
ther be postulated or derived from postulates that are more far-reaching than those of the
special theory. General covariance, presented by Einstein as a fundamental principle of
the theory, similarly appears as an hypothesis that can be motivated neither by experience
nor by pre-relativistic theories. From a later perspective, though, geometry and invariance
are typically understood as lying at the heart of the methodological shift associated with
general relativity [see, e.g., Yang, 1980]. Thus, elucidating the methodological issues con-
cerning the principles of the theory is essential not only for setting it on secure conceptual
foundations, but also for understanding the interface of formal and empirical considerations
in modern physics.

In this paper we show that special relativity, applied together with empirical consider-
ations, can take us a significant part of the way towards relativistic gravity. We then fur-
ther reflect on the theoretical considerations which are required to complete the derivation.
These considerations, we argue, function as empirically-guided methodological principles,
rather than fundamental hypotheses or axioms. This ‘heuristics-first’ approach permits the
construction of the basic kinematical structure of general relativity together with the terms
describing its coupling to matter, without making puzzling presuppositions regarding the
mathematical form of the theory (and in particular on Riemannian geometry).

Close in several aspects to Einstein’s [1916] early presentation of general relativity,
the presented construction places the theoretical burden on the requirement of general co-
variance applied together with a modified version of the equivalence principle, both moti-
vated and applied as methodological principles. Compared to some formulations of Ein-
stein’s equivalence principle, our ‘Methodological Equivalence Principle’ is presented as
an empirically-motivated theoretical conjecture rather than a direct empirical observation.
Its role is to prescribe a certain way of extending the empirical content of a theory in light
of an invariance requirement supported by local evidence. When applied in the context of
general covariance, the principle yields general relativistic coupling of matter to gravity,
including a metric field and a derived field of the form of the Levi-Civita connection. This
reconstruction turns out to be in close analogy with the introduction of coupling terms to
free field theories using the gauge argument.

The structure of the article is this. In §2, we present briefly the conceptual debates re-
garding the equivalence principle, general covariance, and the role of geometry. In §3, we
aim to examine how much of the general relativistic structure can be recovered by applying
empirical considerations combining special relativity and Einstein’s equivalence principle.
In §4, we show how the approach can be naturally extended as a construction of a physical
explanation of local inertial structure, and construct the geodesic equation. In §5, we gen-
eralize the approach into what we call the ‘Methodological Equivalence Principle’, show
how it leads to general relativistic coupling terms, and discuss additional considerations
that can lead to the field equations. §6 discusses the analogy between this introduction of
gravitational coupling and the gauge argument. Finally, we conclude in §7 by revisiting
the debates on general covariance, the principle of equivalence, and the role of geometry in
general relativity, reflecting on the methodological lesson from the theory, and argue that
empirical considerations supported by minimal theoretical considerations related to dynam-
ics and representation provide a simple path to the theory in a way that is more inductive
(in Einstein’s sense) and tied to experience than is usually thought.
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2 Equivalence, covariance, geometry, and dynamics
In the first part of Einstein’s 1916 first review of general relativity, Einstein presents the
fundamental ideas of the theory, which lead to the conclusion that the components of the
metric tensor have “to be regarded from the physical standpoint as the quantities which
describe the gravitational field in relation to the chosen system of reference” (p. 120). Ein-
stein motivates and justifies this conclusion by appealing to the empirical equivalence of
acceleration and gravity (that is, one version of his equivalence principle) together with
the requirements of general covariance and the local validity of special relativity, alongside
geometrical considerations. Einstein declared that the goal was not to present a rigorous
derivation, but rather to develop the theory in a “psychologically natural” way (p. 118).
The way in which these considerations are related to each other and to the conclusion was
thus not stated explicitly. In this section we aim to review briefly relevant aspects of the
foundational discourse on these considerations and the relation between them.

The development of general relativity started with the observation that “[a]s far as we
know, the physical laws with respect to [a uniformly accelerating system] Σ1 do not differ
from those with respect to [a system at rest in a homogeneous gravitational field] Σ2” [Ein-
stein, 1907, p. 302].2 Einstein’s central motivation here was theoretical, namely to extend
the principle of relativity to frames that accelerate with respect to the inertial frames of the
special theory. Yet, the observation in itself is manifestly empirical, and would later be
described as an observation promoted into a fundamental principle, ‘Einstein’s equivalence
principle’ [Einstein, 1919].

It is important to register that there are a number of different readings of what is be-
ing proposed regarding the connections between gravity and inertia. One such reading is
that gravity is reduced to inertial effects. According to this approach, gravity is merely a
pseudo-force characterizing non-inertial frames. A second option is that inertia is reduced
to gravity. This possibility can be expressed as based on the notion of a gravitational field.
The term ‘gravitational field’ can be identified with one of the mathematical concepts of
the theory such as the metric, connection, or Riemman tensor [Lehmkuhl, 2008], or, as
in Misner et al. [1973, p. 399], to “refer in a vague, collective sort of way to all of these
entities”. A third option is an “egalitarian view” according to which gravity and inertia are
unified symmetrically without reducing one to the other, similar to the unification of elec-
tric and magnetic fields in special relativity. This option may best capture Einstein’s own
views in the period that followed his presentation of general relativity [Lehmkuhl, 2008,
2014, 2021].

The nature of the relation between inertia and gravity therefore characterises different
interpretational approaches towards general relativity. Before elaborating further on this,
however, let us note that in any case, this equivalence is far from sufficient to provide the
basis for a new gravitational theory, as Einstein’s struggles from 1907 to the completion
of the theory in 1915 attest. Uniform acceleration does not have sufficient structure to
account for the richness of gravitational effects. A stronger desideratum that appeared sep-
arately in the 1916 review is the local validity of special relativity, soon to be known as
the ‘strong equivalence principle’. The very validity of the principle in general relativity
became controversial immediately after the publication of the theory, and Einstein refor-
mulated it several times over the course of these dialogues [Norton, 1985].3

What seems to be less controversial, however, is that the equivalence principle, in one
version or another, does have an heuristic value. For Einstein, the primary issue was an
extension of the principle of relativity to accelerating frames. This can be seen in his later

2This observation was presaged in Newton’s Corollary VI: for discussion, see Saunders [2013].
3In the modern debate, the guiding question is whether it is possible to formulate a version of the strong equivalence

principle that would characterize general relativity in a non-trivial manner and from among competing theories, e.g.
those that manifest torsion [Knox, 2013].
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conceptual identification of gravitational effects and the effects of uniform accelerations
(for discussion, see [Lehmkuhl, 2021]), so that one would thereby have constructed a can-
didate theory of gravitation necessarily invariant under all such transformations. Einstein
sometimes presented these transformations as a special case of coordinate transformations,
such that general covariance is a generalization of this idea.

Yet, the generalization from uniformly accelerating frames to arbitrary frames immedi-
ately became the subject of a similar controversy together with Einstein’s conception that
general covariance is a generalization of Lorentz invariance, and should be regarded as a
relativity principle. The early debates on general covariance, beginning with Kretschmann
[1917], were mainly focused on these claims [Norton, 1995]. Unlike Lorentz transforma-
tions, inertial effects render the transition to accelerating frames detectable. Furthermore,
these transformations do not leave invariant the components of (say) the special relativistic
Minkowski metric. These disanalogies make general covariance inherently different from
familiar relativity principles. The generality of general covariance makes it, according to
this criticism, devoid of physical content: a property of a formulation of a theory, not of
its physical content. This seems particularly salient from the geometrical point of view, in
which general covariance is a trivial outcome of expressing a theory using local coordinate-
free variables of differential geometry. General covariance was useful for Einstein, accord-
ing to Norton [1993], simply because these mathematical tools were unavailable for him at
the time. Modern responses to these objections [e.g. Belot, 2011, Earman, 2006a,b, Pitts,
2006, Pooley, 2010, 2015] aim to identify a substantive (as opposed to artificial) notion of
general covariance as a property that characterizes general relativity but not, for example,
generally covariant formulations of special relativity or Newtonian gravity (for a recent
survey, see [Read, 2023b]).

These different views on Einstein’s equivalence principle, the strong equivalence prin-
ciple, and the principle of general covariance, are not independent from the issue of geom-
etry, and more widely from that of an interpretation of general relativity. Understanding
Einstein’s equivalence principle in terms of reduction of gravity to inertia typically leads
to a geometrical outlook, according to which the theory demotes gravity from a force into
an inertial effect, a consequence of spacetime geometry. This view is almost as old as the
theory itself, and constitutes a common textbook presentation of the theory. The view is
one possible interpretive stance towards the theory.4 It is often associated with a geometri-
cal view of special relativity in which the chronogeometrical significance of the Minkowski
metric inherently reflects spacetime geometry.

According to an alternative ‘dynamical’ approach to special and general relativity, the
chronogeometric significance of the metric tensor is not given a priori as part of the theory,
but is rather to be derived [Brown, 2005]. Thus, while in the geometrical approach the
kinematics of the theory are formulated in geometrical terms (and one might, e.g., stipulate
that a metric field appearing in the kinematical possibilities of the theory is to be regarded
as ‘geometry’), in the dynamical approach the kinematics (insofar as one thinks that there
is a clean kinematics/dynamics distinction to begin with) correspond to different configura-
tions of various fields—metric fields, material fields, etc.—not ab initio distinguished from
one another. Geometrical notions then have to be derived from the dynamics, taking the
role of explanandum rather than explanans. Thus, only by dint of dynamical interactions
that determine the readings of, say, rods and clocks does a metric field appearing in the
kinematics inherit a geometrical interpretation [Huggett et al., 2022]. In general relativity,
proponents of the dynamical view often ground the chronogeometric interpretation of the

4Einstein himself, however, took the opposite path, arguing that general relativity demonstrates that geometry, when
applied to ordinary rigid objects, has to be understood as an empirical science rather than an infallible mathematical
construct [Einstein, 1920, 1921]. Later, he criticized the geometrical view more explicitly, reducing the value of
geometrical considerations to useful heuristics: geometrization, he claimed, “is only a kind of crutch for the finding of
numerical laws” (cited by Lehmkuhl [2014], p. 317).
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metric field in the strong equivalence principle, which goes beyond the content of the field
equations of general relativity [see discusstion in Brown, 2005, §9.5.2].

What is of more relevance to our concerns is that the identification of general relativity
with Riemannian geometry reflects on the construction of the theory as well as its under-
standing. Indeed, both tasks become much simpler if ones conjectures fron the start the
applicability of Riemannian geometry! When the principle of general covariance and the
principle of equivalence are criticized as trivial, dispensable, or lacking content, it is usu-
ally from this geometrical point of view. Synge [1960], for example, famously compared
the equivalence principle to a midwife that should be “buried with appropriate honours”
(p. x) now that her duty is done. Here, our primary concern is with the construction of
general relativity, rather than with its interpretation or extension. Our aim is not to make an
interpretative claim or to preclude a geometrical reading of general relativity, but rather to
show that the theory can be constructed without making premature presuppositions about
its geometrical or mathematical architecture. The possible contributions of our results to
the dynamicist’s project are discussed in §7.2.

It is also important to note at this point that there is no necessity to associate a geomet-
rical (or dynamical) understanding of special relativity to a corresponding reading of the
general theory. The relation between gravity and inertia (that determines the interpretation
approach in general relativity) is not necessarily linked to the issue of the chronogeometri-
cal significance of the Minkowski metric of special relativity. In particular, a dynamically-
spirited reading of Einstein’s equivalence principle (namely, any reading that avoids reduc-
ing gravity to inertia) is compatible with either a dynamical or a geometrical reading of the
chronogeometrical significance of the Minkowski metric in special relativity.5

As we have seen, by combining the equivalence principle with general covariance, Ein-
stein was able to make significant progress in arriving at a theory of gravity which held in
all frames of reference. In other words, the above geometrical accounts may be insuffi-
cient to understand the methodological imprint of general relativity on theoretical physics.6

This task requires an account of the heuristic significance of both general covariance and
the equivalence principle. To develop such an account constitutes our central goal in the
sections of this article to come.

3 Empirical paths towards general relativity
In a 1918 letter to Michelle Besso, Einstein tried to relax Besso’s worries that the devel-
opment of general relativity reveals that “speculation allegedly had revealed itself to be
superior to empiricism.” Einstein argues that in fact “no genuinely useful and profound
theory has ever really been found purely speculatively.” In the context of general relativity,
he argues, the equivalence of inertia and gravity is the generalizable empirical fact at the
basis of the theory. Indeed, among the different considerations discussed in the previous
section, Einstein’s equivalence principle is the only one that is clearly and directly linked to
experience. Let us therefore examine the capacity and limits of promoting this observation
into a theoretical principle, that of conceptual unification of gravity and inertia. Suppose
that one embraces this principle. Suppose further that one has an antecedent commitment to
special relativity, understood as the claim that all physics should be conditioned so as to be
invariant under Lorentz boosts.7 How far could one proceed with these two commitments

5A geometrical interpretation of the Minkowski metric could naturally be generalized into a geometrical reading
of the metric tensor of general relativity (cf. footnote 18), but this is not a logical necessity. For example, one could
regard the symmetries of non-gravitational laws as determined by local spacetime geometry while at the same time
consider this local geometry as determined and explained by the gravitational field.

6Cf. Giovanelli [2021, pp. 4–5]
7One may hold such a commitment on the basis of (i) the discovery of electromagnetism and (ii) null results of

experiments such as that of Michelson and Morley—i.e., on the basis of the reasons which Einstein adduced in 1905
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alone?
As is well-known (see e.g. Brown and Read, 2016 for recent discussion), it follows from

a commitment to the Einstein equivalence principle that rest frames of observers stationary
on the surface of the Earth are not inertial frames of reference—i.e., frames of reference in
which the laws of physics simplify maximally.8 The reason for this is that, in the freely-
falling frames (i.e., the frames co-moving with freely falling observers), it is no longer the
case that gravitational effects are simply cancelled by inertial effects (this being the account
given in theories such as Newtonian gravity).9 Rather, in such frames there simply are no
unified gravito-inertial effects (to take here Einstein’s unified understanding of the equiv-
alence principle discussed above), whereas in the rest frames of observers on the Earth’s
surface, there (of course) are gravitational effects. As a consequence, having embraced
Einstein’s equivalence principle, it is the freely falling frames which are the inertial frames.

So, in our hypothetical scenario, an observer situated on the surface of the Earth believes
that (a) causal structure is relativistic—i.e., that of Minkowski spacetime, and (b) they
are situated in a uniformly accelerating frame. Combining these two commitments, our
observer believes that their rest frame is a Rindler frame—these indeed being the uniformly
accelerating frames of special relativity. For a proper acceleration α in the positive vertical
direction (treated as the component to be denoted by ρ), the line element, written in Rindler
coordinates, reads (here, κ := α/c2)

ds2 =− 1
κ2 dτ

2 +
1

κ4 dρ
2 +dy2 +dz2; (1)

by contrast, for a freely falling observer, the line element will take the familiar form

ds2 =−c2dt2 +dx2 +dy2 +dz2. (2)

(At this point, in the manner of [Einstein, 1905], one can maintain an operational under-
standing of the coordinates in both of these frames—i.e., one can maintain that coordinate
intervals correspond to the readings of idealised rigid rods and clocks in each frame.) In
Rindler coordinates, the components Γ

µ

νσ of the Levi-Civita connection do not vanish;
rather, they take the form10 [Müller and Grave, 2014, p. 17]

Γ
ρ

ττ =−κ, Γ
τ

τρ =− 1
κ
, Γ

ρ

ρρ =− 2
κ

; (3)

all other components vanish.
Note that while above we have used the familiar geometric language of the line element

and the connection, in fact all we are doing here is special relativity in an accelerating frame
(Einstein equivalence principle aside). A parallel path can be taken in a more dynamical
spirit by setting off from the equations of motion of a free particle. Defining the velocity
vector of a test body as uµ := dxµ

dλ
, where λ is the proper time parameter along the particle’s

worldline, in freely-falling coordinates the equations of motion are

duµ

dλ
= 0, (4)

whereas in Rindler coordinates we have

duµ

dλ
−Γ

µ

αβ
uα uβ = 0, (5)

for special relativity understood in this manner in the actual world.
8For more on the definition of inertial frames of reference, see Knox [2013].
9Here, we idealise to a uniform gravitational field—i.e, ignore tidal effects in the gravitational field of the Earth.

10Below, τ , ρ do not denote free indices, but rather denote the τ-component (i.e., 0-component) and ρ-component
(i.e., 1-component) in the salient index.
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where connection coefficients are as in (3). Of course, at this point, we have merely used
special relativity to rewrite our physics in an accelerating frame—though nota bene: do-
ing so is still sufficient to explain certain effects (e.g., the results of gravitational redshift
Pound-Rebka experiments) without appeal to more sophisticated notions such as spacetime
curvature: on this, see [Brown and Read, 2016].

How to move beyond the case of a uniform gravitational field? Consider now another
observer, situated at some other point on the surface of the Earth. By parity of reasoning,
their rest frame is also (given the Einstein equivalence principle) a non-inertial frame, so
they can explain observed effects (equivalently) in terms of the influence of a gravitational
field. But now, since we know (let us assume on the basis of other experiments and opera-
tional procedures) that these observers are situated at different points on the Earth’s surface,
we know that said gravitational field must be non-uniform, and accordingly, inertial struc-
ture is local. In other words, one would generalise the coefficients in (3) to be functions of
space and time. Note that we have arrived at this conclusion using solely special relativity
and the Einstein equivalence principle; moreover, note that one could arrive at this result
without any background knowledge of (say) Newtonian gravitation theory.11

4 Empirical considerations meet mathematical rep-
resentations
The empirical considerations presented in the previous section take us a step forward in
the journey from special relativity into the general theory. We move now to ask: what
minimal theoretical considerations must be added to these empirical considerations in order
to proceed further towards general relativity?

Let us examine the above considerations in more detail. (5) can be understood as man-
ifesting any of the possible relations between inertia and gravity presented in §2. If Ein-
stein’s equivalence principle is taken to imply the reduction of gravity to inertia, then the
step taken in the previous section can be regarded as transforming the law of inertia from an
inertial (freely falling) frame, into a non-inertial frame, to explain the outcomes of experi-
ments in the observer’s frame due to a ‘gravitational’ pseudo-force. The field interpretation
would regard the connection coefficients as a manifestation of a gravitational field that cre-
ates deviation from pure inertial motion. In the egalitarian understanding, the two terms
stand for a frame-dependent division of the unified phenomena into gravitational and in-
ertial. In other words, different vertically-accelerating observers describe the same local
phenomena using (5) with different values of κ , thus manifesting different ‘mixtures’ of
inertia and gravity in their description (cf. Lehmkuhl [2014], §4).

One way to understand the content of (5) (together with the corresponding transfor-
mation law between different accelerating frames) is therefore as a determination of the
local inertial frames by a physical object (such as a field) whose frame dependent repre-
sentation is given by the Γ coefficients. This understanding coheres well with the field and
egalitarian approaches (although possibly not necessarily with the geometrical reading of
the equivalence principle, according to which inertia is a primitive notion).12 According to
this understanding, (5) is not merely providing a description for observed phenomena in the
given frame which happens to be occupied by human observers; rather, it also explains why
certain observers are inertial rather then others from among those that correspond to dif-
ferent accelerating observers. This line of reasoning regards the preferred ‘inertial’ frames

11For further discussion of these issues, see [Fankhauser and Read, 2023].
12 Note that while our suggestion to understand (5) as describing the local determination of inertial frames (and its

extension below) seems potentially to be in tension with a geometrical reading of Einstein’s equivalence principle, it
does not necessarily conflict with a geometrical understanding of the Minkowski metric in special relativity.
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as an explanandum, a semi-empirical concept that needs to be determined by the physical
content of the theory.13

To take up this point, let us note that the role of frames can most broadly be understood
in this context as references with respect to which coordinates are assigned to events in
spacetime. Thus, explaining the special status of the inertial frames amounts to seeking an
explanation as to why some coordinatizations of spacetime lead to simpler formulation of
the laws than others. At this point, one clearly steps further beyond strict observational con-
siderations. The concept of ‘inertia’ is conceived here not in terms of its empirical content,
but rather in terms of its mathematical representation in special relativity. It is an explanan-
dum that has one foot in the theoretical structure (inertial coordinates), and the other one
in experience (telling us that the theory is successful, and also which particular frames are
the inertial ones). The considerations presented in the previous section suggest that iner-
tia is physically determined. Now we aim to show how it is determined as a property of
certain coordinatizations, not of particular observers. Thus, while arbitrary coordinate sys-
tems are related to the requirement for general covariance, in our construction we move
to the space of arbitrary coordinate systems only to identify within it the familiar inertial
coordinatizations.

The mathematical concept that can describe the physical determination of the set of
local inertial frames can be constructed in the following way. To illustrate, begin with the
Lagrangian describing the motion of a test particle in an inertial frame of reference:14

L = ηαβ

dxα

dλ

dxβ

dλ
=: ηαβ uα uβ . (6)

In arbitrary curvilinear coordinates, the same Lagrangian takes the form

L = ωµν

dξ µ

dλ

dξ ν

dλ
, (7)

with

ωµν := ηαβ

∂xα

∂ξ µ

∂xβ

∂ξ ν
. (8)

This simple mathematical transformation makes it easy to see that a physical object that
defines a local set of inertial frames can be described by a field gµν for which the values of
the components transform tensorially under coordinate transformation (namely, according
to the same transformation law that turns ηµν into ωµν ), and its possible local values are
the possible values of ωµν defined in (8). Once ηµν is replaced with this new field gµν , the
Lagrangian becomes

L = gµν

dxµ

dλ

dxν

dλ
. (9)

This form guarantees that in any spacetime region which is sufficiently small (such that
changes in gµν can be neglected), it would be possible to assign local coordinates xµ in
which the dynamics of free particles would be described by (6).

Notably, the field gµν has basic mathematical properties necessary to be interpreted as
a metric (in particular, the requirement that there exist a coordinate transformation xα →
ξ µ such that locally gµν = ωµν := ηαβ

∂xα

∂ξ µ

∂xβ

∂ξ ν together with Sylvester’s law of inertia
guarantee the correct signature).

13 A reasonable worry at this point is that the notion of an inertial frame is not given to us in any straightforward
unambiguous way, instead it is theoretically laden; moreover, what counts as an inertial frame might be fixed a priori,
or as a matter of convention. This is a well-debated aspect of the relation between special and general relativity. We
revisit these worries in §7.1.

14The reasons for our choice of Lagrangian formalism will be clarified further in §6.
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The replacement of ηµν with gµν has thus achieved three goals: first, the theory is
now generally covariant. Second, it now has additional physical content. Third, the new
physical content explains the non-invariance of the original local theory given by (6).

The equation of motion for uµ := dxµ/dλ is the usual geodesic equation with the Levi-
Civita connection. This follows from the Euler-Lagrange equation d

dλ

∂L
∂uµ − ∂L

∂xµ = 0 with
the Lagrangian (9) via use of the chain rule:

d
dλ

uσ − 1
2

gσα

(
∂

∂xµ
gαν +

∂

∂xν
gνα −

∂

∂xα
gµν

)
uµ uν =:

d
dλ

uσ −Γ
σ

µα
uµ uν

= 0. (10)

The procedure described above sets off from the aim to explain the existence of these
preferred inertial frames. An important point has to be made regarding the locality of
this explanation, which characterizes first and foremost the evidence. Local evidence for
special relativity (e.g., experiements performed in particle accelerators) does not directly
support the global validity of the theory with a universally fixed ηµν . This kind of evidence
can just as well suggest that the explanation should be local. This notion of locality does
not take the form of an a priori constraint and not even that of a theoretical virtue; it
simply reflects the fact that the existing evidence supporting the preferred inertial frames is
evidence collected locally. Even a single observer can make this observation (of course, two
distant observers comparing their findings can note directly that the set of inertial frames
in different spacetime points are not trivially related to each other). The introduction of
degrees of freedom that determine inertial structure locally, as described above, is natural
given the local nature of the evidence for the special theory. We turn now to showing that
the considerations described here can be applied as a general theoretical method, a version
of the equivalence principle.

5 The midwife resurrected; general covariance re-
habilitated
Famously, reflecting on the development of the general theory of relativity, Einstein de-
scribed the observation that led to the formulation of his equivalence principle as “the hap-
piest thought of my life” [Einstein, 1920, p. 136]. This is an empirical observation: an
equivalence between an observer in a free fall and an observer in zero gravity. Later in the
paper, however, Einstein notes that the observation can be turned on its head and used as a
theoretical principle:

If we know the laws of nature with respect to a (gravitation-free) system K,
then we can by mere transformation learn the laws relative to [a uniformly
accelerated coordinate system] K′, i.e., we learn about the physical properties
of a gravitational field by means of a purely speculative method. (p. 137)

This is a remarkable speculation: the mathematical transformation of the representation of a
physical situation from one coordinate system to another informs us about the properties of
a physical field—one that was absent in the original situation! This speculative terminology
can be epistemologically worrisome (cf. Einstein’s use of the term in the letter to Besso
quoted on the beginning of §3). These worries may be somewhat eased if the speculative
method is understood as a suggested heuristic. In this section we aim to show how such an
heuristic can be justified in light of the previous sections, and to spell it out in a clear and
generalizable way. This attempt can be motivated beyond understanding general relativity:
if Einstein’s equivalence principle has any value for the purpose of unification it is in this
speculative form, that does not depend on pre-existing knowledge of the interaction that
originates in macroscopic phenomena (and has no parallel in the case of the nuclear forces,
for example).
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This way of applying the equivalence principle sets off from insisting on the equiv-
alence of the descriptions of events given in two frames that uniformly accelerate with
respect to each other. These events may involve non-gravitational forces. The appearance
of pseudo-forces in the dynamical law that corresponds to certain frames seems to break
the equivalence. The insistence on restoring it gives rise to the speculation of an additional
force whose magnitude is proportional to the inertial mass. Thus, the equivalence of iner-
tial and gravitational mass, and possibly the very existence of the gravitational interaction,
is derived from the invariance requirement, rather than known in advance from experience.
This argument would lead one to expect new phenomena, such as gravitational time dilation
and bending of light-rays due to the gravitational field. (Needless to say, in this reasoning
these phenomena remain speculations until observed.)

This sense of the equivalence principle goes beyond unifying gravity and inertia: the
emphasis is theoretical, as a conjecture that expands the theory in a certain way that would
guarantee invariance under the given transformation. This form of theoretical conjecture
brings to mind the gauge argument, which similarly introduces an interaction based on an
invariance requirement. Such an account of the gauge argument was given for example
by Hetzroni [2021], with the aim of emphasizing the physical nature of the conjecture,
above and beyond the mathematical notion of invariance. The account is described by
Hetzroni [2020] as a generalized equivalence principle. According to this principle, newly-
conjectured interaction terms are added in the place of terms that break the invariance of
the dynamics under a change of mathematical representation. In this way, an invariant law
describing the interaction is constructed based on the non-invariance of the interaction-free
dynamics.15 A formulation that works in the more abstract case of gauge symmetries may
just as well work with coordinate transformations, and allow us to apply Einstein’s “spec-
ulative method” in the case of general covariance. This generalized equivalence principle
can be given a more careful formulation as a methodological principle in the following
way:16

Methodological Equivalence Principle: Given a non-invariant dynamical law
in the sense that its form simplifies maximally in a given preferred class of
representations but involves modified/additional expressions in arbitrary rep-
resentations, construct an invariant law by replacing the modified/additional
expressions with new dynamical fields, whose set of possible local values is
identical to that of the modified/additional expressions, and which manifest the
same representation-to-representation transformation properties.

Our aim now is to show that (1) this method can easily be generalized to the case of
coordinate transformations, and that (2), this generalization is the exact manifestation of
the simple considerations described in the previous section, concerning the generalization
of local evidence about preferred representations.

Consider, then, an arbitrary curvilinear coordinate transformation applied to the La-
grangian of a Klein-Gordon scalar field:

L =
1
2

[
η

αβ
∂α φ∂β φ −m2

φ
2
]

=
1
2

[
η

αβ

(
∂ξ µ

∂xα

∂φ

∂ξ µ

)(
∂ξ ν

∂xβ

∂φ

∂ξ ν

)
−m2

φ

]
=

1
2

[
ω

µν ∂φ

∂ξ µ

∂φ

∂ξ ν
−m2

φ

]
,

(11)

15See also Hetzroni and Stemeroff [2023] for a discussion of the analogy between the interactions.
16In reaction to this formulation of the Methodological Equivalence Principle, and following the lead of

e.g. [Fletcher, 2020, Fletcher and Weatherall, 2023a,b, Weatherall, 2020], one might worry about the invocation of
the notion of ‘simplicity’ of equations. We address this issue in §7.1.
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with

ω
µν := η

αβ ∂ξ µ

∂xα

∂ξ ν

∂xβ
. (12)

(Note that this ωµν is the inverse of the ωµν appearing in (8).) Applying the Methodolog-
ical Equivalence Principle by now replacing ωµν with gµν , one obtains the Lagrangian

L =
1
2

[
gαβ

∂α φ∂β φ −m2
φ

2
]
. (13)

Thus, one is once again led to a generally covariant action featuring a new field gµν .
Up to this point, the gµν field introduced is a fixed object. In order to provide a gen-

uinely physical explanation for the appearance of inertial frames, the field also has to be
contingent—it should be conceived as a dynamical variable, one which is influenced by
other fields and afforded its own dynamics (see below).17

Now, varying to obtain the Euler-Lagrange equation yields:

−m2
φ =

(
∂λ gλν

)
∂φ

∂xν
+gλν ∂φ

∂xλ ∂xν

= gλσ
Γ

ν

λσ

∂φ

∂xν
+gλν ∂φ

∂xλ ∂xν

= gλν
φ;νλ .

(14)

In the final two transitions we have used the definition of the Levi-Civita connection and
the semicolon derivative to obtain the standard form of Klein-Gordon equation in curved
spacetime.

In the construction of the geodesic equation in §4 and the above construction of the
Klein-Gordon equation with general relativistic gravitational coupling, no assumptions
have been made about the geometric structure of the resulting theory. The field gµν was in-
troduced in this derivation as a field that restores invariance while at the same time explain-
ing local inertial effects. Similarly, the coupling prescription at which we arrive does not
presume the replacement of coordinate derivatives with covariant derivatives: the covariant
derivative in (14) is derived, rather than presupposed. Once the gµν field and the coupling
has been introduced into the theory, anyone familiar with Riemannian geometry can inter-
pret the new concepts as a metric field and a covariant derivative featuring the Levi-Civita
connection. The important point from an heuristic point of view is that it is not necessary
to presuppose these geometrical notions in advance in order to construct these significant
aspects of general relativity. Whether or not to adopt a geometrical understanding of the
resulting theory is now a matter of various considerations not related to the indispensability
of a geometrical perspective for the construction of the theory.18

The physical content of general covariance is therefore revealed not as a formal re-
quirement, but rather as an heuristic one, which gains its significance only when applied
together with the Methodological Equivalence Principle. This leads to a general relativistic
kinematics (i.e., a gµν field with the correct signature and transformation properties), and
also to the correct general relativistic coupling prescription.

Although the construction of the kinematic structure and coupling terms are the basis
for our discussion in §6 and §7, it is worth dedicating a short side note to the possible ways
in which to construct the field equations that would render the theory complete. There
are many ways in which one might select a suitable dynamics, and indeed such dynamical

17Making this move can be motivated by further physical principles, for example Einstein’s ‘action-reaction princi-
ple’ [on which see Brown and Lehmkuhl, 2016].

18That said, if one takes a geometrical stance towards the Minkowski metric of special relativity, and then proceeds
to general relativity via the kinds of heuristics discussed in this article, then that might naturally in turn invite a
geometrical stance towards the generalisation of the Minkowski metric so obtained—i.e., to the metric field gµν of
general relativity. This, however, is not the only interpretational possibility; see footnote 5.
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choices might be guided and constrained via other reasoning.19 Such considerations are
often implied at the level of the action. One example of such a path leading to the Einstein
field equations is based on Lovelock’s theorem [1971, 1972], which states that from a local
action which contains at most second derivatives of gµν , the only possible Euler-Lagrange
equations of motion are the Einstein field equations. As for another example, one could
take an effective field theory approach, considering all possible dynamical couplings in a
Lagrangian describing local fields, and then identifying those terms relevant at a certain
energy scale. Explicitly, one writes down an action of the form

S =
∫

d4x
√

g
(

1
16πG

R+ c1R2 + c2Rµν Rµν + . . .+Lmatter

)
, (15)

before arguing that higher-order terms (i.e., those with coefficients c1,c2, . . .) are irrelevant
at low energies (see Donoghue [1994, 1995]). In this way, one can pick out the dynamical
structure of general relativity (i.e., the Einstein equations) as the first-order result in an infi-
nite energy expansion.20 Note that in contrast to our introduction of the general-relativistic
coupling terms, the above considerations do appeal to locality as a theoretical virtue. Relax-
ing this constraint can lead to additional nonlocal terms [e.g., Deser and Woodard, 2007].
Our suggested route into relativistic gravity therefore presents the theory as a chief possi-
bility from among many possibilities, that is distinguished from them primarily based on
certain theoretical virtues.

Does the Methodological Equivalence Principle deserve to be called an equivalence
principle? In its straightforward minimalist formulation given above, it might seem like an
unmotivated mathematical guess. In fact, however, the logic of the previous sections aims
to show how it introduces exactly the field degrees of freedom that can identify dynami-
cally a local class of preferred (i.e. inertial) coordinatizations from among all possible ones
(more precisely, from among all those connected by a local coordinate transformation).
In other words, the Methodological Equivalence Principle justifies its name as it under-
writes the approximate validity of the strong equivalence principle; special relativity—the
interaction-free theory in this case—is locally valid as long as the new gµν field is approx-
imately constant in a region. When this is the case, one can identify a preferred class of
coordinate systems (related by Poincaré transformations, in virtue of the spacetime symme-
try of the interaction-free Lagrangian) in which physical laws recover their familiar special
relativistic forms within that region. We revisit in §7 the issue of the relation between this
principle and familiar formulations of the equivalence principle.

6 The heuristics of unification
The attempt to draw lessons from the success of general relativity was intertwined from
the beginning with ambitions of unification. The most famous early attempts at unification
consisted in classical ‘unified field theories’ such as the ones developed by Weyl [1918] (in
that article, Weyl first introduced the terminology of ‘gauge’) and Einstein [1925, 1928a,b,
1931], alongside the Kaluza-Klein theory. Development of these ideas in a quantum context
led, inter alia, to the first formulation of the modern gauge principle by Weyl [1929a,b],
describing the coupling of spinors to electromagnetism and gravity using one principle
presented using a geometric and group-theoretic emphasis.21

19For one famous catalogue of six different derivations of the dynamics of general relativity, see [Misner et al.,
1973, ch. 17]; for a recent historical account of how Einstein himself found his field equations—a derivation which
invoked both energy conservation and the Newtonian limit—see [Janssen and Renn, 2022].

20Allowed terms in (15) are constrained by invariance under what are regarded as being the relevant symmetries—in
this case, diffeomorphisms. Note that in (15) we have omitted the cosmological constant term.

21See [O’Raifeartaigh, 1997] for the original papers and a detailed account of these developments.
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The view that general relativity is the progenitor of a unification program based on
formal and geometrical considerations is also a dominant theme in many later reflections.
This view is most clearly expressed by Yang [1980], who identifies its starting point with
the generalization from Lorentz transformations to general covariance. The relation of
general covariance to gauge transformations, however, is a non-trivial matter that remains
open—as does the more general question of the applicability of the concept of gauge to
gravity (for more recent discussions see Wallace [2015], Weatherall [2016].)

In this section, we aim to show how the Methodological Equivalence Principle provides
another angle on this issue, demonstrating that the gravitational coupling terms can be intro-
duced into a gravitation-free special relativistic settings using heuristics that are analogous
to those of the gauge argument. It is not the aim of this paper to reflect on whether and
how this understanding can contribute to the unification program, but rather to present the
analogy.

Just like general covariance, the requirement for the invariance of the Lagrangian un-
der gauge transformations can be regarded by itself as constraining the formalism, not the
physical content. Gauge invariance can be achieved without changing the content of a
theory simply by replacing derivatives with gauge covariant derivatives that include a flat
connection. The Methodological Equivalence Principle can easily be seen as the additional
ingredient that turns the violation of the invariance requirement into a coupling prescrip-
tion. Below, we present the analogy. We then turn to show that in both cases, the argument
is based neither on mathematical necessity nor on purely mathematical guesswork. In-
stead, it is a generalization of local empirical evidence, and considerations that relate to the
mathematical representation of the state and the dynamics.

Consider the standard gauge argument in the context of Yang-Mills theory. The start-
ing point is two non-interacting spinor fields of equal mass described by the equations of
motion

2

∑
a=1

(
iγµ

∂µ ψa−mψa
)
= 0. (16)

At this point the Yang-Mills field Bµ is commonly introduced in order to obtain covariance
under local SU(2) transformations. These transformations were presented by Yang and
Mills [1954] as a change in the local convention which apply the labels ‘1’ and ‘2’ (“what
to call a proton, what a neutron” in their terminology, p. 192) to describe the two fields. Let
us examine this procedure in further detail. Our starting point is the observation that these
equations of motion are valid in this form only in certain isospin conventions. An arbitrary
change in the local isospin convention is represented by a coordinate dependent unitary
matrix S b

a (x) that belongs to the relevant representation of the SU(2) group, and can be ex-
pressed using Lie algebra: S b

a (x) = e−iTjβ j . Under this transformation the numerical values
representing the spinor fields transform according to ψa→ψ ′a = (S−1) b

a ψb (spacetime de-
pendence implicit). This transformation is not a symmetry due to the non-covariance of the
derivative, which in the new isospin convention is written as

∂µ ψa = ∂µ

(
S b

a ψ
′
b

)
= S b

a ∂µ ψ
′
b +(∂µ S b

a )ψ ′b

= S
(

∂µ ψ
′
b−S−1i(Tj∂µ β j)S

)
ψ
′
b.

(17)

Therefore, the form of the equations of motion in the new isospsin convention is

2

∑
a=1

iγµ
(

∂µ ψ
′
b− iS−1(Tj∂µ β j)Sψ

′
b

)
ψ
′
a−mψ

′
a = 0. (18)

The standard gauge argument achieves invariance by introducing a compensating field
Bµ whose transformation law yields a term that cancels out the one that emerges from the
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derivative. The original derivative and the compensating field are united to form the gauge
covariant derivative

Dµ ψb = ∂µ ψb− iεBµ ψb. (19)

The field can be written explicitly as B b
µa , a connection over the SU(2) principal bundle.

The Methodological Equivalence Principle applied in this context would lead to the
same result, although in a slightly different way. According to the principle, we have to
regard the covariance-violating term (i.e., the term S−1i(Tj∂µ β j)S in (17)) by itself as in-
dicating the required change in the dynamical law. The way to achieve covariance is by
introducing into the original equation a term iεB b

µa ψ with the same index structure, set of
possible local values, and transformation law.

The main difference between the standard gauge argument and an invariance imposed
by applying the Methodological Equivalence Principle is that in the latter case we are not
committed to the additive structure of the compensating field. §5 shows that the metric sim-
ilarly restores invariance when it is introduced as a field that multiplies existing terms. In
both cases, the new theory has additional empirical content for two reasons. First, the space
of global field configurations is larger than the space of mathematical functions that are in-
troduced to restore invariance: the possible values of the term involved in the mathematical
transformation are the local values of the introduced field, but the set of global transforma-
tions could be isomorphic to a mere subset of the set of field configurations. The second
reason has to do with the identification of the new term as a dynamical field, accompanied
by an introduction of a term that governs its dynamics into the Lagrangian.

Both cases also share a notion of locality, which is not imposed but is rather an iden-
tified characterization of the evidence for the interaction-free theory. The applicability of
inertial frames for the description of non-gravitational forces is perceived, in accordance
with existing evidence, as a local matter, and therefore explained as such. The applicability
of a preferred isospin convention is similarly explained as a local matter, determined by
the local values of a conjectured bosonic field (that depends contingently by itself on its
interaction with fermionic matter fields).

7 Foundational reflections
Having now motivated and presented the Methodological Equivalence Principle, we turn
in this section to considering some of its foundational upshots. In §7.1, we discuss the
construction of general relativity, the role of the Methodological Equivalence Principle in
said construction, and the relation of that principle to the strong equivalence principle. In
§7.2, we explain how our approach contributes to a ‘dynamical’ understanding of general
relativity. In §7.3, we compare our approach with other means of constructing general
relativity. In §7.4 we revisit the wider methodological and epistemological lesson from the
theory.

7.1 From special to general relativity: the role of inertial frames
Einstein’s [1905] appeal to the relativity principle in his development of the special theory
of relativity tied the empirical content of the theory as well as its explanatory capacities to
the notion of (what was for Einstein) an operationally-identified inertial coordinate system.
This notion was born in the late 19th century attempts to replace Newtonian absolute space
with an operationally-identified concept based on experience. Lange [2014], for example,
defined in 1885 an inertial coordinate system using the (non-coplanar) trajectories of three
free particles simultaneously projected from a single point. In this way, inertial structure is
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defined on the basis of observable properties.22

Having (supposedly) identified operationally the inertial frames of special relativity in
this way, the construction of general relativity was then presented by Einstein as being
based upon the principle (later to be known as the ‘strong equivalence principle’) stating
that “[f]or infinitely small four-dimensional regions the theory of relativity in the restricted
sense is appropriate, if the co-ordinates are suitably chosen” [Einstein, 1916, p. 154]. There
are several problems with this approach. First, its motivation as a general principle may be
unclear. Second, it is quite difficult to define the local validity of special relativity in a valid
yet helpful way.23 Third, even if we accept the requirement, it does not lead to general
relativity (or to Riemannian geometry) in any straightforward way.24

The answer given here involves somewhat of a gestalt switch. Rather than seek to ad-
dress the above issues regarding the strong equivalence principle from within the completed
framework of general relativity (where we can agree the above issues constitute legitimate
concerns25), we rather consider this principle from the point of view of the heuristics of
theory construction. Then, the local (rather than global) validity of special relativity is first
and foremost the appropriate conclusion from the evidence supporting special relativity,
that boils down to localized experiments. Furthermore, the global invalidity of special the-
ory is demonstrated in observations at large scale such as cosmological redshift. Further
motivation comes from the identification of inertial frames with the freely falling ones, that
follows from Einstein’s equivalence principle. Note that our desideratum is weaker than
most accounts of the local validity of special relativity: we would like to obtain a theory
in which all special relativistic models are incorporated (approximately) as local models,
but do not initially require that all of the local models of the new theory would be initially
special relativistic.

This understanding of the local validity of special relativity as a statement about the em-
pirical content of future theories, rather than as something to be derived from the formalism
of those theories, gives rise to a methodological reconceptualization both of the principle of
general covariance and of the equivalence principle, as means of achieving this local valid-
ity. Neither of these principle acts as a formal constraint in the construction. Instead, they
are employed together in order to introduce the field that would render a particular set of
coordinatizations as inertial within the set of all possible coordinatizations. This guarantees
that in small regions of spacetime the equations of motion of matter will have their famil-
iar special relativistic form to the extent that derivatives of the field gµν can be neglected.
Thus, the introduction of the metric field using the Methodological Equivalence Principle
amounts to introducing a minimal physical structure that accounts for this local validity.

With a bit of imagination, this suggested methodology can be read as an alternative
history—as a possible path which Einstein himself could have followed in constructing
and presenting his theory (arguably, a path not completely detached from some central
ideas that served Einstein). In this case, one could speculate, the gauge argument might
have been later suggested by direct analogy to Einstein’s methodology, without the need
for the mediation of Weyl’s [1918] geometrical approach. Notably, this alternative history
is antipodal to that presented by Stachel [2007], concerning the move from Newtonian
gravitation theory to Newton-Cartan theory (the latter—like general relativity—being set
on a manifold with curvature: see [Malament, 2012, ch. 4]). In brief, Stachel argues that
had Newton known of the differential geometry of curved manifolds, he may have been able
to arrive at the structure of Newton-Cartan theory. This strikes us as correct—however, it

22See [Barbour, 2001, ch. 12] for a review of attempts to identify operationally the notion of an inertial frame, and
[Read, 2023a, ch. 1] for related discussion.

23For recent discussions on all these issues, see [Fletcher, 2020, Fletcher and Weatherall, 2023a,b, Linnemann et al.,
2023, Read et al., 2018, Weatherall, 2020].

24See Torretti’s [1983, p. 241] criticism of Reichenbach.
25See footnote 16, as well as related discussion below.
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is clearly a very different point from that which we seek to make in this article, which aims
to draw as much as possible from empirical and dynamical considerations. These can yield
as an output a theory (in our case, general relativity) that can be read in terms of curved
spacetime geometry. In this sense, we do not presuppose an enriched stock of geometrical
resources à la Stachel.26

There may be an additional and deeper methodological lesson to be learned here. The
methodology suggested here involves the assumption that the existence of inertial frames
is an explanandum: the existence of these frames has to be accounted for in terms of un-
derlying contingent physical structure. Inertial frames, it has been mentioned above, are
sometimes (following inter alios Einstein) taken to have an operational definition. How-
ever, the construction of the theory does not appeal to this operational definition, but rather
to a functional characterization of inertial frames as a theoretical concept, namely inertial
frames are those in which the form of the laws simplifies maximally.

This characterization seems to echo inertial-frame functionalism, recently presented by
Knox [2019] as a theoretically-informed approach in the philosophy of spacetime, and it-
self a variant of a more general approach of spacetime functionalism. Lam and Wüthrich
[2021] have recently argued in the context of quantum gravity that spacetime functionalism
has to be regarded in this project as an indispensable part of theory construction. The situa-
tion, they further argue, is different in general relativity, in which spacetime functionalism
is merely one among several interpretational approaches. Our results show that in fact, the
construction of general relativity can provide an exemplar for functionalist-spirited consid-
erations in theory construction. The recipe that can be read from our construction consists
of an identification of a theoretical concept (in our case the inertial frames), functional
characterization of the concept based on its role in the theory (fixing the simple form of the
laws; universality—see [Knox, 2013]), and then a construction of the minimalist physical,
contingent realizer. In contrast to the conjectured role of functionalism in some quantum
gravity theories, our recipe focuses on the functionalized concept, rather than on the real-
izer, and applies the mathematical considerations mainly in the scope of the theory that is
already well-established (special relativity). This allows the new theoretical concept gµν to
have unambiguous coordination with observation inherited from the operational characteri-
zation of the Minkowski metric.27 Operational definitions of theorerical concepts therefore
appear as a useful first step in theory construction, but incomplete without support by func-
tional characterization.28

Finally, the notion of inertial frames that turns out to be useful in our construction is
not only theory-laden, but also seem to depend on the choice of a particular formulation:
coordinate representation of the dynamics of non-gravitational processes. However, this
choice—one might worry [Fletcher, 2020, Fletcher and Weatherall, 2023b]—is problemat-
ically ‘syntactic’; its meaning is lost in a coordinate-free formulation, and it has no imme-

26Vis-à-vis the move to Newton-Cartan theory: we claim that an alternative to Stachel’s alternative history would
be one in which Newton invoked the Methodological Equivalence Principle; we will, however, leave fleshing out the
details here for another day. Cf. [Read and Teh, 2022].

27As in our account, Knox’s notion of ‘inertial frames’ relates to coordinate systems in which the dynamical laws
for material bodies take their simplest form: see [Knox, 2013]. For Knox, spacetime is that structure which identifies
these inertial frames [Knox, 2019]. In general relativity, at least locally, the dynamical laws for material bodies take
their simplest form in certain coordinate systems (related by Poincaré transformations); moreover, the metric takes
its diagonal form in those coordinate systems. Thus, for Knox, in general relativity, the metric field qualifies as
spatiotemporal. But Knox does not elaborate on why this coincidence arises: why is it that the metric field takes its
diagonal form in the frames in which the laws simplify? This is what Read et al. [2018] call the ‘second miracle of
relativity’. However, if we are thinking about the metric as being constructed from dynamical considerations via the
Methodological Equivalence Principle, then it seems that we have bridged this gap—of course the metric must take its
form in the frames in which the dynamics simplify, because it was constructed to do just that!

28It is of course far from being obvious whether the role of inertial-frame functionalism in the theorizing can support
spacetime functionalism as an ontological thesis on the nature of spacetime; this relate to issues such as multiple
realizability and a ‘hard problem’ of spacetime [Le Bihan, 2021, Linnemann, 2021].
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diate and clear definition in terms of structure on a manifold. What we learn, however, from
the successful construction of gravitational coupling terms and kinematical structure using
simple considerations that rely on the coordinate representation of inertial frames in special
relativity, is that these entrenched representations do have intrinsic value; their being part
of the syntax of special relativity does not mean that they are arbitrary, nor that they can
discarded as merely ‘syntactic’.29

7.2 Construction of a dynamical interpretation?
In our approach to arriving at the structure of general relativity, we have aimed to avoid pre-
suppositions about the mathematical or geometrical structure of the constructed relativis-
tic gravitational theory, and instead construct them using empirical extrapolations and dy-
namical considerations. Our motivation for that has been epistemological-methodological,
rather than interpretational. However, the presented approach does demonstrate that Rie-
mannian geometry is not heuristically indispensable in general relativity, and may therefore
seem particularly appealing form a dynamical point of view. The aim of this subsection is
to further explore the possible contribution of our construction to the dynamicist project
and also to highlight ways in which it departs from Brown’s dynamical account of general
relativity [Brown, 2005].

Reflecting on the differences between geometrical and dynamical approaches to general
relativity, Brown [2005, p. 150] identifies the two approaches with two possible chains of
reasoning identified by Eddington [1930] that lead to the structure of the theory. The geo-
metrical approach is identified with the familiar construction that sets off from the interval
ds and the metric gµν , constructs the Einstein tensor geometrically, and finally introduces
the stress-energy tensor onto the other side of the equation. The dynamical approach takes
a different—quite reversed—chain of reasoning, starting by describing matter using the
stress-energy tensor, and then passing “to the interval regarded as the result of measure-
ments made with this matter” [Eddington, 1930, 148].

The construction presented here demonstrates that the core of the logic of the first (per-
haps more familiar) chain of reasoning can also be understood in dynamical terms. The
new field gµν inherits its coordination with observations from the familiar field ηµν . It can
similarly inherit the explanatory and interpretational baggage. Just as a geometrical read-
ing of the Minkowski metric in the context of special relativity can naturally translate into a
geometrical reading of the new field gµν (as a geometrical object with inherent chronogeo-
metrical significance), a dynamical reading of the Minkowski metric (according to which
the chronogeometric significance of the metric is the result of the special relativistic dy-
namical considerations) would translate a dynamical reading of gµν .

The gµν field, which constitutes the basis for the new theory, can thus be understood
as the metric field associated with spacetime geometry, but rather from dynamical consid-
erations that apply to individual material fields via which we learn about the existence of
this field. (Namely, it is the physical field that accounts for local inertial structure of the
laws governing these fields.) The field equations are constructed later, based upon further
dynamical considerations. Thus, if in the familiar picture the geometrical structure that
underlies local inertial structure is replaced by spacetime geometry that is dynamically in-
fluenced by matter, here we see that this reasoning can work just as well and make perfect
sense without using any geometrical vocabulary. The Methodological Equivalence Princi-
ple introduces gµν as the physical degrees of freedom that define local inertial frames. In
the dynamical reading, it is the coupling to these degrees of freedom which leads to objects
like rods and clock behaving in such a way as to be described in geometrical terminology.

29To be clear, this shouldn’t be taken to imply that we don’t take seriously the problems raised in [Fletcher, 2020,
Fletcher and Weatherall, 2023b]—in fact, we agree that they are legitimate and serious concerns in the context of
accounting for, say, the local validity of special relativity in the completed theory of general relativity.
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Possible divergence from the dynamical view à la Brown [2005] concerns geodesic
motion. Brown takes it that geodesic motion is “ultimately due to the way [...] gµν cou-
ples to matter” (p. 163). This is transparent in the construction presented in this article;
our approach is dynamical in the sense that geodesic motion is accounted for rather than
presupposed. The logic, however, is substantially different from that presented by Brown,
according to whom the coupling of matter to the gµν field that underwrites geodesic motion
is expressed by Einstein’s field equations.30 In the construction above, by contrast, geodesic
motion and field coupling precede the field equations. The difference, of course, lies in that
fact that we have been occupied with principles of theory construction, that are by defi-
nition non-deductive, whereas Brown (following Misner et al. [1973]) is concerned with
analysing the structure of the completed theory, and with interpreting said theory. From the
point of view of a proponent of a dynamical perspective on general relativity, one concep-
tual advantage to our approach is that it demonstrates that geodesic motion can make sense
from a dynamical point of view even in cases in which the conditions of geodesic theorems
which Brown has in mind (e.g. energy conditions: see [Malament, 2009]) fail to obtain.31

7.3 Relation to constructive approaches to general relativity
In this article, we have presented a way in which, beginning from special relativistic as-
sumptions and the results of local experiments, one can arrive at the structure of general
relativity. What we have discussed seems much in the spirit of ‘constructive’ (as opposed to
deductive) approaches to general relativity.32 Thinking about the theory in this way invites
comparison with other ‘constructivist’ approaches to general relativity. Perhaps the most
famous such approach is the 1972 ‘constructive axiomatization’ of general relativity due to
Ehlers et al. [2012] (henceforth ‘EPS’). The idea of constructive axiomatics goes back to
Reichenbach, who wrote that

[i]t is possible to start with the observable facts and to end with the abstract con-
ceptualization. [...] The empirical character of the axioms is immediately evi-
dent, and it is easy to see what consequences follow from their respective con-
firmations and disconfirmations. Such a constructive axiomatization is more
in line with physics than a deductive one, because it serves to carry out the
primary aim of physics, the description of the physical world. [Reichenbach,
1924/1969, p. 5]

In other words, the idea of Reichenbach’s project of constructive axiomatisation is that
one builds up the structure of the theory under consideration from axioms amenable to di-
rect empirical test (rather than, as on a deductive approach, selected for, say, mathematical
simplicity). In the EPS constructive axiomatisation, the differential, conformal, and projec-
tive structure of spacetime is built up from the trajectories of light rays and freely falling
particles. In turn imposing an assumption that there is no second clock effect (which, re-
call, states that the rates of identical clocks can differ when transported to some end-point
along two different paths) yields a Lorentizan spacetime structure—i.e., the kinematics of
a spacetime theory using a familiar Lorentzian metric field gµν and associated Levi-Civita
derivative operator.33

30The derivation is based on the following steps: The Einstein tensor Gµν satisfies Gµ

ν ;µ = 0 as an identity. From
the Einstein field equations it therefore must hold that T µ

ν ;µ = 0. Matter moving along non-geodesics would violate
this condition (or so the claim goes). For critical evaluation of this argument, bringing into the discussion famous
‘geodesic theorems’ such as that of Geroch and Jang [1975], see [Malament, 2009, Weatherall, 2011].

31In other words, what we mean to say here is this: the approach offered in this article can provide an explanation
of geodesic motion in general relativity which obtains even when the conditions of certain geodesic theorems do not
obtain. (Note that this is consistent with regarding the two different approaches as complimentary.)

32Note that what we mean by ‘constructivist’ here is not necessarily the same as what Einstein [1919] meant when
he spoke of ‘constructive theories’. For further discussion on this point, see [Adlam et al., 2022].

33For a detailed discussion of the EPS approach, see [Linnemann and Read, 2021, Adlam et al., 2022].
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The EPS approach allows the intricate geometrical structures of general relativity to be
defined operationally in a way that bears resemblance to Lange’s operational definition of
inertial frame mentioned in §7.1. This similarity highlights the difference from our con-
struction: our starting point consists in not (merely) ‘elementary’ empirical facts, but rather
in the empirical adequacy of the entire edifice of special relativity, its theoretical structures
included. It thus assumes a detailed knowledge of local physics. In this sense, it is not fully
constructivist, as it relies on antecedent theoretical inputs, rather than on elementary empir-
ical facts. Although thereby rendering it less ambitious than the constructivist project, one
could also argue that this makes our approach more realistic with respect to the nature of
scientific knowledge, as it takes into account all knowledge of such local physics.

The difference between the two approaches goes further. In assuming antecedently that
one has a grasp of the inertial motions, and so—by association—the inertial frames, EPS
aim to use them as basis for more complicated structure. Our construction sets off from a
similar observation, but the inertial frames then assume the status of an explanandum rather
than an explanans, motivating thereby the introduction of the gµν field.

7.4 Lessons from general relativity
John Bell’s [1976] paper on special relativity is commonly remembered either due to his
spaceship paradox, or as a precursor of the dynamical approach. Bell’s central message,
however, is about theoretical continuity: we should prefer to construct and understand new
physical theories using the concepts and content of old theories rather than completely new
hypothetical conjectures.

The dramatic impact of the introduction of general relativity on the philosophy of sci-
ence was, to a great extent, exactly about this issue of the epistemic status of hypothetical
conjectures. Those seemed necessary in order to construct the abstract and intricate mathe-
matical structures employed by the theory. One major possibility in both early and contem-
porary reflections is some revised version of apriorism. The major familiar empiricist alter-
native is motivated by verificationism, thus constructing mathematical concepts using op-
erational definitions that work in the context of empirically-motivated axioms (§7.3). Later
on, as appeal to abstract mathematics gradually came to dominate theoretical physics, epis-
temic and methodological reflections on theory construction became important to physics
itself as well.

With the aim of emphasizing theoretical continuity with special relativity, the construc-
tion presented here is based on empirically-motivated methodological principles. Like the
early Einstein, we began by using the equivalence principle in comparing inertial frames
to frames that uniformly accelerate with respect to them. An apparently greater conceptual
leap is from accelerating frames to all coordinate systems. This leap can be described in
terms of applying the Methodological Equivalence Principle to the requirement for general
covariance. We suggested that this apparent leap be understood not as an opaque mathe-
matical constraint, but rather in close relation to experience, as an explanation of locally
observed inertial phenomena in non-gravitational dynamics (namely, a way to introduce
physical degrees of freedom required to define local inertial frames). This scheme trans-
plants smoothly to applications of the gauge argument.

Reading this construction as a philosophical approach, it can be seen as an empiricist
(though non-verificationist) alternative to constructive axiomatization, possibly highlight-
ing a tertium quid; a golden mean between operationalism and apriorism. This approach
suggests that understanding physical principles such as invariance principles and the prin-
ciple of equivalence is an ongoing process of reflection on the development of physical the-
ories and the interrelations between them. The understanding of such principles as method-
ological reflects the non-deductive way in which mathematical considerations play in the-
ory construction. This reflective process emphasizes not only the continuity with earlier
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theories, but also with later ones such as extensions and modifications of general relativ-
ity (see end of §5) and gauge theories (§6). By aiming to bridge the content of different
theories, this approach is more modest than approaches that aim to bridge between formal
structure and empirical content, but arguably also closer to the actual nature of scientific
development. A methodological understanding of familiar principles can, as we have seen,
shed new light on philosophical puzzles related to them.

Compared with most existing philosophical views on general relativity, as well as with
the methodological reflections of the later Einstein cited in the introduction, our approach
motivates caution when appreciating the role of mathematical reasoning in physics. Math-
ematics is a vast land of unlimited possibilities. The case of general relativity may teach
us that empirical considerations help us find our way in this landscape more that is usually
appreciated.
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