Hyperintensional 2-Logic*

Timothy Alison Bowen (Hasen Joseph Khudairi, prior to March, 2023)

Abstract

This essay examines the philosophical significance of 2-logic in Zermelo-
Fraenkel set theory with choice (ZFC). The categorical duality between
coalgebra and algebra permits Boolean-valued algebraic models of ZFC
to be interpreted as coalgebras. The hyperintensional profile of Q2-logical
validity can then be countenanced within a coalgebraic logic. I argue that
the philosophical significance of the foregoing is two-fold. First, because
the epistemic and modal and hyperintensional profiles of 2-logical validity
correspond to those of second-order logical consequence, €2-logical valid-
ity is genuinely logical. Second, the foregoing provides a hyperintensional
account of the interpretation of mathematical vocabulary.

1 Introduction

This essay examines the philosophical significance of the consequence relation
defined in the Q-logic for set-theoretic languages. I argue that, as with second-
order logic, the hyperintensional profile of validity in (2-Logic enables the prop-
erty to be epistemically tractable. Because of the duality between coalgebras
and algebras, Boolean-valued models of set theory can be interpreted as coalge-
bras. In Section 2, I demonstrate how the hyperintensional profile of 2-logical
validity can be countenanced within a coalgebraic logic. Finally, in Section
3, the philosophical significance of the characterization of the hyperintensional
profile of Q-logical validity for the philosophy of mathematics is examined. I
argue (i) that Q-logical validity is genuinely logical, and (ii) that it provides
a hyperintensional account of formal grasp of the concept of ‘set’. Section 4
provides concluding remarks.

2 Definitions

In this section, I define the axioms of Zermelo-Fraenkel set theory with choice.
I define the mathematical properties of the large cardinal axioms which can

*This is a substantially revised version of a paper, "Modal Q-Logic", which was published in
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be adjoined to ZFC, and I provide a detailed characterization of the properties
of Q-logic for ZFC. Coalgebras are dual to Boolean-valued algebraic models of
Q-logic. Modal and hyperintensional coalgebras are then argued to provide a
precise characterization of the modal and hyperintensional profiles of (2-logical
validity.

2.1 Axioms!

o Extensionality
Vx,y.(Vz.z€x <= z€y) > x =1y
o Empty Set
Ix.Vy.y¢x
o Pairing
Vx,y.Iz.Vwwez < w=xXVw=y

e Union

Vx.dy.Vz.z€y <= Jw.weX A zEw

o Powerset

Vx.dyVz.z€y < 2z C x

« Separation (with 2’ a parameter)

YV ydzVwowezr < wey A A(w,T)

o Infinity
Ix.fex A Vy.yex — y U {y}ex

o Foundation
Vx.(Jy.yex) — Jyex.Vzex.zdy

¢ Replacement
Vx, Y [Vzex.Iw.A(z,w, )] = JuVw.weu < Tzex.A(zw, )

¢ Choice
Vx.0¢x — Ife(x — Ux).Vyex.f(y)ey

IFor a standard presentation, see Jech (2003). The presentation here follows Avigad (2021).
For detailed, historical discussion, see Maddy (1988,a).




2.2 Large Cardinals

Borel sets of reals are subsets of w* or R, closed under countable intersections
and unions.? For all ordinals, a, such that 0 < a < wy, and b < a, ¥? denotes
the open subsets of w* formed under countable unions of sets in Hg, and I19
denotes the closed subsets of w* formed under countable intersections of Eg.

Projective sets of reals are subsets of w*, formed by complementations (w* —
u, for uCw®) and projections [p(u) = {(x1, ..., Xp)ew® | y(x1, ..., Xy, y)EU}.
For all ordinals a, such that 0 < a < w, I} denotes closed subsets of w; TI.
is formed by taking complements of the open subsets of w*, ¥1; and ¥} 11 ds
formed by taking projections of sets in IT..

The full power set operation defines the cumulative hierarchy of sets, V, such
that Vo = @; Va1 = p(Vo); and Vy = Ua<aVa.

In the inner model program (cf. Woodin, 2001, 2010, 2011; Kanamori,
2012,a,b), the definable power set operation defines the constructible universe,
L(R), in the universe of sets V, where the sets are transitive such that acC
<= aCC; L(R) = Vyi1; Lot1(R) = Def(Lg(R)); and Ly (R) = Ua<r (La(R)).

Via inner models, Goédel (1940) proves the consistency of the generalized
continuum hypothesis, X8+ = R, 1, as well as the axiom of choice, relative to
the axioms of ZFC. However, for a countable transitive set of ordinals, M, in
a model of ZF without choice, one can define a generic set, G, such that, for
all formulas, @, either ¢ or —¢ is forced by a condition, f, in G. Let M[G] =
Ua<sMa[G], such that Mo[G] = {G}; with A < k, MA[G] = Ua<aM4[G]; and
M,+1[G] = V, N M,[G].2 G is a Cohen real over M, and comprises a set-forcing
extension of M. The relation of set-forcing, I, can then be defined in the ground
model, M, such that the forcing condition, f, is a function from a finite subset of
winto {0,1}, and f IF ueGif f(u) =1 and f IF u¢Gif f(u) = 0. The cardinalities
of an open dense ground model, M, and a generic extension, G, are identical,
only if the countable chain condition (c.c.c.) is satisfied, such that, given a chain
— i.e., a linearly ordered subset of a partially ordered (reflexive, antisymmetric,
transitive) set — there is a countable, maximal antichain consisting of pairwise
incompatible forcing conditions. Via set-forcing extensions, Cohen (1963, 1964)
constructs a model of ZF which negates the generalized continuum hypothesis,
and thus proves the independence thereof relative to the axioms of ZF.*

Godel (1946/1990: 1-2) proposes that the value of Orey sentences such as
the GCH might yet be decidable, if one avails of stronger theories to which new
axioms of infinity — i.e., large cardinal axioms — are adjoined.® He writes that:
‘In set theory, e.g., the successive extensions can be represented by stronger and
stronger axioms of infinity. It is certainly impossible to give a combinatorial

2See Koellner (2013), for the presentation, and for further discussion, of the definitions in
this and the subsequent paragraph.

3See Kanamori (2012,a: 2.1; 2012,b: 4.1), for further discussion.

4See Kanamori (2008), for further discussion.

5See Kanamori (2007), for further discussion. Kanamori (op. cit.: 154) notes that Godel
(1931/1986: fn48a) makes a similar appeal to higher-order languages, in his proofs of the
incompleteness theorems. The incompleteness theorems are examined in further detail, in
Section 3.2, below.



and decidable characterization of what an axiom of infinity is; but there might
exist, e.g., a characterization of the following sort: An axiom of infinity is
a proposition which has a certain (decidable) formal structure and which in
addition is true. Such a concept of demonstrability might have the required
closure property, i.e. the following could be true: Any proof for a set-theoretic
theorem in the next higher system above set theory ... is replaceable by a proof
from such an axiom of infinity. It is not impossible that for such a concept of
demonstrability some completeness theorem would hold which would say that
every proposition expressible in set theory is decidable from present axioms plus
some true assertion about the largeness of the universe of sets’.

For cardinals, x,a,C, CCa is closed unbounded in a, if it is closed [if x < C
and [J(Cna) = a, then aeC] and unbounded (JC = a) (Kanamori, op. cit.:
360). A cardinal, S, is stationary in a, if, for any closed unbounded CCa, CNS #
0 (op. cit.). An ideal is a subset of a set closed under countable unions, whereas
filters are subsets closed under countable intersections (361). A cardinal  is
regular if the cofinality of « is identical to k. Uncountable regular limit cardinals
are weakly inaccessible (op. cit.). A strongly inaccessible cardinal is regular and
has a strong limit, such that if A < &, then 2* < x (op. cit.).

Large cardinal axioms are defined by elementary embeddings.® Elementary
embeddings can be defined thus. For models A,B, and conditions ¢, j: A — B,
¢{ai, ..., an) in A if and only if ¢(j(a1), ..., j(an)) in B (363). A measurable
cardinal is defined as the ordinal denoted by the critical point of j, crit(j) (Koell-
ner and Woodin, 2010: 7). Measurable cardinals are inaccessible (Kanamori,
op. cit.).

Let k be a cardinal, and n > k an ordinal. x is then n-strong, if there is a
transitive class M and an elementary embedding, j: V — M, such that crit(j) =
Kk, j(k) >n, and V,,CM (Koellner and Woodin, op. cit.).

k is strong if and only if, for all 7, it is n-strong (op. cit.).

If A is a class, k is n-A-strong, if there is a j: V — M, such that & is n-strong
and j(ANV,)NV,, = ANV, (op. cit.).

k is a Woodin cardinal, if k is strongly inaccessible, and for all ACV,, there
is a cardinal k4 < k, such that x4 is n-A-strong, for all n such that x,, n < Kk
(Koellner and Woodin, op. cit.: 8).

x is superstrong, if j: V. — M, such that crit(j) = » and V(,)CM, which
entails that there are arbitrarily large Woodin cardinals below x (op. cit.).

Large cardinal axioms can then be defined as follows.

dx® is a large cardinal axiom, because:

(i) ®x is a Xo-formula, where ‘a sentence ¢ is a Yo-sentence if it is of the
form: There exists an ordinal « such that V,, I 9, for some sentence 1’ (Woodin,
2019);

(ii) if k is a cardinal, such that V | ®(k), then & is strongly inaccessible;
and

(iii) for all generic partial orders PeV,, V¥ = ®(k); Iyg is a non-stationary

SThe definitions in the remainder of this subsection follow the presentations in Koellner
and Woodin (2010) and Woodin (2010, 2011).



ideal; A is the canonical representation of reals in L(R), i.e. the interpretation
of A in M[G]; H(k) is comprised of all of the sets whose transitive closure is <
# (cf. Woodin, 2001: 569); and L(R)*™% = (H(ws), €, Ing, AY) = ‘¢ Pis
a homogeneous partial order in L(R), such that the generic extension of L(R)?
inherits the generic invariance, i.e., the absoluteness, of L(R). Thus, L(R)fme®
is (i) effectively complete, i.e. invariant under set-forcing extensions; and (ii)
maximal, i.e. satisfies all IIs-sentences and is thus consistent by set-forcing over
ground models (Woodin, ms: 28).

Assume ZFC and that there is a proper class of Woodin cardinals; A€P(R)
N L(R); ¢ is a [y-sentence; and V(G), s.t. (H(ws), €, Ins, AY) |= ‘¢ Then,
it can be proven that L(R)P"%* = (H(ws), €, Ins, AY) = ‘¢’, where ‘¢’ :=
JAel**(H(w1), €, A) = ¢.

The axiom of determinacy (AD) states that every set of reals, aCw® is
determined.

Woodin’s (1999) Axiom (*) can be thus countenanced:

AD™®) and L[(Pw;)] is a Pmax-generic extension of L(R),

from which it can be derived that 2% = N,. Thus, -CH; and so CH is
absolutely decidable.

In more recent work, Woodin (2019) provides evidence that CH might, by
contrast, be true. The truth of CH would follow from the truth of Woodin’s
Ultimate-L conjecture. The following definitions are from Woodin (op. cit.):
‘A transitive class is an inner model iff, for the class of ordinals Ord, - HK]
Ord € M, and M I+ ZFC’. L, the constructible reals, and HOD, the hereditarily
ordinal definable sets, are inner models. ‘Suppose N is an inner model and that
[a] is an uncountable (regular) cardinal of V. N has the [a]-cover property if for
all 0 C N, if |o| < [a] then there exists T€N such that: ¢ C 7 and |7| < [a].
N has the [a]-approximation property if for all sets X C N, the following are
equivalent: (i) XeN and (ii) For all 0€N, if |o| < [a], then 0 N XeN. Suppose N
is an inner model and that ¢ C N. Then N[o] denotes the smallest inner model
M such that N C M and o€M. Suppose that N is an inner model and [a] is
strongly inaccessible. Then N has the [a]-genericity property if for all o C [qa],
if o] < [a]then N[o] N V, is a Cohen extension of N N V,. The axiom for V
= Ultimate-L states then that ‘(i) There is a proper class of Woodin cardinals,
and (ii) For each Xo-sentence ¢, if ¢ holds in V then there is a universally Baire
set A C R such that HODZ(AR) | ¢ where a set is universally Baire if for all
topological spaces (2 and for all continuous functions 7 : 2 — R", the preimage
of A by 7 has the property of Baire in the space 2. The property of Baire holds
if, for a subset of a topological space A C X, there is an open set U C X such
that A = U is a meagre subset, where = is the symmetric difference, i.e. the
union of relative complements, and a subset of a topological space is meagre if
it is a countable union of nowhere dense sets, where nowhere dense subsets of
the topology hold if their union with an open set is not dense.” The Ultimate-L
Conjecture is then as follows: ‘Suppose that [a] is an extendible cardinal. [a] is

"https:/ /en.wikipedia.org/wiki/PropertyofBaire, https://en.wikipedia.org/wiki/Symmetricdifference,
https://en.wikipedia.org/wiki/Meagreset.



an extendible cardinal if for each A > [a] there exists an elementary embedding
i Vg1 = V)41 such that CRT(j) = [a] and j([a]) > A. Then provably there
is an inner model N such that: 1. N has the [a]-cover and [a]-approximation
properties. 2. N has the [a]-genericity property. 3. N IF ‘V = Ultimate-L”
(Woodin, op. cit.).

2.3 (-Logic

For partial orders, P, let V¥ = V2 where B is the regular open completion of
(P).8 M, = (V)M and ME = (VEYM = (VleB). Sent denotes a set of sentences
in a first-order language of set theory. TU{¢} is a set of sentences extending
ZFC. c.t.m abbreviates the notion of a countable transitive €-model. c¢.B.a.
abbreviates the notion of a complete Boolean algebra.

Define a c.B.a. in V, such that VE. Let V§ = 0; V& = [J,<\VE, with X a
limit ordinal; VB, | = {f: X —» B | X CVE}; and V® = Jseon VE.

¢ is true in VB, if its Boolean-value is 1%, if and only if

VB b 6 iff [g]° = 15.

Thus, for all ordinals, a, and every c.B.a. B, VE = (Va)V]HS iff for all xeV®,
IyeVE[x = y]® = 18 iff [xeVE]® = 1B.

Then, VE, = ¢ iff VB = <V, = ¢’

Q-logical validity can then be defined as follows:

For TU{¢}CSent,

T |=q ¢, if for all ordinals, a, and c.B.a. B, if V® = T, then VB |= ¢.

Supposing that there exists a proper class of Woodin cardinals and if TU{¢}CSent,
then for all set-forcing conditions, P:

Ta ot VI T o ¢,

where T ':Q ¢ = @ ': ‘T ':Q (]57.

The Q-Conjecture states that V |=q ¢ iff VB |=q ¢ (Woodin, ms). Thus,
Q-logical validity is invariant in all set-forcing extensions of ground models in
the set-theoretic universe.

The soundness of 2-Logic is defined by universally Baire sets of reals. For
a cardinal, e, let a set A be e-universally Baire, if for all partial orders P of
cardinality e, there exist trees, S and T on w X A, such that A = p[T] and if
GCP is generic, then p[T]¢ = RY — p[S]¢ (Koellner, 2013). A is universally
Baire, if it is e-universally Baire for all e (op. cit.).

)-Logic is sound, such that V o ¢ — V = ¢. However, the completeness
of 2-Logic has yet to be resolved.

A E-coalgebra is a pair A = (A, p), with A an object of C referred to as the
carrier of A, and p: A — E(A) is an arrow in C, referred to as the transition
map of A (390).

A = (A, pi: A — E(A)) is dual to the category of algebras over the functor
p (417-418). If p is a functor on categories of sets, then coalgebraic models are
dual to Boolean-algebraic models of Q-logical validity.

8The definitions in this section follow the presentation in Bagaria et al. (2006).



Leach-Krouse (ms) defines the modal logic of Q-consequence as satisfying
the following axioms:

For a theory T and with O¢ := TE I ZFC = TE II- ¢,

ZFCF ¢ = ZFC  O¢

ZFCFO(¢ — ¢) — (O¢ — )

ZFCFO¢p — ¢ = ZFCF ¢

ZFC + O¢ — O0¢

ZFCHO@O¢ — ¢) — g

O0@¢ — o) v Oy A tp — ¢), where this clause added to GL is the logic
of ‘true in all V,, for all k strongly inaccessible’ in ZFC.

2.4 Two-dimensional Hyperintensionality and (2-logic

Finally, the axioms of the modal logic of Q2-consequence can be rendered hyper-
intensional as follows:

For a theory T and with A(O¢) := for all t€P there is a t’€P such that t’
Ut €Pand t’ ‘T2 | ZFC = T2 IF ¢’, where O is interpreted as TZ |- ZFC
= T8 I ¢,

ZFCF ¢ = ZFC F A(Oog)

ZFCH AlO(¢ — o) — (O¢ — Oy)]

ZFCH A(0¢) - ¢ = ZFCF ¢

ZFC + A(O¢) — A(OO¢)

ZFC F A[O¢ — ¢)] — A(O9)

AOD@O¢ — ) v OO A v — ¢)]. As with the two-dimensional hyper-
intensional profile of the Epistemic Church-Turing Thesis [see Bowen (2023)],
the two-dimensional hyperintensional profile of -logical consequence can be
countenanced by adding a topic-sensitive truthmaker from a metaphysical state
space and making its value dependent on the value of the epistemically necessary
truthmaker A(¢) [see Fine (2017a-c), for a presentation of truthmaker seman-
tics, and Bowen (op. cit.) for further details, development, and applications of
the semantics].

3 Discussion

This section examines the philosophical significance of coalgebras and the Boolean-
valued models of set-theoretic languages to which they are dual. I argue that,
similarly to second-order logical consequence, (i) the ‘mathematical entangle-
ment’ of Q-logical validity does not undermine its status as a relation of pure
logic; and (ii) both the modal profile and model-theoretic characterization of Q-
logical consequence provide a guide to its epistemic tractability.? I argue, then,
that there are several considerations adducing in favor of the claim that the
interpretation of the concept of set constitutively involves hyperintensional no-
tions. The role of coalgebras in (i) characterizing the modal profile of 2-logical

9The phrase, ‘mathematical entanglement’, is owing to Koellner (2010: 2) who attributes
the phrase to Parsons.



consequence, and (ii) being constitutive of the hyperintensional understanding-
conditions for the concept of set, provides, then, support for a realist conception
of the cumulative hierarchy.

3.1 -Logical Validity is Genuinely Logical

Frege’s (1884/1980; 1893/2013) proposal — that cardinal numbers can be ex-
plained by specifying a biconditional between the identity of, and an equivalence
relation on, concepts, expressible in the signature of second-order logic — is the
first attempt to provide a foundation for mathematics on the basis of logical
axioms rather than rational or empirical intuition. In Frege (1884/1980. cit.:
68) and Wright (1983: 104-105), the number of the concept, A, is argued to be
identical to the number of the concept, B, if and only if there is a one-to-one
correspondence between A and B, i.e., there is a bijective mapping, R, from A
to B. With Nx: a numerical term-forming operator,

o YAVB|Nx: A = Nx: B = JR[vx[Ax — Jy(By A Rxy A Vz(Bz A Rxz —
y =2))] A Vy[By — 3x(Ax A Rxy A Vz(Az A Rzy — x = 2))]]].

Frege’s Theorem states that the Dedekind-Peano axioms for the language of
arithmetic can be derived from the foregoing abstraction principle, as augmented
to the signature of second-order logic and identity.'® Thus, if second-order logic
may be counted as pure logic, despite that domains of second-order models
are definable via power set operations, then one aspect of the philosophical
significance of the abstractionist program consists in its provision of a foundation
for classical mathematics on the basis of pure logic as augmented with non-
logical implicit definitions expressed by abstraction principles.

There are at least three reasons for which a logic defined in ZFC might
not undermine the status of its consequence relation as being logical. The first
reason for which the mathematical entanglement of 2-logical validity might be
innocuous is that, as Shapiro (1991: 5.1.4) notes, many mathematical properties
cannot be defined within first-order logic, and instead require the expressive
resources of second-order logic. For example, the notion of well-foundedness
cannot be expressed in a first-order framework, as evinced by considerations of
compactness. Let E be a binary relation. Let m be a well-founded model, if
there is no infinite sequence, ay, ..., a;, such that Fag, ..., Fa;4+1 are all true.
If m is well-founded, then there are no infinite-descending FE-chains. Suppose
that T is a first-order theory containing m, and that, for all natural numbers, n,
there is a T with n + 1 elements, ag, ..., an, such that {(ag, a1), ..., {(an, an_1)
are in the extension of E. By compactness, there is an infinite sequence such
that that ag ... a4, s.t. Fag, ..., Fa;+1 are all true. So, m is not well-founded.

By contrast, however, well-foundedness can be expressed in a second-order
framework:

10Cf. Dedekind (1888/1963) and Peano (1889/1967). See Wright (1983: 154-169) for a proof
sketch of Frege’s theorem; Boolos (1987) for the formal proof thereof; and Parsons (1964) for
an incipient conjecture of the theorem’s validity.



VX[F2 Xz — Jx[Xz A Vy(Xy — —Eyzx)]], such that m is well-founded iff
every non-empty subset X has an element z, s.t. nothing in X bears F to x.

One aspect of the philosophical significance of well-foundedness is that it
provides a distinctively second-order constraint on when the membership rela-
tion in a given model is intended. This contrasts with Putnam’s (1980) claim,
that first-order models mod can be intended, if every set s of reals in mod is such
that an w-model in mod contains s and is constructible, such that — given the
Downward Lowenheim-Skolem theorem!! — if mod is non-constructible but has
a submodel satisfying ‘s is constructible’, then the model is non-well-founded
and yet must be intended. The claim depends on the assumption that general
understanding-conditions and conditions on intendedness must be co-extensive,
to which I will return in Section 3.2

A second reason for which Q-logic’s mathematical entanglement might not be
pernicious, such that the consequence relation specified in the Q-logic might be
genuinely logical, may again be appreciated by its comparison with second-order
logic. Shapiro (1998) defines the model-theoretic characterization of logical
consequence as follows:

‘(10) @ is a logical consequence of [a model] I' if ® holds in all possibilities
under every interpretation of the nonlogical terminology which holds in I (148).

A condition on the foregoing is referred to as the ‘isomorphism property’,
according to which ‘if two models M, M’ are isomorphic vis-a-vis the nonlogical
items in a formula ®, then M satisfies ® if and only if M’ satisfies ®’ (151).

Shapiro argues, then, that the consequence relation specified using second-
order resources is logical, because of its modal and epistemic profiles. The
epistemic tractability of second-order validity consists in ‘typical soundness the-
orems, where one shows that a given deductive system is truth-preserving’ (154).
He writes that: ‘[I]f we know that a model is a good mathematical model of
logical consequence (10), then we know that we won’t go wrong using a sound
deductive system. Also, we can know that an argument is a logical consequence

. via a set-theoretic proof in the metatheory’ (154-155).

The modal profile of second-order validity provides a second means of ac-
counting for the property’s epistemic tractability. Shapiro argues, e.g., that: ‘If
the isomorphism property holds, then in evaluating sentences and arguments,
the only ‘possibility’ we need to ‘vary’ is the size of the universe. If enough sizes
are represented in the universe of models, then the modal nature of logical con-
sequence will be registered ... [Tlhe only ‘modality’ we keep is ‘possible size’,
which is relegated to the set-theoretic metatheory’ (152).

Shapiro’s remarks about the considerations adducing in favor of the logi-
cality of non-effective, second-order validity generalize to 2-logical validity. In
the previous section, the modal profile of Q-logical validity was codified by
the duality between the category, A, of coalgebraic modal logics and complete
Boolean-valued algebraic models of Q2-logic. As with Shapiro’s definition of log-
ical consequence, where ® holds in all possibilities in the universe of models

1 The Downward Lowenheim-Skolem theorem claims that for any first-order model M, M
has a submodel M’ whose domain is at most denumerably infinite, s.t. for all assignments s
on, and formulas ¢(z) in, M’, M,sl- ¢(z) <= M’,sl- ¢(z).



and the possibilities concern the ‘possible size’ in the set-theoretic metatheory,
the 2-Conjecture states that V |=q ¢ iff VE =q ¢, such that Q-logical validity
is invariant in all set-forcing extensions of ground models in the set-theoretic
universe.

Finally, the epistemic tractability of Q-logical validity is secured, both — as
on Shapiro’s account of second-order logical consequence — by its soundness, but
also by its being the dual of coalgebras.

3.2 Hyperintensionality and the Concept of Set

In this section, I argue, finally, that the hyperintensional profile of 2-logic can
be availed of in order to account for the understanding-conditions of the concept
of set.

Putnam (op. cit.: 473-474) argues that defining models of first-order theories
is sufficient for both understanding and specifying an intended interpretation
of the latter. Wright (1985: 124-125) argues, by contrast, that understanding-
conditions for mathematical concepts cannot be exhausted by the axioms for
the theories thereof, even on the intended interpretations of the theories. He
suggests, e.g., that:

‘[I]f there really were uncountable sets, their existence would surely have to
flow from the concept of set, as intuitively satisfactorily explained. Here, there
is, as it seems to me, no assumption that the content of the ZF-axioms cannot
exceed what is invariant under all their classical models. [Benacerraf] writes,
e.g., that: ‘It is granted that they are to have their ‘intended interpretation’: ‘€’
is to mean set-membership. Even so, and conceived as encoding the intuitive
concept of set, they fail to entail the existence of uncountable sets. So how can
it be true that there are such sets? Benacerraf’s reply is that the ZF-axioms are
indeed faithful to the relevant informal notions only if, in addition to ensuring
that ‘€’ means set-membership, we interpret them so as to observe the constraint
that ‘the universal quantifier has to mean all or at least all sets’ (p. 103).
It follows, of course, that if the concept of set does determine a background
against which Cantor’s theorem, under its intended interpretation, is sound,
there is more to the concept of set that can be explained by communication of
the intended sense of ‘€’ and the stipulation that the ZF-axioms are to hold.
And the residue is contained, presumably, in the informal explanations to which,
Benacerraf reminds us, Zermelo intended his formalization to answer. At least,
this must be so if the ‘intuitive concept of set’ is capable of being explained at
all. Yet it is notable that Benacerraf nowhere ventures to supply the missing
informal explanation — the story which will pack enough into the extension of
‘all sets’ to yield Cantor’s theorem, under its intended interpretation, as a highly
non-trivial corollary’ (op. cit).

In order to provide the foregoing explanation in virtue of which the concept
of set can be shown to be associated with a realistic notion of the cumulative
hierarchy, I will argue that there are several points in the model theory and epis-
temology of set-theoretic languages at which the interpretation of the concept
of set constitutively involves hyperintensional notions. The hyperintensionality

10



at issue is consistent with realist positions with regard to both truth values and
the ontology of abstracta.

One point is in the coding of the signature of the theory, T, in which Godel’s
incompleteness theorems are proved (cf. Halbach and Visser, 2014). The choice
of coding bridges the numerals in the language with the properties of the target
numbers. The choice of coding is therefore intensional, and has been marshaled
in order to argue that the very notion of syntactic computability — via the equiv-
alence class of partial recursive functions, A-definable terms, and the transition
functions of discrete-state automata such as Turing machines — is constitutively
semantic (cf. Rescorla, 2015). Further points at which hyperintensionality can
be witnessed in the phenomenon of self-reference in arithmetic are introduced
by Reinhardt (1986). Reinhardt (op. cit.: 470-472) argues that the provability
predicate can be defined relative to the minds of particular agents — similarly
to Quine’s (1968) and Lewis’ (1979) suggestion that possible worlds can be cen-
tered by defining them relative to parameters ranging over tuples of spacetime
coordinates or agents and locations — and that a theoretical identity statement
can be established for the concept of the foregoing minds and the concept of a
computable system. A hyperintensional semantics for provability logic is sug-
gested in Bowen (2023).

A second point at which understanding-conditions may be shown to be con-
stitutively hyperintensional can be witnessed by the conditions on the epistemic
entitlement to assume that the theory in which Godel’s second incompleteness
theorem is proved is consistent (cf. Dummett, 1963/1978; Wright, 1985). Wright
(op. cit.: 91, fn.9) suggests that ‘[T]o treat [a] proof as establishing consistency
is implicitly to exclude any doubt ... about the consistency of first-order num-
ber theory’. Wright’s elaboration of the notion of epistemic entitlement, appeals
to a notion of rational ‘trust’, which he argues is recorded by the calculation of
‘expected epistemic utility’ in the setting of decision theory (2004; 2014: 226,
241). Wright notes that the rational trust subserving epistemic entitlement
will be pragmatic, and makes the intriguing point that ‘pragmatic reasons are
not a special genre of reason, to be contrasted with e.g. epistemic, prudential,
and moral reasons’ (2012: 484). Crucially, however, the very idea of expected
epistemic utility in the setting of decision theory makes implicit appeal to epis-
temically possibly worlds or hyperintensional epistemic states.

A third consideration adducing in favor of the thought that grasp of the con-
cept of set might constitutively possess a hyperintensional profile is that the con-
cept can have a hyperintension — i.e., a function from states to extensions. The
modal similarity types in the coalgebraic modal logic may then be interpreted as
dynamic-interpretational modalities, where the dynamic-interpretational modal
operator has been argued to entrain the possible reinterpretations both of the
domains of the theory’s quantifiers (cf. Fine, 2005, 2006), as well as of the in-
tensions of non-logical concepts, such as the membership relation (cf. Uzquiano,
2015). A hyperintensional semantics for dynamic-interpretational modalities is
countenanced in Bowen (2023).

The fourth consideration avails directly of the hyperintensional profile of
Q-logical consequence. While the above dynamic-interpretational states will
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suffice for possible reinterpretations of mathematical terms, the absoluteness of
the consequence relation is such that, if the (2-conjecture is true, then (2-logical
validity is invariant in all possible set-forcing extensions of ground models in the
set-theoretic universe. The truth of the Q-conjecture would thereby place an
indefeasible necessary condition on a formal understanding of the hyperintension
for the concept of set.

4 Concluding Remarks

In this essay I have examined the philosophical significance of the duality be-
tween coalgebras and Boolean-valued algebraic models of Q-logic. I argued that
— as with the property of validity in second-order logic — Q-logical validity is
genuinely logical. I argued, then, that modal and hyperintensional coalgebras,
which characterize the hyperintensional profile of 2-logical consequence, are con-
stitutive of the interpretation of mathematical concepts such as the membership
relation.
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