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Abstract

The variety of evidence thesis in confirmation the-
ory states that more varied supporting evidence
confirms a hypothesis to a greater degree than less
varied evidence. Under a very plausible interpreta-
tion of this thesis, positive test results from multiple
independent instruments confirm a hypothesis to a
greater degree than positive test results from a sin-
gle instrument. We invoke Bayesian Networks to
model confirmation on grounds of evidence that is
obtained from less than fully reliable instruments
and show that the variety of evidence thesis is not
sacrosanct when testing is conducted with less than
fully reliable instruments: under certain conditions,
a hypothesis receives more confirmation from evi-
dence that is obtained from one rather than from
more independent instruments. In the appendix, we
prove certain convergence results for large numbers
of positive test results from single versus multiple
less than fully reliable instruments.

1 Introduction
In the Bayesian tradition in philosophy of science, problems
are often framed in a highly idealized format. The price of
relaxing these idealizations is mathematical complexity. In
the late 70s, an axiomatic approach to conditional indepen-
dence was developed within a Bayesian framework. This ap-
proach in conjunction with developments in graph theory are
the two pillars of the theory of Bayesian Networks, which
is a theory of probabilistic reasoning in artificial intelligence
(e.g. [Pearl, 1988]). The theory has been very successful
over the last two decades and has found a wide array of prac-
tical applications. Aside from work in the theory of causa-
tion, philosophers have been sadly absent in reaping the fruits
from these new developments in artificial intelligence. This
is unfortunate, since there are some questions in philosophy
of science in which the route to progress has been blocked by
a type of complexity that is precisely the type of complexity
that Bayesian Networks are designed to deal with questions
in which there are multiple variables in play and the condi-
tional independences between these variables can be clearly
identified. We will assess one such question in confirmation
theory. It is often said that it is better to have more rather than

less varied evidence for the confirmation of a hypothesis and
philosophers have attempted to give a Bayesian account of
this phenomenon. It requires some elucidation what it means
for evidence to be more varied. One obvious interpretation is
that evidence which comes from multiple independent test in-
struments is more varied than evidence that comes from a sin-
gle test instrument. Suppose that our test results come from
less than fully reliable (LTFR) instrument, as is often the case
in scientific experiments. (cf. [Franklin, 1986], pp. 165-
191.) We will show that the variety of evidence thesis is not
sacrosanct under this interpretation. Depending on a range of
relevant parameters, more varied evidence, in casu evidence
that comes from multiple instruments rather than from a sin-
gle instrument, may or may not confirm the hypothesis to a
greater degree.

2 Confirmation with LTFR Instruments
Consider a very simple scenario. Let there be a hypothesis,
a (test) consequence of the hypothesis, a LTFR instrument
and a report from the LTFR instrument to the effect that the
consequence holds or not. To model this scenario, we need
four propositional variables (written in italic script) and their
values (written in roman script):

(1) HY P can take on two values: HYP, i.e. the hypothesis
is true and HYP, i.e. the hypothesis is false;

(2) CON can take on two values: CON, i.e. the conse-
quence holds and CON, i.e. the consequence does not
hold;

(3) REL can take on two values: REL, i.e. the instrument
is reliable and REL, i.e. the instrument is not reliable;

(4) REP can take on two values: REP, i.e. there is a con-
firming report, or, in other words, a report to the effect
that the consequence holds, and REP, i.e. there is a
disconfirming report, or, in other words, a report to the
effect that the consequence does not hold.

A probability distribution over these variables contains 24

entries. The number of entries will grow exponentially with
the number of propositional variables. To represent the in-
formation in a more parsimonious format, we construct a
Bayesian Network.

A Bayesian Network organizes the variables into a Di-
rected Acyclical Graph (DAG), which encodes a range of
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Figure 1: The basic model

(conditional) independences. There is a certain heuristic that
governs the construction of the graph: There is an arrow be-
tween two nodes iff the variable in the parent node has a direct
influence on the variable in the child node. In the case at hand,
whether the consequence holds is directly influenced by and
only by whether the hypothesis is true or not; whether there
is a report to the effect that the consequence holds is directly
influenced by and only by whether the consequence holds or
not and whether the instrument is reliable or not. Hence, we
construct the basic graph in figure 1 in which the node with
the variable HY P is a parent node to the node with the vari-
able CON and the nodes with the variables CON and REL
are in turn parent nodes to the node with the variable REP .

We stipulate probability distributions for the variables in
the root nodes of the graph.

P (HYP) = h; P (REL) = r (1)

with 0 < h; r < 1, and conditional probability distributions
for the variables in the other nodes given any combination of
values of the variables in their respective parent nodes. Con-
sider the node with the variable CON which is a child node
to the node with the variable HY P . We take a broad view of
what constitutes a consequence, that is, we do not require that
the truth of the hypothesis is either a necessary or a sufficient
condition for the truth of the consequence. Rather, a conse-
quence is to be understood as follows: The probability of the
consequence given that the hypothesis is true is greater than
the probability of the consequence given that the hypothesis
is false:

P (CONjHYP) = p > q = P (CONjHYP) (2)

Consider the node with the variable REP , which is a child
node to the nodes with the variables CON and REL. How
can we model the workings of an unreliable instrument? Let
us make an idealization: We suppose that we do not know
whether the instrument is reliable or not, but if it is reliable,
then it is fully reliable and if it is not reliable, then it is fully
unreliable. Let a fully reliable instrument be an instrument
that provides maximal information: It is an instrument that
says of what is that it is, and of what is not that it is not:

P (REPjREL;CON) = 1; P (REPjREL;CON) = 0 (3)

Let a fully unreliable instrument be an instrument that pro-
vides minimal information: It is an instrument that is no bet-
ter than a randomizer:

P (REPjREL;CON) = P (REPjREL;CON) = a (4)

with 0 < a < 1. Let us call a the randomization parameter.
We can now construct the Bayesian Network by adding the
probability values to the graph in figure 1.

What’s so great about Bayesian Networks? A central
theorem in the theory of Bayesian Networks states that a
joint probability distribution over any combination of val-
ues of the variables in the Network is equal to the prod-
uct of the probabilities and conditional probabilities for
these values as expressed in the Network. For exam-
ple, suppose we are interested in the joint probability of
HYP;CON;REP and REL. We can read the joint proba-
bility directly off of figure 1: P (HYP;CON;REP;REL) =
P (HYP)P (CON)P (CONjHYP)P (REPjREL;CON) =
h(1 � r)(1 � p)a. Standard probability calculus teaches
us how to construct marginal distributions out of joint dis-
tributions and subsequently conditional distributions out of
marginal distributions. When implemented on a computer,
Bayesian Networks provide a direct answer to such queries.

We are interested in the probability of the hypothesis
given that there is a report from a LTFR instrument that
the consequence holds. This probability is P �(HYP) =
P (HYPjREP) = P (HYP;REP)=P (REP). For ease of
representation, we will abbreviate 1� x as x.

P �(HYP)) =
h(pr + ar)

hr(p� q) + qr + ar
(5)

We measure the degree of confirmation that the hypothesis
receives from a confirming report by the difference:

P �(HYP)� P (HY P ) =
hh(p� q) r

hr(p� q) + qr + ar
(6)

We know now how to model the degree of confirmation that a
hypothesis receives from a single confirming report concern-
ing a single consequence of the hypothesis by means of a sin-
gle LTFR instrument. This basic model will be the paradigm
to model complex strategies to improve the degree of confir-
mation that can be obtained from LTFR instruments.

3 Repeated Testing
Suppose that we have tested a single consequence of the hy-
pothesis by means of a single LTFR instrument. We have
received a confirming report, but we want to have additional
confirmation for our hypothesis. We might want to run more
tests of the very same consequence. Now there are two pos-
sibilities. Either we can take our old LTFR instrument and
run the test a couple more times. Or we can choose new and
independent LTFR instruments and test the very same conse-
quence with these new instruments. We are curious to know
which strategy for the confirmation of the hypothesis is the
better strategy assuming that we do indeed receive more re-
ports to the effect that the consequence hold. In other words,
which strategy yields a higher degree of confirmation?
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Figure 2: Repeated testing of the same consequence with
a single instrument
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Figure 3: Repeating testing of the same consequence with
multiple instruments

Is there an univocal answer to this question, or is one strat-
egy more successful under certain conditions, while the other
strategy is more successful under other conditions? [Bovens
and Hartmann, 2001] have investigated the case for one ad-
ditional test report, either from the same or from different
LTFR instruments. Here we extend this research by inves-
tigating the general case of n test reports and prove certain
convergence results.

Let us first model the degree of confirmation that the hy-
pothesis receives from additional confirming reports from
the same LTFR instrument. In figure 2, we add additional
nodes to our basic graph to represent the binary variables
REP2; : : : ; REPn, and substitute REP1 for REP . Just like
REP1, it is also the case that REP2; : : : ; REPn are directly
influenced by REL and CON and so 2(n� 1) more arrows
are drawn in. We impose a condition of symmetry on the
probability distribution P for this graph: Also for these ad-
ditional reports the instrument is either fully reliable or it is
fully unreliable with the same randomization parameter a.

Second, we model the degree of confirmation that the hy-
pothesis receives from an additional confirming reports from
n � 1 other independent LTFR instrument. In figure 3, we
add additional nodes to our basic graph for the variables
REL2; : : : ; RELn, which express whether the other instru-
ments are reliable or not, and add additional nodes for the
variablesREP2; : : : ; REPn which express whether the other
instruments provide reports to the effect that the consequence
holds or not. REPi is directly influenced by RELi and

CON for i = 2; : : : ; n: We draw in two more arrows for
each pair of variables fREPi; RELig. To keep matters sim-
ple, we impose a condition of symmetry on the probability
distribution P 0 for this graph: There is an equal chance r that
the instruments are reliable and if the instruments are unre-
liable then they randomize at the same level a. To compare
the scenario with one instrument to the scenario with n in-
struments we need to impose a ceteris paribus condition: For
this reason we postulate the same values h; p; q; r and a for
the probability distributions P and P 0.

The instruments are independent of one another. What this
means is that

REPi ? REP1; : : : ; REPi�1; REPi+1; : : : ; REPnjCON
(7)

for all i = 1; : : : ; n (? represents the conditional indepen-
dence relation.).

Suppose that we know that the consequence holds or we
know that the consequence does not hold. Then there is a cer-
tain chance that we will receive a report to the effect that the
consequence holds. Now whether we receive other reports to
this effect or not, does not affect this chance. An indepen-
dent instrument may not always provide us with an accurate
report, but it is not influenced by what other instruments re-
port. It can be shown by standard techniques in the theory
of Bayesian Networks that (7) is a conditional independence
that can be read off from the graph in figure 3.

We turn to the question whether, ceteris paribus, the
hypothesis receives more confirmation from other con-
firming reports from one and the same LTFR instru-
ment or from more independent LTFR instruments. We
follow our standard procedure and calculate the dif-
ference �P = P 0(HYPjREP1;REP2; : : : ;REPn) �
P (HYPjREP1;REP2; : : : ;REPn). Aside from positive
definite scaling factors, �P is given by

�P / hh(p� q)rr

 
n�1X
k=0

�
n

k

�
rn�k�1(ar)k � rn�1

!
(8)

This expression allows us to construct phase curves which
separate the parameter space in subspaces with �P > 0 and
�P < 0.

The graph in figure 4 represents this inequality for n in-
struments with n = 2; 8; 14; and 20. For values of a and r
above the phase curve, �P > 0, i.e. confirming reports from
more instruments provide more confirmation to the hypothe-
sis; for values of a and r on the phase curve, �P = 0, i.e.
it does not make any difference whether we receive positive
reports from one or more instruments; for values of a and r
below the phase curve, �P < 0, i.e. confirming reports from
one instrument provide more confirmation to the hypothesis.
Furthermore, the phase curve intersects the r-axis for r0 = :5

and the a-axis for a(n)0 = n�1

p
1=n for any values of n. Note

that limn!1 a
(n)
0 = 1.

Do these results seem plausible at some intuitive level?
There are two conflicting intuitions at work here. On the one
hand, we are tempted to say that confirming results from more
instruments is the better way to go, since independence is a
good thing. On the other hand, if we receive consistent con-
firming reports from a single instrument, then we feel more
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Figure 4: Phase curves for n = 2 (full line), n = 8
(dashed line), n = 14 (dot-dashed line), n = 20 (dotted
line) for repeated testing of the same consequence for the
parameters a and r: n instruments provide a higher de-
gree of confirmation for the hypothesis above the curves,
one instrument provides a higher degree of confirmation
underneath the curves.

confident that the instrument is not a randomizer and this in-
crease in confidence in the reliability of the instrument bene-
fits the confirmation of the hypothesis. For higher values of
r, the former consideration becomes more weighty than the
latter: There is not much gain to be made anymore in our con-
fidence in the reliability of the instrument(s) and we might as
well enjoy the benefits of independence. For lower values of
a, the latter consideration becomes more weighty: If we are
working with an instrument which, if unreliable, has a low
chance of providing confirming reports, then consistent con-
firming reports constitute a substantial gain in our confidence
in its reliability, which in turn benefits the confirmation of the
hypothesis. Furthermore, as there are more and more test re-
ports in play, the latter consideration becomes more weighty,
also for higher values of a: when we have little confidence
in our instruments, one instrument yielding n confirming test
results is more beneficial for the confirmation of the hypoth-
esis than n instruments yielding n confirming results for low
to high (but not extremely high) values of the randomization
parameter.

4 Coherent Consequences
Another strategy to raise the degree of confirmation for a hy-
pothesis is to identify a range of consequences which all can
be assessed by a single or by multiple independent LTFR
instruments. Again, we extend the results for two conse-
quences in [Bovens and Hartmann, 2001] to n consequences
and prove convergence results. Following our heuristic,
the hypothesis (HY P ) directly influences the consequences
(CONi) for i = 1; 2; : : :. Figure 5 represents the scenario
in which there is a single instrument: Each consequence
(CONi) conjoint with the reliability of the single instrument
(REL) directly influences the report about the consequence
in question (REPi). Figure 6 represents the scenario in which
there are more independent instruments: Each consequence
(CONi) conjoint with the reliability of the instrument that
tests this consequence (RELi) directly influences the report
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Figure 5: Testing of multiple consequences with a single
instrument
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Figure 6: Testing of multiple consequences with multiple
instruments

about the consequence in question (REP i). We define a prob-
ability distribution P for the DAG in figure 5 and a probabil-
ity distribution P 0 for the DAG in figure 6. We impose the
symmetry condition within each distribution and the ceteris
paribus condition between distributions for all the relevant
parameters.

Does the hypothesis receive more confirmation from
n confirming reports from one and the same LTFR in-
strument or from independent LTFR instruments, ceteris
paribus. Let’s follow our standard procedure and cal-
culate �P = P 0(HY P jREP1; REP2; : : : ; REPn) �
P (HY P jREP1; REP2; : : : ; REPn). Aside from a positive
definite scaling factor, �P is given by

�P / (pr+ar)n(qnr+anr)�(qr+ar)n(pnr+anr) (9)

Again, this expression allows us to construct the relevant
phase curves. To evaluate equation (9), we first assume that
the tests are reasonably strong by fixing p = :9 and q = :1
and construct a phase curves for values of a and r in figure
7 for n = 2; 8; 14, and 20. The general characteristics of
these curves can be understood analyically. It can be shown
analytically that the phase curve intersects the a-axis at

a� = n�1

r
1

n

pn � qn

p� q
(10)

and converges, for increasing r, at

a�� = n�1

r
n

p� q

pn � qn
< a� : (11)

Note that limn!1 a� = p and limn!1 a�� = q (see ap-
pendix A).
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Figure 7: Phase curves for n = 2 (full line), n = 8
(dashed line), n = 14 (dot-dashed line), n = 20 (dotted
line) for testing of multiple consequences for the param-
eters r and a with p = :9 and q = :1: n instruments
provide a higher degree of confirmation for the hypoth-
esis above the curves, one instrument provides a higher
degree of confirmation underneath the curves.

Secondly, we set the values for the randomization and the
reliability parameters at a = :5 and r = :7 and construct
phase curves for values of p and q for n = 2; 8; 14; and 20
in figure 8. Examining the phase curves for other values of a
and r, we can make the following observations: (i) The inter-
section point of the phase curves with the diagonal is always
at (a; a); (ii) If we set r = :5, then the curve is the same for
any value of n, as we have shown in the appendix; (iii) For
r > :5, the curves for higher n are above the curves for lower
n, while for r < :5, the curves for higher n are below the
curves for lower n.

Whether it is better for the hypothesis to receive confirm-
ing results about multiple consequences from a single or from
multiple instruments is contingent on the precise values of the
parameters a; r; p, and q. The interpretation of figure 7 is sim-
ilar to our interpretation of figure 4. But we can make some
interesting additional observations. Note that if the value of p
exceeds the randomization parameter a, then it is always bet-
ter to receive confirming results from multiple instruments.
On the other hand, if the randomization parameter a exceeds
the value of q, then it is always better to receive confirming
results from a single instrument. As to the interpretation of
figure 8, we are only interested in the area below the straight
line where p > q. We notice that if the q-value is set high, i.e.
for weaker tests, one instrument tends to do better than more
instruments. Why is this the case? The higher the q-values,
the more likely the testable consequences will hold true and
so coherent confirming reports will boost our confidence in
the reliability of a single instrument even more. Hence higher
q-values tend to favor a single instrument over multiple in-
struments. Furthermore, complex interaction effects between
the number of reports n, the reliability parameter a and the
randomization parameter r affect the threshold of the value of
q at which confirming reports from a single instrument yields
a higher degree of confirmation than multiple instruments.
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Figure 8: Phase curves for n = 2 (full line), n = 8
(dashed line), n = 14 (dot-dashed line), n = 20 (dotted
line) for testing of multiple consequences for the parame-
ters p and q with a = :5 and r = :7: One instrument pro-
vides a higher degree of confirmation for the hypothesis
above the curves, multiple instruments provide a higher
degree of confirmation underneath the curves.

5 Discussion: The Variety-of-Evidence Thesis
It is one of the textbook Bayesian success stories that an ac-
count can be provided of why variety of evidence is a good
thing: The increment of confirmation that the hypothesis
receives from confirming test results becomes smaller and
smaller as we run the same old test over and again (e.g. [Ear-
man, 1992], pp. 77-79 and [Howson and Urbach, 1993], pp.
119-123). The moral seems to be that it is better to get con-
firming results about one or more test consequences from a
range of independent instruments than from one and the same
instrument. We have shown that the picture is not quite so
simple when we experiment with LTFR instruments. In some
cases it is better to get confirming results about one or more
test consequences from the same instrument than from multi-
ple independent instruments.

(i) Figure 4 shows that if we are testing a single conse-
quence, it is sometimes more beneficial to get confirm-
ing reports from the same instrument than from new in-
struments, ceteris paribus;

(ii) Figures 7 and 8 show that if we are testing different con-
sequences, it is sometimes more beneficial to get con-
firming reports from the same instrument than from new
instruments, ceteris paribus (section refs: 4).

By repeating the test with the same instrument, we gain
confidence in the reliability of the instrument which bene-
fits the confirmation of the hypothesis more than the indepen-
dence of multiple instruments. Furthermore, when [Bovens
and Hartmann, 2001] first established these results for two
test reports, there was a lingering suspicion that the advan-
tages of one LTFR instrument might wane for more than two
test reports and that more benefits would accrue from using
multiple independent instruments. This suspicion is false.
Our convergence results show that the differential impact of
testing with one or more LTFR instruments is no less pro-
nounced as the number of test reports increases. We conclude
that the variety of evidence thesis is not sacrosanct: Confirm-



ing reports from single rather than from multiple instruments
about a single or multiple consequences may, ceteris paribus,
provide more confirmation to a hypothesis when testing is
carried out with LTFR instruments.

A Limits of a� and a
��

Recall that a� and a�� are given by

a� = n�1

r
1

n

pn � qn

p� q

a�� = n�1

r
n

p� q

pn � qn
:

Let q = xp with 0 < x < 1. Then

a� = p n�1

r
1

n

1� xn

1� x

a�� = q
n�1

r
n

1� x

1� xn
:

Since

n�1

r
1

n

1� xn

1� x
=

n�1

p
1 + x+ : : :+ xn�1 =: g(x)

and
n�1
p
1 + 0 + : : :+ 0 � g(x) � n�1

p
1 + 1 + : : :+ 1

for 0 < x < 1, it follows that limn!1 a� = p and
limn!1 a�� = q.
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