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Introduction

There could hardly be two more disparate uses of the word “model” than animal model 

and nonstandard model of arithmetic.  One refers to a biological organism, the other to 

a mathematical structure.  The term animal model is used to describe the employment 

of an animal bred specifically for laboratory use to study some physiological process, 

such as the employment of laboratory rats to study the effects of various toxins, drugs, 

and therapies on humans.  Here the interest is not in rat physiology per se, but in the 

analogous human physiological processes about which the animal model can provide 

insight.  So referring to the rat as a model does not quite capture what is meant by ani-

mal model; what the rat is a model of, and in what way the rat models it, is involved in 

the concept as well.1  The term nonstandard model of arithmetic refers to a mathemati-

cal structure that happens to satisfy axioms originally formulated to axiomatize the ordi-

1

1  The point is explained in Rand (2004), which provides a general overview of the history and methodol-
ogy of animal models.  [Rand, Michael S., DVM.  “Selection of Animal Models”, Lecture given September 
27, 2004 at the University of Arizona-Tuscon.   Available online at 
http://www.ahsc.arizona.edu/uac/notes/classes/animalmodels/animalmodels03.html  Accessed June 10, 
2005.]   The National Institutes of Health maintains a site devoted to model organisms for biomedical re-
search, at:  http://www.nih.gov/science/models/



nary arithmetic2 with which we are familiar, but is unlike (not isomorphic to) ordinary 

arithmetic.  The interest in such models is often in the features of the nonstandard 

model of arithmetic that differ from those of ordinary arithmetic.  Here again regarding 

the mathematical structure as a model does not quite capture what is meant by a non-

standard model, for it is important both that the structure satisfy the axioms for ordinary 

arithmetic, and also that it differ from ordinary arithmetic in a certain precise sense.  

What makes these two kinds of models disparate is not the disparity that exists between 

the things that serve as a model --e.g., not the disparity between a living animal and an 

abstract mathematical structure -- but with the difference between these two models in 

terms of their relationships to what is modelled and in how they are used to model.  To 

put it briefly, what makes these two kinds of models disparate are the things in virtue of 

which each is a model.  It is probably fair to say that the latter notion -- a model is a 

model in virtue of satisfying some axioms or some other suitable (usually formal) speci-

fication -- is predominant in philosophy. 

In this paper, I survey a broad variety of models with an eye to asking what kind of 

model each is in the following sense:  in virtue of what is each of them regarded as a 

model?  It will be seen that when we classify models according to the answer to this 

question, it comes to light that the notion of model predominant in philosophy of science 

covers only some of the kinds of models used in scientific contexts.  The notion of a 

model predominant in philosophy of science requires that a model be related to some-
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2 In the philosophical literature, “ordinary arithmetic” is generally further clarified as Peano arithmetic, after 
the mathematician Guiseppe Peano who  developed a set of axioms (including an axiom schema for 
mathematical induction).  These axioms can be found in numerous references; one monograph on the 
subject is Kaye (1991) [ �Richard Kaye, Models of Peano arithmetic. Oxford Logic Guides 15, OUP 1991, 
ISBN 0 19 853213 X, 292 pages. ] 



thing formal, such as equations or statements.   Not all the examples provided in the 

brief survey in this paper fit that notion of a model.   I identify another kind of model that 

ought to be taken more seriously in philosophical and foundational studies of scientific 

models, which I call a “piece of the world” kind of model, to contrast with a “realm of 

thought” kind of model. 

Models and Reasoning

At this starting point in our survey, we want to cast our net widely and consider any kind 

of model that might be important in scientific endeavors.  We are not interested in just 

any use of the word model, however;  there are some uses of the word, such as “role 

model” or “showroom model” that do not denote the concept we are interested in.  The 

concept of model arises in philosophy of science because models are employed in sci-

entific contexts, not only in making predictions and applying science, but in inquiry as 

well.  Let us say then that what we are interested in is models that are used in reason-

ing:  models employed in making inferences or, even, in providing explanations or pro-

moting understanding.

A Sampling of Models 

Let us consider a few selected but very different examples of scientific reasoning em-

ploying models, each of which involves models in a slightly different way: 

A.  Mechanical Models of Electrodynamic Equations 

An especially interesting example is a rather well-known example from history of sci-

ence.  In the late nineteenth century, Maxwell developed mathematical equations to de-
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scribe electromagnetic phenomena.   Often, a mechanical model or fluid analogy was 

presented along with the equations as well to illustrate a certain phenomena implied by 

the equations.  However, the model was not meant to be taken too literally.   Joseph 

Turner described Maxwell’s use of physical analogy as a sort of golden mean:  “The 

fluid was not offered as a physical hypothesis nor the theory developed in purely 

mathematical terms,” citing Maxwell’s remarks in his early “On Faraday’s Lines of 

Force” that the fluid:  “. . . is not even a hypothetical fluid which is introduced to explain 

actual phenomena.  It is merely a collection of imaginary properties which may be em-

ployed for establishing certain theorems in pure mathematics in a way more intelligible 

to many minds and more applicable to physical problems than that in which algebraic 

symbols alone are used.” 3 

There were other, more objective, reasons for exhibiting mechanical models of the elec-

tromagnetic phenomena described by Maxwell’s equations:   the existence of a me-

chanical model that would lead to the proposed equations was evidence for the consis-

tency and plausibility of the equations, and agnosticism with respect to the actual 

mechanism responsible for the behavior described by the equations was often main-

tained even when a mechanism could be exhibited.  

Likewise, the suggestion of alternative mechanisms did not call for arbitrating between 

them;  the existence of several alternative possible mechanisms did not decrease the 

plausibility of the equations.  Thus, the presentation of a model of the equations pro-

posed was not a suggestion that the model was “true”, but that the equations were con-
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3   “On Faraday’s Lines of Force,” Papers, I, 160.  Quoted in Turner, Joseph “Maxwell on the Method of 
Physical Analogy”  British Journal for the Philosophy of Science,  Vol. 6, No. 23 (Nov. 1955), 226-238.



sistent and compatible with the known laws of mechanics as well as with Maxwell’s 

equations.   

B.  Models of Axioms  -- Arithmetic and Geometry

Another kind of model arises in logic and mathematics: a model of a set of statements, 

regarded as axioms.  The standard and nonstandard models of arithmetic described in 

the introduction are examples of this kind of model.  In this example, axioms are devel-

oped for something considered already familiar and known -- the natural numbers and 

ordinary arithmetic.  Then, it turns out that the axioms do not characterize the natural 

numbers.  That is, it turns out that there are things other than the natural numbers that 

satisfy these axioms.  So we refer to the natural numbers as the intended model, and 

other models of the axioms as nonstandard models of arithmetic.  

We find a slightly different example of this kind of model in the case of models of the 

axioms of geometry.   It is possible to provide axioms of geometry that capture Euclid-

ean geometry.  Hilbert formulated a set of axioms for Euclidean geometry such that 

each axiom expressed some feature of or relation between the objects of geometry.  

Besides asking whether there are other models of the axioms of Euclidean geometry, 

we can ask whether there are models of some subset or revised version of these axi-

oms; the question can then be stated in terms of asking whether there are models of 

geometries in which some of the features that the axioms aimed to capture are different 

from Euclidean geometry.  Non-Euclidean geometries were known at the time, and Hil-

bert showed that various non-Euclidean geometries were models of sets of axioms that 

arose from replacing one of the axioms of Euclidean geometry with a slightly revised 
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axiom.  The subject is very beautiful and its history fascinating, but that does not con-

cern us here.  

Despite the differences between these two examples --- models of arithmetic (both 

standard and nonstandard) and models of the axioms of geometry (both Euclidean and 

non-Euclidean) --- the kind of model at issue is an abstract model that is a model in vir-

tue of being a model of a set of statements.  Being a model of a set of statements 

means that the statements, suitably interpreted as statements about the abstract ob-

jects and relations between them, come out true under that interpretation for the objects 

and relations in the model.  

Mathematical equations are a kind of statement, though.  So one might wonder: does 

this kind of abstract model (example B.) differ from the kind of model involved in Max-

well’s idea of a physical analogy (example A), since both are models in virtue of being 

models of a set of statements?  The difference between the kinds of models in A. and 

the kinds of models in B. is just that the models Maxwell used were also supposed to be 

 at least potentially physically realizable.  In both abstract and physically realizable 

models, though, the fact that something is a model just means that it has the attributes 

needed for the statements to hold true for the model, not that those statements are true 

only for that particular model.  With both kinds of models, there can be different models 

of the same set of statements.  Thus the fact that the statements hold true for the model 

on a suitable interpretation does not say too much about whether a particular model is 

the model that actually gives rise to the behavior described by the equations.  (In logical 

terminology, that the statements hold true in a model doesn’t say whether the model is 
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the intended model; in physical terminology, that the statements hold true in the model 

doesn’t say whether the model describes the mechanism responsible for the physical 

behavior described by the equations.)  

C.  Mathematical Models Used for Simulation

Mathematical models are often constructed for use in simulating some real or imagined 

situation.  A familiar example is a flight training simulator;  here, a complicated algorithm 

can be programmed and run on a personal computer, simulating what the plane’s in-

struments will read and the pilot will see.  The simulation produces responses  such as 

instrument readings, depending upon how the values of various parameters such as 

weather, geography, and the actions of the person operating the simulator are varied.  

Mathematical simulations are used in a wide variety of disciplines.  Simulations of how a 

building responds in an earthquake, the effect of fertilizer use on crop yield, the effect of 

a new policy restricting hunting on animal populations, how a rise in oil prices will affect 

the profits of corporations in various sectors of the economy, are just a few examples.  

In general, simulations are often called for when contemplating changes in policy.  

Sometimes mathematical models used in simulations take as input the values of pa-

rameters that are not generated by a mathematical function, but are empirical data that 

has been recorded, or are extrapolated from such empirical data.  Even then, the 

mathematical model itself is an algorithm. 

In mathematical simulations,  the interest differs from that of examples of kind A. and B. 

in that the goal is not to obtain a model that satisfies a certain set of fundamental 

mathematical equations describing a physical phenomenon (such as Maxwell’s equa-
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tions), nor to obtain a model of a set of statements meant to capture mathematical 

structure (such as Peano’s Axioms), but to obtain a model from which one can calculate 

the values of a set of parameters that agree with those observed in a real situation (or, 

counterfactually, would agree with in an imagined situation).    Here again, though, even 

though the goal is not conceived of as a matter of satisfying formal statements,  it is 

possible to state the goal; the goal is that the values calculated by the formal or mathe-

matical model agree with empirical observations or predictions based upon empirical 

observations.  

D. Model Organisms in Biology 

The use of rats to study physiological processes in humans is one example of an animal 

model, and an animal model is an example of the use of model organisms in biology.  A 

model organism is an organism used to study either another specific organism (e.g., 

rats used instead of humans) or to study a specific biological phenomena that is com-

mon to many organisms (using fruit flies to illustrate inheritance of eye color). 

Why use a model organism as an alternative or representative organism in lieu of the 

organisms about which one is making inferences?  The restrictions against experimen-

tation using humans explains why rats are used to study humans, but other advantages 

are that a model organism may be better suited to study a particular biological system, 

due to the simplicity of the system in that organism, or to the ease of observation or 

manipulation and control of the system in that organism.  The fruit flies used for high 

school science education in genetics are chosen in part because they reproduce so 

quickly, allowing observations over several generations in a short period of time.  Also, 
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as organisms are made the subject of laboratory studies, the organism used for such 

studies becomes better understood and more data is available about that specific or-

ganism.  Standardized strains of the organism are produced and can be obtained for 

research activities.  

Model organisms, then, involve some degree of idealization.  What makes them models, 

however, is that the researcher has established some analogy between the model or-

ganism and the organisms about which conclusions are being made, and employs it to 

draw inferences about specific features of the organism of interest or the general bio-

logical systems or phenomena.  

E.  Experimental Scale Models

Experimental scale models are physical objects or systems used to test or predict the 

behavior of a machine or system. Like model organisms, scale models are models in 

virtue of the fact that the model is a physical thing that is used to investigate some spe-

cific behavior of another based on an analogy between them.  They are usually me-

chanical systems, but the method is not restricted to mechanical systems, so electrical 

or chemical systems can be scale models, too.  Generally, an experimental scale model 

is constructed so that there is a very specific analogy between the two physical sys-

tems, sometimes described as “physically similar systems”.  There are many analogies 

between any two given physical systems; the analogy that holds between the con-

structed model and the system of interest is usually specially chosen based on the 

physical phenomenon that governs the features of interest.  
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There is a formal, logico-mathematical aspect to this process, but it is not a set of 

statements that hold in the model.  Rather, it is a statement that the value of a certain 

dimensionless ratio is the same in the model as it is in the system of interest.  Thus, to 

state the criterion is to make a statement of the conditions for identity of the dimension-

less ratios upon which physical similarity depends; to state that two systems are physi-

cally similar is to make a statement of identity between the relevant dimensionless ra-

tios.     

F.  Re-enactments of Events 

When forensic scientists want to investigate whether a certain piece of evidence -- an 

injury, a blood spatter pattern, the path of a bullet, the skid marks left by a car -- could 

have been left by a proposed event, they sometimes re-enact the event.  Of course the 

exact conditions of the universe cannot be created; some tiny subset of the conditions 

that existed in the original event are selected as the significant ones and used to stage 

a re-creation.  So the re-enactment can be thought of as a model, a model of the hy-

pothesized original event being investigated.  The goal here is to produce the phenom-

ena that would have been produced by the hypothesized event, and the phenomena 

produced may or may not agree with the evidence.

It could be argued that, in re-enactments, there is some idealization of the original event 

involved in the sense that, in choosing which features to include in constructing the re-

enactment, the original event is characterized in terms of only some of its features, oth-

ers being neglected.  However, the re-enacted event is just as concrete as the original 

event, so the model is not abstract.  The re-enacted event is a model in virtue of its simi-
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larity to the hypothesized original event with respect to the causes of the phenomenon 

being investigated  (e.g.,, blood spatters, damage to structures, injuries, fingerprints, 

etc.).   As with experimental scale models, the conditions for similarity between model 

and thing modelled are stated in terms of items that must be identical between them, 

and a statement that they are similar is a statement of identity of the features relevant to 

producing the evidence of interest.  

Classification of Models into Kinds 

Reflecting upon the similarities and differences of these six examples, there is a natural 

clustering of the first three into one kind of model, and the last three into another.  For 

the first three kinds of model:

 A.  Mechanical Models of Electrodynamic Equations 

 B.  Models of Axioms -- Arithmetic and Geometry 

 C.  Mathematical Models Used for Simulation 

the model is a model in virtue of its relation to some equations or formal statements.  

The models are abstract in that they are mathematical structures, algorithms, or de-

scriptions of mechanisms.  They are something grasped in thought (as Frege might put 

it), rather than something located in time and space.  

In contrast, in the last three examples of models surveyed above: 

 D.   Model Organisms in Biology
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 E. Experimental Scale Models

 F.   Re-enactments of Events

the model is a model in virtue of a similarity or analogical relation it bears to some other 

physical object.  In earlier papers about the methodology of experimental scale models, 

I have referred to this as “using one piece of the world to tell about another”;  the phrase 

is apt for model organisms in biology and re-enactments of events as well.  The model 

is not abstract in any of these last three examples, for it is a concrete piece of the actual 

world. 

 For ease of discussion, let me refer to the kind of model associated with the first cluster 

of examples as a “realm of thought” kind of a model.  ( I do not mean that the phrase 

“realm of thought” captures or defines the kind of model;  I am only using it here in this 

paper as shorthand to refer to the kind of model that is associated with the cluster of the 

first three examples of kinds models (A. B. and C. above))  By way of contrast, let me 

refer to the alternative kind of model associated with the second cluster (D., E., and F. 

above) as the kind of model that is a “piece of the world”.    

Towards a More Comprehensive Notion of Models

In philosophy of science, the notion of model that is dominant comes from the first clus-

ter of examples of models, the “realm of thought” kind.  In all of the examples given 

above of this kind, the model is a model in virtue of being a model of some equations or 

formal statements.  As a result, the notion of model that is dominant in philosophy is that 

a model is a model of some equations or formal statements.  
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The “piece of the world” kind of model is not totally ignored in philosophy of science -- 

after all, the idea is ubiquitious in our everyday life; a map, for instance, is a scale 

model, and a measuring instrument is one piece of the world often used to tell about 

another piece -- but the problem is that in philosophy it is soon put off to the side as not 

really having the kind of formal structure or generality that lends itself to philosophical 

reflection.  Constructing scale models or setting up re-enactments or choosing animal 

models is often seen as an applied art, a skill not expressible as a formal method.  In 

other papers  I brought to the attention of philosophers the point that, actually, there are 

quite formalized methodologies for inferences based upon experimental scale models 

(Sterrett (2002), Sterrett (2005/2006))!  The point holds more generally, for other “piece 

of the world” kinds of models.  The “piece of the world” models are concrete, but often 

there are formal methods of showing that one concrete thing models another. 

Another significant difference between the more mainstream “realm of thought” kind of 

models and the “piece of the world” models appears upon stepping back and looking at 

the overall picture of how model and theory are interrelated in each kind of model.  

On the mainstream view of the “realm of thought” kind of models, the way models help 

is that the model is an intermediary of some sort between the theory (conceived of as a 

set of equations or a set of formal statements) and the actual world.  Often, it is re-

marked, the theory applies only to some idealized or abstract representation of the 

world.  So, to apply the theory to the world, e.g., to make predictions or retrodictions, 

one has to first construct a model, and then apply the theory to the model.  Even when 

the model is considered physically realizable, as in mechanical models of Maxwell’s 
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equations, the complaint has been made that the model is in some sense “abstract” in 

that it is not a specific object in the world, but is imagined or visualized, a mental con-

struction.  The criticism based upon this view of how scientific equations or theories ap-

ply to the world goes something like this:  if theories apply to the world only in virtue of 

applying to such abstract objects, then theories aren’t really about the actual world, are 

they?  They’re just about abstract models! 

Whether or not you think such a charge fair, it is interesting that this criticism can’t even 

be formulated for the “piece of the world” kind of models.  The criticism just melts away, 

because the models are not, as with the first cluster of examples, models in virtue of be-

ing models of a set of equations or a set of statements.  

Yet, there is still formal methodology involved in reasoning employing the “piece of the 

world” kind of models.  Generally formal methods or scientific laws come into play in es-

tablishing criteria for similarity or identity of two situations (always with respect to some 

phenomenon or feature) and in showing that these criteria are satisfied.  In the case of 

experimental scale  models, the formal methodology is the methodology of establishing 

physical similarity by dimensionless parameters.  For model organisms, certainly so-

phisticated knowledge of biological systems and processes is involved in selecting an 

appropriate model organism as a model for a particular biological phenomenon of other 

organisms, and these are not a matter merely of a individual’s skill even in cases where 

that skill has led to the choice of model organism, for the analogy between the model 

and target organism can be formalized and rationalized.  The reasoning might employ 

laws of biology to argue for the generalization of a process from a model organism to 
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other organisms like it in the relevant ways, and to specify what these relevant features 

are.   Likewise, in re-enactments of events for forensic purposes, the argument that the 

re-enactment is a good model of the hypothesized original event is based upon estab-

lishing similarity between the two situations.  This involves formal scientific knowledge 

about the kinds of factors that need to be kept the same for the phenomena to be the 

same between the two situations:  which masses, velocities, densities, viscosities (of 

blood) and so on causally determine the important features of the forensic evidence one 

is investigating.  The researcher doesn’t necessarily need to calculate or even know the 

values of the important parameters, so long as he or she can establish that they are the 

same in the re-enactment as in the hypothesized original event.   

Thus, even those who are interested only in formal methods in philosophy of science 

will gain from the more comprehensive notion of models I am advocating here.  I have 

clustered the kinds of models surveyed into “realm of thought” and “piece of the world” 

only for the purpose of illuminating the differences between the kinds of models gener-

ally included in analytic philosophy of science under the rubric of “model” and the kinds 

that it has neglected.  The “piece of the world” kind of model is actually used a lot in sci-

entific endeavors.  In fact, I believe it is common to use both kinds of models to investi-

gate and solve a given practical problem.  A number of philosophers have argued for the 

recognition of more pluralism in scientific methods.  My hope in this paper is to advance 

the acceptance of the neglected kinds of model I have loosely referred to as “a piece of 

the world” kind of model by pointing out that the methodology of such modelling can be 

embraced by analytic philosophers of science without giving up the rigor that has char-

acterized the discipline.    
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