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Abstract

Sortal predicates have been associated with a counting process, which
acts as a criterion of identity for the individuals they correctly apply to.
We discuss in what sense certain types of predicates suggested by quantum
physics deserve the title of ‘sortal’ as well, although they do not charac-
terize either a process of counting or a criterion of identity for the entities
that fall under them. We call such predicates ‘quantum-sortal predicates’
and, instead of a process of counting, to them is associated a ‘criterion of
cardinality’. After their general characterization, it is discussed how these
predicates can be formally described.

1 Introduction

The difficulties in providing a clear distinction between sortal predicates, which
originate from terms like ‘man’, ‘tree’ and ‘book’ and other predicates, which
come from terms like ‘green’ and ‘thing’, have been acknowledged in the philo-
sophical literature. The subject is related to a more general discussion on the
nature of general terms and has its roots (at least) in Aristotle’s concept of
second substance. Frege’s reference to those predicates that isolate what fall
under them in a definite manner, and Quine’s consideration of predicates that
divide their reference are also recalled in dealing with the subject (Wallace 1965;
Stevenson 1975).

However, little has been done to link aspects of the epistemology of quan-
tum physics with this discussion on sortal predication. In this paper, we shall
present some guidelines for providing such a relationship by presenting a kind
of predicate, here termed ‘quantum-sortal’, which also deserve to be included
in the pantheon of sortal predicates. The differences between quantum-sortal
and standard sortal predicates are emphasized, and a way of dealing with them
within a logical system is outlined. Let us begin by recalling in brief some of
the main ideas concerning sortal predication.

Two philosophers have been particularly referred to in the discussions on
sortal predication, namely, P. F. Strawson and P. T. Geach. According to

∗Earlier versions of this paper have been presented in Krause 2002, 2002a.
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Strawson, general terms are divided up into characterizing and sortal terms
(Strawson 1959, p. 168), while Geach talks in terms of adjectival and substantival
general terms respectively (Geach 1962). Jonathan Lowe, in discussing the
subject, has chosen adjectival and sortal respectively to designate them, and has
mentioned M. Dummett’s criteria for distinguishing between these two kinds of
general terms (Lowe 1995, Chap. 5). Dummett’s criteria, according to Lowe,
may be summed up as follows:

(i) Adjectival terms have associated with them a criterion of application, and by
this we should understand a general principle determining which individuals the
considered term correctly applies to (we have emphasized the word ‘individuals’
for the purposes to be mentioned below).

(ii) In addition to a criterion of application, a sortal term has also a criterion of
(numerical) identity associated to it. This is to be a principle determining the
conditions under which one individual to which the term applies can be said to
be the same or distinct as another.

As recalled by Wallace (op. cit.), the distinction between adjectival and
sortal terms is very subtle, and it is difficult to find a clear way of providing an
‘objective’ description of what should be understood by the mentioned criteria.
Notwithstanding, in general the criterion of identity has been associated with
a counting process, that is, something which should enables us to count things
that fall under a certain sortal term. Take for instance (Lowe’s example), the
term ‘tree’. Of course we may suppose that we have a criterion of application
which enables us to apply the term to some given object; furthermore, we can
count trees, at least in principle. So, ‘tree’ is a sortal concept, and ‘to be a tree’
is a sortal predicate. But ‘green’ (another of the Lowe’s examples) is not, for
while we have a criterion of application for identifying green things, despite the
vagueness associated with this predicate (this point shall be mentioned below),
we don’t have an associated counting process for green things. As realized by
Lowe, in trying to count green things in a wood, probably we would not know
what things to count; should we count only the trees in a wood as green things?
If the grass is also to be counted, then should the grass be counted as just
one object of should we count also every leaf of grass? The same holds for the
leaves of the trees. And what about the parts of the leaves? Since a leaf can be
divided up, say, in circular or triangular parts, are these parts also to be counted
as distinct green things? Similarly, the same holds with terms like ‘thing’; the
reader may try to count the things there are in the room you are now. How
many things are there? Are the parts of the things (say, the lock of a door) also
‘things’ which should be added to the list? And what about the components of
the lock? All of this exemplifies, albeit so roughly, the claim that ‘green’ and
‘thing’ are examples of non-sortal terms.

The counting process is acknowledged by the philosophers who have dis-
cussed the subject as the distinctive feature of sortal terms, and of sortal predi-
cates in particular. So, Wallace says: “a sortal predicate ‘F ’ provides a criterion
for counting things that are ‘F ’ ”, and continues: “[i]f ‘F ’ is a sortal predicate,
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you can find out how many F ’s there are in such and such a space by counting”
(op. cit.). Other philosophers talk quite similarly, so that we don’t need to
quote them here (but see the references). The interesting thing is that all the
discussion is developed in connection with, say, ‘macroscopic’ objects, that is,
the efforts are given to describe a given thing as falling under either a sortal or
as adjectival predicate; really, the examples concern ‘trees’, ‘mountains’, ‘green
things’, ‘bald men’ and so on, that is, individuals of a sort (recall what was said
above about Dummett’s criteria). This is of course not so strange for, as says S.
Auyang, “the paradigms of objects are the things we handle everyday” (Auyang
1995, p. 11).

Furthermore, even among sortal terms there are difficult distinctions to be
taken into account. For example, as recalled by Lowe (op. cit.), sortal terms
like ‘green’ and ‘mountain’ have different criteria of identity. Let us follow Lowe
for a moment; he says:

“The criterion of identity for trees, for instance, is very different from
the criterion of identity for mountains (. . .) Trees (. . .) can undergo
very considerable changes of shape and position [he is referring to
the possibility of a tree we know very well to be transplanted to
another place in our garden during our absence] while remaining
numerically the same, that is, while persisting identically through
time. By contrast, it does not make much sense to talk of mountains
undergoing radical changes of shape and position (. . .) If the land
falls in one place and rises in another, we do not say that a mountain
has moved, but rather that the mountain has ceased to exist and
another has been created. (To be sure, we do allow ‘small’ changes
in the shapes and positions of mountains, and this does potentially
lay us open to paradox, since a long series of small changes can add
up to a large change –as in the notorious paradox of the bald man.
This, however, just shows that ‘mountain’, like many other general
terms in ordinary language –such as ‘red’ and, indeed, ‘bald’– is a
vague term.)” (Lowe 1995, pp. 95-6)

This criterion of remaining the same in time, as is well known, lies within the
old discussion concerning identity through time (Magee 1973, pp. 58ff), but will
be not discussed here. Although Lowe purposely does not discuss vague terms,
his above quotation suggests that among sortal predicates (like ‘to be bald’)
there are also those which are vague, and of course these should also deserve
some attention.

The discussion in the pertinent literature pushes the topic on several inter-
esting and important points, but we would like to contribute to the subject by
presenting a different kind of problem. So, instead of trying to discuss the given
examples and cases, let us complicate a little bit the already confused discussion
on general terms by presenting other kind of terms which, as far as we know,
have not yet been taken into account in such contexts. These are general terms
like ‘electron’, ‘proton’ and other terms provided by quantum physics (we could
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include here ‘strings’, ‘membranes’ and so on). Are these terms mere adjectival
or are they sortal terms? In the second case, do they have also a criterion of
counting despite the indiscernibility of the objects they apply to? This is what
we shall discuss in the next section. In doing that, we shall also mention the
case of vague sortal terms.

2 Quantum-Sortal Predicates

Let us consider a predicate like ‘to be a proton of a Lithium atom’, which we
shall term P (the reader may think of the 7Li atom, which has 3 protons and 4
neutrons in the nucleus). Alternatively, we should consider the following predi-
cate (which we could use to communicate a certain experience to our audience):
‘(to be) the atom which was ionized negatively by capturing an electron and,
after a short time later, has reverted to a neutral state by releasing an electron’
(taken from Lowe 1994).

These cases indicate that, first of all, it should be realized that general
terms like ‘proton’, ‘electron’, etc. are not mere adjectival general terms (in the
above sense), since they do not merely characterize (to use Strawson’s words)
an object as a such-an-such (cf. Strawson op. cit., p. 167). Perhaps we could
say, in Quine’s sense, that they also do not divide their reference: a proton
cannot (so far as we know) be divided up into smaller parts, and the same holds
for other kinds of particles.1 Terms like these apparently refer to certain kinds
(sorts) of entities which are closer to trees in a wood or of dogs in a city than
to green things in a wood or things in a room. Really, we may talk of the three
protons in the nucleus of the Lithium atom, or of the three electrons it has
without confusion of concepts. In other words, terms like ‘electron’, ‘proton’
and so on should be treated as sortal terms of a kind. But, of what kind? Do
they have the above mentioned characteristics attributed to sortal terms? The
very surprising thing is that they do not. Let us see why.

Quantum objects are very interesting and strange entities, of course. Even
the word ‘object’ is to be used with some care in this context; some like J.
M. Lévy-Leblond and F. Balibar have used the word quanton to designate this
“different kind of entity” (Lévy-Leblond and Balibar 1990, p. 69).2 Even so,
we continue to talk about them as we talk about the usual objects of our sur-
roundings. Perhaps this is due to our ways of reasoning and to the way we
make use of languages. G. Toraldo di Francia reminds us that we usually di-
vide the world into objects to talk about them so as in order to enunciate the
laws of physics (Toraldo di Francia 1981, Chap. 4), and this happens even with
respect to quantons (including strings and other entities introduced more re-
cently). These, we should remark, sometimes can be treated as individuals,
but at the expense of introducing restrictions on the states they may be in,
as shown by French and Redhead (1988). But another common talk is in the

1Even if we consider the annihilation/creation processes, we may accept the fact that, after
interaction, a proton remains being a proton.

2Apparently, this terminology came from Mario Bunge.
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sense that they are non-individuals of a kind, as pointed out by E. Schrödinger,
M. Hesse, M. Born and H. Weyl for instance, having no criterion of individu-
ation, no identity (see French 2000 for further discussion on this point). This
hypothesis lies at the core of quantum statistics, as is well known. Of course we
should begin by posing that the very concept of individual is problematic here,
and if we are to accept that the above mentioned ‘quantum terms’ define some
predicates, then we should also accept that a possible revision on Dummett’s
criteria above would be indicated, since, as we have emphasized, they speak in
terms of individuals.

All of this suggests the above claim that terms like ‘proton’, ‘electron’ and
so on have associated to them a criterion of application, although we don’t have
the ‘individuals’ properly to apply this criterion. In Toraldo di Francia’s sense,
these entities came with the theory :3 “[i]n some way, physical objects are today
knots of properties, prescribed by physical law” (Toraldo di Francia 1978). But
we realize that these terms are not merely adjectival. So, let us call quantum-
sortal predicates (q-s-predicates) those predicates we are discussing. Then we
could say the following regarding them:

(i) Quantum-sortal predicates have a criterion of applicability which tells us to
what kind of entity they apply to. For instance, the predicate P above applies to
protons, and not to electrons, and the distinction between these two categories
of quantum entities may be assumed to be no less clear to the physicist than
the terms ‘tree’ or ‘mountain’ are to the average person, for physicists have
the possibility of recognizing (either by theoretical or by experimental means),
whether a given physical system is, say, an electron system or not.

(ii) Although we generally cannot say that there is a well defined criterion of
identity which enables us to distinguish between ‘two’ objects that fall under a
certain ‘q-s-concept’, as for instance to distinguish among the three protons of
the Lithium atom, even so we usually refer to a quantity of them: “the objects
of physics are associated with natural numbers” (Toraldo di Francia 1981, p.
306).4

This associated number, although obtained in different ways, as for instance
by means of Feynman diagrams (ibid., pp. 302-4), are of course not given by
counting, if by this we understand the usual attribution of an ordinal to their
collection. So, we have an interesting situation where a certain collection of
‘objects’ (quantons, to use the terminology from the above), may have a cardinal,
but not an ordinal. These collections shall be identified with quasi-sets below.

To provide a further characterization of the predicates we are introducing,
let us make a comparision with other ‘more usual’ ones which could come to
the mind. So, following Terricabras and Trillas (1989), let us call Fregean a
predicate F which induces a bipartition in the domain of discourse into two

3This is particularly clear today if we think of the Higg’s bosons.
4Toraldo di Francia also considers the case of virtual particles, when even the cardinal of

a collection of them may be not well defined, but we shall not discuss this case here.

5



disjointed subsets whose union gives again the whole domain. In other words,
a Fregean predicate F enables us to define a mapping f : D −→ {0, 1}, where
D is the domain, such that:

D = f−1(0) ∪ f−1(1),

and these two sets are disjoint. In the standard semantics, the set f−1(1) is the
extension of the predicate F , while f−1(0) is its complement relative to D. So,
given any x ∈ D, one of the two possibilities holds: either F (x) is true (when
x ∈ f−1(1)) or ¬F (x) is true (when x ∈ f−1(0)). These are the predicates we
deal with in classical standard logic.

Vague predicates may be characterized as follows (Terricabras and Trillas
op. cit.): a vague predicate V induces a mapping v : D −→ [0, 1] (the closed
interval of real numbers) so that

D = v−1(0) ∪ v−1(1) ∪
⋃

r∈(0,1)

v−1(r),

where
⋃

r∈(0,1) v−1(r) is a non empty set and these three sets are pair-wise
disjointed. Of course the case of Fregean predicates can be incorporated within
this framework by supposing that in this case this last set is empty. So, if⋃

r∈(0,1) v−1(r) is not empty, we can say that there are objects in D for which
we cannot assert neither that they have the property V nor that they have not.
For instance, if V (x) means ‘x is bald’, then if x ∈ v−1(0), we say that x is not
bald; if x ∈ v−1(1), we say that x is bald, but if x ∈ ⋃

r∈(0,1) v−1(r), we should
say that x is ‘more or less’ bald, depending on the place of the r in the interval
[0, 1]; the more r is closer to 1, the more x is bald. As remarked by Terricabras
and Trillas, the semantic analysis of vague predicates could be done by using
fuzzy sets, as seems clear from the above discussion.

But in both the considered cases (Fregean and vague predicates) we are deal-
ing with individuals; the worst case (involving vague predicates) is the situation
where we have a certain ‘well defined’ individual, say the well known Mr. X,
and we are only in doubt whether he is or not bald. The uncertainty is epis-
temological only. A different situation is posed by quantum objects, for in this
case we don’t have the ‘individual’ to look at and to classify according to our
standards. The objects of quantum physics come to us already pre-packaged as
entities of a sort, given by theory as such. Toraldo di Francia says that they are
nomological objects, given by physical law (op. cit., p. 222), having fixed and
prescribed characteristics: “the naked particle is not observable” (ibid., p. 305).
Sunny Auyanng helps in fixing this idea; as she says, “[p]eople had a fairly clear
notion of planets before the advent of Newtonian mechanics. The same cannot
be said of quarks: no one had dreamed of them in the absence of quantum
mechanics” (op. cit., p. 7); with the due qualifications, the same of course could
be said of the other quantum particles (understood as ‘quantons’).

Despite the difficulties also in characterizing precisely these entities as nomo-
logical in Toraldo di Francia’s sense, for it is not clear how these alleged proper-
ties are ‘fixed and prescribed’, or in what sense are these objects ‘prescribed’ by
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physical law, the idea is useful in helping us to point out that we are faced with
a different kind of uncertainty: an ontological one (and this reminds us again of
Lévy-Leblond and Balibar’s use of the word ‘quantons’, as mentioned above).
But the problem now is not with the predicates properly: they are not vague
at all, for the physicist knows very well what a certain object must satisfy, say,
to be classified as a proton. He knows protons via theory. The uncertainty is
concerning the entity itself. In other words, since indistinguishable quantum
objects (those sharing all their state-independent, or intrinsic, properties) can-
not be distinguished from one another, the problem is to identify the extension
of a predicate like ‘to be a proton of a 7Li atom’, for whatever collection with
three protons will do just as well, and this is quite different from, say, ‘to be
a U. K. Prime Minister’ (put another way, the extension of this last predicate
obeys the Axiom of Extensionality of set theory, while the extension of the
former does not). This last point, let us recall, is linked to one of the most ba-
sic assumptions of quantum theory, namely, the Indistinguishability Postulate
(Redhead and Teller 1991), which roughly says that permutations of indistin-
guishable quanta are not regarded as observable. So, in the semantic analysis
of such predicates, even fuzzy sets are not of much help, for while they enable
us to deal with epistemological uncertainty in the above sense, they do not help
us in dealing with ontological uncertainty.

So, we may say that the quantum-sortal predicates, that is, those predicates
such as the above suggested by quantum physics, have the following main char-
acteristics:

(i) They have a criterion of applicability in Dummett’s sense mentioned above.

(ii) Instead of a criterion of identity, there is a criterion of cardinality, a principle
which enables us to say that in certain situations the predicate truly applies to a
certain number (generally finite) of entities, yet sometimes there is no counting
process associated with them. This number is sometimes called the ’occupation
number’ (see Auyang op. cit., pp. 159-60), and may vary from one application
to another.

(iii) In certain situations, such as those involving indistinguishable quantum en-
tities, the extension of the predicate is not well defined, in the sense that another
collection of similar objects with the same cardinality may act as its extension
as well. So, we may say that there is a kind of opacity involving at least some
objects of the domain, for the issue becomes not that of involving predicates
lacking ‘sharp boundaries’ (as in the situations involving vague predicates), but
rather of the objects to which the predicates apply lacking individuality (Krause
and French 1999).

Terms (and the corresponding predicates) like these should be included
among the pantheon of general terms and they should be considered in the
semantic analysis involving predication and reference in general. So, we should
ask for a way of characterizing them formally. This is what we shall do in the
next sections.

7



3 Sortal Logics

Sortal predication sometimes has been treated formally by means of the related
concept of relative identity. Peter Geach, in the 60’s, suggested that there is no
‘absolute’ identity, and that all identity statements are relative. So, according
to him, when we say that ‘x is identical with y’, we aim to say that ‘x is the
same S as y’, where S is understood as a sortal predicate (“a count noun”,
according to Geach) (Geach 1967). The aim of sortal logics is to treat these
predicates differently from standard one-placed predicates, but this is not so
easy; as recalled by Stevenson (op. cit., who does not follows Geach’s ideas)
in usual first-order logic we can write x = y ∧ S(x) to mean ‘x is the same
S as y’. But, in this case, what should distinguish S as a sortal predicate in
the sense already explained? The way this distinction is achieved is a source of
controversies.

Really, there has not been a ‘proliferation’ of sortal (formal) systems in the
literature. Pelletier’s review (1992) provides a general overview of the subject,
and he mentions the works of Smiley, Wallace, Stevenson (op. cit.) and Tennant
on sortal logic (Pelletier 1992, where the references are given). Since we do not
aim to revise these systems here, we shall stay with Pelletier’s analysis taken
for granted. Anyway, our arguments here do not depend on a revision of the
proposed systems.

Pelletier says that in trying to characterize a sortal logic, these systems have
provided only ‘syntactic sugar’, for according to him none of them provides a
clear distinction between sortal and standard one-placed predicates: as he says,

“. . . the accounts produced are merely notational variants of classical
restricted quantification theory –which of course is a mere notational
variant of classical quantification theory (. . .) In restricted quantifi-
cation theory we ‘abbreviate’ formulas of the form ∀x(Fx → Gx)
and ∃x(Fx&Gx) respectively as (∀x : Fx)Gx and (∃x : Fx)Gx.
The latter formulas appear to have the syntactic unit ‘quantifier
phrase’ (if F stood for ‘dog’, then the quantifier phrases would be
‘every dog’ and ‘some dog’). But in restricted quantification theory
this is mere appearance, for these formulas have precisely the same
truth conditions as the original unrestricted formulas. Exactly the
same formulas are theorems; exactly the same arguments are valid,
after translation from one idiom to another (. . .) True sortal logic
resides in restricted quantification theory exactly to the same extent
that it resides in unrestricted quantification theory (. . .) and then
one concludes that none of these alleged ‘sortal logics’ adequately
represents the desired doctrine.” (Pelletier op. cit.)

In order to make things clear, let us recall in brief what Pelletier says about
this ‘desired doctrine’ of sortal predication. After recalling the points already
mentioned above about sortal predicates and sortal general terms, Pelletier
makes an interesting remark: according to him, “ [a] sortal concept is a (men-
tal? objective?) concept of a kind or sort of individual. A sortal predicate is
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a linguistic item which is correlated with a sortal concept. In this view there
is no such a thing as an individual tout court ; instead, individuals come al-
ready pre-packaged as individuals-of-the-F -type (where F is a sortal concept)”
(op. cit.). This is an important and distinguishing point: according to this
doctrine, we don’t start with certain ‘bare’ (we could say ‘naked’) objects to
which we progressively ascribe properties, but objects of the domain should
come already classified as objects of a sort. The apparent closer relationship
of such ‘pre-packaged’ entities and quantum objects seems evident. This is of
course interesting, for in thinking of formal logical systems for expressing that,
we should realize that the languages of standard logic and mathematics (set
theory) are languages of objects; a set is a collection of distinct objects, and
the standard interpretations of quantifiers (either objectual or substitutional)
make them range over sets, hence over collection of ‘bare’ individuals. In other
words, the standard languages operate as if we had naked individuals at the
beginning (the philosophical literature sometimes refer to bare particulars –cf.
Teller 1995, Chap. 2), and only a posteriori, little by little, we attribute to them
properties (or, alternatively, recognize them as elements of certain sets). On the
contrary, according to the view of quantum particles as non-individuals, we do
not have this any kind of basic stuff where the properties are anchored; there
is nothing which transcends the properties of the particle, no haecceities, no
‘primitive thisness’ (Teller op. cit.; Teller 1998; French 1998 and 2000).

This assumption, which has gained the preference of some philosophers,
meshes quite well with the above discussed idea that there should be no individ-
uals tout court (bare particulars), but that the entities would come pre-packaged
by theory right from the start as individuals of a sort, prescribed by physical
law. In considering this, perhaps we can understand why there are no truly sor-
tal logics, as remarked by Pelletier: all of these systems are compromised with
standard languages of mathematics (standard set theories) in their semantic as-
pects. It seems that while physics has moved its paradigm from classical physics
to quantum (and relativistic) physics, logic and mathematics still remain using
languages which refer to individuals and collections of distinguishable objects
(sets). Apparently, these two things do not fit one another with regard to certain
assumptions, like the consideration of indiscernible (indistinguishable) objects.

But it seems that a solution can be envisaged, at least with respect to the
quantum-sortal predicates; if we regard logic as involving also its semantic as-
pects, a characterization of such predicates perhaps can be achieved if we would
be able to find an adequate mathematical language where we could talk on
collections of ‘objects’ which may have a cardinal, but not an ordinal, that
is, aggregates which do not originate a counting process. Then, if these col-
lections are taken to be the extensions of certain predicates, these predicates
could legitimately be termed ‘quantum sortals’. Furthermore, due to the indis-
tinguishability of the elements of these intended collections, any two of these
collections with the same cardinal would be taken as the extension of the predi-
cate, so vindicating the above requirement about quantum objects involving the
Indistinguishability Postulate. Of course such collections should not be treated
as standard sets in the sense of usual set theories. All of these requirements
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can be achieved within the framework provided by quasi-set theory, as we shall
discuss in brief below.

We should remark that a similar solution was proposed by Stevenson for
characterizing sortal predicates in his mentioned paper; there, he defined a con-
cept of S-sets meaning “those sets which consist of all the individuals to which
a given sortal predicate applies –as opposed to arbitrary sets which correspond
to one-place predicates in the Tarskian semantics for orthodox quantificational
theory” (op. cit.).

4 The meta-mathematical framework

Quasi-set theory provides a mathematical way of dealing with collections of
indistinguishable but not identical objects (Krause 1992; 1996; Dalla Chiara et
al. 1998). The axioms are based on ZFU-like axioms (Zermelo-Fraenkel with
Urelemente (but of course we could develop alternative theories based on the von
Neumann-Bernays-Gödel system, or using a higher order logic as its underlying
logic and so on). The theory allows the existence of two sorts of atoms, termed
m-atoms and M -atoms. The latter are postulated to have the properties of
standard Urelemente of ZFU, while the former are thought of as representing
(quantons). Following Schrödinger’s ideas, for this kind of object the concept
of identity is supposed to lack sense.5 In quasi set theory, this is achieved by
restricting the concept of formula: expressions like x = y are not well formed
whether x or y denote m-atoms.

The consequence is that the axioms permit us to distinguish between the
concepts of identity (being the same object) and indistinguishability (agreement
with respect to all attributes), which cannot be done in classical logic and set
theory, where there are no indistinguishable but not identical objects. A quasi-
set may have a cardinal (termed its quasi cardinal) but, in general, not an
ordinal; so, the theory admits quasi sets (whose elements are indistinguishable
m-atoms) which cannot be ordered. The concept of quasi cardinal is taken as
primitive, since it cannot be defined by the usual means (as particular ordinals).
This fits the idea that quantum particles cannot be either ordered or counted,
but only aggregated in certain amounts. Notwithstanding, due to the concept
of quasi cardinal, there is a sense (as in quantum physics) in saying that there
may exist a certain quantity of m-atoms obeying certain conditions, although
they cannot be labelled.

The language has a primitive binary predicate of indistinguishability (≡)
which is postulated to be an equivalence relation. The standard axiom of ex-

5Schrödinger says that “the sameness of a particle is not an absolute concept. It has only
a restricted significance and breaks down completely in some cases” (Schrödinger 1998); in
another text, in talking about quantum objects, he said that there are cases where: “(. . .) the
‘sameness’ becomes entirely meaningless (. . .) And I beg to emphasize this and I beg you to
believe it: It is not a question of our being able to ascertain the identity in some instances
and not being able to to so in others. It is beyond doubt that the question of ‘sameness’, of
identity, really and truly has no meaning” (Schrödinger 1952, pp. 17-18). Further details may
be found in French and Krause forthcoming.
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tensionality does not hold, but a weaker one is used instead, which entails
that quasi-sets with the same quasi-cardinality, and whose elements are indis-
tinguishable, are in their turn indistinguishable quasi-sets. These are termed
quasi-similar quasi-sets. A basic result tells us that if we release a sub-collection
of a certain quasi-set and ‘substitute’ it by another quasi-similar quasi-set, then
the resulting collection is indistinguishable from the original one, in the sense
of the theory’s weak axiom of extensionality (this can be done by quasi -set the-
oretical operations similar to those of standard set theory, that is, if we write
Qsim(y, z) to mean that y and z are quasi-similar, then the operations entail
something like y ⊆ x ∧ Qsim(y, z) → ((x − y) ∪ z) ≡ x). Furthermore, a de-
fined concept of ‘extensional equality’ (here we shall use = for representing this
concept) is introduced having all the properties of classical equality, but it does
not hold for m-atoms. We shall not present the theory here (see the mentioned
references), but what was said enables us to have an idea of the semantical
characterization of sortal predicates, which we shall do in the next section.

5 Quantum-Sortal Predicates: a Semantical Anal-
ysis

Quantum-sortal predicates can be semantically characterized by using quasi-
sets. Predicates like P , considered above (let us recall that P (x) stands for ‘x
is a proton of a 7Li atom’), have the peculiar characteristic of not having a well
defined extension in the sense that whatever collection with three protons acts
just as well as its extension (a similar point was firstly emphasized also by Dalla
Chiara and Toraldo di Francia 1993; see Toraldo di Francia 1981, p. 306). Then,
if the extensions of such predicates are taken to be quasi-sets of indistinguishable
objects with a fixed quasi-cardinal, we would have a semantic characterization of
these predicates which follows the intuitive accounts mentioned above. Really,
as we have seen, whatever quasi-set belonging to a collection C of quasi-similar
quasi-sets (recall that these are those quasi-sets which have the same quasi-
cardinality and whose elements are related by the indistinguishability relation
≡) may act as the extension of the considered predicate. So, it makes sense
to say that they do not have a well defined extension, since all of these quasi-
sets are indistinguishable by the weak extensionality axiom. Furthermore, due
to the non-individualistic characteristics of the m-atoms, the elements of their
(ambiguous) extension cannot be regarded as ‘individuals tout court ’, but should
be regarded as ‘individuals of a sort’ instead, namely, of that ‘sort’ characterized
by the properties which (despite ambiguously) defines the considered collection
C (Dalla Chiara and Toraldo di Francia op. cit. identify the conjunction of
these properties with the intension of the quasi-set).6 This is what the quasi-
set semantics described below describes.

6It should be remarked that the semantic analysis developed by these authors is based on
a similar concept of quaset, which differ from our quasi-sets, but have similar motivations; for
a comparision between these two concepts, see Dalla Chiara et. al 1998.
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A logical system that can be useful for characterizing quantum-sortal pred-
icates is the ‘Intensional Schrödinger logic’ developed by da Costa and Krause
(1997); here we shall sketch a minimal nucleus of this logic, and provide a slight
modification of its quasi-set semantics in order to see how it can be applied to
the above discussion.

To begin with, let us introduce the concept of type. The set of types is defined
as the smallest collection Π such that: (a) e1, e2 ∈ Π, and (b) if τ1, . . . , τn ∈ Π,
then 〈τ1, . . . , τn〉 ∈ Π. e1 and e2 are the types of the individuals; the objects of
type e1 are called m-atoms and are intuitively thought of as denoting quantons.
Following the above discussion, we suppose that the concept of identity cannot
be applied to m-atoms. The language of our logic may be described as follows: it
contains the usual connectives, the symbol of equality, auxiliary symbols, quan-
tifiers, and the necessity operator 2. With respect to variables and constants,
for each type τ ∈ Π the language has a denumerably infinite collection of vari-
ables Xτ

1 , Xτ
2 , . . . of type τ and a (possibly empty) set of constants (Aτ

1 , Aτ
2 , . . .)

of that type; we use Xτ , Y τ , . . ., and Cτ and Dτ , . . ., perhaps with subscripts
as syntactic variables for variables and for constants of type τ respectively.

The terms of type τ are the variables and the constants of that type; so,
we have individual terms of types e1 and e2. We use Uτ , V τ , perhaps with
subscripts, as syntactical variables for terms of type τ . The atomic formulas
are defined in the usual way: if Uτ is a term of type τ = 〈τ1, . . . , τn〉 and
Uτ1 , . . . , Uτn are terms of types τ1, . . . , τn respectively, then Uτ (Uτ1 , . . . , Uτn) is
an atomic formula; so is Uτ = V τ if τ is not e1. So, the language does not enable
us to talk either about the identity or about the diversity of the individuals of
type e1. The other formulas are defined as usual. A formula containing at least
Uτ1 , . . . , Uτn as free variables sometimes will be written F (Uτ1 , . . . , Uτn).

A semantics for such a language can be described as follows (from now on
we will be working within quasi-set theory); the equality symbol ‘=’ stands here
for the quasi-set theoretical extensional identity (see Krause 1996; Dalla Chiara
et al. 1998). Let D = m ∪ M , where m 6= ∅ is a finite ‘pure’ qset (that is, a
finite qset which has only m-atoms as elements) and M 6= ∅ is a ‘set’ (these are
the ‘copies’ of the ZFU-sets). Furthermore, let I be a non-empty set (whose
elements are called index or state of affairs).7

By a frame for the described language based on D and I we mean an indexed
family of quasi-sets (Fτ )τ∈Π, where:

(i) Fe1 = m

(ii) Fe2 = M

(iii) F〈e1〉 = [C]I , where C ⊆ m/≡ (the quotient quasi-set of m by the indis-
tinguishability relation), such that the quasi-sets of C are quasi-similar. This

7As in Montague’s approach to intensional logic, we may suppose that I is the Cartesian
product W × T where W is a (quasi-)set of possible worlds and T is a totally ordered set of
instants of time; see da Costa and Krause 1997.
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condition says that a predicate of type 〈e1〉 is associated with a relation-in-
intension of a finite collection of indistinguishable m-atoms.8

(iv) For each τ = 〈τ1, . . . , τn〉 ∈ Π, other than those mentioned in the previous
itens, Fτ is a non-empty subquasi-set of

[P(Fτ1 × · · · × Fτn)]I

If the equality holds in (iii) and (iv), the frame is standard. By a general
model (g-model for short) for our language, based on D and I, we understand
an ordered pair

M = 〈Fτ , ρ〉τ∈Π,

such that :

(i) (Fτ )τ∈Π is a frame for SωI based on D and I

(ii) ρ is a quasi-function which assigns to each constant Cτ an element of Fτ .
Then, in particular ρ(Ce1) ∈ m and ρ(Ce2) ∈ M .9

The axioms of such a logic can be presented without difficulty, as shown
in da Costa and Krause 1997, and a generalized completeness theorem can be
proven as well, but we shall not present these details here. But, for exploring
the ideas delineated above, let us consider some examples which illustrate the
‘intensional’ counterpart of such a semantics, which links the subject with sortal
predication. We shall present four examples which are the ‘most paradigmatic’
ones. The first two show that the classical intensional case (cf. Gallin 1975)
remains valid when the entities are not of the type e1. The last one exemplifies
the specific case of quantum-sortal predicates.

Example 1: Let us consider the constant Ce2 . Since Fe2 = M , then ρ(Ce2) ∈ M ,
that is to say, Ce2 names an element of a standard ‘set’ (a copy of a ZFU set).
This is in accordance with the standard semantics, since the given constant
behave as a ‘classical constant’.

Example 2: Now let us take a constant C〈e2〉. In this case, F〈e2〉 ⊆ [P(Fe2)]
I =

[P(M)]I . Then, F〈e2〉 is a class of functions from I in P(M), also as in the
classical case.10 Intuitively, C〈e2〉 is a unary predicate (an individual property)
whose arguments are individuals of type e2 (that is, ‘classical’ individuals). Also
in this case, all has happened as in standard semantics.

8The terminology is adapted from Gallin 1975, pp. 72ff.
9Quasi-functions generalize the standard functions; generally speaking, they map collec-

tions of indistinguishable objects into collections of indistinguishable objects, and coincide
with usual functions when there are no m-atoms involved (in this case, indistinguishability
becomes identity). The details can be found in the mentioned papers.

10Since there are no m-atoms involved, these quasi-functions are functions in the standard
sense.
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Example 3: Let us now take a constant Ce1 . In this case, Fe1 = m and then
ρ(Ce1) ∈ m, that is, the constant (intuitively) ‘names’ an m-atom. Since the
m-atoms cannot be individualized, counted etc., the denotation of Ce1 is am-
biguous. We can say that a constant of type e1 plays the role of a generalized
noun (g-noun). It is by using this kind of constant that we can make refer-
ence to ‘the electron’ which was released from a certain atom by ionization, as
mentioned in the previous sections. It is important to mention that this use
of the language is distinct from the use of variables; the case resembles the
‘parameters’ used in mathematics, for instance when we write something like
ax2 + bx + c = 0 and regard x as a variable and a, b and c as ‘parameters’
denoting arbitrary real numbers. But the fundamental difference is that in this
case these parameters stand for individuals, for real numbers can be named and
distinguished from the others, contrary to the constants type e1, which stand
for non-individual quantons. The semantical aspects are of course distinct.

Example 4: Now we shall consider a constant C〈e1〉, which could denote our
predicate P described above. In this case, F〈e1〉 = [C]I ⊆ [P(Fe1)]

I . Then,
ρ(C〈e1〉) ∈ F〈e1〉, that is to say, it is a (quasi-) function from I to C (which, let
us recall, is a collection of quasi-similar quasi-sets). In other words, ρ(C〈e1〉) is
a quasi-function from I to C. If m is a pure quasi-set whose elements are all
indistinguishable one each other (that is, they stand in the relation ≡), then the
denotation function does not distinguish between quasi-sets in C. In this case
the only difference among the sub-quasi-sets of m is about their cardinality;
that is to say, if ρ(C〈e2〉) is x, this x has no a precise definition, for whatever
quasi-set y such that x and y are similar could act as the denotation of C〈e2〉 as
well. This interpretation accommodates the intuitive idea that a predicate like
P does not have a well defined extension.

In other words, since the elements of quasi-sets of indistinguishable m-atoms
cannot be named, the terms of type e1 have no precise denotation; they refer
ambiguously to arbitrary elements of these quasi-sets, and so the indistinguish-
able elements of a pure quasi-set, as non-individuals, can only be aggregated in
certain amounts (Teller 1995 explains the similar case involving quantum ob-
jects). So, they accurately exemplify collections of quantons. In this sense, we
may properly say that such constants do not represent anything in particular, for
they lack a (precise, well defined) referent. Furthermore, the last example above
exemplifies the case where a predicate does not have a well defined extension
(in the sense that every quasi-set of a certain class of similar quasi-sets may be
considered as their extension); these predicates may be viewed as relations-in-
intension of sort U 〈e1〉, and may act as our quantum-sortal predicates, covering
the situation where, for instance, a physicist is measuring a certain property of
a quantum system, say the spin of a collection of electrons.11 Suppose that he
has chosen the x direction and has stated how many electrons have spin up and
how many have spin down. However, he could choose another direction, say the
z axis, and then perform again the measurement of the spin of the electrons in

11See Dalla Chiara et al. 1998.
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the x direction (as in the Stern-Gerlach experiment). If he obtains collections
of quantum states with the same cardinality, it simply has no meaning to say
that these collections are the same or that they are distinct from the first ones.
The predicate ‘to have spin up in the x-direction’ has not a precise denotation,
for whatever collection with the right number of electrons act as its extension,
and no counting process (in the mathematical sense of attributing it an ordi-
nal) can be achieved. So, we should agree with Torado di Francia in that “the
intepretation of the logical concept of extension may definitely need a profound
revision in modern physics” (Toraldo di Francia 1981, p. 306), and perhaps the
consideration of predicates like the quantum-sortal ones help in pushing this
revision a little bit further.
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Theoria - Segunda Época 10, 1989, 1-12.

[28] Toraldo di Francia, G., ‘What is a physical object?’ Scientia 113, 1978,
57-65.

16



[29] Toraldo di Francia, G., The investigation of the physical world, Cambridge
Un. Press, 1981.

[30] Wallace, J. R., ‘Sortal predicates and quantification’, J. Phil. 62, 1965,
8-13.

Décio Krause
Department of Philosophy
Federal University of Santa Catarina
dkrause@cfh.ufsc.br

Steven French
School of Philosophy
University of Leeds
s.r.d.french@leeds.ac.uk

17


