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Abstract

In this paper we argue that physical theories, including the most recent
ones, even if only implicitly, talk of ‘objects’ (or ‘things’) of some sort (re-
ally, of several sorts), and question the logico-mathematical apparatus we
still use to formulate them, taking into account what such theories presup-
pose about these entities. I shall point out that despite the discourse (or at
least some discourses) goes in the direction of assuming that these quantum
objects would be ‘new entities’ of some kind, distinct from the traditional
physical objects of classical physics, the logico-mathematical framework
we use is still the old one, grounded on classical logic and set theory, which
are committed to atavistic concepts based on individuals and distinguishable
things, in complete disagreement with our present day conception of quanta.
So, the use of such apparatus would impede us to be in complete agreement
with the ontological commitment the theories ofquantaseem to propose.
Thus, I move in the direction of joining those who try to question the ‘logic
of quantum mechanics’ from a different point of view, looking for a formal
rationale for a new ontology.

∗I would like to thank Newton da Costa, Silvio Chibeni, and Ian Thompson for useful com-
ments and criticism.
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As a consequence of this move, we can revisit Einstein’s ideas on phys-
ical reality and see that, from the perspective of considering a new kind of
object, here termed ‘non-individuals’, it is possible to sustain that they still
obey some of Einstein’s conditions for ‘physical realities’, so that it will be
possible to talk of a ‘principle of separability’ in a sense which is not in
complete disagreement with quantum mechanics. So, Einstein’s departure
from quantum mechanics might be softened at least concerning a form of his
realism (locality still remains a challenge of course), for we guess that the
incompatibility between quantum mechanics (field theories included) and
some form of ‘separability’ makes sense only if the objects of discourse are
thought as ‘classical’ objects, typical of classical ontology.

Key words: quantum objects, non-individuality, separability, quasi-sets, extensional
ontology.
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1 Introduction

Present day physicists generally work as if they ‘merely’ should explain why the
world is as it is, leaving the issue of discussing what is its real stuff to philoso-
phers. Steven Weinberg, for example, said that ”the aim of physics at its most
fundamental level is not just to describe the world, but to explain why it is the
way it is” [50, p. 175]. So, although in a vague way, we may say that their main
activity would be to ask if their formalisms (mathematical schema) give adequate
answers to the questions posed on physical systems, without giving importance
(as philosophers do) to the real stuff of ‘reality’ at all.1

This way of thinking is consonant with the evolution of the discourse of physi-
cists and (some of) their theories, which moved from a world of objects (for in-
stance, from Galileu’s discourse about ‘bodies’, and of course Newtonian physics)

1Yet there is a confusion here, for we might say that ‘to explain’ (or ’to describe’) the world is
just to indicate what is to be real. Anyway, we do not aim to enter in this philosophical discussion,
but only to remark that standard ontological questions do not occupy physicists in general. For
instance, no one (I suppose) is asking whether strings or branes posed by present day physics do
really exist; they are part of ‘the framework’, to use Carnap’s terminology [6].
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to a world of mathematical equations, which sometimes are said to refer only to
potentialities, typical of present day quantum mechanics (Bohr’s school) [36].
Quantum mechanics, in particular, turned out to be just a mathematical formalism
which allows us to compute probabilities related to physical events. According to
this school, in short, these values exist only after a measurement being performed;
before that, there is a limitation on what can be said about quantum systems, as
for instance questions about their individuation. In a certain sense, the objects
of physics are ruled out from the theory, which makes reference to them only in
an indirect way.2 Really, according to Heisenberg, as it is well known, quantum
theory is not something which describes nature, but only our knowledge about
nature. What I shall sustain is that what has been ruled out from quantum theories
is the concept of ’classical object’, but thatquantum objectsare still present at
least in the informal semantics of these theories. By the way, in his [19], H. Folse
sustained a similar opinion regarding Bohr’s view. As Folse said, ”I argue that
Bohr’s viewpoint is more correctly identified as a rejection of only one form of
realism [so, he wouldn’t be an anti-realist, as it is usually claimed], namely, one
which would be compatible with the world-view of classical physics”.

This schema is particularly important if we take into account philosophers’
interest in ‘models’ of scientific theories, mainly in consonance with the so-called
‘semantic view of theories’ [47], for a scientific theory is generally taken to be
involved with someinterpretationin addition to its mathematical formalism [42].
So, a look for a way of representing its models is in order, that is, we should
pay attention on the metamathematical stuff where these models are built.3 To
give the reader an idea of what I am talking about, let me take a simple example
taken from mathematics (the case involving physical theories follows essentially
the same idea, although more complicated). Let us suppose group theory,G. A
model ofG is a set theoretical structure composed of a non empty set endowed

2We shall leave the discussion about string-like theories out, like superstring theory for, as
said Glashow, it does not exist as atheory yet: ”[superstring theory] does not now exist, may
never exist, and is probably not even a sensible concept” [25, p. 77]. In a book available at the
web, Ian Thompson discussed several ‘quantum ontologies’, namely, the ontologies of particles,
of events, of waves, of propensities and the wave-particle complementarity ontology, all of then
with advantages and, of course, great problems. But, as he says, all of them are ways of describing
”different possibilities for the individual things which exist in the quantum world” (cf. [48,§4.3].

3N. da Costa has insisted that, for instance, the notion of truth (in the usual Tarskian sense)
depends not only on the set theory used in the metamathematics, but also on theparticular model
of such a theory [9]. Thus, if there are ‘objects’ involved, our metamathematical resource would
be able to describe them as the theory suppose, for instance, as indistinguishable entities. More on
this below.
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with a binary operation, so that the group axioms are true in this structure in the
ordinary (Tarskian) sense. From this point of view, a theory is something like an
ordered pairT = 〈F,M〉, whereF is the mathematical counterpart of the theory
andM is the class of its models (see [13, Chap. 3], and also [47, Chap. 2]).

Even when speaking of quanta as things not yet actualized, but as ‘potential-
ities’, physicists and philosophers still make reference to ‘objects’ of some sort
for, if not, what are to be these potentialities? Something unimaginable? On the
other hand, if we regard the ‘creation’ of the objects to a extreme view which says
that before measurement nothing exist at all, of what are our equations, which
refer to such potentialities, talking about? In fact, even in quantum field theories,
where the idea of particles (thought as ‘little objects’) is subsumed in a formalism
involving ‘fields’, when something like ”Being entangled with” (which has been
taken perhaps as the ‘basic’ property of quantum mechanics) has to be taken as
a property that is predicated of at least two quantum systems [18], we may ask
”Be entangled with what?”. That is, the talk of ‘something’ remains; due to our
atavistic languages and ontology taken from classical physics (and classical logic
and mathematics), we could say following Redhead that the ‘particle grin’ (read:
some idea of athing) is still present in the discourse of quantum theories. We
think that we should be able to express the existence of these entities in some way
compatible with the theory’s presuppositions, for instance, as non-individuals. As
we shall see below, by using standard mathematics (and logic) we can do that only
by using the resource of ad hoc postulates, like symmetry-like postulates.

Apparently, there is no escape from this kind of talk and the ad hoc resources
if we use ourobjectualstandard languages, grounded on classical physics, classi-
cal logic and standard mathematics, all of them built on concepts of (apparently)
individual and distinguishable things which surround us.4 Several authors, from
Schr̈odinger on, have remarked this fact [46]. Recently, some philosophers of
physics, and physicists with a philosophical mind, have proposed to update this
kind of discourse by admitting that we may be faced with a ‘new kind of ob-
ject’, that is, that present day physics face us with a new kind of ontology [32],
[3], [49]. Some of them, like Bartels, move to postulate thatquantaare not the
building blocks of quantum reality, but that these are to be ‘Davidsonian events’
instead [2]. Shimon Malin also uses a similar analogy, but speaking in terms of
‘processes’ in Whitehead’s sense [36] (see also [?]).

Anyway, philosophical interpretations apart, we should recognize that it is

4The issue related to the origins of laws of logic and mathematics and their dependence on a
‘classical view’ of the world is discussed by several authors; for instance, see [8].
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quite difficult to think of a discourse which would not be about ‘objects’ of some
kind, even if ‘they’ are fields, events, or something else. As Toraldo di Francia has
insisted,objectuation, that is, the act of dividing up the world in objects to talk of
them, is a primary act of our mind, and bases the way we construct our discourse
about the world [49].

In this paper I shall not be deeply occupied with the question of thenature
of quantum objects. I will just take as a point of departure that the discourse of
physics, even those of the most recent theories, are about ‘objects’ of a sort (per-
haps of several sorts), like particles, waves, fields, or strings, and to question the
logico-mathematical apparatus we still use to formulate our theories about them.
In short, I shall point out that despite the discourse (or at least some discourses)
about possibly ‘new entities’, the logico-mathematical framework we use is still
the old one, grounded on classical logic and set theory, which is committed to
atavistic concepts based on individuals and distinguishable things, in complete
disagreement with our present day conception of quanta. So, I move in the direc-
tion of joining those who try to question the ‘logic of quantum mechanics’ from a
different point of view, that is, not in studying abstract algebraic lattices [15], but
in looking for a formal rationale for such a new ontology, which I shall mention
in some of its main characteristics below.

As a consequence of this move, we can revisit once again Einstein’s ideas on
physical reality and see that, from the perspective of considering a new kind of
object, it is possible to sustain that they obey some of his conditions for ‘physical
realities’, so that it will be possible to talk of a ‘principle of separability’ in a
sense which is not in complete disagreement with quantum mechanics. In short, I
sustain that we can speak (in mathematical terms) of ‘distinct realities’, although
non-individual ones. So, Einstein’s departure from quantum mechanics might be
softened at least concerning a form of his realism (locality still remains a challenge
of course), for we guess that the incompatibility between quantum mechanics
(field theories included) and some form of ‘separability’ makes sense if the objects
of discourse are thought as ‘classical’ objects, typical of classical physics (that is,
asindividuals).

2 Talking of objects

Let us take some few examples from present day physics. Consider Bose-Einstein
condensates (BECs) first. What are they? In short, and the mathematical formal-
ism just gives to this idea an adequate way to describe these entities, BECs are
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collectionsof quanta (atoms, ions, etc.) cold near to the absolute zero so thatthey
behave as something macroscopic (I am emphasizing the relevant words which
remind us to the ‘classical ontology’). But BECs arecomposedof several quanta
which are in the same state, althoughthere are no differences among them. But no
physicists, I believe, will say neither that these quanta (which form a BEC), are
the very same entity, nor that there is a difference from one each other, or then that
we cannot determine the number of quanta in a BEC. In other words, the ‘single
blob’ these quanta form, the ‘super atom’, is still a group of quanta which have
coalesced into the blob.5 Finally, we should discard the confusion between what
a theoryusesin its descriptions and what the theoryrefersto. That is, in saying
for instance that a theory description of an entity is not a description of an indi-
vidual, but of a type, we are making a confusion between language and reference.
We mayusetypes to refer to electrons, say, but it seems beyond doubt that the
supposed theory isaboutelectrons.

As a second example, let us take entangled quanta. According to the usual
theory (Copenhagen school), quanta become actual only after a measurement.
Before measurement, nothing can be said about their individual behaviour; in the
popular jargon,theydo not exist except as potentialities. Okay, but even if not
actualized yet, for example having turned to be light points in a TV screen, what
are they? This is a difficult question of course, so is to explain why they make a
particular choice of a point when collapsing, that is, when interacting with an atom
in the screen.6 But note that in these situations we are still making reference to
quanta, yet potential ones. The formalism still ‘talks’ of them when we write the
relevant non-factorizable functions and describe entangled systems. To write out
these functions, we labelthem, namethem, refer tothem, yet we suppose thatthey
are not individuals, in the sense that there is no property that can be possessed by
them as individuals. In other words,theyare there, existing at least in the informal
semantics associated with the relevant functions (or state vectors) –see below.

Peter Mittelstaedt, in a recent paper, has joined M. Redhead and P. Teller
(1991) in describing the main features of ‘classical’ physical objects, so charac-
terizing what he callsclassical ontology, O(C) [39], [43]. Let us summarize their
claims. The objects ofO(C) have (among others) the following characteristics: (1)
they arecontinuants, in the sense that an individual at one time can be identified as
the same one that existed at an earlier time –that is, they havegenidentity, a term

5A good informal description of these condensates can be seen at the BEC Homepage,
http://www.colorado.edu/physics/2000/bec/.

6Shimon Malin has developed Dirac’s view that ”Nature makes a choice (. . .) when there is no
longer a possibility of interference” [36, p. 127].
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coined by Reichenbach; (2) they are objects of predication, and may bear proper-
ties; (3) they areindividualisable, in the sense that there is ‘something’ (Locke:
”I don’t know what” [34, Chap. XXIII, Book II]) which confers then an identity;
(4) they have identity; (5) they can be counted, named, tagged, labeled.

From the logical point of view, we can say that for every propertyP, we have
thatP or its counter property, to use Mittelstaedt words, holds [39]. If we under-
stand this ‘counter property’ as the negation ofP, namely,¬P, then a form of the
excluded middle principle is in order:P ∨ ¬P. Furthermore, it seems clear that
we shouldn’t accept that both contradictory properties hold at once;7 so, the con-
tradiction rule¬(P ∧ ¬P) seems to be also valid. In addition, for every property
P, we still have what Mittelstaedt has called the ‘complete determination’ of an
object (attributed to Kant): ”if all possible predicates are taken together with their
contradictory opposites then one each pair of contradictory opposites must belong
to it” (hence, we could add, each property belongs to it). In other words, there
is valid here a rule called in some contexts ‘the explosion rule’, or Duns Scotus
Rule: from a contradiction every proposition can be deduced, forP∧ ¬P→ Q is
to be true. If we pursue these analogies, it is clear that we shall obtain the rules of
classical logic. Really, we can say that classical logic was built withO(C) in our
minds.

A problem raises when we consider quantifiers. ‘Classical’ quantifiers, due to
their semantic interpretation, presuppose identity [12]; when we say that ”There
exists an object so and so”, and this is true, we mean that there exists asetof ob-
jects from which we are talking about and that there is an element of this set so and
so. Furthermore, this object can be always distinguished from any other: it is an
individual. A similar idea holds for the universal quantifier.Classicalsemantics
presupposeclassicalset theory. Butsets, according to standard mathematics, are
collections of distinguishable objects, which is in complete agreement withO(C).
So, it is not easy to explain in precise terms what a physicist intends to say when
she speaks that ”there exists an electron so and so”, in the case that these entities
are taken to be indiscernible from other electrons. But we shall leave this point as
a problem to be further investigated, perhaps by adapting plural quantifiers to the
quantum real.8

7The reader may be thinking in complementary propositions here. But we would like to say
that we do not regard complementary propositions as being the negation of one another, strictly
speaking. In another work ([11]), we have approached the idea, which will not be considered here,
mainly because complementarity does not appear in classical physics.

8Plural quantifiers, introduced by G. Boolos, formalize things like ”There are apples on the
table” (or perhaps better in our case, ”There are electrons so and so”) without –apparently– any
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All of this suggest to the reader that this kind of discourse will be not suitable
concerning quantum objects. As Schrödinger suggested, ”[w]e have taken over
from previous theory [classical mechanics andO(C)] the idea of a particle and all
the technical language concerning it. This idea is inadequate. It constantly drives
our mind to ask for information which has obviously no significance. Its imagi-
native structure exhibits features which are alien to the real particle” [46, p. 202].
It is beyond doubt that by ‘real particle’ he is referring to quantum objects. As for
an example of an information ’without significance’ we recall Schrödinger’s own
account on identity as applied to quanta.

In a series of public lectures given by Schrödinger at the Institute for Advanced
Studies in Dublin in 1950, subsequently published asScience and Humanism[45],
he writes that, in the face of quantum physics,

” . . . we have. . . been compelled to dismiss the idea that. . . a particle
is an individual entity which retains its ’sameness’ forever. Quite the
contrary, we are now obliged to assert that the ultimate constituents
of matter have no ‘sameness’ at all. (. . .) I beg to emphasize this and I
beg you to believe it: It is not a question of our being able to ascertain
the identity in some instances and not being able to do so in others.
It is beyond doubt that the question of ‘sameness’, of identity, really
and truly has no meaning” [45, pp. 17]

The above lines suggest to the reader some of the main traits of quantum ob-
jects, which we shall summarise as a form of ‘quantum ontology’,O(Q) (see also
Mittelsteadt op.cit.): non-individuality, lack of identity, indistinguishability, ab-
sence ofgenidentity(identity trough time, or re-identification), etc. This move
has a consequence, recalled by G. Toraldo di Francia:

”[h]istorians have perhaps been blinded by the glamor of relativity
and quantum mechanics and are likely to describe these theories as
the revolutions of the early 20th century. Yet, I believe that a much
more important development took place at the turn of the century, a
development that future historians will probably place in more ade-
quate perspective. This is the discovery ofnomologicalobjects (. . .)
Nomological objects are described by physical law; or, perhaps each
class of them represents a physical law.” [49]

commitment to sets; [33].
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Classical objects, according to him, are not ‘nomological’, since ”. . . their
individual configuration had nothing to do with laws” [49, p. 62] The idea appears
to be that in classical mechanics the value of themassof a particle, say, is not
given by law, so that it can have a contingent range of values. As he says, the
value of mass is not determined a priori, for a physical law like Newton’s second
law F = m.a holds for any value ofm whatsoever. For a nomological object,
on the other hand, this value, and also those of other properties such as charge,
angular momentum etc., is well determined and ‘prescribed’ by physical law. For
instance, one can formulate the law that a massm = 9.1× 10−23 g must always be
accompanied by an electric chargee = ±4.8× 10−10 e.s.u., by a spin~/2, and so
on, and anything which possesses this set of properties has to be anelectron.

As we have already remarked (see [22, Chap. 5]), the crucial ‘discovery’ he
refers to in the above quotation appears to be that of discreteness, in the sense
that the value of a particle’s charge can be expressed as an integral multiple of the
charge of an electron, angular momentum is quantised as multiples of~/2 and so
on. In this sense, the values of a property cannot take any of a continuous range
of values, which seems to reintroduce a fundamental form of atomism in physics,
in terms of which one might assert that the notion of physical object has been
’recovered’.9

What Toraldo di Francia seems to suggest is that the ‘new’ object is submerged
under certainkind in modern physics, in the sense that an electron, for example, is
defined to be that kind of thing which has a mass of 9,1×10−23g, a charge of 4,8×
10−10e.s.u. and so on. The discreteness of these values implies that such kinds –
characterising electrons, muons, quarks, etc.– are sharply delineated. Thus, the
view of objects as ’nomological’ ultimately reduces to a form of bundle theory,
as Toraldo di Francia himself acknowledges: ”In some way, physical objects are
todayknots of properties, prescribed by physical laws” [49, p. 63].

The ‘recovery’ of integral numbers inherent in the above discreteness appears
to reduce measurement to counting, at least in what respect some quantities like
electric charge. But the counting of elementary particles is problematic and here
Toraldo di Francia raises concerns about individuality:

”Can we distinguishthis and theother, in a system of two electrons?
As is well known, this cannot be done: identical particles are indis-

9However, it is still not clear in what sense these properties are ‘well determined’ and the
objects themselves ’prescribed’ by law. After all, the charge of an electron, Planck’s constant etc.,
all represent fundamental constants whose values cannot be obtained by physical law, but we shall
not advance this point here; see [22].
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tinguishable. Here, cardinal numbers seem to take over the role we
had previously attributed to ordinal numbers. A system of identical
particles has acardinality; but we cannot tell which is the first, the
second, and so on.” (ibid.)

Although there seems to be here a conflation of individuality with distin-
guishability, a point we can leave aside here (but see [22]), the conclusion that
an assembly of quantum particles may have cardinality but not ordinality has an
impact on the foundations of logic:

”Think, for instance, that in any formalised theory, we must start by
defining auniverse of discourse, that is a set of objects we want to talk
about. For this to make sense, it must be well determined whether
an object belongs or not to the set (extensionof the set); moreover,
the objects must be distinguishable from one another, so we can tell
which is which. These requirements can perhaps be met by math-
ematical objects (although some scholars strongly oppose the idea).
But what happens in the case when our universe of discourse is made
up of physical objects? How can we tell that it is determined whether
a given electron belongs or not to our system, and how can we tell
which electron we are talking about?” [49, p. 65].

The alternatives Toraldo di Francia proposes are to employ fuzzy set theory
or to develop an intensional semantics appropriate for such objects. Really, he
developed (with M. L. Dalla Chiara) aquasettheory to cope with these questions,
which we shall turn to consider later.

All these considerations suggest thatO(Q) seems to demand a different logico-
mathematical framework for describing quantum objects. In this stuff, if we are
to talk of ‘objects’ of some kind, identity and indistinguishability should not be
equi-extensional, as they are in classical logic and mathematics –see below–; in
particular, collections of quanta should not be regarded assets(collections of
individuals), and so on. Let us reinforce these points in the next section.

3 More reasons

We can find other arguments for the need of considering an alternative logico-
mathematical apparatus to deal with these philosophical issues involving quanta.10

10Let us insist in the philosophical aspect of this need. There are interesting approaches to
quantum mechanics given entirely within classical logic and mathematics; see [35]. In these
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Suppose that we have a languageL suitable to talk of quantum objects, involv-
ing logical and mathematical notation and concepts, and that we intend to define
the corresponding semantic concepts as we usually do.11 What kind of problem
will we be faced with? Such an analysis was done by M. L. Dalla Chiara and
G. Toraldo di Francia some time ago [14],12 and the points they have emphasised
are of course of fundamental importance for whatever discussion on structure and
semantics of quantum theories.

Suppose thatL is at least of first order and letA be an structure whereL
is interpreted. Since this structure is a set-theoretical construct (lets us suppose
that we have Zermelo-Fraenkel set theory (ZF) as our metalanguage),A involves
a domain (set)D of individualsand an interpretation (or denotation) functionρ
which assigns appropriate meaning to the non-logical constants ofL.13 Of course
we can think for generality ofA as determining a set of possible worlds for each
particular physical situation under analysis, so that in this case we would have a
set of domainsDi and a collection of corresponding interpretation functionsρi.
The particular case above happens when the set of possible worlds is a singleton.
Then, as recalled by Dalla Chiara and Toraldo di Francia, the following situations
can be considered in ‘standard’ semantics:

(i) Any propertyP of L (an unary predicate) is related to a subsetP∗ ⊆ Di, while
n-ary predicates are related to subsets ofDn

i as usual.

(ii) For each individuald∗ ∈ Di, the language can be extended to a language
containing anamed and an extended interpretation functionρ′ such thatρ′(d) =

d∗.

(iii) If L is at least of second order, then Leibniz’ Principle of the Identitity of
Indiscernibles (PII) holds (individuals can be distinguished by at least one prop-
erty):

∀x∀y(x , y→ ∃F(F(x) ∧ ¬F(y)). (1)

schema, physics of course works, but the philosophical problems we are pointing out have no
clear explanation.

11Just to emphasise the difficulties present also here, it is useful to recall that Yuri Manin has
suggested that quantum mechanics has not its ‘own’ language, making use of a fragment of stan-
dard functional analysis to formulate its concepts [38, p. 84].

12See [22] for further references and comments.
13In the particular case of physical theories, due to the needs of a higher-order logic, it is rea-

sonable to suppose that the domainD sum up a certain mathematical construction in terms of other
sets. In this case, we should talk of a ‘species of structures’ in the sense of Bourbaki, but we are
obviously making things easy, since these details do not concern us here.
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(iv) If A refers to a set of possible worlds (physical situations), as in the usual
Kripke semantics, we can suppose the existence of a number ofworld-relations;
a particular one may corresponds to a time-order relation as follows:i < j iff the
situationi temporally precedes the situationj. Of special interest is the relation
≈, termed thetrans-world identity relation, defined onU = ∪iDi satisfying the
following conditions:

(a) For anyd∗ ∈ Di and anyD j there exists at most onêd∗ ∈ D j such thatd∗ ≈ d̂∗.

(b) If d is an individual constant ofL (a name) which names individuals in two
distinct worlds, sayd∗ ∈ Di and d̂∗ ∈ D j, thend∗ ≈ d̂∗. In particular, if i < j,
the trans-world identity relation betweenDi andD j is usually calledgenidentity
relation.

In what concerns quantum physics, the interesting remark is that all these stan-
dard set-theoretical semantic situations are violated. Dalla Chiara and Toraldo di
Francia provided a detailed analysis of the motives why such semantics fails, here
only sketched. The first problem is that we should be able to construct a suitable
language containing monadic predicates for expressing ‘meaningful properties’
of the physical systems (in particular, of elementary particles), so as to consider
namesd,d′, . . . which should be associated to these physical systems at different
times. Since indistinguishable quanta cannot be named, for in general we cannot
distinguish a physical system (elementary particle) from another, our language
cannot be extended with ‘names’ as indicated at item (ii) above and so we cannot
define a suitable interpretation functionρ that univocally determines an element
of D. As remarked by these mentioned authors, ”the problem is not ‘whether or
not we are allowedto introduce namesa1, . . . , an for then subsystems (. . .)’ but
rather ‘whether or notwe are ableto introduce a reasonable denotation functionρ
for such names’ ”.

Furthermore, a physical system can be regarded as represented by a pure state
ψ, as usual, and time evolution of the system is governed by the Schrödinger
equation. The problem is that we cannot say thatψ determines asetof n elements
in the standard set theoretical sense, which contradicts condition (i) above. To
see why, let us introduce the concept of vagueness in this context.14 Philosophers
usually say that vagueness is a feature of our languages, and not of the world. For
instance, the predicate ‘intelligent’ is vague, for we might be in doubt either John
is or not intelligent, although John is a well defined physical object (a man), an

14This point was not considered by the mentioned authors, but of course can be related to their
ideas.
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individual we know very well. That is, John is to be regarded as ‘sharp object’ (or
as an object ofO(C)), while the predicate ’intelligent’ is what is vague.

It has been proposed that a suitable semantics for such vague predicates should
be developed not within standard set theories, but that we should use fuzzy set the-
ory instead. The reason is that within the standard framework all predicates are
‘sharp’ in the sense that they are associated to a subset of the domain, called its
extension(as indicated at (i) above) so that whatever element of this domain be-
longs or not to the extension of the predicate, which means that any individual
should be classified as intelligent or as not intelligent (thetertium non daturap-
plies here); recall our characterization ofO(C) above. It is easy to see why fuzzy
sets provide a more adequate semantics, for in using fuzzy sets, we can express
in a certain way our ignorance about John’s precise location in the rank of intelli-
gent men (see Figure 1). I will not explain the details here (but see [29]), but let
me remark that fuzzy sets can be useful just for expressing the situation when a
well defined individual(like our friend John) has or not a certain (vague) property
–such a semantics express a certain (for the lack of a better term) ‘epistemological
ignorance’ only.

A

s
John∈ A

s
John< A

s
John∈λ A

Figure 1:The fuzzy setA of intelligent men. There are three cases to consider: (1) the
individual John does belong to the fuzzy setA; (2) John does not belong toA, and (3)
John ∈λ A, 0 < λ < 1. A fuzzy set is still a collection (yet with borderlines not well
defined) ofindividuals.

But in quantum physics, there are certain ‘predicates’ which aresharpin the
sense that physicist know quite well the conditions an individual should obey to
have the property ascribed by the predicate, for example the spin. That is, ”To
have spin up in a certain direction, sayx−direction”, is a sharp condition. But
here, since we are withinO(Q), there are ‘vague objects’ instead (like ‘events’),
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which induce the consideration of a kind of ‘ontological ignorance’ in this realm.15

This shows that the relationship between the predicates themselves (which stand
for the intensionsof certain concepts) and their correspondingextensions(the set
of the individuals which have the property ascribed by the predicate) becomes dis-
tinct from standard semantics. In such cases, it seems clear that we should ask for
a semantics which deals with ‘imprecise’ or ‘vague’ objects, and indistinguish-
able objects are good candidates for that, since they would have not a criterion of
identity.

Since the extension of a predicate like ”To have spin up in thex−direction”,
as applied to a collection of quanta has no well defined extension (for we cannot
specify it precisely, except concerning its cardinal, that is, the quantity of quanta
having the considered property),16 condition (i) above of standard semantics is
violated. In other word, collections of quanta should not be regarded as ‘sets’
(as in standard set theories) but collections of indistinguishable objects should be
considered instead. Important to recall that this remark was made also by Yu. I.
Manin in the first problem of Problems of Present Day Mathematics, presented at
the 1974 meeting to evaluate and to explore the consequences of the famous list
of 23 Problems of Mathematics proposed by Hilbert in 1900 [4, p. 76].

To look at (iii), let us first emphasize that classical logic and mathematics (ZF,
say) are Leibnizian in a sense: they encompass atheory of identityaccording to
which there cannot be indistinguishable but not identical objects. But it has been
shown by several authors that there are strong reasons to suppose that PII is vio-
lated in the quantum domain (and there are of course ’set-theoretical’ versions of
this principle), for we may consider (absolutely) indistinguishable quanta (having
all their quantum parameters in common) which of course are not the very same
object ([22]).17 But here again the problem regarding the quantifiers appear; when
we formulate PII as above, by supposing that they apply to quanta, are the used
quantifiers ‘classical’? We have already made reference to the fact that standard
quantifiers presuppose identity. As we see, the formal discussion is not simple
indeed.

We shall leave the discussion of item (iv), for we would need much space

15This idea was developed in a series of previous papers; see [21].
16If relativistic concepts are to be considered, then even the cardinal of such a collection is to

be questioned; see [49].
17Of course we should be careful here in discussing spatial localization, for this would entail a

detailed account on the distinction between bosons and fermions due to Pauli’sn principle. But we
will not consider this point here, for I guess that the careful reader can understand perfectly well
what I intend to say.
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for the details; so, we shall just say that Dalla Chiara and Toraldo di Francia have
shown that in this ‘land of anonymity’, as they refer to the quantum world, a world
where there are no proper names, the standard forms of Kripke semantics fail,
for there are no trans-world identity and the notion of rigid designator cannot be
applied [14], among other interesting ‘deviations’ from classical situations [22].

All of this suggest that we should ask for a mathematical theory encompassing
‘collections’ which could stand for ‘sets’ of indistinguishable objects, where no
names can be used, no individuation of these objects can be given, but even so they
should be considered in aggregates, perhaps having a cardinal number, although
not an associated ordinal. This is whatquasi-set theoryprovides. The applications
of this theory to the above situations have been suggested in some of the papers
listed in the references, but there is still much to be done in this direction.

4 Is there a place for (some form of) realism?

It is usual to regard Bohr-Einstein debate (which lived forcirca 50 years) as the
most fundamental scientific philosophical debate of the XXth century. After Bell’s
theorem from the sixties, the core of the problem left to be just an epistemological
one, concerning if quantum mechanics is a complete theory, and gained the status
of what A. Shimony has termed an ’experimental metaphysics’ [24, p. 126] (but
see also pp. 226 and 243). That is, the guess that there would be non-local phe-
nomena could be tested experimentally! We shall not revise this discussion here,
but just recall that, as it is commonly understood, the violation of Bell’s inequali-
ties provides the grounds for the claim that Bohr was the winner18 and Einstein’s
local-realism should be ruled out [36], [16]. Local realism, let us recall, com-
bineslocality, that is, the hypothesis that nothing (no body, no information) can
travel faster than light andrealism(a name for a lot of conceptions) which can be
summed up by saying that an outside world exists independently of our will or of
our consciousness.

Einstein had strong reasons to believe in locality (see [27], [7]), and he re-
garded science as concerning the ‘real’ due to his commitment to a principle
of separability (PS), which seems to be the core of his philosophical doctrine
[26, 27], [40].19 As put by Howard [26], after the EPR paper Einstein presented
his own version of the incompleteness argument (it is today well known that Ein-

18This interpretation can be discussed; see [7].
19Howard calls our attention to a letter from Einstein to Eduard Study in which he says that ”I

concede that the natural sciences concern the ‘real’, but I am still not a realist” [27,§5].
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stein did not agreed with Podolski’s final version of the paper), which is entailed
by the conjunction of two assumptions: locality and separability. By separabil-
ity, we mean (following Howard) that spatially separated systems have associated
with them independent real states of affairs [27]. To Einstein, suggests Howard,
realism ”. . . is not a philosophical doctrine about the interpretation of scientific
theories or the semantics of theoretical terms. . . [but it] is a physical postulate,
one of the most interesting kind” (ibid.), which bases his conception of physical
reality.

To understand the link between realism and separability, let us quote Einstein,
according to whom physical reality entails

” . . . that what we conceive as existing (’actual’) should somehow be
localized in time and space. That is, the real in one part of space,
A, should (in theory) somehow ‘exist’ independently of that which
is thought as real in another part of space, B. If a physical system
stretches over the parts Aand B, then what is present in B should
somehow have an existence independent of what is present in A. What
is actually present in B should thus not depend upon the type of mea-
surement carried out in the part of the space, A; it should also be
independent of whether or not, after all, a measurement is made in
A.” (apud [27])

That is, as put by Howard, ”[r]ealism is thus the thesis of spatial separability,
the claim that spatial separation is a sufficient condition for the individuation of
physical systems, and its assumption is here made into almost a necessary condi-
tion for the possibility of an intelligible science of physics” (ibid.). Of course, in
a letter to Born, Einstein has also said that

” . . . if one abandons the assumption that what exists in different parts
of space has its own, independent, real existence, then I simply cannot
see what it is that physics is meant to describe. For what is thought to
be a ‘system’ is, after all, just a convention, and I cannot see how one
could divide the world objectively in such a way that one could make
statements about parts of it”. (cf. [22, chap. 4])

The criticism usually addressed to this position seems to be centered in the
fact (for instance, given by Howard himself) that separability acts as a principle
of individuation. Asindividuals, quantum objects would not be able to enter in
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entangled states, for in this case theyshouldencompass peculiar properties, con-
trary to the idea of the entanglement. But I would like to remark that this is true
only if theyare to be taken as individuals according toO(C). If this is so, then of
course separability would be a sufficient condition for individuality and then the
violation of Bell inequalities would entail, first, that we must give up separability
for quantum particles in entangled states and hence, secondly, that when in such
states these particles cannot be regarded as individuals. In other words, Bell’s
Theorem impliesnon-individuality[22, Chap. 4].

But this is not necessarily so. The discourse about ‘separated’ things could be
read in terms of the affirmative that, in some sense, we may admit the existence
of collections of quanta with cardinal greater than one, that is, ofmore than one
quantaof a certain kind (for instance, in supposing a BEC), although these quanta
could have not individuality. That is,thesequanta, although forming a collection,
would be notindividualsat all or, at least, not individuals in the sense of classical
ontology. The difficulty in articulating such a case would be a source for the
problems involving quantum ontology. Of course, we can ‘suppose’ such a view,
for in principle it is easy to imagine that there can be absolutely indistinguishable
things. But how to provide a right mathematical description of these ‘objects’ (for
the lack of an adequate word)?

The standard solutions, as it is well known, make use of symmetry postulates.
Let us revise this point a little bit in order to emphasise our ideas. Let us con-
sider the distribution of two indistinguishable (physicists say ‘identical’) quanta,
initially termed #1 and #2, distributed over two statesA andB. Let us further
suppose that each resulting arrangement is accorded equal probability. As it is
well known, these assumptions conduce to four possibilities, given by adequate
vectors in a suitable Hilbert space:

(1) |ψ1
A〉 ⊗ |ψ1

B〉 (2) |ψ2
A〉 ⊗ |ψ2

B〉
(3) |ψ1

A〉 ⊗ |ψ2
B〉 (4) |ψ2

A〉 ⊗ |ψ1
B〉.

In this Dirac’s ‘bra’ and ‘ket’ notation, the superscripts (labels) 1 and 2 mean
that they can be distinguished, since different states are characterized by different
state functions.

In classical statistical mechanics (Maxwell-Boltzmann), (3) and (4) are counted
as distinct and given equal weight in the assignment of probabilities. This infor-
mally means that the situation where we have one object in each state is given a
weight of two, corresponding to the two arrangements or complexions that may
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be formed by a permutation of the objects. The difference in the states implies
that the objects are to be regarded asindividuals in some way, that is, the differ-
ence of the states (3) and (4) should be attributed to something ‘transcending’ the
objects’ properties, sometimes spelled out in terms of some underlying ’haecce-
ity’ or ‘primitive thisness’ or, more typically, the spatio-temporal location of the
objects [41] (see [22]).

In the quantum case the situation is distinct. We shall restrict our attention to
the two standard forms of statistics, Bose-Einstein (B-E) and Fermi-Dirac (F-D).
Here, while (1) and (2) remain the same, (3) and (4) must be substituted by (3’)
and (4’):

(3’) 1√
2
(|ψ1

A〉 ⊗ |ψ2
B〉 + |ψ2

A〉 ⊗ |ψ1
B〉) (4’) 1√

2
(|ψ1

A〉 ⊗ |ψ2
B〉 − |ψ2

A〉 ⊗ |ψ1
B〉).

Here, (1), (2) and (3’) give B-E statistics, while (4’) gives F-D. This is stan-
dardly taken to reflect the fact that arrangements obtained by a permutation of the
objects do not feature in the relevant counting in quantum statistics.

More formally, it should be noted that states of quantum systems (single or
many-object systems) are represented by unitary vectorsΨ in a Hilbert spaceH .
For many object systems the Hilbert space is constructed by forming the ten-
sor product of the component objects’ Hilbert spaces. For a system consisting
of two indistinguishable objects, the Hilbert space isHtwo = H1 ⊗ H2, where
the subscripts ‘1’ and ‘2’ label the objects, andH1 = H2 = H for they are in-
distinguishable. If the objects are in the pure statesφ andψ respectively, then the
composite system is in the (pure) stateΨ = φ⊗ψ. The observableŝO of a quantum
system are represented by Hermitian operators acting upon that system’s Hilbert
space. A permutation of the objects over states is represented by an operator and
these ‘permutation operators’ form a group known ever since Hermann Weyl as
the Permutation Group [5]. These permutation operators are projections (hence
have eigenvalues±1) and act uponΨ as follows: (1)P̂id(Ψ) = (φ ⊗ ψ) and (2)
P̂φψ(Ψ) = (ψ ⊗ φ).

The Hamiltonian operator,̂HΨ = Ĥ(φ⊗ψ), of the composite system is symmet-
ric with respect toφ andψ. Hence,ĤΨ is invariant under the action of the permuta-
tion group of permutations of the composite objects’ labels, that is, [Ĥ, P̂] = 0, for
any P̂. The ’fact’ that object permutations are not counted is understood in terms
of there being no measurement that we could perform which would result in a dis-
cernible difference between permuted (final) and unpermuted (initial) states. This
is represented in the formalism by insisting that every physical observableÔ com-
mutes with every permutation operatorP̂, that is, [Ô, P̂] = 0,∀Ô,∀P̂. Expressing
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this formally, we have the so-called ’Indistinguishability Postulate’ (IP), that is,
for any arbitrary stateψ, Hermitian operator̂O, and permutation operatorP̂,

〈ψ | Ô | ψ〉 = 〈P̂ψ | Ô | P̂ψ〉 = 〈ψ | P̂−1ÔP̂ | ψ〉. (2)

Since (IP) allows for the possibility of forms of quantum statistics which are dif-
ferent from the ‘standard’ Bose-Einstein and Fermi-Dirac kind, if one wants to
restrict the formalism to the latter kinds only, then a further condition, known
as the ’Symmetrization Postulate’ (SP) must be applied (this corresponds to a
‘symmetry condition’) [23]. This dictates that states of indistinguishable object
systems must be either symmetrical or anti-symmetrical under the action of the
permutation operators (corresponding to the Bose-Einstein and Fermi-Dirac cases
respectively). The difference between (SP) and (IP) can be expressed as follows:
(SP) expresses a restriction on the states for all observables,Ô; whereas (IP) ex-
presses a restriction on the observables,Ô, for all states.

Now, (IP) seems to run counter to the point of regarding the objects as individ-
uals and labeling them; from the point of view of the statistics, the object labels
are otiose. The implication, then, is that the objects can no longer be considered
to be individuals, that is, they are, in some sense, ‘non-individuals’. This con-
clusion expresses an idea that came from Schrödinger, Born, Heisenberg, Weyl,
Hesse and Post at least (see [22] for historical details): classical objects areindi-
vidualsbut quantum objects are not. Post, for instance, drew on the distinction
between form and substance, arguing that what quantum statistics indicates is the
ontological primacy of the former over the latter [41].

As suggested above, our aim is to say that entangled systems, BECs and so
on, might be viewed as collections of non-individuals with cardinal greater than
one. If this is assumed, then we may regard the elements of such collections as
‘distinct realities’, although they cannot be individualized by a property whatso-
ever. Distinct spatio-temporal location here is then just a name for ‘cardinal grater
than one’, and so a kind of ‘separability’ is in order, once the idea of a collection
with cardinal greater than one induces (followingO(C)) the idea of more than one
object, hence of ‘distinct physical realities’ in a sense. This way, such an hypothe-
sis can be considered, and it entails neither individuality nor incompatibility with
quantum mechanics. Of course, one could say, this way of thinking may work
at the informal level, but the problem is how to express that in an adequate for-
malism. As shown above, the standard ways of dealing with the problem is by
means ofad hocalternatives: we label the quanta first, writing #1 and #2, say,
and then use some symmetry condition to get at the situation where permutations
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of indiscernible quanta are not regarded to be observable, for instance in taking
vectors like (3’) above. But, as emphasised by Post and Manin at least, indiscerni-
bility should be attributedright at the start[41] (see [22]). So, we should look for
a mathematical formalism which express this factdirectly; this is what quasi-set
theory aims to do.

We have presented this theory in other works (see [28], [22]), so that we shall
recall here only its basic traits, mainly concerning its underlying logic, never ex-
plicated in details before.

5 Quasi-set theory: logical aspects

Let L be a first-order language whose primitive logical symbols are¬, ∨ and
∀ (∧, →, ↔ and∃ are defined as usual). We still admit auxiliary symbols like
parentheses and the comma, so as two unary predicatesm and M, two binary
predicates≡ and∈ and an unary functional symbolqc. The individual variables are
x1, x2, . . ., but we shall usex, y, . . . to denote them. We assume a set of individual
constants, denoted bya,b, c, . . . which act ascontants for a certain type, or kind,
that is, they do not have the role ofnamesof object of the domain, for we are
supposing (in our informal semantics) that these objects may be non-individuals
(perhaps we could call themtype-individuals). So, when using a constant, sayc,
this does not mean that we are referring to anspecificobject (namedc), but to an
object of a kind (or type). This is more or less what happens in physics, when in
speaking ofan electron, for instance in saying that an electron was released from
a certain atom during ionization, physicists in general are not naming a particular
electron by the simple fact that whatevernamethey use gives the electron only a
‘mock-individuality’ [14, p. 266]. Terms and formulas ofL are defined as usual.
Whenx ∈ y, we say thatx is an element ofy. The termqc(x) is called ‘the quasi-
cardinal’ of x. If m(x), we say thatx is anm-atom, whileM(x) says thatx is
an M-atom. These last ones will have all the properties ascribed to individuals
(Urelemente) by classical logic and mathematics.

Let us define quasi-sets and the extensional equality as follows:

(1) Q(x)
def
= ¬m(x) ∧ ¬M(x)

(2) x =E y
def
= (Q(x)∧Q(y)∧∀z(z ∈ x↔ z ∈ y))∨ (M(x)∧M(y)∧∀z(x ∈

z↔ y ∈ z)))
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Thus, a quasi-set is something which is not an atom, while extensionally iden-
tical objects are either quasi-sets having the same elements orM-atoms which be-
long to the same quasi-sets. So, extensional equality does not apply tom-atoms.
From now on, when we say ‘identical’, we mean ‘extensionally identical’. Since
I have made a critical reference to the use of quantifiers in their usual sense in this
realm, it would be interesting, I suppose, to make clear what kind of suppositions
we are making when speak of ‘Exists a certain object so and so’. Thus, let us
see the postulates of the underlying first-order logic of quasi-set theoryQ, whose
language isL. They are the following ones, whereα, β andγ denote formulas:

(A1) α ∨ α→ α

(A2) α→ α ∨ β
(A3) α ∨ β→ β ∨ α
(A4) (α→ β)→ ((γ ∨ α)→ (γ ∨ β))

(MP) α, α→ β/β

(A5) ∀xα(x)→ α(c), wherec is a type-constant.

(A6) β→ α(x)/β→ ∀xα(x), provided thatx is not free inβ.

(≡1) ∀x(x ≡ x)

(≡2) ∀x∀y(x ≡ y→ y ≡ x)

(≡3) ∀x∀y∀z(x ≡ y∧ y ≡ z→ x ≡ z)

(≡4) ∀x∀y(x =E y → (α(x) → α(y)), whereα(x) is a formula whatever
andα(y) is obtained by replacingx by y at one or more free occurrences
of x in α(x).

In words, the axioms involving quantification show the admissible way of us-
ing the quantifiers; when we write∃xα(x), whereα is a formula wherex appears
free, this intuitively means that there exists an object which obeys one of the prim-
itive predicates of the language so thatα holds. Since we are not assuming that
the semantics of our logic is to be formulated in a standard set theory like ZF, we
are not necessarily committed with individuals here (elements of some set).

That is, our variables range over collections (formally: quasi-sets) whose el-
ements may be indistinguishable (non-individuals). So, let us insist once more,
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when we say, for instance that from∃xα(x) we deduceα(c) for somec, this c
should not be read as an individual constant (that is, as anameof an object of
the domain), but as a generalized constant, atype-constantas explained above,
which denote an individual of a certain class (say, an electron, but not a particular
electron). Thus, the quantifiers have here a wide informal interpretation, coping
also with with non-individuals.

Axiom (≡4) entails that the substitutivity principle does not hold form-atoms.
Here the reader may be worried, for it seems that indistinguishable atoms should
be substituted one another in whatever situation. But in assuming that, we would
introduce difficulties in the theory, for then≡would be standard identity, and noth-
ing new would be achieved. Anyway, a more interesting result, to be presented
below, plays the role of such a principle form-atoms (see theorem 1). Axioms
(≡1)–(≡3) say that≡, which we call the relation of indistinguishability, is reflex-
ive, symmetric and transitive. This will be important in taking a quasi-set whose
only elements arem-atoms and passing the quotient by the relation≡, for obtain-
ing collections (quasi-sets) of indistinguishable objects. Hence there is a sense in
speaking that some of them may be ‘of the same species’ (partake the relation≡),
as indicated above.

The other postulates are ZFU-like axioms (Zermelo-Fraenkel withUrelemente)
and provide the grounds for the construction of a hierarchy of quasi-sets, similar to
the cumulative hierarchy in standard set theory (see Figure 1). Some specific ax-
ioms which should be mentioned for our needs here are: (a) the atoms are empty,
in symbols,∀x∀y(x ∈ y→ Q(y)); (b) no atom is both anm-atom and anM-atom.
We shall not repeat the other postulates here (see [22], [30]), but we shall only
informally comment on some results that follow from them.

Intuitively speaking, a quasi-set is a collection of objects, so that some of them
may be indistinguishable (yet not identical). This of course is not a strict ‘defini-
tion’ of a quasi-set, giving no more than an intuitive account of the concept. It is
also easy to prove that the extensional identity has all the properties of standard
identity (in particular, one of the postulates say that if neitherx nory arem-atoms,
thenx ≡ y→ x =E y).

The theory enable us to consider that (extensional) identity and indistinguisha-
bility are separated concepts; that is, these concepts do not reduce to one another
as in standard set theories. So, in this theory, contrary to standard mathematics
(say, that one obtained from ZFU –Zermelo-Fraenkel withUrelemente), we may
have indistinguishable but not identical objects.

It is possible to define a translation from the language of ZFU into the language
ofQ in such a way so that there is a ’copy’ of ZFU inQ (this is the ‘classical’ part
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Figure 2:The Quasi-Set Universe.Onstands for the class of the ordinals.

of Q). In this part (see the Figure 1 again), all the usual mathematical concepts
can be defined, and the ‘sets’ (better, the ‘Q-sets’) turn out to be those quasi-
sets whose transitive closure (this concept is like the usual one) does not contain
m-atoms.

InQ there may exist quasi-sets whose elements arem-atoms only, called ‘pure’
quasi-sets whose elements may be indistinguishable (in the sense of partaking
the primitive indistinguishability relation≡) and the axioms provide the grounds
for saying that nothing in the theory can distinguish the elements of such anx
from one another. The primitive concept of quasi-cardinal, given by adequate
postulates, provides the intuitive idea of the ‘quantity’ of objects in a quasi-set.
Since it is axiomatical, the concept of quasi-cardinal is independent of a concept
of ordinal. Within the theory, the idea that there is more than one entity inx is
expressed by an axiom which states that the quasi-cardinal of the power quasi-set
of x (the concept of subquasi-set is like that of standard set theory) has quasi-
cardinal 2qc(x), whereqc(x) is thequasi-cardinalof x (which is a cardinal obtained
in the ‘copy’ of ZFU just mentioned). Now, what exactly this supposition means?

Consider the three protons and the four neutrons in the nucleus of a7Li atom.
As far as quantum mechanics goes, nothing distinguishes neither thethreepro-
tons nor the four neutrons from one each other. If we regard the three protons
as forming a quasi-set, its quasi-cardinal should to be 3, and there is no apparent
contradiction in saying that there are also 3 subquasi-sets with 2 elements each,
despite we can’t distinguish them or their elements, and so on. The same happens
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with quantum entangled systems before measurement. So, it is reasonable to pos-
tulate that the quasi-cardinal of the power quasi-set ofx is 2qc(x). Whether we can
distinguish among thesesubquasi-setsis a matter which does not concern logic.

In other words, we may consistently (with the axiomatics ofQ, supposing
them consistent) reason as if there are three entities in our quasi-setx, but x must
be regarded as a collection for which it is not possible to discern its elements
as individuals. The theory does not enable us to form the corresponding single-
tons. The grounds for such kind of reasoning has been delineated by Dalla Chiara
and Toraldo di Francia as partly theoretical and partly experimental. Speaking
of electrons instead of protons, they note that in the case of the helium atom we
can say that there are two electrons because,theoretically, the appropriate wave
function depends on six coordinates and thus ”. . . we can therefore say that the
wave function has the same degrees of freedom as a system of two classical ob-
jects” [14, p. 268].20 Dalla Chiara and Toraldo di Francia have also noted that,
”[e]xperimentally, we can ionize the atom (by bombardment or other means) and
extract two separate electrons. . .” (ibid.).

Of course, the electrons can be counted as two only at the moment of measure-
ment; as soon as they interact with other electrons (in the measurement apparatus,
for example) they enter into entangled states once more. It is on this basis that
one can assert that there are two electrons in the helium atom or six in the 2p level
of the sodium atom or (by similar considerations) three protons in the nucleus of
a 7Li atom (and it may be contended that the ‘theoretical’ ground for reasoning
in this way also depends on these experimental considerations, together with the
legacy of classical ontology). On this basis it is stated the axiom of ‘weak exten-
sionality’ of Q, which says that those quasi-sets that have the same quantity of
elements of the same sort (in the sense that they belong to the same equivalence
class of indistinguishable objects) are indistinguishable.

This axiom has interesting consequences. There is no space here for the de-
tails, but let us mention that in standard (extensional) set theories, ifw ∈ x, then
of course (x− {w}) ∪ {z} = x if and only if z = w. That is, we can ‘exchange’ two
elements without modifying the original arrangement if and only if these elements
arethe sameelements, by force of the axiom of extensionality (that is, nothing was
done at all). But inQ we can prove the theorem below, wherez′ (and similarlyw′)
stand for a quasi-set with quasi-cardinal 1 whose only element is indistinguish-

20This is associated to what Schrödinger had anticipated, in saying that this kind of formulation
”gets off on the wrong foot” by initially assigning object labels and then permuting them before
extracting combinations of appropriate symmetry [46].
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able fromz (respectively, fromw –the reader shouldn’t think that this elementis
identical to eitherz or w, for the relation of equality doesn’t apply here; the other
set theoretical operations can be understood according to their usual definitions):

Theorem 1 [Unobservability of Permutations] Let x be a finite quasi-set (its
quasi-cardinal is a natural number, obtained in the ‘classical’ part of the the-
ory) such thatx does not contains all the objects indistinguishable fromz, where
z is anm-atom such thatz ∈ x. If w ≡ z andw < x, then there existsw′ such that

(x− z′) ∪ w′ ≡ x

Proof: (For details, see [30]). Ift ∈ z′ does not belong tox, thenx − z′ =E x
and so we may admit the existence ofw′ such that its unique elements belongs
to x (for instance,z itself); then (x − z′) ∪ w′ =E x. If t ∈ z′ belongs tox, then
qc(x− z′) =E qc(x) − 1 for we can prove inQ that, for all qsetsx andy, if y ⊆ x
and x is finite -that is, its quasi-cardinal is a natural number– (which we are of
course supposing in this case), thenqc(x−y) =E qc(x)−qc(y). Thus, takew′ such
that its element isw itself (which can be supposed for, although we cannot prove
this within the theory, it can be supposed), and so it results that (x− z′)∩w′ =E ∅.
Hence, since∀Qx(qc(P(x)) =E 2qc(x)) (here we are using relativized quantifiers in
the usual sense) inQ, we have thatqc((x−z′)∪w′) =E qc(x). This intuitively says
that both (x− z′)∪w′ andx have the same quantity of indistinguishable elements.
So, by applying the weak extensionality axiom, we have the theorem.

A

y ∈ A

y < A

Permutations of non-individuals are not ’observable’

Figure 3: Quasi-sets: Either thenon-individualy belongs to the quasi-setA or it does
not. Here,y does not act as a name for an individual. Furthermore, permutations of
indistinguishablem-atoms generate a quasi-set indistinguishable from the original one.

Supposing thatx hasn elements, then if we ’exchange’ their elementszby cor-
respondent indistinguishable elementsw (set theoretically, this means performing
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the operation (x − z′) ∪ w′), then the resulting quasi-set remainsindistinguish-
able from the original one by force of our ’weak’ axiom of extensionality (which
uses≡ instead of identity). In a certain sense, it is not important whether we are
dealing withx or with (x − z′) ∪ w′. So, withinQ we can express that ‘permuta-
tions are not observable’, without necessarily introducing ad hoc postulates like
IP (equation (4)) above.

The postulates enables us to see a difference between quasi-sets and fuzzy sets.
In fuzzy set theory, as it is well-known, the counter-domains of the characteristic
functions are not{0,1}, but the whole interval [0,1]. So, within fuzzy set theory,
the ‘ignorance’ (or vagueness) is with respect to the place anindividual has in
a fuzzy set (see again Figure 2 above and 3 below), while in quasi-set theory,
vagueness concern the non-individuals themselves.21

6 Conclusion

Quasi-set theory has other applications, for instance in deriving quantum statistics
without the needs of postulating certain symmetry conditions. In short, by using
quasi-relations, we can express a particular distribution ofνi particles inki states in
a way that the counting of the resulting states agrees with the quantum statistics,
without the need of assuming that permutations are not regarded as observable.
In other words, quantum statistics (for instance Bose-Einstein and Fermi-Dirac)
result ‘natural’ within the quasi-set framework. For details on this point, see [31],
[30].

To sum up, even if with the resources of our physical theories (that is, in pos-
ing what Carnap calls ‘internal questions’ [6]), we do not describe individuals, but
only types, we cannot forget the objectivity of these theories, for these types refer
to ’objects’ of a kind, perhaps non-individuals. Thus, we could say, following
Auyang, that ”. . . people reject quantum objects because they are different but all
their argument shows is that there is nothing like classical objects in the quantum
realm, not that there is no quantum object” [1, p. 5]. So, an adequate mathematical
language would be considered for expressing the main semantic properties involv-
ing quanta, a language which would be ‘natural’ and free from the necessities of
ad hoc postulates like symmetry conditions.

Thus, if we are able to talk (in mathematical terms) of collections of entities
which are of course not ‘the same ones’ but so that there are no (in principle)

21This point regarding ‘vague objects’ has been discussed elsewhere; see [20], [21].



Separability and non-individuality 27

differences among them, we guess that Einstein’s realism, at least if read as as-
suming the needs for a certain objectivity in taking of ‘objects’ of some sort, does
not need to be completely ruled out from quantum theories.
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