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Abstract

In statistical thermodynamics the 2nd law is properly sgklbut in terms
of conditioned probabilities. As such it makes the statement, that ‘eytrop
increases with timewithout preferring a time direction. In this paper we
try to explain this statement—which is well known since theet of the
Ehrenfests—in some detail within a systematic Bayesiamcgmt.

1 Introduction

First, we wish to make the statement in the abstract moragareto this end, we
think of an idealized system, whose state may only chandgeaap sdiscrete times.
This allows us to speak unambiguously about next and previmints in time.

Now we make the following

Assumption. A time t; the system is in a statdt;) of non-maximakntropy. The
statistical 2nd law now makes the following statement algouditioned probabil-
ities (the condition will not be repeated):

Statement 1. The probability, that the statg(t;) will developin the futureto a
statez(ti, 1) of larger entropy, is larger than the probability for a depshent into
a state of smaller entropy.



Statement 2. The probability, that the statdt;) has developed from theastfrom
a statez(t;_1) of larger entropy, is larger than the probability of a depate@nt
from a state of smaller entropy.

Consequence 1. The likely increase of entropy in the future state developime
z(ty) — z(tiy1) does not imply a likely decrease for the (fictitious) pastedep-
mentz(t;) — z(ti_1), but also a likely increase.

Consequence 2. The most likely development{t; ;) — z(t;) is that of decreas-
ing entropy. Somewhat ironically one may say, that it is mik&y for the state
z(ty) to come about through the improbable development from a mparkable
statez(t; 1), than through the probable development from an improbdhte.s

To properly understand the last consequence, recall thabaodition is placed
on z(t;), that is at timet;. Forz(t;) — z(ti.1) this means aetardedor initial
condition, forz(t;_1) — z(t;), however, aradvancedor final condition. It is this
change of condition which makes this behaviour of entropssiine.

Consequence 3. The mere (likely) increase of entropy does not provide aereri
tation of time. It does not serve to define a ‘thermodynanrovaof time’. Rather,
an orientation is usually given by considering a finite timerval and imposing
a low-entropy condition at one of the twendsof the interval. Without further
structural elements which would allow to distinguish th@ ®nds, the apparently
existingtwo possibilities to do so are, in fact, identical. An apparestiiction is
sometimes introduced by stating, that the condition at enki£to be understood
asinitial. But at this level this merely definésitial to be used for that end, where
the condition is placed.

Many notions any types of reasoning in statistical thernmagiyics can be well
illustrated in terms of the Ehrenfest’'s urn-model, whictoide regarded as a toy
model of a thermodynamic system, and whose detailed déscriwe present be-
low. In particular, this holds true for the consequencetedisabove, for whose
partial illustration this model was designed by Paul andanat Ehrenfest]1]; see
also [2]-[8]. Our presentation will be more detailed thagits. Nothing of what we
say will be essentially new. Besides being more detailedyyvio take a Bayesian
approach. In what follows it will be important to alway redab the general for-
malism of statistical thermodynamics in order to not prev/&asy’ or ‘intuitive’
but uncontrolled reasonings. There is always a certain etafog this to happen
in the context of simple models. The Appendix collects sotementary notions
which are not explained in the main text. These will be refva the following
section.



2 TheUrn-Modd

Think of two urns,Uy and U4, among which one distributdd numbered balls.
For exact equipartition to be possible, we assuit be even. Amicrostateis
given by the numbers of balls containedun (the complementary set of numbers
then label the balls ifly). To formalize this we associate a two-valued quantity
xi € {0,1}, 1 € {1,...,N}, to each ball, where; = 0 (x; = 1) stands for the
i'th ball being inU, (U;). This identifies the set of microstates, which we will
call T" (it corresponds to phase space), witk= {0, 1}, a discrete space of af¥
elements. It can be further identified with the set of all fioes{1,--- ,N} —
{0, 1}, 1 — x4. Mathematically speaking, the spatearries a natural measune;,
given by associating to each subgetC T its cardinality: - (A) = |A]. We now
make the physical assumption, that the probability meagumenalized measure)
v = 2~ Ny, gives the corregphysicalprobabilities. Note that this is a statement
about the dynamics, which here my be expressed by sayingnitie course of the
dynamics of the system, all microstates are reached equitdlly on time average.

Physical observables correspond to functidns: R. We call the set of such
functions &. Conversely, it is generally impossible to agste a physically realiz-
able observable to any element in @. [6,...,0,.} = G C @ the physically
realizable ones, which we can combine into a singte component observable
Ore € @™ If Ore: ' — R™is injective, the state is determined by the valu®ef.

In case of thermodynamical systems it is essential to beNay d&rom injectivity,

in the sense that a given valoee R™ should have a sufficiently large pre-image
O, () C T. The coarse-grained of macroscopic state space in then bivéhe
imageQ C R™ of the realized observabl€3,.. To every macrostate € Q cor-
responds a set of microstatdy; := O (o) C T. The latter form a partition of:
FaNTg=0if « #Z B andJycola=T.

The realized observable for the urn-model is given by the bemof balls in
U, that is,Ore = Z‘i\'zl xi. Its range is the séd = {0, 1,..., N} of macrostates,
which containsN + 1 elements. The macrostates are denoted.biyfo z there
corresponds the sét of 2] microstates. The probability measue induces

so-called a priori probabilities for macrostates

Wi(z) = v, (I) = 2N (N ) . 1)

z

LetX : Q — R be the random variable— X(z) = z. Its expectation valué and

1The subscript ‘re’ can be read as abbreviation for ‘realipedrelevant’.



standard deviatioS with respect to the a priori distributiofl (1) are giverfby

E(X,ap) = 2

SERE

S(X,ap) = 3)
The system has a Markoffian random evolution, which is defamtbllows:

at every discrete lying time;, wherei = {0,1,2,--- } with t; > t;forj > i, a

random generator picks a numberin the intervall < n < N. Subsequently

the ball with numbem changes the urn. There are two possibilities: The ball

with numbern has been in uriily so that the change of macrostate is given by

z — z + 1. Alternatively, the ball has been il; and the change of macrostate is

given byz — z — 1. The conditional probabilitied)(z + 1;ti,1/z; 1), that given

the statez at timet; the evolution will yield the state + 1 at timet;,; are given

by

N
Wi(z+ 15tz ty) = =: Wiz + 12), 4)

=: Wret(Z —1 |Z) (5)

Zlnz

Wiz —Ttinlzty) =

Since these are independent of time, we can suppress thmemtgt;. We just
have to keep in mind, that the left entey:t 1 is one time stefter thanz, that is,
the probabilities arpast-conditionedr retarded We indicate this by writing/V,..

Let W(z;t;) denote some chosen absolute probability for the state todie
time t; andW; : z — W(z;t;) the probability distribution at time;. The dy-
namics described above will now induce a dynamical M, — W;,, on such
distributions, given by

Wiztiy) = Wizitiglz+ 1;t) Wz + 17 t)
+ Wizitipglz— 1, t) W(z — 15 ty) (6)
z+1 N—-—z+1

W(z+ 1;t) + Wiz —T;ty), (7

N

’Note

N N-—-1
E(Xap=2"") z (1;1) =2"N Y (N;]) :;

z=1 m=0

N N-2
EX*—Xap) =27 ) z(z—1) (N> =2UNIN-T) ) (N72> - N“\lz;”

z
z=2



whose Markoffian character is obvious. To be sig, i > 0, will depend on
the initial distributionW,. This dependence will be essentialWf, is far from
equilibrium and the number of time stepaot much larger than the numbsir of
balls. Conversely, one expects that¥at will approach an equilibrium distribution
W fOr i > N, whereW,, is independent ofV,. Its uniqueness is shown by

Theorem 1. A distribution W, which is stationary undefl7) is uniquely given by

W, in (@).

Proof. We show, thaW,,, can be uniquely determined frofd (7). To this end, we
assume a time independent distributify., and write [F) in the form

N—z+1

Wstat(z+1) = Z+ 1

Wstat(z) - Wstalt(Z —1 ) (8)

z+ 1

SinceW,,(—1) = 0 we have forz = 0 thatW,(1) = NW,,(0), hence recursively
Waa(2) = SN(N — 1)Wee(0) and Wea(3) = ¢N(N — 1)(N — 2)W,,(0). By

induction we get the general formul&(,.(z) = (2’) Wl 0). Indeed, inserting
this expression foz andz — 1 into the right hand side di7), we obtain

Waalz+1) = |: N <N>_N_72+1< N >] Wil 0)

z+1\ z z+1 z—1
B N(N—1)---(N—z+1)
- (N _Z) (Z+ 1)’ Wstat(o)
N
- <Z+ 1) Wstat(o)- (9)

The value ofW,,(0) is finally determined by the normalization condition:

n N
1 - Z Wstat(Z) = Wstat(o) Z <N> = Wstat(o) ZN :> Wstat(o) = Z_N' (10)

z
z=0 z=0
]
2.1 Future-conditioned probabilitiesand Bayes rule
Given a probability space and a set of evefids,, ..., A}, which is 1.) complete,

i.e. AjU---UA, = 1(herel denotes the certain event), and 2.) mutually exclusive,
i.e.i#j = AiNA; = 0(here0 denotes the impossible event). The probability of
an evenB then obey8Bayes’ rulé: W(B) = Y o1 W(BJAK)W(AL). Thisis just

3We deliberately avoid to call it Bayes’ theorem.




what we used in[{6). This rule now allows us to deduce the sahgrconditioned

probabilities:
W(B|AK)W(Ay)
W(AB) = . 11
W T WBIAOW(AY an
We now identify theA; with the N + 1 events(z’; t;) at the fixed timet;, where
z' =0,...,N + 1, andAy with the special eventz + 1;t;). Further we identify
the evenB with (z; ti, 1), i.e. with the occurrence afat thelater timet; ;. Then

we obtain:

Wiz t; + 1:t ) W(z+1:1;
W(Z:l: 1,tl | z ti+‘|) _ ](\IZ) 1+1|Z ) 1) (Z ) 1) (12)
Y oWz tinlz!s t)W(z/sty)

_ Wizitiplz+ 1;t)W(z £ 17 ty) (13)
W(z;tit1) '
Hence, giverW;, a formal application of Bayes’ rule allows us to expresdtitere
conditioned (‘advanced’) probabilities in terms of thetg@amnditioned (‘retarded’)
ones. In our case we think of the latter ones as giverl iy (448nce we obtain
the conditioned probability fofz + 1;t;), given that at the later timg_, ; the state
will z occur:

W(z+ T1;ty)
. N—z+1 .
W(z+ T1;t) + o W(z—T;ty)
W(z—1;t)

Wz —T;ty) + Wiz + 1;t)

Wz + 1;tilz; i) , (14)

Wiz — 15tz i) . (15)

2.2 Flow equilibrium
The condition for having flow equilibrium for the pair of time;, t; 1 reads
Wi(z £ Titinlz t) Wiz ti) = Wiz tialz £ 13t Wiz £ 15). - (16)

It already impliesw; = W,,, since [ZEb) givW (z + 1;t;) = l;]+_1ZW(Z; t;) which

leads toW/(z; t;) = (E) W(0;t;). Sincel = 5 W(z;t;) we haveW(0; t;) =
“Without using [3Ek) one gets
W(z £ 1tz ti)Wiz;ti) = Wizitigilz: 1;6)W(z £ 1;t)
= Wi(zx£ 1tz tie1)W(z; tis1) a7)

where the last equality is the identi¥y/(a[b)W(b) = W(bla)W/(a). The local (in time) condition
of flow equilibrium is therefore equivalent to (E£119)
Wiz £ Ltisalzt) ~ Wiztiz)
W(z+ Ttilzti)  Wizt)

(18)



2N, Using Theorem 1, we conclude that flow equilibriuntampliesW; = W,,
forj > 1.
2.3 Timereversal invariance

To be distinguished from flow equilibrium is time-reversalariance. The latter is
given by the following equality of past- and future-conaiited probabilities:

W(z £ Titilzity) = Wz 15tilztig) (19)
3 W(z+1;ty)
= W(ztilz+ ;) ——— 20
(Zv 1+]|Z ) l) W(Z;ti+]) ) ( )
@ z+1
Wiztia) = G, Wetht) (21)
N —
- %“ Wiz —1:ty). 22)

It is interesting to note that the condition of time-revénseariance is weaker
that that of flow equilibrium. The former is implied, but doeset itself imply
the equilibrium distribution. Let us explain this in moretaié Equations [(2/1-
22) imply @), since®cZ x 1) + & x [3) = ([@. Hence [AEXR) are stable
under time evolution{7). Conversel{, {PT}22) is implied @y and the following
equation, expressing the equality of the right hand sidg&T)fand [ZR):

N—zN-—-z+1

Wizt Tit) =~ ——

W(z —1:t). (23)

Indeed, eliminatingV(z + 1;t;) in (@) using [ZB), one gets

N—z+1 (18 z+1
Wiziti) = ——— Wiz —Tit) = ——

W(z+ 1;t), (24)

hence[[2[-22). Time-reversal invariance for future tinsethéerefore equivalent to
the ‘constraint’ [ZB) for the initial condition. It allowsf a one-parameter family
of solutions, since it determiné4/; for givenp := W(0;t;) andq := W(T1;t;).

Indeed, in analogy to the proof of Theorem 1 one §&t$z) = p (2’) for z even

andWi(z) = § () for z odd. SinceY . aen( ) = Loooaa () = 2V,
the normalization condition leads to=2N"1(p + &) = q = N(2=(N-1) —p),
This shows thap < [0,2~(N=1)] faithfully parameterizes all distributions obeying
(Z3). One should note that solutions [fal(23) are closed ucmlerex sums. In this
way one sees, that the obtained distributions are the cosweX\V; = pW¢€ +

(1—p)We of the ‘even’ distributionW¢(z) = (1 —(—1)z1)2—N (2’) and ‘odd’
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distribution, W°(z) = (1 — (—=1)z)2~N <N> Solutions to[[ZB) form a closed

interval within the simplexA™, which connects the poiiw € in the %—sub—simplex
A13-N=T with the pointw® on the(5 + 1)-sub-simplexA?*N. If we call this
interval A*, we have

Theorem 2. The setA* C W is invariant under time evolution. The future de-
velopment usindV(z; ti,1]z’; t;) and the past development usivig(z; ti|z’; ti 1)
coincide®

It is of central importance to note that the past developrigmbhathematically
speaking,not the inverse operation to the future development. The rebsomg
precisely that such a change in the direction of developisdimked with a change
from retarded to advanced conditionings in the probakditi

3 General Consequences

In the following we want to restrict to the equilibrium cotidn. In this case the
future-conditioned probabilities are independent ofithend we can writéV/(z +
1;tilz; tiyq1) = Wa(z = 1|z). Hence we have:
N —
Wz +12) = Walz+112) = ——, (27)
Wz —1l2) = Walz—12) = =, (28)

z

from which statements 1 and 2 made in the Introduction folltndeed, letz =
z(ty) > N/2, then the probabilities that at tintg ; or t; 7 the state was or will
bez — 11is, in both cases, given bg. The probability for the state + 1 at time
tijortyis NT*Z Now, every change of state in the direction of the equilifori
distribution leads to an increase in entropy (see belowndde¢he probability of
having a higher entropy &t ; ort;,; is = times that of having a lower entropy.

If z=2z(t;) < N/2 we have to use the inverse of that.

SExplicitly one can see the preservation [fl(23) under tinmwtion (@) as follows: Given that
the initial distributionW; satisfies[[2B), the developmeht (7) is equivalenETd{A1-P2nce

z

W(z—T1;t) m Wi(z;tit1) (25)
z+2
W(z+ 1;t) = mw(z+2§ti+l) (26)

which allows to rewrite[{23) fow; into {Z3) forwW; ;.



3.1 Boltzmann Entropy

Boltzmann EntropySg is a functionSg : Q — R. We stress that sinc@ is
defined onlyafter a choice of coarse graining (i.e. a choice gf)@as been made,
Boltzmann Entropy, too, must be understood as relativeabdhoice® The value
Sg(z) in the macro state is defined bySg(z) := Inu-(T,). For the urn model
this corresponds to the logarithm of microstates that spoed to the macrostate
z. In what follows it will sometimes be more convenient to lattee macrostate
not byz € [0, N], but rather by a parameter € [—1, 1] of range independent of
N. Let the latter be defined hy= %(1 +0). If we assume thal, z, (N—z) > 1
and approximate IN! = NInN — N + O(In N) (Stirling formula), we obtain the
following expression for the Boltzmann entropy:

Sg(z) = NInNN—zlnz— (N —-2z)In(N —z), (29)
Selo) = - n! =% omlto (30)
5 2 4 1—0o

It obeysSg(o) = Sg(—0o) = Sg(|al), which just corresponds to the invariance of
the first expression under— N — z. Considered as function ¢f|, Sg : [0, 1] —

[In2N 0] is strictly monotonically decreasing. Thég(o = 1) = 0 is best seen
in the limit z — N of (Z9). Despite Stirling’s approximation this value is fatt,
exact, as one easily infers from the fact that N just corresponds to a single
microstate. In contrast, the given valuesat 0 is only approximately valid.

3.2 Consequences1and 2

The quantitative form of Consequences 1 and 2 are given bgdhgion to the
following exercises: Let the state at timhgbez = z(t;). Calculate the conditioned
probabilities forz(t;) i) a local maximum, ii) a local minimum, iii)

() z(t;) being a local maximum,

5This apparently non objective character of entropy is ofimplained about. But this criticism
is based on a misconception, since the tédrermodynamical systeis not defined without a choice
for @re. This is no different in phenomenological thermodynamidsere the choice of ‘work degrees
of freedom’,{y'}, (the relevant or controlled degrees of freedom) is patetefinition of ‘system’.
Only after they have been specified can adinethe differential one-form of hea§Q, as the
difference between the differential of total energy,, and the differential one-form of reversible
work, A := fidy'. (Hered is just meant to indicate that the quantity in question ise-famm, not
that it is the differentiald, of a function; i.e.ddA # 0 andddQ # 0 in general.) Hence wdefine
5Q := dE — 5A. Roughly speaking, one may say that ‘heat’ is the energyishlatcalized in the
non-relevant (not controlled) degrees of freedom.



(ii) z(ty) being a local minimum,

(i) z(ty) lying on a segment of positive slope,

(i) z(ty) lying on a segment of negative slope.

Let the corresponding probabilities B&,..(z), Wii(z), W;(z), and W, (z) re-
spectively. These are each given by the product of one pdsbraa future condi-
tioned probability. This being a result of the Markoffian aer of the dynamics,
i.e. that for given(z, t;) the dynamical evolutiofiz; t;) — (z £ 1;ti,1) is inde-
pendent ok(t;_1). Using [ZTEZB) we obtain:

Woalz) = Walz— NeWalz— 112) = ()7, (31)
Win(2) = Walz + 12)Woalz 4+ 1l2) = (1 - %) (32)
Wi(z) = Walz—12) ,et(z+1|z):%<1—%>, (33)
Wi(z) = Walz+ 12)Welz 1|z):ﬁ<1—%>. (34)

Forz/N > 1 (z/N < 1) the probabilityW,,.. (W) dominates the other ones. Ex-
pressed in terms af the ratios of probabilities are given by the simple exprEssi

IT+o0 T-o0

Won(0) : Wona(0) : Wi (0) : Wi(0) = 17—+ 5

11 (35)

In the limiting case of infinitely many; we get that the stateis z2/(N? — z2) =
(1 + 0)?/2(1 — o) times more often a maximum than any other of the remaining
three possibilities.

We also note an expression for the expected recurrenceTifag for the state
z.” Itis derived in [5] (there formula (66)). If the draws fromethirns have constant
time separatio\t one has

At
T(z) = ——, 36
Wolz) (39)
and hence a connection between mean recurrence time ang@yentr
2NAL
S(z) =1In { B } : (37)

"Note that we talk about recurrence in the spécef macrostates (‘coarse grained’ states), not
in the spacé’ of microstates.
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Reference [|5] also shows the recurrence theorem, which fecrede state
spaces asserts the recurrence of each state with certdifidye precisely: let
W'(z';tiinlz; ti) be the probability that for given stateat timet; the statez’

occurs at timet; ., for thefirst time aftert; (this distinguishesVv’ from W), then
Y i Wiztimlzt) = 1.

3.3 Coarsegrained Gibbsentropy and the H-theorem

We recall that the Gibbs entro@g lives on the space of probability distributions
(i.e. normed measures) drand is hence independent of the choice qf @ con-
trast, the coarse grained Gibbs entroji)g:‘, lives on the probability distributions
onQ, Sch : W — R, and therefore depends on.dSince the former does serve,
after all, as a @ independent definition of entropy (even though, thermodyna
ically speaking, not a very useful one), we distinguish #itéel explicitly by the
superscriptég’. If at all, it is S"Gg and notS g that thermodynamically can we be
compared t&g. The functionS is given by

N
SEW)=—> W(2)-In {v\\//\/(z)} (38)
Z:O stat!

The structure of this expression is highlighted by meanshefdeneralizedH-
theorem, which we explain beldWSince the two entropieSg ands‘é9 are defined
on different spaceq) and )V, it is not immediately clear how to compare them.
To do this, we would have to agree on what valué‘éf we should compare with
Sg(z), i.e. what argumen¥ € W should correspond ta € Q. A natural
candidate is the distribution centereczathat is,W(z') = 5,(z’), which is 1 for

z' = z and zero otherwise. Frof{38) we then obtain

5¢9(5,) = Sp(z) — NIn2. (39)

Let us now turn to the generalizéd-theorem. Letd : R — R be a con-
vex function. Then for any finite familyn := {xi,...,x.} of not necessarily
pairwise distinct points iR we have the following inequalityD(} ; xix;i) <
Y i xi®(xi)Vay € Ry with } ;s = 1, where equality holds iff there is no
index pairi, j, such that; # x; andw; - «; # 0. In the latter case the convex sum

8Usually this expression is called thelative entropy [of W relative toW..]. As [absolute]
entropy of W one then understands the expressioh , W(z) InW(z). The H-theorem would be
valid for the latter only if the constant distribution (inrmeaseW(z) = 1/(N + 1)) is an equilibrium
distribution, which is not true for the urn model.

11



is called trivial. We now define a functidd : W x W — R through

N
N / W(z)
) _;)W (z)® {W’(z) . (40)
Consider a time evolutioW; — Wiy, Wii(z) == > ; W(zlz)W;(z'), where

clearlyW(z|z') > 0and) ,W(zlz') =1. We also assume that no row of the ma-
trix W(z|z') just contains zeros (which would mean that the state labdélethe
corresponding row number is impossible to reach). We calhgume evolutions
and the corresponding matriceasn-degenerate In what follows those distribu-

tionsW e W for whichW(z) > 0Vz, i.e. from the interion/i) C W, will play a
special role. We call themeneric The condition orW/(z|z’) to be non-degenerate
then ensures that the evolution leaves the set of genetithditons invariant. Af-
ter these preparations we formulate

Theorem 3 (generalized H-theorem). Let W/ be generic and the time evolution
non-degenerate; theH (Wi, 1, W/, ;) < H(W;, W/).

Proof. (Adaptation of the proof of theorem 3 inl[6] for the discretese.) We
define a new matri¥/(z, [z') := [W{_,(z)]~ "W(zlz" )W (z"), which generates the
time evolution forW;(z)/W/{(z) and obeys ,, V(zlz’ ) =1. It follows:

H(Wi, Wi,) = Z Ll [Wllﬂg] (41)
2—0 i+1
— Z ! Zv |’W, ))] (42)
z'=0
< 3 Y WineVeER) o et @
z'=0 z=0 1
B Wi(z')
- ZW [ el “
= H(Wi»Wi) (45)

Equality in [43) holds, iff the convex sum in the square bedslof [42) is trivial.
O

Picking a stationary distribution farv’, which in our case is the unique dis-
tribution W, thenH is a function of just one argument which does not increase

12



in time. Taking in addition the special convex functidrix) = xIn(x), then we
obtain withSCG9 := —H the above mentioned entropy formula.

Let from now on® be as just mentioned. Then we have, due te)n> 1—x ',
with equality iffx = 1:

N W(z) N
HW,W) = ) W(z)in [W ]zZ(W(z)—W’(zn:o, (46)
z=0

'(z) p—
= 0&= W(z)=W'(z) Vz. (47)

Let us denote by distance functioron a setM any functiond : M x M —
R>o, such thatd(x,y) = d(y,x) andd(x,y) = 0 & x = y. (This is more
general than anetric, which in addition must satisfy the triangle inequality.) A
mapT : M — M is called non-expanding with respectdoiff d(t(x),t(y)) <
d(x,y) vx,y € M. We have

Theorem 4. D : W x W — R, D(IW,W/') := H(W,W') + HW',W) is a
distance function with respect to which every proper nogederate time evolution
is non-expanding.

Proof. Symmetry is clear and_(#7) immediately impli&W,W’) > 0 with
equality iff W = W', as follows from the separate positivity of each summand.
Likewise [4%) holds for each summand, so that no distanaeases. O

4 Thermodynamic limit and deter ministic dynamics

In this section we wish to show how to get a deterministic @twoh for random
variables in the limitN — oo. To this end we first consider the discrete, future
directed time evolution of the expectation value of the mnd/ariableX(z) = z.
We have

N
E(X)tiJr]) — Z z IJr] Z Z Z/Wret Z |Z (Z) (48)
2!/ = =02z=0
N O —Z N z
= ;)|:Z+1 +(z—1)ﬂ W;(z)
2
= 14+ <1 - N) E(X, ti). (49)
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In the same way we get

N
B0 t) = Z[zﬂ i wie
= T+2E(X,t) + (1-4/N) E(X%, 1) (50)

V(X,ti1) = E(X%tinr) — EX(X, tigq)
4 4

= (1=4/N)VIX, 1) + SEX 1) — 5B (X 1) (51)
By the evolution being ‘future directed’ one means tHat, and notWay are used
in the evolution equations, as explicitly shown[nl(48). Histcase one also speaks
of ‘forward-directed evolution’.

In order to carry out the IImiN — oo we use the new random variabie:

Q — o, whereo = W — 1 as above; henck = 5 N(1 + X). Simple replacement
yields

E(S i) = (1-2/N)E(St) (52
VLt = 0-4NVEW+ 5 (1-BE ). 69

In order to have a seizable fraction of balls moved within @mscopic time span

T, we have to appropriately decrease the time stejps= ti, 1 — t; with growing

N, e.g. likeAt = %T, wheret is some positive real constant. Its meaning is to be
the time span, in whiclN /2 balls change urns. Now we can take the liNdit— oo

of (62) and [BB),

1 —(t—
%E(Z 6 = —E(LY) = E(L1) = Eoexp<(tTm> (58
iwz t) = —EV(Z,t) — V(I,t) = voexp<M> , (55)
dt T T

wherek,, Vo, t1, 12 are independent constants. These equations tell us, that 1)
expectation value approaches the equilibrium value 0 exponentially fast in the
future, and 2) it does so with exponentially decaying stashd@viation. The half
mean time of both quantities is the time fdy2 draws.

According to the discussions in previous sections it is ntearg that in case
of equilibrium identical formulae would have emergedAf, instead ofW, had
been used, for thew,, = W,,. Most importantly to note is, that the backward
evolution isnot obtained by taking the forward evolution and replacing it it

14



—t. The origin of this difference is the fact already emphasizefore (following
Theorem 2), thatV,,(z;z’) is not the inverse matrix t&V,.(z;z’), but rather the
matrix computed according to Bayes’ rule.

5 Appendix

In this Appendix we collect some elementary notions of pbilitg theory, adapted
to our specific example.
The space of elementary evehis Q = {0,1,...,N}. By

X: = {X:Q-R} (56)
W: = {(W:Q R0l ) W(z)=1} (57)
zeQ

we denote the sets of random variables and probabilityilolisions respectively,
whereW C X. The mapX¥ — RN*! X — (X(0),X(1),--- ,X(N)) defines a
bijection which allows us to identifyt’ with RN+1. This identifies)V with the

N-simplex

AN = {(W(0),--- ,W(N) e RN [W(z) >0, ) W(z) =1} c RN,

(58)
Its boundary@AN, is the union of allN — K)-simplices:

AN = L(W(0),... , W(N)) e AN [0=W(iy) =--- =W(ix)} (59
for all K. Its interior isyy := W — dW, so thatW € W < W(z) # 0Vz.

Expectation valué, varianceV, and standard deviatiah are functionst x
W — R, defined as follows:

E:XxWoR,  EX,W) =) X(z)W(z) (60)
zeQ
VX xW = Rso, VIX,W):=E((X— (X)), W) =E(X?,W) — E*(X,W)
(61)
S: X XxW =R, SI(X,W):=/V(X,W) (62)

where in [61)(X) simply denotes the constant functi¢X) : z — E(X, W), and
E2(X,W) := [E(X,W)]2. In the main text we also writE(X, s) if the symbols
uniquely labels a point iV, like s = ap for the a priori distributior{1), dr(X, t;)
for the distributionW; at timet;.

9Elementary’ is merely to be understood as mathematicalstal terminology, not in any phys-
ical sense. For example, in the urn modal,is obtained after coarse graining form the space of
physically ‘elementary’ events.
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