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Abstract

In statistical thermodynamics the 2nd law is properly spelled out in terms
of conditioned probabilities. As such it makes the statement, that ‘entropy
increases with time’without preferring a time direction. In this paper we
try to explain this statement—which is well known since the time of the
Ehrenfests—in some detail within a systematic Bayesian approach.

1 Introduction

First, we wish to make the statement in the abstract more precise. To this end, we
think of an idealized system, whose state may only change at sharp, discrete times.
This allows us to speak unambiguously about next and previous points in time.
Now we make the following

Assumption. A time ti the system is in a statez(ti) of non-maximalentropy. The
statistical 2nd law now makes the following statement aboutconditioned probabil-
ities (the condition will not be repeated):

Statement 1. The probability, that the statez(ti) will develop in the futureto a
statez(ti+1) of larger entropy, is larger than the probability for a development into
a state of smaller entropy.
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Statement 2. The probability, that the statez(ti) has developed from thepastfrom
a statez(ti−1) of larger entropy, is larger than the probability of a development
from a state of smaller entropy.

Consequence 1. The likely increase of entropy in the future state development
z(ti) 7→ z(ti+1) does not imply a likely decrease for the (fictitious) past develop-
mentz(ti) 7→ z(ti−1), but also a likely increase.

Consequence 2. The most likely developmentz(ti−1) 7→ z(ti) is that of decreas-
ing entropy. Somewhat ironically one may say, that it is morelikely for the state
z(ti) to come about through the improbable development from a moreprobable
statez(ti−1), than through the probable development from an improbable state.

To properly understand the last consequence, recall that our condition is placed
on z(ti), that is at timeti. For z(ti) 7→ z(ti+1) this means aretardedor initial
condition, forz(ti−1) 7→ z(ti), however, anadvancedor final condition. It is this
change of condition which makes this behaviour of entropy possible.

Consequence 3. The mere (likely) increase of entropy does not provide an orien-
tation of time. It does not serve to define a ‘thermodynamic arrow of time’. Rather,
an orientation is usually given by considering a finite time-interval and imposing
a low-entropy condition at one of the twoendsof the interval. Without further
structural elements which would allow to distinguish the two ends, the apparently
existingtwo possibilities to do so are, in fact, identical. An apparent distinction is
sometimes introduced by stating, that the condition at one end is to be understood
asinitial . But at this level this merely definesinitial to be used for that end, where
the condition is placed.

Many notions any types of reasoning in statistical thermodynamics can be well
illustrated in terms of the Ehrenfest’s urn-model, which isto be regarded as a toy
model of a thermodynamic system, and whose detailed description we present be-
low. In particular, this holds true for the consequences listed above, for whose
partial illustration this model was designed by Paul and Tatiana Ehrenfest [1]; see
also [2]-[5]. Our presentation will be more detailed than theirs. Nothing of what we
say will be essentially new. Besides being more detailed, wetry to take a Bayesian
approach. In what follows it will be important to alway relate to the general for-
malism of statistical thermodynamics in order to not provoke ‘easy’ or ‘intuitive’
but uncontrolled reasonings. There is always a certain danger for this to happen
in the context of simple models. The Appendix collects some elementary notions
which are not explained in the main text. These will be relevant in the following
section.
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2 The Urn-Model

Think of two urns,U0 andU1, among which one distributesN numbered balls.
For exact equipartition to be possible, we assumeN to be even. Amicrostateis
given by the numbers of balls contained inU1 (the complementary set of numbers
then label the balls inU0). To formalize this we associate a two-valued quantity
xi ∈ {0, 1}, i ∈ {1, . . . ,N}, to each ball, wherexi = 0 (xi = 1) stands for the
i’th ball being inU0 (U1). This identifies the set of microstates, which we will
call Γ (it corresponds to phase space), withΓ = {0, 1}N, a discrete space of of2N

elements. It can be further identified with the set of all functions {1, · · · ,N} →
{0, 1}, i 7→ xi. Mathematically speaking, the spaceΓ carries a natural measure,µΓ ,
given by associating to each subsetΛ ⊂ Γ its cardinality:µΓ (Λ) = |Λ|. We now
make the physical assumption, that the probability measure(normalized measure)
νΓ := 2−NµΓ gives the correctphysicalprobabilities. Note that this is a statement
about the dynamics, which here my be expressed by saying, that in the course of the
dynamics of the system, all microstates are reached equallyoften on time average.

Physical observables correspond to functionsΓ → R. We call the set of such
functions Ø. Conversely, it is generally impossible to associate a physically realiz-
able observable to any element in Ø. Let{O1, . . . , On} =: Øre ⊂ Ø the physically
realizable ones1, which we can combine into a singlen component observable
Ore ∈ Øn. If Ore : Γ → R

n is injective, the state is determined by the value ofOre.
In case of thermodynamical systems it is essential to be far away from injectivity,
in the sense that a given valueα ∈ R

n should have a sufficiently large pre-image
O−1

re (α) ⊂ Γ . The coarse-grained of macroscopic state space in then given by the
imageΩ ⊂ R

n of the realized observablesOre. To every macrostateα ∈ Ω cor-
responds a set of microstates:Γα := O−1

re (α) ⊂ Γ . The latter form a partition ofΓ :
Γα ∩ Γβ = ∅ if α 6= β and

⋃

α∈Ω Γα = Γ .
The realized observable for the urn-model is given by the number of balls in

U1, that is,Ore =
∑N

i=1 xi. Its range is the setΩ = {0, 1, . . . ,N} of macrostates,
which containsN + 1 elements. The macrostates are denoted byz. To z there

corresponds the setΓz of
(

N
z

)

microstates. The probability measureνΓ induces

so-called a priori probabilities for macrostatesz:

Wap(z) = ν
Γ
(Γz) = 2−N

(

N

z

)

. (1)

LetX : Ω → R be the random variablez 7→ X(z) = z. Its expectation valueE and
1The subscript ‘re’ can be read as abbreviation for ‘realized’ or ‘relevant’.
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standard deviationS with respect to the a priori distribution (1) are given by2

E(X, ap) =
N

2
, (2)

S(X, ap) =

√
N

2
. (3)

The system has a Markoffian random evolution, which is definedas follows:
at every discrete lying timeti, wherei = {0, 1, 2, · · · } with tj > ti for j > i, a
random generator picks a numbern in the interval1 ≤ n ≤ N. Subsequently
the ball with numbern changes the urn. There are two possibilities: The ball
with numbern has been in urnU0 so that the change of macrostate is given by
z → z + 1. Alternatively, the ball has been inU1 and the change of macrostate is
given byz → z − 1. The conditional probabilities,W(z ± 1; ti+1|z; ti), that given
the statez at timeti the evolution will yield the statez ± 1 at timeti+1 are given
by

W(z + 1; ti+1|z; ti) =
N − z

N
= : Wret(z + 1|z), (4)

W(z − 1; ti+1|z; ti) =
z

N
= : Wret(z − 1|z). (5)

Since these are independent of time, we can suppress the argumentsti. We just
have to keep in mind, that the left entry,z ± 1 is one time stepafter thanz, that is,
the probabilities arepast-conditionedor retarded. We indicate this by writingWret.

Let W(z; ti) denote some chosen absolute probability for the state to bez at
time ti andWi : z → W(z; ti) the probability distribution at timeti. The dy-
namics described above will now induce a dynamical law,Wi → Wi+1, on such
distributions, given by

W(z; ti+1) = W(z; ti+1|z + 1; ti)W(z + 1; ti)

+ W(z; ti+1|z − 1; ti)W(z − 1; ti) (6)

=
z + 1

N
W(z + 1; ti) +

N − z + 1

N
W(z − 1; ti), (7)

2Note

E(X; ap) = 2
−N

N∑

z=1

z

(

N

z

)

= 2
−N

N

N−1∑

m=0

(

N − 1

m

)

=
N

2

E(X
2

− X; ap) = 2
−N

N∑

z=2

z(z − 1)

(

N

z

)

= 2
−N

N(N − 1)

N−2∑

m=0

(

N − 2

m

)

=
N(N − 1)

4
.
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whose Markoffian character is obvious. To be sure,Wi, i > 0, will depend on
the initial distributionW0. This dependence will be essential ifW0 is far from
equilibrium and the number of time stepsi not much larger than the numberN of
balls. Conversely, one expects that forWi will approach an equilibrium distribution
Wstat for i ≫ N, whereWstat is independent ofW0. Its uniqueness is shown by

Theorem 1. A distributionWstat which is stationary under (7) is uniquely given by
Wap in (1).

Proof. We show, thatWstat can be uniquely determined from (7). To this end, we
assume a time independent distributionWstat and write (7) in the form

Wstat(z + 1) =
N

z + 1
Wstat(z) −

N − z + 1

z + 1
Wstat(z − 1). (8)

SinceWstat(−1) = 0 we have forz = 0 thatWstat(1) = NWstat(0), hence recursively
Wstat(2) = 1

2
N(N − 1)Wstat(0) andWstat(3) = 1

6
N(N − 1)(N − 2)Wstat(0). By

induction we get the general formulaWstat(z) =
(

N
z

)

Wstat(0). Indeed, inserting

this expression forz andz − 1 into the right hand side of(7), we obtain

Wstat(z + 1) =

[

N

z + 1

(

N

z

)

−
N − z + 1

z + 1

(

N

z − 1

)]

Wstat(0)

= (N − z)
N(N − 1) · · · (N − z + 1)

(z + 1)!
Wstat(0)

=

(

N

z + 1

)

Wstat(0). (9)

The value ofWstat(0) is finally determined by the normalization condition:

1 =

n∑

z=0

Wstat(z) = Wstat(0)

N∑

z=0

(

N

z

)

= Wstat(0) 2N ⇒ Wstat(0) = 2−N. (10)

2.1 Future-conditioned probabilities and Bayes’ rule

Given a probability space and a set of events,{A1, . . . , An}, which is 1.) complete,
i.e. A1∪· · ·∪An = 1 (here1 denotes the certain event), and 2.) mutually exclusive,
i.e. i 6= j ⇒ Ai∩Aj = 0 (here0 denotes the impossible event). The probability of
an eventB then obeysBayes’ rule3: W(B) =

∑n
k=1 W(B|Ak)W(Ak). This is just

3We deliberately avoid to call it Bayes’ theorem.
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what we used in (6). This rule now allows us to deduce the inversely conditioned
probabilities:

W(Ak|B) =
W(B|Ak)W(Ak)∑n
i=1 W(B|Ai)W(Ai)

. (11)

We now identify theAi with theN + 1 events(z ′; ti) at the fixed timeti, where
z ′ = 0, . . . ,N + 1, andAk with the special event(z ± 1; ti). Further we identify
the eventB with (z; ti+1), i.e. with the occurrence ofz at thelater time ti+1. Then
we obtain:

W(z ± 1; ti | z; ti+1) =
W(z; ti+1|z ± 1; ti)W(z ± 1; ti)∑N

z′=0 W(z; ti+1|z ′; ti)W(z ′; ti)
(12)

=
W(z; ti+1|z ± 1; ti)W(z ± 1; ti)

W(z; ti+1)
. (13)

Hence, givenWi, a formal application of Bayes’ rule allows us to express thefuture
conditioned (‘advanced’) probabilities in terms of the past conditioned (‘retarded’)
ones. In our case we think of the latter ones as given by (4-5).Hence we obtain
the conditioned probability for(z± 1; ti), given that at the later timeti+1 the state
will z occur:

W(z + 1; ti|z; ti+1) =
W(z + 1; ti)

W(z + 1; ti) + N−z+1
z+1

W(z − 1; ti)
, (14)

W(z − 1; ti|z; ti+1) =
W(z − 1; ti)

W(z − 1; ti) + z+1
N−z+1

W(z + 1; ti)
. (15)

2.2 Flow equilibrium

The condition for having flow equilibrium for the pair of times ti, ti+1 reads

W(z ± 1; ti+1|z; ti)W(z; ti) = W(z; ti+1|z ± 1; ti)W(z ± 1; ti). (16)

It already impliesWi = Wap, since (4-5) give4W(z + 1; ti) = N−z
z+1

W(z; ti) which

leads toW(z; ti) =
(

N
z

)

W(0; ti). Since1 =
∑

z W(z; ti) we haveW(0; ti) =

4Without using (4-5) one gets

W(z ± 1; ti+1 |z; ti)W(z; ti) = W(z; ti+1 |z ± 1; ti)W(z ± 1; ti)

= W(z ± 1; ti |z; ti+1)W(z; ti+1) (17)

where the last equality is the identityW(a|b)W(b) = W(b|a)W(a). The local (in time) condition
of flow equilibrium is therefore equivalent to (cf. 19)

W(z ± 1; ti+1 |z; ti)

W(z ± 1; ti |z; ti+1)
=

W(z; ti+1)

W(z; ti)
. (18)
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2−N. Using Theorem 1, we conclude that flow equilibrium atti impliesWj = Wap

for j ≥ i.

2.3 Time-reversal invariance

To be distinguished from flow equilibrium is time-reversal invariance. The latter is
given by the following equality of past- and future-conditioned probabilities:

W(z ± 1; ti+1|z; ti) = W(z ± 1; ti|z; ti+1) (19)

(13)
= W(z; ti+1|z ± 1; ti)

W(z ± 1; ti)

W(z; ti+1)
, (20)

(4,5)⇐⇒ W(z; ti+1) =
z + 1

N − z
W(z + 1; ti) (21)

=
N − z + 1

z
W(z − 1; ti). (22)

It is interesting to note that the condition of time-reversal invariance is weaker
that that of flow equilibrium. The former is implied, but doesnot itself imply
the equilibrium distribution. Let us explain this in more detail: Equations (21-
22) imply (7), sinceN−z

N
× (21) + z

N
× (22) = (7). Hence (21-22) are stable

under time evolution (7). Conversely, (21-22) is implied by(7) and the following
equation, expressing the equality of the right hand sides of(21) and (22):

W(z + 1; ti) =
N − z

z + 1

N − z + 1

z
W(z − 1; ti). (23)

Indeed, eliminatingW(z + 1; ti) in (7) using (23), one gets

W(z; ti+1) =
N − z + 1

z
W(z − 1; ti)

(18)
=

z + 1

N − z
W(z + 1; ti), (24)

hence (21-22). Time-reversal invariance for future times is therefore equivalent to
the ‘constraint’ (23) for the initial condition. It allows for a one-parameter family
of solutions, since it determinesWi for given p := W(0; ti) andq := W(1; ti).

Indeed, in analogy to the proof of Theorem 1 one getsWi(z) = p
(

N
z

)

for z even

andWi(z) = q
N

(

N
z

)

for z odd. Since
∑

z=even

(

N
z

)

=
∑

z=odd

(

N
z

)

= 2N−1,

the normalization condition leads to1 = 2N−1(p + q
N

) ⇒ q = N(2−(N−1) − p).
This shows thatp ∈ [0, 2−(N−1)] faithfully parameterizes all distributions obeying
(23). One should note that solutions to (23) are closed underconvex sums. In this
way one sees, that the obtained distributions are the convexsumWi = pWe +

(1−p)Wo of the ‘even’ distribution,We(z) = (1−(−1)z−1)2−N
(

N
z

)

and ‘odd’
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distribution, Wo(z) = (1 − (−1)z)2−N
(

N
z

)

. Solutions to (23) form a closed

interval within the simplex∆N, which connects the pointWe in the N
2

–sub-simplex
∆13...N−1 with the pointWo on the(N

2
+ 1)–sub-simplex∆24···N. If we call this

interval∆∗, we have

Theorem 2. The set∆∗ ⊂ W is invariant under time evolution. The future de-
velopment usingW(z; ti+1|z

′; ti) and the past development usingW(z; ti|z
′; ti+1)

coincide.5

It is of central importance to note that the past developmentis, mathematically
speaking,not the inverse operation to the future development. The reasonbeing
precisely that such a change in the direction of developmentis linked with a change
from retarded to advanced conditionings in the probabilities.

3 General Consequences

In the following we want to restrict to the equilibrium condition. In this case the
future-conditioned probabilities are independent of theti and we can writeW(z±
1; ti|z; ti+1) =: Wav(z ± 1|z). Hence we have:

Wret(z + 1|z) = Wav(z + 1|z) =
N − z

N
, (27)

Wret(z − 1|z) = Wav(z − 1|z) =
z

N
, (28)

from which statements 1 and 2 made in the Introduction follow. Indeed, letz =

z(ti) > N/2, then the probabilities that at timeti−1 or ti+1 the state was or will
bez − 1 is, in both cases, given byz

N
. The probability for the statez + 1 at time

ti−1 or ti+1 is N−z
N

. Now, every change of state in the direction of the equilibrium
distribution leads to an increase in entropy (see below). Hence the probability of
having a higher entropy atti−1 or ti+1 is z

N−z
times that of having a lower entropy.

If z = z(ti) < N/2 we have to use the inverse of that.
5Explicitly one can see the preservation of (23) under time evolution (7) as follows: Given that

the initial distributionWi satisfies (23), the development (7) is equivalent to (21-22). Hence

W(z − 1; ti) =
z

N − z + 1
W(z; ti+1) (25)

W(z + 1; ti) =
z + 2

N − z − 1
W(z + 2; ti+1) (26)

which allows to rewrite (23) forWi into (23) forWi+1.
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3.1 Boltzmann Entropy

Boltzmann EntropySB is a functionSB : Ω → R. We stress that sinceΩ is
defined onlyafter a choice of coarse graining (i.e. a choice of Øre) has been made,
Boltzmann Entropy, too, must be understood as relative to that choice.6 The value
SB(z) in the macro statez is defined bySB(z) := ln µΓ (Γz). For the urn model
this corresponds to the logarithm of microstates that correspond to the macrostate
z. In what follows it will sometimes be more convenient to label the macrostate
not byz ∈ [0,N], but rather by a parameterσ ∈ [−1, 1] of range independent of
N. Let the latter be defined byz = N

2
(1+σ). If we assume thatN, z, (N−z) ≫ 1

and approximate lnN! = N ln N − N + O(ln N) (Stirling formula), we obtain the
following expression for the Boltzmann entropy:

SB(z) = N ln N − z ln z − (N − z) ln(N − z), (29)

SB(σ) = −
N

2

[

ln
1 − σ2

4
+ σ ln

1 + σ

1 − σ

]

. (30)

It obeysSB(σ) = SB(−σ) = SB(|σ|), which just corresponds to the invariance of
the first expression underz 7→ N − z. Considered as function of|σ|, SB : [0, 1] →
[ln 2N, 0] is strictly monotonically decreasing. ThatSB(σ = 1) = 0 is best seen
in the limit z → N of (29). Despite Stirling’s approximation this value is, infact,
exact, as one easily infers from the fact thatz = N just corresponds to a single
microstate. In contrast, the given value atσ = 0 is only approximately valid.

3.2 Consequences 1 and 2

The quantitative form of Consequences 1 and 2 are given by thesolution to the
following exercises: Let the state at timeti bez = z(ti). Calculate the conditioned
probabilities forz(ti) i) a local maximum, ii) a local minimum, iii)

(i) z(ti) being a local maximum,

6This apparently non objective character of entropy is oftencomplained about. But this criticism
is based on a misconception, since the termthermodynamical systemis not defined without a choice
for Øre. This is no different in phenomenological thermodynamics,where the choice of ‘work degrees
of freedom’,{yi}, (the relevant or controlled degrees of freedom) is part of the definition of ‘system’.
Only after they have been specified can onedefinethe differential one-form of heat,δQ, as the
difference between the differential of total energy,dE, and the differential one-form of reversible
work, δA := fidyi . (Hereδ is just meant to indicate that the quantity in question is a one-form, not
that it is the differential,d, of a function; i.e.dδA 6= 0 anddδQ 6= 0 in general.) Hence wedefine
δQ := dE − δA. Roughly speaking, one may say that ‘heat’ is the energy thatis localized in the
non-relevant (not controlled) degrees of freedom.
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(ii) z(ti) being a local minimum,

(iii) z(ti) lying on a segment of positive slope,

(iii) z(ti) lying on a segment of negative slope.

Let the corresponding probabilities beWmax(z), Wmin(z), W↑(z), andW↓(z) re-
spectively. These are each given by the product of one past and one future condi-
tioned probability. This being a result of the Markoffian character of the dynamics,
i.e. that for given(z, ti) the dynamical evolution(z; ti) → (z ± 1; ti+1) is inde-
pendent ofz(ti−1). Using (27-28) we obtain:

Wmax(z) = Wav(z − 1|z)Wret(z − 1|z) =
( z

N

)2

, (31)

Wmin(z) = Wav(z + 1|z)Wret(z + 1|z) =
(

1 −
z

N

)2

, (32)

W↑(z) = Wav(z − 1|z)Wret(z + 1|z) =
z

N

(

1 −
z

N

)

, (33)

W↓(z) = Wav(z + 1|z)Wret(z − 1|z) =
z

N

(

1 −
z

N

)

. (34)

Forz/N > 1
2

(z/N < 1
2
) the probabilityWmax (Wmin) dominates the other ones. Ex-

pressed in terms ofσ the ratios of probabilities are given by the simple expressions:

Wmax(σ) : Wmin(σ) : W↑(σ) : W↓(σ) =
1 + σ

1 − σ
:

1 − σ

1 + σ
: 1 : 1. (35)

In the limiting case of infinitely manyti we get that the statez is z2/(N2 − z2) =

(1 + σ)2/2(1 − σ) times more often a maximum than any other of the remaining
three possibilities.

We also note an expression for the expected recurrence time,T(z), for the state
z.7 It is derived in [5] (there formula (66)). If the draws from the urns have constant
time separation∆t one has

T(z) =
∆t

Wap(z)
, (36)

and hence a connection between mean recurrence time and entropy:

S(z) = ln

[

2N∆t

T(z)

]

. (37)

7Note that we talk about recurrence in the spaceΩ of macrostates (‘coarse grained’ states), not
in the spaceΓ of microstates.
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Reference [5] also shows the recurrence theorem, which for discrete state
spaces asserts the recurrence of each state with certainty.More precisely: let
W ′(z ′; ti+n|z; ti) be the probability that for given statez at time ti the statez ′

occurs at timeti+n for thefirst time afterti (this distinguishesW ′ from W), then∑∞
n=1 W ′(z; ti+n|z; ti) = 1.

3.3 Coarse grained Gibbs entropy and the H-theorem

We recall that the Gibbs entropySG lives on the space of probability distributions
(i.e. normed measures) onΓ and is hence independent of the choice of Øre. In con-
trast, the coarse grained Gibbs entropy,S

cg
G , lives on the probability distributions

on Ω, S
cg
G : W → R, and therefore depends on Øre. Since the former does serve,

after all, as a Øre independent definition of entropy (even though, thermodynam-
ically speaking, not a very useful one), we distinguish the latter explicitly by the
superscript ‘cg’. If at all, it is S

cg
G and notSG that thermodynamically can we be

compared toSB. The functionScg
G is given by

S
cg
G (W) = −

N∑

z=0

W(z) · ln

[

W(z)

Wstat(z)

]

. (38)

The structure of this expression is highlighted by means of the generalizedH-
theorem, which we explain below.8 Since the two entropiesSB andS

cg
G are defined

on different spaces,Ω andW, it is not immediately clear how to compare them.
To do this, we would have to agree on what value ofS

cg
G we should compare with

SB(z), i.e. what argumentW ∈ W should correspond toz ∈ Ω. A natural
candidate is the distribution centered atz, that is,W(z ′) = δz(z

′), which is 1 for
z ′ = z and zero otherwise. From (38) we then obtain

S
cg
G (δz) = SB(z) − N ln 2 . (39)

Let us now turn to the generalizedH-theorem. LetΦ : R → R be a con-
vex function. Then for any finite familym := {x1, . . . , xn} of not necessarily
pairwise distinct points inR we have the following inequalityΦ(

∑
i αixi) ≤∑

i αiΦ(xi)∀αi ∈ R≥0 with
∑

i αi = 1, where equality holds iff there is no
index pairi, j, such thatxi 6= xj andαi · αj 6= 0. In the latter case the convex sum

8Usually this expression is called therelative entropy [ofW relative toWstat]. As [absolute]
entropy ofW one then understands the expression−

∑
z
W(z) ln W(z). TheH-theorem would be

valid for the latter only if the constant distribution (in our caseW(z) = 1/(N+1)) is an equilibrium
distribution, which is not true for the urn model.
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is called trivial. We now define a functionH : W ×W → R through

H(W,W ′) :=

N∑

z=0

W ′(z)Φ

[

W(z)

W ′(z)

]

. (40)

Consider a time evolutionWi 7→ Wi+1, Wi+1(z) :=
∑

i W(z|z ′)Wi(z
′), where

clearlyW(z|z ′) ≥ 0 and
∑

z W(z|z ′) = 1. We also assume that no row of the ma-
trix W(z|z ′) just contains zeros (which would mean that the state labelled by the
corresponding row number is impossible to reach). We call such time evolutions
and the corresponding matricesnon-degenerate. In what follows those distribu-

tionsW ∈ W for which W(z) > 0∀z, i.e. from the interior
◦

W ⊂ W, will play a
special role. We call themgeneric. The condition onW(z|z ′) to be non-degenerate
then ensures that the evolution leaves the set of generic distributions invariant. Af-
ter these preparations we formulate

Theorem 3 (generalized H-theorem). Let W ′
i be generic and the time evolution

non-degenerate; thenH(Wi+1,W
′
i+1) ≤ H(Wi,W

′
i).

Proof. (Adaptation of the proof of theorem 3 in [6] for the discrete case.) We
define a new matrixV(z, |z ′) := [W ′

i+1(z)]
−1W(z|z ′)W ′

i(z
′), which generates the

time evolution forWi(z)/W ′
i(z) and obeys

∑
z′ V(z|z ′) = 1. It follows:

H(Wi+1,W
′
i+1) =

N∑

z=0

W ′
i+1(z)Φ

[

Wi+1(z)

W ′
i+1(z)

]

(41)

=

N∑

z=1

W ′
i+1(z)Φ

[

N∑

z′=0

V(z|z ′)
Wi(z

′)

W ′
i(z

′)

]

(42)

≤
N∑

z′=0

N∑

z=0

W ′
i+1(z)V(z|z ′)Φ

[

Wi(z
′)

W ′
i(z

′)

]

(43)

=

N∑

z′=0

W ′
i(z

′)Φ

[

Wi(z
′)

W ′
i(z

′)

]

(44)

= H(Wi,W
′
i) (45)

Equality in (43) holds, iff the convex sum in the square brackets of (42) is trivial.

Picking a stationary distribution forW ′, which in our case is the unique dis-
tribution Wstat, thenH is a function of just one argument which does not increase

12



in time. Taking in addition the special convex functionΦ(x) = x ln(x), then we
obtain withS

cg
G := −H the above mentioned entropy formula.

Let from now onΦ be as just mentioned. Then we have, due to ln(x) ≥ 1−x−1,
with equality iff x = 1:

H(W,W ′) =

N∑

z=0

W(z) ln

[

W(z)

W ′(z)

]

≥
N∑

z=0

(W(z) − W ′(z)) = 0, (46)

= 0 ⇐⇒ W(z) = W ′(z) ∀z. (47)

Let us denote by adistance functionon a setM any functiond : M × M →
R≥0, such thatd(x, y) = d(y, x) and d(x, y) = 0 ⇔ x = y. (This is more
general than ametric, which in addition must satisfy the triangle inequality.) A
mapτ : M → M is called non-expanding with respect tod, iff d(τ(x), τ(y)) ≤
d(x, y)∀x, y ∈ M. We have

Theorem 4. D :
◦

W ×
◦

W → R, D(W,W ′) := H(W,W ′) + H(W ′,W) is a
distance function with respect to which every proper non-degenerate time evolution
is non-expanding.

Proof. Symmetry is clear and (47) immediately impliesD(W,W ′) ≥ 0 with
equality iff W = W ′, as follows from the separate positivity of each summand.
Likewise (45) holds for each summand, so that no distance increases.

4 Thermodynamic limit and deterministic dynamics

In this section we wish to show how to get a deterministic evolution for random
variables in the limitN → ∞. To this end we first consider the discrete, future
directed time evolution of the expectation value of the random variableX(z) = z.
We have

E(X, ti+1) =

N∑

z′=0

z ′Wi+1(z
′) =

N∑

z′=0

N∑

z=0

z ′Wret(z
′|z)Wi(z) (48)

=

N∑

z=0

[

(z + 1)
N − z

N
+ (z − 1)

z

N

]

Wi(z)

= 1 +

(

1 −
2

N

)

E(X, ti). (49)

13



In the same way we get

E(X2, ti+1) =

N∑

z=0

[

(z + 1)2
N − z

N
+ (z − 1)

z

N

]

Wi(z)

= 1 + 2E(X, ti) + (1 − 4/N)E(X2, ti) (50)

V(X, ti+1) = E(X2, ti+1) − E2(X, ti+1)

= (1 − 4/N)V(X, ti) +
4

N
E(X, ti) −

4

N2
E2(X, ti) (51)

By the evolution being ‘future directed’ one means thatWret and notWav are used
in the evolution equations, as explicitly shown in (48). In this case one also speaks
of ‘forward-directed evolution’.

In order to carry out the limitN → ∞ we use the new random variableΣ :

Ω → σ, whereσ = 2z
N

− 1 as above; henceX = N
2
(1 + Σ). Simple replacement

yields

E(Σ, ti+1) = (1 − 2/N) E(Σ, ti) (52)

V(Σ, ti+1) = (1 − 4/N) V(Σ, ti) +
4

N2

(

1 − E2(Σ, ti)
)

. (53)

In order to have a seizable fraction of balls moved within a macroscopic time span
τ, we have to appropriately decrease the time steps∆t := ti+1 − ti with growing
N, e.g. like∆t = 2

N
τ, whereτ is some positive real constant. Its meaning is to be

the time span, in whichN/2 balls change urns. Now we can take the limitN → ∞
of (52) and (53),

d

dt
E(Σ, t) = −

1

τ
E(Σ, t) =⇒ E(Σ, t) = E0 exp

(

−(t − t1)

τ

)

, (54)

d

dt
V(Σ, t) = −

2

τ
V(Σ, t) =⇒ V(Σ, t) = V0 exp

(

−2(t − t2)

τ

)

, (55)

whereE0, V0, t1, t2 are independent constants. These equations tell us, that 1)the
expectation value approaches the equilibrium valueΣ = 0 exponentially fast in the
future, and 2) it does so with exponentially decaying standard deviation. The half
mean time of both quantities is the time forN/2 draws.

According to the discussions in previous sections it is now clear, that in case
of equilibrium identical formulae would have emerged ifWav instead ofWret had
been used, for thenWav = Wret. Most importantly to note is, that the backward
evolution isnot obtained by taking the forward evolution and replacing in itt 7→
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−t. The origin of this difference is the fact already emphasized before (following
Theorem 2), thatWav(z; z

′) is not the inverse matrix toWret(z; z
′), but rather the

matrix computed according to Bayes’ rule.

5 Appendix

In this Appendix we collect some elementary notions of probability theory, adapted
to our specific example.

The space of elementary events9 is Ω = {0, 1, . . . ,N}. By

X : =
{
X : Ω → R

}
(56)

W : =
{
W : Ω → R≥0 |

∑

z∈Ω

W(z) = 1
}

(57)

we denote the sets of random variables and probability distributions respectively,
whereW ⊂ X . The mapX → R

N+1, X 7→ (X(0), X(1), · · · , X(N)) defines a
bijection which allows us to identifyX with R

N+1. This identifiesW with the
N-simplex

∆N :=
{
(W(0), · · · ,W(N)) ∈ R

N+1 | W(z) ≥ 0,
∑

z

W(z) = 1
}
⊂ R

N+1 .

(58)
Its boundary,∂∆N, is the union of all(N − K)-simplices:

∆i1···iK :=
{
(W(0), . . . ,W(N)) ∈ ∆N | 0 = W(i1) = · · · = W(iK)

}
(59)

for all K. Its interior is
◦

W := W − ∂W, so thatW ∈
◦

W ⇔ W(z) 6= 0∀z.
Expectation valueE, varianceV , and standard deviationS are functionsX ×

W → R, defined as follows:

E : X ×W → R, E(X,W) :=
∑

z∈Ω

X(z)W(z) (60)

V : X ×W → R≥0, V(X,W) := E((X − 〈X〉)2,W) = E(X2,W) − E2(X,W)

(61)

S : X ×W → R≥0, S(X,W) :=
√

V(X,W) (62)

where in (61)〈X〉 simply denotes the constant function〈X〉 : z 7→ E(X,W), and
E2(X,W) := [E(X,W)]2. In the main text we also writeE(X, s) if the symbols
uniquely labels a point inW, like s = ap for the a priori distribution (1), orE(X, ti)

for the distributionWi at timeti.
9‘Elementary’ is merely to be understood as mathematical standard terminology, not in any phys-

ical sense. For example, in the urn model,Ω is obtained after coarse graining form the space of
physically ‘elementary’ events.
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