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THE REPRESENTATION OF TIME AND CHANGE IN MECHANICS 1

If time is objective the physicist must have discovered that fact, if there is Be-
coming the physicist must know it; but if time is merely subjective and Being is
timeless, the physicist must have been able to ignore time in his construction of
reality and describe the world without the help of time. . . . If there is a solution
to the philosophical problem of time, it is written down in the equations of mathe-
matical physics.

Perhaps it would be better to say that the solution is to be read between the
lines of the physicist’s writings. Physical equations formulate specific laws . . .
but philosophical analysis is concerned with statementsaboutthe equations rather
than with the content of the equations themselves.

—Reichenbach.1

For many years I have been tormented by the certainty that the most extraor-
dinary discoveries await us in the sphere of Time. We know less about time than
about anything else.

—Tarkovsky.2

1 INTRODUCTION

This chapter is concerned with the representation of time and change in classical
(i.e., non-quantum) physical theories. One of the main goals of the chapter is to
attempt to clarify the nature and scope of the so-called problem of time: a knot of
technical and interpretative problems that appear to stand in the way of attempts to
quantize general relativity, and which have their roots in the general covariance of
that theory.

The most natural approach to these questions is via consideration of more clear
cases. So much of the chapter is given over to a discussion of the representation
of time and change in other, better understood theories, starting with the most
straightforward cases and proceeding through a consideration of cases that pre-
pare one, in one sense or another, for the features of general relativity that are
responsible for the problem of time.

Let me begin by saying a bit about what sort of thing I have in mind in speak-
ing of the representation of time and change in physical theories, grounding the
discussion in the most tractable case of all, Newtonian physics.

As a perfectly general matter, many questions and claims about the content of a
physical theory admit of two construals—as questions about structural features of
solutions to the equations of motion of the theory, or as questions about structural
features of these equations. For instance, on the one hand time appears as an
aspect of the spacetimes in which physics unfolds—that is, as an aspect of the
background in which the solutions to the equations of the theory are set. On the
other, time is represented via its role in the laws of physics—in particular, in its

1[1991, pp. 16 f.].
2[1991, p. 53].
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role in the differential equations encoding these laws. So questions and claims
about the nature of time in physical theories will admit of two sorts of reading.

Consider, for instance, the claim that time is homogeneous in Newtonian physics
(or, as Newton would put it, that time flows equably). There are two sorts of fact
that we might look to as grounding this claim.

1. There is a sense in which time is a separable aspect of the spacetime of
Newtonian physics and there is a sense in which time, so considered, is
homogenous.3

2. The laws of the fundamental-looking theories of classical mechanics (e.g.,
Newton’s theory of gravity) are time translation invariant—the differential
equations of these theories do not change their form when the origin of the
temporal coordinate is changed—so the laws of such theories are indifferent
to the identity of the instants of time.

In the Newtonian setting, these two sorts of considerations mesh nicely and pro-
vide mutual support: there is a consilience between the symmetries of the laws
and the symmetries of spacetime. But in principle, the two sorts of considera-
tion need not lead to the same sort of answer: one might consider a system in
Newtonian spacetime that is subject to time-dependent forces; or one could set the
Newtoniann-body problem in a spacetime which a featured a preferred instant,
but otherwise had the structure of Newtonian spacetime. And as one moves away
from the familiar setting of Newtonian physics, it becomes even more important
to distinguish the two approaches: in general relativity, the laws have an enormous
(indeed, infinite-dimensional) group of symmetries while generic solutions have
no symmetries whatsoever.

In discussing the representation of time and change, this chapter will focus on
structural features of the laws of physical theories rather than on features of par-
ticular solutions. To emphasize this point, I will say that I am interested in the
structure of this or that theory as adynamical theory.

I will approach my topics via the Lagrangian and Hamiltonian approaches to
classical theories, two great over-arching—and intimately related—frameworks in
which such topics are naturally addressed.4 Roughly speaking, in each of these
approaches the content of the equations of a theory is encoded in certain structures

3(Neo)Newtonian spacetime is partitioned in a natural way by instants of absolute simultaneity,
and time can be identified with the structure that the set of these instants inherits from the structure of
spacetime: time then has the structure of an affine space modelled on the real numbers—so for any two
instants, there is a temporal symmetry which maps one to the other.

4Why pursue our question within the realm of Lagrangian and Hamiltonian mechanics rather than
working directly with the differential equations of theories? Because the benefits are large: these over-
arching approaches provide powerful mathematical frameworks in which to compare theories. And
because the costs are minimal: almost every theory of interest can be put into Lagrangian or Hamil-
tonian form, without any obvious change of content. And because it leads us where we want to go:
current attempts to understand the content of classical physical theories are necessarily shaped by ef-
forts to construct or understand deeper, quantum theories; and it appears that a classical theorymustbe
placed in Lagrangian or Hamiltonian form in order to be quantized.
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on a space of possibilities associated with the theory.5 In the Lagrangian approach
the featured space is the space of solutions to the equations of the theory, which
for heuristic purposes we can identify with the space of possible worlds allowed
by the theory.6 On the Hamiltonian side, the featured space is the space of initial
data for the equations of the theory, which we can in the same spirit identify with
the space of possible instantaneous states allowed by the theory.

In Newtonian mechanics, the reflection within the Lagrangian framework of the
time translation invariance of the laws is that the space of solutions is itself invari-
ant under time translations: given a set of particle trajectories in spacetime obeying
Newton’s laws of motion, we can construct the set of particle trajectories that re-
sult if all events are translated in time by amountt; the latter set is a solution (i.e.,
is permitted by the laws of motion) if and only if the former set is; furthermore, the
map that carries us from a solution to its time translate preserves the structure on
the space of solutions that encodes the dynamics of the theory. Within the Hamil-
tonian framework, on the other hand, the time translation invariance of the laws
is reflected by the existence of a map that sends an initial data set to the state it
will evolve into in t units of time; again, this map leaves invariant the structure on
the space that encodes the dynamics of the theory. So the temporal symmetry of
the dynamics of the theory is reflected on the Lagrangian side by a notion of time
translation and on the Hamiltonian side by a notion of time evolution.

The representation of change in Newtonian physics also takes different (but
closely related) forms within the Lagrangian and Hamiltonian frameworks. Change
consists in a system having different and incompatible properties at different times.
We want to say, for instance, that there is a change in the observable properties of
a two-body system if and only if the relative distance between the particles is dif-
ferent at different times.

Hamiltonian Approach. Specifying the instantaneous dynamical state of such a
system suffices to specify the instantaneous relative distance between the
particles. So there is a function on the space of initial data corresponding
to this quantity. A history of the system is a trajectory through the space
of initial data. In our simple example, observable change occurs during a
given history if and only if the function corresponding to the relative dis-
tance between the particles takes on different values at different points on
the trajectory in question. More generally, in any Newtonian system, any
quantity of physical interest (observable or not) is represented by a func-
tion on the space of initial data, and a trajectory in this space represents
such quantities as changing if the corresponding functions take on different

5See remark 2 the sense in which talk of possibilia is intended here.
6 In the context of ordinary classical mechanics, one often thinks of Lagrangian mechanics as set

in the velocity phase space—and thus as more closely associated with a space of initial data rather
than with a space of solutions. However, this familiar approach presupposes an absolute notion of
simultaneity, and for this reason it is usually dropped in favour of a spacetime covariant Lagrangian
approach (in which the space of initial data plays no role) when one turns to relativistic theories. This
is the point of view adopted below.
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values at different points on the trajectory.

Lagrangian Approach. Clearly, no function on the space of solutions can rep-
resent a changeable quantity in the same direct way that functions on the
space of initial data can. But for eacht, there is a function on the space of
solutions of our two-body problem that assigns to each solution the relative
distance between the particles at timet according to that solution. Lettingt
vary, we construct a one-parameter family of functions on the space of solu-
tions. A solution to the equations of motion represents the relative distance
between the particles as changing if and only if different members of this
one-parameter family of functions take on different values when evaluated
on the given solution. And so on more generally: any changeable phys-
ical quantity corresponds to such a one-parameter family of functions on
the space of solutions, and change is understood as in the simple two-body
example.

So much for the sort of thing I have in mind in speaking of the representation of
time and change in a physical theory. Before sketching the path that this chapter
takes in discussing these topics, it will perhaps be helpful to say a bit about its
ultimate goal—the clarification of the nature of the so-called problem of time.
Discussions of the problem of time typically focus on Hamiltonian versions of
general relativity, in which the focus is on the space of possible instantaneous
geometries (metrics and second fundamental forms on Cauchy surfaces). This is
somewhat unfortunate, since such approaches require from the start a division of
spacetime into a family of spacelike hypersurfaces—which appears to be against
the spirit of the usual understanding of the general covariance of the theory. In
light of this fact, there is room for worry that some aspects of the problem of time
as usually presented are consequences of this rather awkward way of proceeding. I
take a somewhat different path, always anchoring my discussion in the Lagrangian
approach, which takes as fundamental complete histories of systems rather than
instantaneous states.

The view developed below is that,roughly speaking, the core of the problem of
time is that in general relativity, when understood dynamically, there is no way to
view time evolution or time translation as symmetries of the theory and, relatedly,
there is no natural way to model change via functions on the spaces arising within
the Lagrangian and Hamiltonian approaches.7 This marks a respect in which gen-

7This formulation above only gives us a first approximation, for several reasons (each of which will
be discussed more fully in following sections). (i) The problem of time only arises in those versions
of general relativity most appropriate to the cosmological setting; in other applications of the theory,
time is represented in a fashion very similar to that in which it is represented in special relativistic
physics. (ii) In the treatment of ordinary time-dependent systems, time evolution and time translation
are not symmetries of the theory—but this does not lead to any real problem in representing time and
change in such theories, because one still has group actions that implement time evolution and time
translation, even though they are not symmetries of the laws, and these suffice to erect an account of
change very similar to that occurring in ordinary time-independent theories. (iii) In theories in which
solutions are not defined globally in time, time evolution and time translation will not be implemented
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eral relativity, so conceived, is very different from preceding fundamental-looking
theories.

The problem of time may sound—not very pressing. To be sure, there are puz-
zles here. Why should general relativity differ in this way from its predecessors?
In predecessors to general relativity, the representation of time and the represen-
tation of change are tied together in a very neat package—what does the general
relativistic replacement for this package look like? These are interesting questions.
But then of course no one should expect time to be represented in general relativity
as in its predecessors—that it presents an utterly new picture of time and space is
one of the glories of the theory. And one might also think: since the structure of
spacetime varies from solution to solution in general relativity, it is surely more
appropriate to look at the representation of time in this or that physically realistic
solution, rather than in the equations of the theory, if we want to understand what
the theory is telling us about the nature of time in our world.

The problem of time assumes a more pressing aspect, however, when one con-
siders the quantization of general relativity (or of any other theory that is generally
covariant in the relevant sense). The project of constructing successor theories
naturally focuses our attention on structural features of the theories at hand—in
constructing successors, one is in the business of laying bets as to which such fea-
tures of current theories will live on (perhaps in a new form), and which ones will
be left behind. And known techniques of quantization require as input not just
differential equations, but theories cast in Hamiltonian or Lagrangian form. So
for those interested in quantizing general relativity, questions about the structure
of the theoryqua dynamical theory naturally loom large. And lacking solutions
to the puzzles mentioned above, one expects conceptual difficulties in formulating
(or extracting predictions from) any quantization of general relativity. So from this
perspective, the problem of time is in fact quite pressing.

This chapter takes long route to the problem of time. I begin in section 2 with
the briefest of introductions to Hamiltonian and Lagrangian mechanics, by way
of motivating some of what follows. In section 3, I sketch some important con-
cepts and results of symplectic geometry, the field of mathematics that underlies
classical mechanics. The concepts introduced here are crucial for what follows:
for well-behaved theories, the space of solutions (on the Lagrangian side) and the
space of initial data (on the Hamiltonian side) both have symplectic structures.
And we will see that various symplectic (or nearly symplectic) spaces arise even
when one strays away from the ideal case. In section 4, I sketch the very powerful
framework of modern Lagrangian mechanics, with its apparatus of local conserva-
tion laws.

In section 5, I sketch the Lagrangian and Hamiltonian pictures for ideally well-
behaved theories satisfying the following conditions: (i) the background spacetime
geometry admits a group of time translations and the Lagrangian of the theory is

by group actions, but merely by local flows (these can be thought of as infinitesimal surrogates for
group actions); these suffice for the construction of the familiar picture of change in such theories; but
even these are absent in general relativity.
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invariant (in a suitable sense) under the action of this group; (ii) specifying initial
data for the equations of the theory suffices to determine a single maximal solution;
(iii) this maximal solution is defined for all values of the time parameter. When
these conditions hold, we find that there is a group of time translation symmetries
operating on the space of solutions on the Lagrangian side, while on the Hamil-
tonian side there is a group implementing time evolution on the space of initial
data. These two spaces are isomorphic, and the two group actions intertwine in a
satisfying fashion. One is able to give a straightforward and appealing account of
the way in which change is represented on either of the two fundamental spaces.

In section 6, I turn to the complications that must be introduced into the picture
when one drops any one of the conditions (i)–(iii) of the preceding paragraph.
Finally in section 7, I address the representation of time and change in general
relativity. This leads directly to the problem of time.

As this outline makes clear, much of the chapter is given over to exposition of
technical material. In order to keep the length reasonable, I have had to presume
that the reader comes to this chapter with quite a bit of technical background. I
have tried to write for an ideal reader who has previously studied general relativity
or gauge theory, and hence feels comfortable with the basic concepts, results, and
constructions of differential geometry (although at a few strategic points I have
included discussion meant to jog the memory of such readers).

This chapter is founded upon the modern geometrical approach to Lagrangian
mechanics that is presented in the barest sketch in section 4. This approach, devel-
oped relatively recently by mathematicians, provides a highly abstract framework
for thinking about physical theories rather than a fully rigourous treatment of any
given theory. It exists at the formal, differential-geometric level: the focus is on
the geometric structure of various spaces and on the geometric content of equations
and constructions; functional analytic are held in abeyance. Much of the material
sketched in other sections functions at this same level.

In content, this chapter overlaps somewhat with[Malament, this volume], [Rov-
elli, this volume], and[Brading and Castellani, this volume]. But it is most closely
related to[Butterfield, this volume]. Butterfield’s chapter provides a philosophical
introduction to modern geometric approaches to mechanics; the present chapter is
meant as an example of the application of this approach to a philosophical prob-
lem. The present chapter is, however, meant to be self-contained. And there is in
fact a considerable difference in emphasis between this chapter and Butterfield’s:
the latter is restricted to finite-dimensional systems, and focuses on the Hamilto-
nian side of things; the present chapter is primarily concerned with field theories,
and focuses to a much greater extent on the Lagrangian approach.

REMARK 1 (Notation and Terminology). Elements of and structures on the space
of solutions of a theory are always indicated by capital letters (Greek or Latin)
while elements of and structures on the space initial data of a theory are always
indicated by lower case letters (Greek or Latin). Boldface indicates three-vectors
or three-vector-valued functions. In this chapter, a curve is officially a map from
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intervals of real numbers into a space that is a manifold or a mild generalization
of a manifold—sometimes for emphasis I redundantly call a curve aparameter-
ized curve. An affinely parameterized curveis a equivalence class of such curves,
where two curves count as equivalent if they have the same image and their pa-
rameterization agrees up to a choice of origin.8 A unparameterized curveis an
equivalence class of curves, under the equivalence relation where curves count as
equivalent if they have the same image. I sometimes conflate a curve and its image.

REMARK 2 (Possible Worlds Talk). Below, especially in section 7, I sometimes
speak of points of the space of solutions (initial data) as representing possible
worlds (possible instantaneous states) permitted by the theory, even though I do
not pretend to be involved in fine-grained matters of interpretation here. This sort
of thing is meant only in a rough and heuristic way. The idea is that in trying to
understand a theory, we are in part engaged in a search for a perspicuous formula-
tion of the theory; and it is reasonable to hope that if a formulation is perspicuous,
then there will exist aprima facieattractive interpretation of the theory according
to which there is a bijection between the space of solutions (initial data) and the
space of possible worlds (possible instantaneous states) admitted by the theory un-
der that interpretation. This is not to deny that there may be reasons for ultimately
rejecting such interpretations: a Leibnizean might settle on a standard formulation
of classical mechanics, even though that means viewing the representation relation
between solutions and possible worlds as many-to-one in virtue of the fact that
solutions related by a time translation must be seen as corresponding to the same
possible world.

2 HAMILTONIAN AND LAGRANGIAN MECHANICS

This section contains avery brief sketch of the Hamiltonian and Lagrangian ap-
proaches to the Newtoniann-body problem.9 The intended purpose is to motivate
some of what follows in later sections.

2.1 Then-Body Problem

We considern gravitating point-particles. Let the mass of theith particle be
mi. Working relative to a fixed inertial frame we write:q := (q1, . . . ,qn) =
(q1, . . . , q3n) for the positions of the particles,q̇: = (q̇1, . . . , q̇n) = (q̇1, . . . , q̇3n)
for their velocities, and̈q: = (q̈1, . . . , q̈n) = (q̈1, . . . , q̈3n) for their accelerations
(in this chapter, boldface always indicates a three-vector). The gravitational force

8That is, an affinely parameterized curve is an equivalence class of curves under the equivalence
relation according to which curvesγ1 : [a, b] → M andγ1 : [a, b] → M are equivalent if and only if
there existss ∈ R such thatγ1(t) = γ2(t + s) for all t ∈ [a, b].

9For textbooks approaching classical mechanics in a variety of styles, see, e.g.,[Goldstein, 1953],
[Lanczos, 1986], [Singer, 2001], [Marsden and Ratiu, 1994], [Arnold, 1989], [Arnold et al., 1997], and
[Abraham and Marsden, 1978].



8 GORDON BELOT

exerted on theith particle by thejth particle is

Fij =
mimj

r2
ij

uij , (1)

whererij is the distance between theith andjth particles,uij is the unit vec-
tor pointing from theith to thejth particle, and units have been chosen so that
Newton’s constant is unity. Of course, equation 1 is not well-defined forrij = 0.
So from now on we assume thatq ∈ Q := R3n/∆, where∆ is thecollision set
{q ∈ R3n : qi = qj for somei 6= j}.

The net force acting on theith particle is

Fi =
∑
j 6=i

Fij .

So theequations of motionfor our theory are:Fi = miq̈i.
10 Resolving each force

and acceleration vector into its components, we have3n second-order differential
equations. Roughly speaking, these equations have a well-posed initial value prob-
lem: specifying3n values for the initial positions of our particles and3n values
for their initial velocities (momenta) determines a unique analytic solution to the
equations of motion, which tells us what the positions and velocities (momenta) of
the particles are at all other times at which these quantities are defined.11

2.2 The Hamiltonian Approach

The basic variables of the Hamiltonian approach are the positions of the particles
and the corresponding momenta,p : = (m1q̇1, . . . ,mnq̇n) = (m1q1, . . . ,mnq3n).
A state of the system,(q, p), is specified by specifying the position and momentum
of each particle. To each state we can assign akinetic energy

T (q, p) :=
1

2mi

n∑
i=1

|pi|2

and apotential energy,

V (q, p) :=
∑
i<j

mimj

rij
.

Note thatFi = −∇iV (q), where∇i is the gradient operator( ∂
∂q3i−2

, ∂
∂q3i−1

, ∂
∂q3i

)
corresponding to the configuration variables of theith particle. So the potential
energy encodes information about gravitational forces, while the kinetic energy
can be thought of as encoding information about the inertial structure of Newtonian

10This should be read as a differential equation constraining the allowed trajectoriesq(t). Similarly
for the other differential equations appearing in this section.

11Note that some solutions fail to be defined for all values oft; see example 33 below for discussion.
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spacetime. So one might hope that together these quantities encode all of the
physics of then-body problem. This is indeed the case.

We introduce the space of initial data for the theory,I := {(q, p): q∈Q} and
the HamiltonianH : I → R, H(q, p) := T (q, p)+V (q). The Hamiltonian is thus
just the total energy.

The original equation of motionmiq̈i = Fi can be rewritten aṡpi = −∇iV (q);
or, since∇iT = 0, asṗi = −∇iH. In another notation, this becomesṗi = −∂H

∂qi
.

Furthermore, since the only term inH depending onpi is of the form 1
2mp2

i , we
find that ∂H

∂pi
= q̇i.

In this way, we move from the original Newtonian equations toHamilton’s
equations:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(i = 1, . . . , 3n).

In fact, the ordinary Newtonian equations are equivalent to Hamilton’s equations.
So we see that the functionH = T + V encodes all of the dynamical content of
then-body problem.

Our present interest is in the geometry implicit in Hamilton’s equations. Hamil-
ton’s equations gives us values forq̇i(q, p) and ṗi(q, p) at each point(q, p) ∈ I.
That is, Hamilton’s equations give us a component expression for a tangent vector
XH(q, p) at each point(q, p) ∈ I. The vector fieldXH on I encodes the dy-
namics of our theory: through each point(q0, p0) ∈ I there is exactly one curve
(q(t), p(t)) : R → I such that: (i)(q(0), p(0)) = (q0, p0); and (ii) for eachs, the
tangent vector to the curve(q(t), p(t)) at t = s is given byXH(q(s), p(s)). This
curve tells us that if the system is in state(q0, p0) at timet = 0, then it is in state
(q(s), p(s)) at timet = s.

We can rewrite Hamilton’s equations as:

(q̇1, . . . , q̇3n, ṗ1, . . . , ṗ3n)
∣∣∣∣ 0 I
−I 0

∣∣∣∣ = (∂H

∂q1
, . . . ,

∂H

∂q3n
,
∂H

∂p1
, . . .

∂H

∂p3n

)
,

whereI is the3n × 3n identity matrix. On the left hand side we have a vector
multiplied by a matrix; on the right hand side another vector. Thinking ofI as
a manifold, we can recognize the coordinate-independent objects standing behind
this equation: on the left we have the tangent vector fieldXH contracted with a
two-form; on the right, the differentialdH (i.e., the exterior derivative ofH). So
we can re-write Hamilton’s equations in a coordinate-independent form as:

ω(XH , ·) = dH,

whereω is the two-form onI that assumes the form
∑

i dqi ∧ dpi in our coordi-
nates.

ω is a symplectic formon I: a closed, nondegenerate two-form.12 ω can be
thought of as being somewhat like an anti-symmetric metric onI (e.g., both sorts

12See section 3.2 below for further discussion and for an unpacking of this definition.
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of object establish a preferred isomorphism between vector fields and one-forms).
But that analogy cannot be taken too seriously in light of the following striking
differences between the two sorts of objects:

1. The isometry group of a finite-dimensional Riemannian manifold is always
finite-dimensional. But our symplectic form is invariant under an infinite-
dimensional family of diffeomorphisms fromI to itself. We can see this as
follows. Let us think ofI as the cotangent bundle ofQ; that is, we think of
a point(q, p) as consisting of a pointq ∈ Q and a covectorp ∈ T ∗q Q.13 A
cotangent coordinate systemonI = T ∗Q arises as follows: choose arbitrary
coordinates{qi} onQ and writep ∈ T ∗q Q asp =

∑
pidqi, so that{qi, pj}

forms a set of coordinates onT ∗Q. In any cotangent coordinate system,

ω =
∣∣∣∣ 0 I
−I 0

∣∣∣∣ . (2)

So ω is invariant under the transformation that carries us from one set of
cotangent coordinates onI to another. And the set of such transformations
is infinite-dimensional, since any diffeomorphismd : Q → Q generates
such a transformation.

2. One does not expect any manifold or bundle to carry a natural Rieman-
nian metric. But ifM is any finite-dimensional manifold, the cotangent
bundleT ∗M carries a canonical symplectic form,ω, that takes the form
ω =

∑
i dqi ∧ dpi relative to any set of local cotangent coordinates on M.14

3. If (M, g) and(M ′, g′) aren-dimensional Riemannian manifolds, then for
anyx ∈ M andx′ ∈ M ′, we know thatg andg′ endow the tangent spaces
TxM andTx′M

′ with the same geometry; but in general we expect that
no diffeomorphismd : M → M ′ will give an isometry between a neigh-
bourhood ofx and a neighbourhood ofx′. But the Darboux theorem tells us
that if (M,ω) is a finite-dimensional manifold equipped with a symplectic
form, then(M,ω) is locally isomorphic toT ∗Rn equipped with its canoni-
cal cotangent bundle symplectic form. An immediate corollary is that every
finite-dimensional symplectic manifold is even-dimensional.

Of course, for present purposes, the interest in identifying the symplectic struc-
ture lying behind the Hamiltonian version of then-body problem lies in general-
ization. (1) Note that if we are interested inn particles interacting via forces that
arise from a potential energy functionV, as above, then we can construct a Hamil-
tonian treatment equivalent to the usual Newtonian one by again takingI as the

13Why regardp as a covector rather than a tangent vector? Because in general the momentump of a
system with LagrangianL is defined as∂L

∂q̇
, which transforms as a covariant quantity under change of

coordinates onQ.
14Where as above, a set of local coordinates onM induces a natural set of cotangent coordinates on

T ∗M. In example 7 below we will see a coordinate-free version of this construction that carries over
to the infinite-dimensional case.
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space of initial data, equipping it with the symplectic formω as above, defining
a HamiltonianH : I → R as the sum of the kinetic and potential energies, and
taking as our dynamical trajectories the integral curves of the vector fieldXH on
I that solvesω(XH , ·) = dH. (2) More generally, we can model a vast number of
classical mechanical systems as follows: let the space of initial state be a symplec-
tic manifold (M,ω) (not necessarily a cotangent bundle) and let a Hamiltonian
H : M → R be given; then let the dynamics be given by the vector fieldXH

solvingω(XH , ·) = dH.

2.3 The Lagrangian Approach

It is helpful to approach the Lagrangian version of then-body problem somewhat
indirectly.15

Critical Points in Calculus

For f : Rn → R, the differential off is given bydf = ( ∂f
∂x1

, . . . , ∂f
∂xn

). We say
thatf has acritical point at x0 ∈ Rn if df(x0) = 0; i.e., f has a critical point at
x0 if df(x0) · e = 0 for eache ∈ Rn (sinceRn is a linear space, we can identify
Tx0Rn with Rn itself and lete ∈ Rn here). There are a number of helpful ways of
thinking ofdf(x0) · e: (i) this quantity coincides with thedirectional derivativeof
f atx0 in directione,

df(x0) · e = lim
t→0

f(x0 + te)− f(x0)
t

;

(ii) if we have a curveγ : R → Rn with γ(0) = x0 andγ̇(0) = e, thendf(x0)·e =
d
dtf(γ(t)) |t=0 .

The Calculus of Variations and the Euler–Lagrange Equations

We now consider an infinite-dimensional analog: we look for critical points of a
function defined on a space of curves in Euclidean space. This is the foundation
of the Lagrangian approach to particle mechanics.

Let Q = Rn, let [a, b] ⊂ R be a closed interval, and letx, y ∈ Q. Let
Γ(a, b;x, y) be the set ofC2 curvesγ : [a, b] → Q with γ(a) = x andγ(b) = y.
And let Γ(a, b; 0, 0) be the space ofC2 curvesγ : [a, b] → Q = Rn with
γ(a) = (0, . . . , 0) and γ(b) = (0, . . . , 0). Both Γ(a, b;x, y) and Γ(a, b; 0, 0)
are well-behaved infinite-dimensional spaces.16 Forγ ∈ Γ(a, b;x, y) we can think

15For introductions to the Lagrangian approach via the calculus of variations, see[Dubrovinet al.,
1992, Chapter 6], [Lanczos, 1986, Chapters II and V], and[van Brunt, 2004]. For some of the rigourous
underpinnings of the calculus of variations see, e.g.,[Choquet-Bruhatet al., 1977,§§II.A and II.B] and
[Choquet-Bruhat and DeWitt-Morrette, 1989,§II.3].

16Let Γ(a, b) be the space ofC2 curvesγ : [a, b] → Q. This is a linear space under pointwise
addition (i.e.,(γ + γ′)(x) = γ(x) + γ′(x)) that can be made into a Banach space in a number of
ways. Γ(a, b; 0, 0) is a linear subspace ofΓ(a, b) while Γ(a, b; x, y) is an affine subspace modelled
onΓ(a, b; 0, 0).
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of Γ(a, b; 0, 0) asTγΓ(a, b;x, y) (think of h ∈ Γ(a, b; 0, 0) as describing a vector
field alongγ).17

The tangent bundle ofQ is TQ = R2n. Let L : TQ → R be a smooth func-
tion. This allows us to define a functionIa,b : Γ(a, b;x, y) → R by Ia,b(γ) :=∫ b

a
L(γ(t), γ̇(t)) dt. We are interested in finding the critical points ofIa,b: these

will be points inΓ(a, b;x, y) (that is, curvesγ : [a, b] → Q) of special interest.
Like any function on a well-behaved space,Ia,b has a differential, which we denote
δIa,b; this can be thought of as one-form onΓ(a, b;x, y).

DEFINITION 3 (Stationary Curves). We say thatγ : [a, b] → Q is stationary for
L over [a, b] if δIa,b(γ) = 0. We say thatγ : R → Q is stationary forL if its
restriction to[a, b] is stationary over[a, b] for all closed intervals[a, b].

As in the case of an ordinary function onRn, δIa,b(γ) = 0 if and only if
δIa,b(γ) · h = 0 for all h ∈ TγΓ(a, b;x, y) = Γ(a, b; 0, 0). We can then calculate
δIa,b(γ)·h by finding d

dεIa,b(γ[ε]) |ε=0 for γ[ε] a curve inΓ(a, b;x, y) with γ[0] =
γ andh = d

dεγ[ε] |ε=0 .

Let us calculate. FixL and [a, b]. Let γ ∈ Γ(a, b;x, y) andh ∈ Γ(a, b; 0, 0).
For eachε in some sufficiently small neighbourhood of zero, we define a curve
γ[ε] : R → Q by γ[ε](t) := γ(t) + εh(t). Soγ[ε] is a curve inΓ(a, b;x, y) with
γ[0] = γ and with tangenth = d

dεγ[ε] |ε=0 . Then:

δIa,b(γ) · h =
d

dε
Ia,b(γ[ε])|ε=0

= lim
ε→0

1
ε

∫ b

a

[L(γ[ε](t), γ̇[ε](t))− L(γ(t), γ̇(t))] dt

= lim
ε→0

1
ε

(∫ b

a

ε

[
∂L

∂x
(γ(t), γ̇(t) · h(γ(t))

+
∂L

∂ẋ
(γ(t), γ̇(t) · ḣ(γ(t))

]
+ O(ε2) dt

)
=

∫ b

a

∂L

∂x
· h dt−

∫ b

a

d

dt

(
∂L

∂ẋ

)
· h dt +

(
h

∂L

∂ẋ

)∣∣∣∣b
a

.

The first equality follows from a basic fact about the differential of a function;
the second follows by definition; the third via Taylor’s theorem; the fourth via an
integration by parts. We now note that sinceh vanishes atγ(a) = x andγ(b) = y

17We can think ofTγΓ(a, b; x, y) as being built as follows: one considers one-parameter family
γ[ε] : ε ∈ R 7→ γ[ε] ∈ Γ(a, b; x, y) of curves withγ[0] = γ, and declares such one-parameter
families,γ[ε] andγ′[ε], to be equivalent ifd

dε
γ[ε] |ε=0= d

dε
γ′[ε] |ε=0; TγΓ(a, b; x, y) is the result-

ing space of equivalence classes. We construct a bijection betweenΓ(a, b; 0, 0) andTγΓ(a, b; x, y)
thought of as the space of such equivalence classes by associating withh ∈ Γ(a, b; 0, 0) the equiva-
lence class containingγ[ε] : ε 7→ γ + ε · h.
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the third term in the final line vanishes. So

δIa,b(γ0) · h =
∫ b

a

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
h dt.

To say thatγ : [a, b] → Q is stationary over[a, b] is to say that this expression
vanishes for eachh. So the condition thatγ is stationary forL over [a, b] is that
theEuler–Lagrange equation

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (3)

holds alongγ(t) for t ∈ [a, b]. And the condition thatγ : [a, b] → R is stationary
for L is just that the equation 3 is satisfied all alongγ.

REMARK 4 (Parsing the Euler–Lagrange Equations). Here is how to unpack
equation 3.18 Rewrite the expression forL, replacingẋ everywhere byξ. Then
interpret equation 3 as a differential equation for admissible trajectoriesx(t), un-
derstanding∂L

∂ẋ to mean∂L(x,ξ)
∂ξi

|ξ=ẋ(t) and d
dt

∂L
∂ẋ to mean(

∂2L

∂ξi∂ξj
ẍj +

∂2L

∂ξi∂xj
ẋj

)∣∣∣∣
ξ=ẋ(t)

.

Hamilton’s Principle

Consider a physical system with configuration spaceQ (i.e., consider a system
whose possible spatial positions are parameterized byQ). Let the kinetic energy
be a functionT : TQ → R that arises from a Riemannian metricg on Q via
T (x, v) := gx(v, v) and letV : Q → R be a potential for a force depending
on the configuration degrees of freedom alone. Then the Lagrangian for the sys-
tem isL(x, v) := T (x, v) − V (x). Hamilton’s principle states that the stationary
curves forL are the physically possible trajectories. Many physically interesting
systems can be cast in this form—e.g., then-body problem considered above. For
such systems that Euler–Lagrange equations derived from Hamilton’s principle are
equivalent to the usual Newtonian equations of motion.

Symplectic Structure of the Space of Solutions of the Euler–Lagrange Equations

Let Q be a manifold andTQ its tangent bundle. LetL : TQ → R be a smooth
function. The space,S, of stationaries ofL has a natural manifold structure: for
thoseγ ∈ S defined att = 0, we can take the values ofx = γ(0) andv = γ̇(0)
relative to coordinates{xi} on Q as coordinates onS; doing this for each value
of t gives us a differentiable atlas forS. It follows that dimS = dim TQ. We

18For this, see, e.g.,[Dubrovinet al., 1992, p. 318].
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can also endowS with a geometric structure: consider the boundary term,h∂L
∂ẋ ,

discarded above in deriving the Euler–Lagrange equations; sinceh is to be thought
of as a tangent vector to the spaceΓ(a, b;x, y), we must viewα = ∂L

∂ẋ as a one-
form on that space; taking its exterior derivative gives us a two-form,ω := δα,
on Γ(a, b;x, y); the restriction of this form toS is the structure we seek. In the
coordinates we have introduced onS, ω takes the form:

ω =
∂2L

∂xa∂vb
dxa ∧ dxb +

∂2L

∂va∂vb
dva ∧ dxb.

For anyL, this is a closed two-form. It is nondegenerate, and hence symplectic,

so long asdet
[

∂2L
∂va∂vb

]
6= 0.19 For Lagrangians of the form considered above this

always holds—and we then find that(S, ω) is (locally) symplectically isomorphic
to the corresponding space of initial data that arises from a Hamiltonian treatment
of the theory.20

3 SYMPLECTIC MATTERS

Throughout the chapter, we are going to be investigating the representation of time
and change in physical theories by asking about their representation in Lagrangian
and Hamiltonian formulations of these theories. On the Lagrangian side, the focus
is always on the space of solutions of the equations of our theory, while on the
Hamiltonian side the focus is always on the space of initial data for those equations.
It is a fact of primary importance that for well-behaved theories the space of initial
data and the space of solutions share a common geometric structure—these spaces
are isomorphic as symplectic manifolds. Thus the notion of a symplectic manifold
and its generalizations will play a central role in our investigations.

It will be helpful to begin with a general discussion of the nature of symplec-
tic manifolds: subsection 3.1 deals with some preliminary matters; subsection 3.2
offers a sketch of some of the basic concepts, constructions, and results of sym-
plectic geometry as it figures in mechanics; subsection 3.3 offers the same sort of
treatment of presymplectic geometry (a generalization of symplectic geometry that
will play an important role in sections 6.2 and 7 below); subsection 3.4 discusses
the sense in which a symplectic structure is thesine non quaof quantization.

3.1 Preliminaries

The spaces that we will come across below will be generalizations of ordinary
n-dimensional manifolds in three respects. (i) They are allowed to be non-Haus-

19The symplectic structure of the space of solutions for Lagrangian theories is discussed in[Wood-
house, 1991,§§2.3 and 2.4].

20This follows from the fact that Lagrangians arising from kinetic and potential terms of the sort
considered above are always hyperregular; see, e.g.,[Abraham and Marsden, 1978, p. 226].
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dorff.21 (ii) They are allowed to be infinite-dimensional: a manifold is locally
modelled on a vector space; we allow ours to be modelled onRn or on an infinite-
dimensional Banach space.22 (iii) They are allowed to have mild singularities—
roughly speaking, our spaces will be composed out of manifolds in the way that
an ordinary cone is composed out of its apex (a zero-dimensional manifold) and
mantle (a two-dimensional manifold)—but our spaces still have smooth structures
and support tensors in much the same way that manifolds do.23

In order to avoid becoming bogged down in technicalities, I will present my
sketch of the required notions and constructions of symplectic and presymplectic
geometry in the context of manifolds; but when in following sections I speak of
‘spaces’ rather than manifolds, it should be understood that I am allowing the
spaces in question to have mild singularities of the sort mentioned above.

Below we will often be interested in the actions of Lie groups on manifolds,
and in vector fields as the infinitesimal generators of such actions. Let me end
this discussion of preliminary matters by reviewing some pertinent definitions and
constructions.

Recall that aLie groupis a manifold which is also a group, with the operations
of group multiplication,(g, h) ∈ G×G 7→ g · h ∈ G, and the taking of inverses,
g ∈ G 7→ g−1 ∈ G, as smooth maps. Anactionof a Lie groupG on a manifold
M is a smooth mapΦ : G×M → M such that: (i)Φ(e, x) = x for e the identity
element ofG and for allx ∈ M ; (ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G
andx ∈ M. One often writesg · x or Φg(x) for Φ(g, x).24 The orbit through
x ∈ M of the action is the set[x] := {g · x : g ∈ G}. The action of a Lie group
partitions a manifold into orbits.

While other Lie groups will figure below, we will most often be interested in

21Recall that a topological spaceX is Hausdorff if for any distinctx, y ∈ X, there exist disjoint
open setsU andV with x ∈ U andy ∈ V. While most textbooks require manifolds to be Hausdorff,
all of the basic constructions and results go through without this assumption—see[Lang, 1999]. As we
will see in examples 32 and 33 below, the solution spaces of even the simplest physical systems can be
non-Hausdorff.

22[Abrahamet al., 1988] and[Lang, 1999] provide introductions to differential geometry that cover
the case of infinite-dimensional Banach manifolds. See[Milnor, 1984,§§2–4] for an introduction to
a more general approach, under which manifolds are modelled on locally convex topological vector
spaces. Note that the inverse function theorem and the existence and uniqueness theorem for ordinary
differential equations fail under this more general approach.

23The spaces under consideration are Whitney stratified spaces. As suggested in the text, each such
space admits a canonical decomposition into manifolds. This decomposition allows us to treat each
point in such a space as lying in a manifold, which allows us to construct a space of tangent vectors
and cotangent vectors at each point, and hence to construct tensors in the usual way. The dimensions
of the manifold pieces (and of the tangent and cotangent spaces) will in general vary from point to
point within the stratified space. See[Pflaum, 2001] or [Ortega and Ratiu, 2004,§§1.5–1.7] for a
treatment of such spaces in the finite-dimensional case. The picture appears to be very similar in the
infinite-dimensional examples that arise in physics: for general relativity, see[Andersson, 1989] and
[Marsden, 1981, Lecture 10]; for Yang–Mills theories, see[Arms, 1981] and[Kondracki and Rogulski,
1986].

24Equivalently, an action ofG on M is a group homomorphismg 7→ φg from G to D(M) (the
group of diffeomorphisms fromM to itself) such that the map(g, x) ∈ G × M 7→ φg(x) ∈ M is
smooth.



16 GORDON BELOT

the simplest of all Lie groups: the additive groupR. A flow on a manifoldM is a
one-parameter group of diffeomorphisms fromM to M. So if {Φt}t∈R is a flow
on M, thenΦ0(x) = x andΦt ◦ Φs(x) = Φt+s(x) for all x ∈ M ands, t ∈ R.
A flow {Φt} on M and an actionΦ : R ×M → M of R on M are more or less
the same thing: given anR-actionΦ : R×M → M, one defines a flow{Φt} via
Φt(x) = Φ(t, x) for all t ∈ R andx ∈ M ; likewise if one is given a flow and
wants to define anR-action.

Any R-action onM induces a vector fieldX on M. Let x ∈ M and consider
the curveγx(t) : R → M defined byγx : t 7→ Φt(x). The image ofγx in M
is just the orbit[x]. Now suppose thaty ∈ [x]—i.e., there ist ∈ R such that
y = Φt(x). Some facts follow immediately from the group property of{Φt}. We
find that the image ofγy is also[x]—so [x] = [y]. We find, in fact, thatγy(s) =
γx(s + t) for all s ∈ R; that is, each of the curvesγy corresponding to points
y ∈ [x] agree up to choice of origin for their parameterization. So each orbit[x] of
our R-action arises as the shared image of a (maximal) family of curves agreeing
in their parameterization up to a choice of origin. As a convenient shorthand, we
will speak of such a family of curves as anaffinely parameterized curve, which
we will think of as a curve with its parameterization fixed only up to a choice of
origin. We can now construct a vector fieldX on M as follows: forx ∈ M we
defineX(x) = γ̇x(0) (the above discussion shows thatX is a smooth vector field
onM ).

Now suppose that we are given a vector fieldX on a manifoldM, and let us
see whether we can think ofX as generating anR-action onM. Givenx ∈ M,
there is a unique curveγx passing throughx at timet = 0 and such that for each
value oft at which the curve is defined, its tangent vector at the pointγ(t) ∈ M is
given by the value ofX at that point.25 Call this curve theintegral curve based at
x. We find that ify lies in the image of integral curve based atx, then the integral
curves based atx andy have the same image and agree up to a choice of origin
in their parameterization. So we might just as well replace these curves by the
corresponding affinely parameterized curve, which we will call theintegral curve
throughx (or y). So the vector fieldX allows us to define a family of integral
curves onM, with each point inM lying on exactly one such curve. Forx ∈ M
andt ∈ R, let us agree thatΦ(t, x) is the point that we reach by tracingt units
along the integral curve throughx, when this instruction is well-defined (recall
that the integral curve based atx may only be defined on a subinterval ofR). This
Φ will be anR-action if and only if the domain of definition of each integral curve
is all of R. In this case, we callX acompletevector field, and callΦ the R-action
generatedby X.

The picture is as follows: anR-actionΦ induces a vector fieldX onM, andX
generatesΦ. We think of the group{Φt} as consisting of the finite transformations
generated by the infinitesimal transformationsX (here and below, “infinitesimal”

25This is just a statement of the existence and uniqueness theorem for first-order ordinary differential
equations.
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always means “living in the tangent space”). WhenX is incomplete,Φ(t, x) is
not defined for all pairs(t, x). In this case,Φ is known as alocal flow. For many
purposes, local flows are nearly as nice as flows, and it is still helpful to think of
them as having vector fields as their infinitesimal generators.

3.2 Symplectic Manifolds

DEFINITION 5 (Symplectic Manifold). LetM be a manifold. Asymplectic form
on M is a closed nondegenerate two-form,ω. Here nondegeneracy means that at
eachx ∈ M the mapω[(x) : v ∈ TxM 7→ ω(v, ·) ∈ T ∗x M is injective.26 The pair
(M,ω) is called asymplectic manifold.27

DEFINITION 6 (Symplectic Symmetry). Let(M,ω) be a symplectic manifold.
A symplectic symmetryof (M,ω) is a diffeomorphismΦ : M → M that preserves
ω in the sense thatΦ∗ω = ω (i.e., the pullback ofω by Φ is justω).

EXAMPLE 7 (Cotangent Bundle Symplectic Structure). LetQ be a finite- or
infinite-dimensional manifold and letT ∗Q be its cotangent bundle. We define
a canonical symplectic form onT ∗Q as follows. Letπ : T ∗Q → Q be the
canonical projection(q, p) 7→ q, and letTπ be the corresponding tangent map.
There is a unique one-formθ on T ∗Q such thatθ(q, p) · w = p(Tπ · w) for all
(q, p) ∈ T ∗Q and allw ∈ T(q,p)T

∗Q. We can then define the desired symplectic
form asω := −dθ, whered is the exterior derivative onT ∗Q.28

Let (M,ω) be a symplectic manifold, and letC∞(M) be the set of smooth
functions onM. For present purposes, the fundamental role ofω is to allow us to
associate with eachf ∈ C∞(M) a smooth vector fieldXf onM : Xf is implicitly
defined by the equationω(Xf , ·) = df, wheredf is the exterior derivative off (the
nondegeneracy ofω guarantees that there is a unique solution to this equation).29

We say thatf generatesXf or thatXf is generated byf.
This basic construction has two fruits of the first importance:

1. Via the mapf 7→ Xf , ω allows us to define a new algebraic operation on
C∞(M) : thePoisson bracketbracket betweenf, g ∈ C∞(M) is {f, g} :=
ω(Xf , Xg).30 This plays a crucial role in the theory of quantization—see

26Of course, for finite-dimensionalM, ω[(x) is surjective if and only if injective.
27[Abraham and Marsden, 1978] and[Arnold, 1989] are the standard treatments of mechanics from

the symplectic point of view.[Schmid, 1987] covers some of the same ground for the case of infinite-
dimensional manifolds.[Ortega and Ratiu, 2004] is a comprehensive reference on the geometry and
symmetries of finite-dimensional symplectic spaces (including singular spaces).[Cannas da Silva,
Unpublished] is a helpful survey of symplectic geometry.[Weinstein, 1981] and[Gotay and Isenberg,
1992] offer overviews of the role of symplectic geometry in mathematics and physics.

28In the finite-dimensional case and relative to a set of cotangent coordinates,ω is given by equation
2 above.

29In the infinite-dimensional case,Xf may not be defined on all ofM. For well-behavedf, we can
deal with this by replacingM by the subspace on whichXf is defined. Below I will suppose that this
has been done. For discussion, examples, and references see[Marsden, 1981, pp. 11 ff.] and[Marsden
and Ratiu, 1994, p. 106].

30The Poisson bracket is a Lie bracket that obeys Leibniz’s rule,{fg, h} = f{g, h}+ g{f, h}.
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section 3.4 below.

2. Via the mapf 7→ Xf , ω often allows us to associate smooth functions on
M with one-parameter groups of symmetries of(M,ω), and vice versa. (i)
Let f ∈ C∞(M) and letXf be the vector field generated byf (via ω), and
suppose thatXf is complete so that we are able to construct a corresponding
flow, ξ = {Φt}t∈R. Then eachΦt preservesω, in the sense thatΦ∗t ω = ω.31

Furthermore:f itself is invariant under eachΦt.
32 (ii) Let ξ = {Φt}t∈R be a

one-parameter group of symplectic symmetries of(M,ω) and letX be the
vector field onM that is the infinitesimal generator ofξ. It is natural to ask
whether we can find anf ∈ C∞(M) that generatesX. There are cases in
which this is not possible.33 But in the examples that arise in physics, this
can typically be done. And by (i) above, when we can find such anf, we
find that it is preserved by the flowξ.34

It is perhaps easier to grasp the function of a symplectic structure if one keeps in
mind the Hamiltonian application of this framework.

DEFINITION 8 (Hamiltonian System). AHamiltonian system, (M,ω, h), con-
sists of a symplectic manifold,(M,ω), called thephase space, and a function
h : M → R, called theHamiltonian.

We think of (M,ω) as the phase space of some physical system—such as the
space of particle positions and momenta—and ofh as assigning to each state of the
system the total energy of that state. Togetherh andω determine a flow{Φt}t∈R
on M : eachΦt maps each state to the state that dynamically follows from it after

31Indeed, we can further note that the Lie derivative ofω alongXf vanishes—and this holds even
whenXf is incomplete. This provides a sense in which the local flow generated by an incomplete
vector field preservesω.

32Indeed, the Lie derivative off alongXf vanishes. This also holds whenXf is incomplete—so
there is a sense in which the local flow generated by such an incomplete vector field preservesf.

33See[Ortega and Ratiu, 2004,§4.5.16] for an example. See[Butterfield, this volume,§2.1.3] for
further discussion.

34 More ambitiously, letG be a Lie group acting onM via symplectic symmetries, withdim G > 1.
Such a group will contain many one-parameter subgroups—as the group of isometries of Euclidean
space contains a one-parameter group of translations corresponding to each direction in Euclidean
space and a one-parameter group of rotations corresponding to each axis in Euclidean space. In this
case, we can hope that for each one-parameter subgroup ofG it is possible to find a function onM that
generates that subgroup. If all goes very well—as it does in many examples that arise in physics—we
can hope that the algebra of Poisson brackets between these generators will mirror the algebra of the
group (i.e., there will be a Lie algebra isomorphism here). In this case, we speak of the existence of
a momentum map(warning: terminology varies—many authors call theseinfinitesimally equivariant
momentum maps). If f andg are functions onM such that their Poisson bracket vanishes, then we
find thatf is invariant under each symplectic symmetry in the one-parameter group generated byg.
In particular, ifG is a group of symplectic symmetries of(M, ω) andf a function onM such that
the Poisson bracket off with any function generating a one-parameter subgroup ofG vanishes, then
each of these generators is invariant under the one-parameter group of symmetries generated byf.
[Woodhouse, 1991,§3.4] provides a useful guide to situations under which momentum maps are or are
not available. See[Butterfield, this volume,§6] for further discussion.
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t units of time. h will be preserved under this group—this corresponds to the
conservation of energy.35

3.3 Presymplectic Manifolds

In sections 6.2 and 7 below we will be concerned with theories whose space of
solutions and space of initial data are not symplectic.

DEFINITION 9 (Presymplectic Manifold). LetM be a manifold. Apresymplec-
tic structureon M is a closed degenerate two-form,ω; we call(M,ω) a presym-
plectic manifold.36 Here degeneracy means: at each pointx there is a nontrivial
nullspaceNx ⊂ TxM consisting of tangent vectorsv such thatωx(v, ·) = 0.

A presymplectic structureω on a manifoldM induces a partition ofM by sub-
manifolds,{Mα} as follows. We define an equivalence relation onM by declaring
x, y ∈ M to be equivalent if they can be joined by a curveγ : R → M each of
whose tangent vectors is null—i.e.,γ̇(t) ∈ Nγ(t) for eacht ∈ R. The equivalence
classes,Mα, of this relation are calledgauge orbits. For x ∈ M we also denote
the gauge orbit containingx by [x]. Each gauge orbit is a submanifold ofM.37 We
call a functionf ∈ C∞(M) gauge-invariantif f(x) = f(y) wheneverx andy
belong to the same gauge orbit ofM (i.e., a function is gauge-invariant if and only
if it is constant on gauge orbits).

We call a diffeomorphism fromM to itself which preserves a presymplectic
form ω a presymplectic symmetryof (M,ω). We say that two presymplectic sym-
metries,Φ andΦ′, agree up to gaugeif for eachx ∈ M, [Φ(x)] = [Φ′(x)] (i.e.,
for eachx ∈ M, Φ andΦ′ mapx to the same gauge orbit); we call the set of
presymplectic symmetries that agree withΦ up to gauge thegauge equivalence
classof Φ. Similarly, we will say that two one-parameter groups,ξ = {Φt} and
ξ′ = {Φ′t}, of presymplectic symmetries agree up to gauge ifΦt andΦ′t agree up
to gauge for eacht; thegauge equivalence classof ξ = {Φt} comprises allξ′ that
agree with it up to gauge in this sense.

If a presymplectic symmetryΦ : M → M fixes eachMα (i.e.,Φ maps points
in Mα to points inMα), then we callΦ agauge transformation. Note that a gauge
transformation agrees up to gauge with the identity map onM.

In the symplectic case: when all goes well, the equationω(Xf , ·) = df allows
one to associate each smooth function on a symplectic manifold(M,ω) with a

35Often it will be possible to identify a larger groupG of symplectic symmetries of(M, ω) that
leavesh invariant (such as the group of Euclidean symmetries acting in the obvious way in Newtonian
particle mechanics). Then a momentum map (see preceding footnote) would allow one to construct
dim G independent quantities, whose algebra would mirror that ofG, and that would be conserved
under the dynamics generated byh.

36Terminology varies: often (but not here) symplectic forms count as special cases of presymplectic
forms; sometimes (but not here) presymplectic forms are required to have constant rank or to have
well-behaved spaces of gauge orbits. On presymplectic geometry, see, e.g.,[Gotay and Nester, 1980].

37If X andY are null vector fields onM (i.e.,X(x), Y (x) ∈ Nx for eachx ∈ M ) then,[X, Y ] is
also a null vector field. It follows (by Frobenius’ theorem) that theNx form an integrable distribution,
with theMα as the integral manifolds.
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one-parameter group of symplectic symmetries of(M,ω)—and vice versa.

In the presymplectic case: when all goes well, the equationω(Xf , ·) = df
allows one to associate each smooth gauge-invariant function on a presymplec-
tic manifold (M,ω) with a gauge equivalence class of one-parameter groups of
presymplectic symmetries of(M,ω)—and vice versa. So in the presymplectic
case: iff generates the one-parameter groupξ = {Φt} of presymplectic symme-
tries via the equationω(Xf , ·) = df, then it also generates eachξ′ = {Φ′t} in the
gauge equivalence class ofξ.

Note an interesting special case: any solutionXf of the equationω(Xf , ·) = df
for f a constant function is a vector field onM consisting of null vectors; so
the corresponding one-dimensional group of presymplectic symmetries of(M,ω)
consists of gauge transformations. Conversely: ifξ = {Φt} is a one-parameter
group of gauge transformations of(M,ω), then any function that generatesξ (via
ω) is a constant function.

Given a presymplectic manifold(M,ω), we can constructM ′ the space of
gauge orbits ofM. M ′ inherits a topological structure fromM.38 We will call
the process of passing fromM to M ′ reduction, and callM ′ the reduced space.
In general,M ′ need not be a manifold, nor anything nearly so well-behaved as the
spaces we want to consider below.39 But when all goes well (as it usually does
in the sort of cases considered below)M ′ will inherit from M a smooth struc-
ture (so it will be a space with at most mild singularities). And so long as some
further technical conditions onω hold, M ′ inherits from(M,ω) a two-formω′

that is nondegenerate as well as closed.40 So, in this case,(M ′, ω′) is a symplec-
tic space. Note that each gauge-invariantf ∈ C∞(M) corresponds to a unique
f ′ ∈ C∞(M ′). While f generates an equivalence class of one-parameter groups
of presymplectic transformations of(M,ω), f ′ generates a single one-parameter
group of symplectic transformations of(M ′, ω′).41

38We equipM ′ with the quotient topology, according to which a setU ′ ⊂ M ′ is open if and only if
π−1(U ′) is open inM (hereπ is the projectionx ∈ M 7→ [x] ∈ M ′).

39If (M, ω, H) is a Hamiltonian system in the sense of definition 8 above, then the restriction of
ω to a surface,E, of constant energy is presymplectic—with the gauge orbits of(E, ω |E) being the
dynamical trajectories of the Hamiltonian system. If the dynamics is ergodic, then generic trajectories
come arbitrarily close to eachx ∈ E. It follows that the quotient spaceE′ has the trivial topology,
according to which the only open sets are the empty set and the space itself.

40See[Marsden, 1981, p. 6] and[Ortega and Ratiu, 2004,§6.1.5].
41Each presymplectic symmetry of(M, ω) corresponds to a symplectic symmetry of(M ′, ω′), with

two presymplectic symmetries correspond to the same symplectic symmetry if and only if they agree
up to gauge. Thus each gauge equivalence class of presymplectic symmetries corresponds to a single
symplectic symmetry. And each gauge equivalence class of one-parameter groups of presymplectic
symmetries corresponds to a single one-parameter group of symplectic symmetries of the reduced
space.
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3.4 Symplectic Structures and Quantization

Quantization is the process of constructing a quantum counterpart to a given classi-
cal theory.42 As it is presently understood, it is a process which takes as its starting
point a theory in Hamiltonian or Lagrangian form (or the discrete-time analog of
such a theory). One does not know how to quantize a theoryquadifferential equa-
tions directly, without passing first to a Hamiltonian or Lagrangian recasting of the
theory.43

The following observations lend some plausibility to the idea that a symplectic
structure is thesine qua nonof quantization.

1. The core notion of quantization involves the following steps. One begins
with a symplectic space (the space of classical solutions or initial data) and
selects a set of functions on this space (classical physical quantities) that
is closed under addition and the Poisson bracket induced by the symplec-
tic structure. One then looks for a set of operators (quantum observables)
acting on a space of quantum states, such that the algebra of these oper-
ators mirrors (or approximately mirrors, with increasingly better match as
one approaches the classical limit) the algebra (under addition and the Pois-
son bracket) of the chosen classical quantities. One may then also need to
take the further step of adding a Hamiltonian operator that implements the
quantum dynamics.

2. Some classical theories have the unfortunate feature that when cast in La-
grangian or Hamiltonian form, they come to us with a space of solutions or
initial data that is merely presymplectic. Typically, it is known that there is
a symplectic space in the offing via reduction, as outlined above in section
3.3. But it may be difficult to construct this space, or it may happen, for
one reason or another, that it seems easier to work with the presymplectic
version of the theory. So a number of strategies have been developed for
quantizing theories in presymplectic form: gauge fixing, Dirac constraint
quantization, BRST quantization, etc. But it is very natural to think of each
of these techniques as offering an indirect approach to the quantization of
the underlying symplectic space.44

42For overviews of the literature on quantization, see[Landsman, this volume] and[Ali and Englǐs,
2005].

43For an attempt to show that in order for a theory to be quantizable, it must be derivable from a
Lagrangian, see[Hojman and Shepley, 1991].

44(i) Gauge fixing just amounts to finding a submanifold of the presymplectic space that is sym-
plectically isomorphic to the reduced space; see, e.g.,[Henneaux and Teitelboim, 1992,§1.4]. (ii) For
Dirac’s approach, see[Dirac, 2001] or [Henneaux and Teitelboim, 1992]. It is felt Dirac’s algorithm
should be amended when its output differs from the result of directly quantizing the reduced theory;
see, e.g.,[Duval et al., 1990]. (iii) In the case of finite-dimensional systems, it can be shown that ap-
plication of the BRST algorithm leads to a quantization of the reduced theory; see, e.g.,[Loll, 1992] or
[Tuynman, 1992]. (iv) On the relation between the BRST approach and the suggested amendment of
the Dirac approach, see[Guillemin and Sternberg, 1990,§12].



22 GORDON BELOT

However, there exist approaches to quantization that do not appear to employ the
symplectic structure of the classical spaces at all—for example Mackey quantiza-
tion (which has a somewhat limited range of application) and path integral quanti-
zation (which has very wide application, but murky foundations in its application
to field theories). As emphasized in[Landsman, this volume], the relation between
the classical and the quantum is far from completely understood.

4 LAGRANGIAN FIELD THEORY

Differential equations are normally given to us in the following way. We are given
a set of independent variables and a set of dependent variables, and a space of func-
tions,K, consisting of functions,u, that map values of the independent variables to
values of the dependent variables. A differential equation∆ can be thought of as a
condition on a function and its derivatives that is satisfied by only someu ∈ K. We
call theu that satisfy∆ thesolutionsto ∆ and denote the space of such solutions
by S.

In physical applications, the independent variables typically parameterize space,
time, or spacetime while the dependent variables parameterize the possible values
of some quantity of interest. We can think of the functionsu ∈ K as describing
situations that are in some sense possible and of solutionsu ∈ S as describing
situations that are genuinely physically possible according to the theory whose
laws are encoded in∆. Although the terminology is not wholly perspicuous, I
will speak of elements ofK as corresponding tokinematical possibilitiesand of
elements ofS as corresponding todynamical possibilities.

EXAMPLE 10 (Mechanics of a Particle). Consider the theory of a particle a par-
ticle in Euclidean space subject to a position-dependent force. The independent
variable parameterizes time and the dependent variables parameterize the possi-
ble positions of the particle; an arbitrary continuous functionsx(t) of the form
t ∈ R 7→ x(t) ∈ R3 describes a kinematically possible pattern of behaviour of the
particle;x(t) describes a dynamically possible behaviour if it satisfies the Newto-
nian equation̈x(t) = F (x(t)).

EXAMPLE 11 (The Klein–Gordon Field). The usual theory of a scalar field has
the following ingredients: as independent variables we take inertial coordinates
{t, x, y, z} on Minkowski spacetime,V ; the theory has a single dependent vari-
able, parameterizing the real numbers; so the kinematically possible fields are
given by (suitably smooth) real-valued functions on Minkowski spacetime; the
dynamically possible fields are thoseΦ : V → R satisfying the Klein–Gordon
equation,

∂2Φ
∂t2

− ∂2Φ
∂x2

− ∂2Φ
∂y2

− ∂2Φ
∂z2

−m2Φ = 0.

Our primary concern below is with field theories—those physical theories whose
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laws are encoded in differential equations whose independent variables parameter-
ize spacetime.45 We think of such a field theory as consisting of the following
components: a spacetimeV ; a spaceW in which the fields take their values, a
space,K, of kinematically possible fields (i.e., of functions fromV toW satisfying
suitable smoothness and boundary conditions); and a set of differential equations
∆.

This section has the following structure. In the first subsection below I discuss
the Lagrangian approach, in which one singles out the set of dynamical possibil-
ities within the space of kinematical possibilities via a variational problem for a
Lagrangian rather than via the direct imposition of a differential equation. In the
second subsection, I discuss a very important advantage of the Lagrangian ap-
proach over the direct approach: the former but not the latter allows one to equip
the space of dynamical possibilities with a (pre)symplectic form. In the third sub-
section, I discuss the celebrated relation between conserved quantities and sym-
metries in the Lagrangian approach, first discerned by Noether. The discussion of
these subsections is based upon[Zuckerman, 1987] and[Deligne and Freed, 1999,
Chapters 1 and 2]; see also[Woodhouse, 1991, Chapters 2 and 7].

Before beginning it will be helpful to make some more specific assumptions
about the theories we will be discussing. These assumptions can will be in force
throughout the remainder of the chapter.

Spacetime.Our spacetimeV will always be ann-dimensional Hausdorff mani-
fold V, with the topologyM × R for some(n − 1)-manifoldM. We will
always think of time as having the topology ofR, so we will say that a
spacetime with topologyM × R hasspatial topologyM. In particular, we
will say thatV is spatially compactif M is compact.

In most theories, the geometry of spacetime is fixed from solution to solu-
tion. So we typically think ofV as carrying a solution-independent geomet-
rical structure (I will be lazy, and sometimes useV to denote the manifold,
sometimes the manifold and the geometry together).46 Without worrying
about precision, I will stipulate now that we will only be interested in space-
times that are well-behaved. Examples: Newtonian spacetime, neoNewto-
nian spacetime, Minkowski spacetime, or other globally hyperbolic general
relativistic spacetimes.

The spacetime geometries that we consider single out a distinguished class

45Prima facie, the ontology of such a classical field theory satisfies Lewis’s Humean
supervenience—“the doctrine that all there is to the world is a vast mosaic of local matters of par-
ticular fact, just one little thing after another. . . . We have geometry: as system of external relations
of spatiotemporal distance between points. . . . And at those points we have local qualities: perfectly
natural intrinsic properties which need nothing bigger than a point at which to be instantiated. . . . And
that is all” [1986, pp. ix f.]. Indeed, Lewis says that the picture was “inspired by classical physics”
[1999, p. 226]. See[Butterfield, Unpublished] for doubts about the fit between Humean supervenience
and classical physics.

46We could also allowV to carry non-geometrical solution-independent structures, corresponding
to external fields etc.
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of hypersurfaces inV that correspond to instants of time.47 In prerelativis-
tic spacetimes the instants are just the hypersurfaces of absolute simultane-
ity. Typically, in relativistic spacetimes the instants are just the Cauchy
surfaces. Occasionally in highly symmetric relativistic spacetimes, one re-
quires instants to be Cauchy surfaces with nice symmetries—thus one might
in some contexts require instants in Minkowski spacetime to arise as hy-
persurfaces of simultaneity relative to an inertial observer. Furthermore, in
spacetimes carrying geometrical structures, it often makes sense to speak of
certain curves inV aspossible worldlines of point-particles. In prerelativis-
tic spacetime, a curve counts as a possible worldline of a point-particle if it
is transverse to the hypersurfaces of simultaneity; in relativistic spacetime
such possible worldlines are given by timelike curves.

In addition to considering field theories set in fixed general relativistic back-
ground spacetimes, we also want to consider general relativity itself as a
Lagrangian field theory. In that context the spacetime metricg is itself dy-
namical and varies from solution to solution. With this example in mind, we
will allow a bare manifold of topologyM × R unequipped with any geom-
etry to count as a spacetime for present purposes, so that general relativity
can be developed alongside theories set in a fixed geometrical background.
Note that even in a theory like general relativity in which the spatiotempo-
ral geometry is dynamical we can still speak of a hypersurface as being an
instantrelativeto a solutiong.48

Field Values. We will takeW, the space of field values, to be a finite-dimensional
vector space. However, we could afford to be more general, at the price of
complicating some of the notation below. OurK is a space of sections of
a trivial vector bundle overV ; it follows that for Φ ∈ K a tangent vector
δΦ ∈ TΦK is also a map fromV to W. We could have allowedK to be a
space of sections of an arbitrary fibre bundleE → V. The chief complication
that this would introduce is that a tangent vectorδΦ ∈ TΦK would then be
a section of the bundleΦ∗T (E/V ).

Kinematically Possible Fields. In setting up a rigourous classical field theory,
care must be taken in selecting differentiability and boundary conditions to
impose on the kinematically possible fields. We can here afford to neglect
such details, and just say that for each theory considered below,K is taken
to be a space of well-behaved functionsΦ : V → W, required to satisfy
appropriate conditions of differentiability and behaviour at infinity, but oth-
erwise arbitrary. Note that whileK will be a manifold (often even an affine

47 The crucial point is this: one needs to choose boundary conditions and a notion of instant in such
a way that for certain(n − 1)-forms,ω, for any instantΣ ⊂ V,

R
Σ ω converges, and is independent

of the instant chosen (cf. fnn. 61 and 73 below). In the standard cases, the obvious notions of instant
suffice.

48Of course, in a theory in which the spacetime geometry is a solution-independent matter,Σ ⊂ V
is an instant relative to a solutionΦ if and only if it is an instant according to the geometry ofV.
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or linear space), in generalS will be a nonlinear subspace ofK with mild
singularities.

Differential Equations. The Lagrangian framework sketched below is very gen-
eral and does not require a restriction on the order of the differential equa-
tions. However, because in later sections we will often be interested in com-
paring Hamiltonian and Lagrangian versions of the same theory, and be-
cause the Hamiltonian framework takes second-order equations as its point
of departure, we will restrict attention to such equations beginning in section
5 below.

REMARK 12 (Finite-Dimensional Theories as Field Theories). In a classical the-
ory of a system with finitely many degrees of freedom (finite systems of particles,
rigid bodies, etc.) the configuration spaceQ is a manifold parameterizing the pos-
sible dispositions of the system in physical space. A history of the system is a
curvex : t ∈ R 7→ x(t) ∈ Q. We can fit such theories into the present framework,
by takingW = Q andV = R (so the only independent variable is time). No harm
comes of treating such a theory as a degenerate case of a field theory, so long as
one does not forget that in this case the “spacetime”V parameterized by the inde-
pendent variables of the theory is distinct from the spacetime in which the system
is located.

REMARK 13 (Notation). Because a choice ofV andW is implicit in a choice of
K, we can denote a field theory by(K,∆).

4.1 The Lagrangian Approach

The role of the differential equations∆ of a theory is to cut down the space of
kinematical possibilitiesK to the space of dynamical possibilitiesS.49 The key
insight of the Lagrangian approach is that for the vast majority of equations that
arise in classical physics, there is an alternative way of singling out the subspace
of solutions.50

49The text of this section is informal. More precise statements are given in the footnotes. The
following terminology and results will be helpful.

The spaceV ×K is a manifold, and so carries differential forms and an exterior derivative operator.
For 0 ≤ p ≤ n andq ≥ 0 let Ωp,q(V × K) be the space ofq-forms onK that take their values
in the space ofp-forms onV : thus if K ∈ Ωp,q(V × K), Φ ∈ K, andδΦ1, . . . , δΦq ∈ TΦK
thenK(Φ, δΦ1, . . . , δΦq) is ap-form on our spacetimeV. Each differential form onV ×K belongs
to someΩp,q(V × K). Furthermore, we can write the exterior derivative,d, on V × K as d =
D + ∂, whereD is the exterior derivative onV, mapping elements ofΩp,q(V × K) to elements
of Ωp+1,q(V × K) (for 0 ≤ p < n), and∂ is the exterior derivative onK, mapping elements of
Ωp,q(V ×K) to elements ofΩp,q+1(V ×K). We have∂D = −D∂.

Note that ifΦ ∈ K then a tangent vectorδΦ ∈ TΦK is itself a map fromV to W. So for each
admissiblep andq we can consider the subspaceΩp,q

loc(V × K) ⊂ Ωp,q(V × K) of local forms
consisting of thoseK such that for anyΦ ∈ K andδΦ1, . . . , δΦq ∈ TΦK, the value of thep-form
K(Φ, δΦ1, . . . , δΦq) at spacetime pointx ∈ V depends only on the values atx of Φ, δΦ1, . . . , δΦq ,
and finitely many of their derivatives.

50For discussion of the scope of the Lagrangian approach, see[Bluman, 2005,§2.1].
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DEFINITION 14 (Lagrangian). LetK be a space of kinematically possible fields.
A Lagrangian, L, onK is a local map fromK to the space ofn-forms onV (to
say thatL is local is to say that the value ofL(Φ) at a pointx ∈ V depends only
on the values atx of Φ and finitely many of its derivatives).51

Given a LagrangianL, one can proceed, as in the treatment of then-body prob-
lem sketched in section 2.3 above, to look for those kinematically possibleΦ with
the special property that infinitesimal perturbations atΦ make no difference to the
value of

∫
L(Φ).

DEFINITION 15 (Variational Problem). Note that for each compactU ⊂ V, SU :
Φ 7→

∫
U

L(Φ) is a real-valued function onK. Let us call the assignmentU 7→ SU

thevariational problemof L.

DEFINITION 16 (Stationary Fields). We callΦ ∈ K stationaryfor L if for each
compactU ⊂ V the effect of infinitesimally perturbingΦ insideU has no effect
on the value ofSU .52

DEFINITION 17 (Lagrangian Admitted by∆). We callL aLagrangian for(K,∆)
if the set ofΦ stationary forL coincides with the spaceS of solutions of∆. In this
case we also say that∆ admitsthe LagrangianL, and speak ofS as the space of
solutions of(K, L).

REMARK 18 (Euler–Lagrange Equations). Given a Lagrangian, one can always
find a set of equations∆ (the Euler–Lagrange equationsfor L) so thatL is a
Lagrangian for∆. That is: a kinematically possible fieldΦ : V → W is stationary
for a LagrangianL if and only if the Euler–Lagrange equations forL are satisfied.
For Lagrangians depending only on the fields and their first-order derivatives, these
equations require that

∂L

∂Φα
(xa)−

n∑
a=1

∂

∂xa

(
∂L

∂Φα
a

)
(xa) = 0 (4)

hold at each pointx ∈ V (herea indexes coordinates onV, α indexes coordinates
onW, andΦα

a stands for ∂
∂xa

Φα).53

51That is,L ∈ Ωn,0
loc (V ×K).

52That is,Φ is stationary forL if for each compactU ⊂ V and for eachδΦ ∈ TΦK whose support
is contained inU we find that∂SU (δΦ) =

R
U ∂L(Φ, δΦ) vanishes. We can think of this as follows:

fixing Φ, U, andδΦ, we find a curveΦ[ε] : [−1, 1] → K such thatΦ[0] = Φ and d
dε

Φ[ε]) |ε=0= δΦ;

the requirement that∂SU (δΦ) = 0 amounts tod
dε

R
U L(Φ[ε]) |ε=0= 0.

53 Of course, there is a coordinate-independent description of this. It is possible to show that∂L =

E + DM, whereE ∈ Ωn,1
loc (V × K) andM ∈ Ωn−1,1

loc (V × K), with E determined uniquely

by L andM determined up to the addition of an exact formDN, with N ∈ Ωn−2,1
loc (V × K). The

condition that∂SU (δΦ) = 0 becomes
R

U E(Φ, δΦ)+DM(Φ, δΦ) = 0 for all δΦ whose support is
contained inU. SinceδΦ vanishes along the boundary ofU, Stokes’s theorem tells us that the second
integrand makes no contribution. SoΦ is stationary if and only if

R
U E(Φ, δΦ) = 0 for all suchU

and admissibleδΦ—which is equivalent to saying thatE(Φ, δΦ) = 0 for all suchδΦ. Relative to
coordinates, this last equation is equivalent to equation 4 in the case of a Lagrangian depending only
on first derivatives.
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REMARK 19 (Trivially Differing Lagrangians). Let us say that LagrangiansL
andL′ differ trivially if L′ is of the formL′(Φ) = L(Φ) + αΦ for eachΦ ∈ K
with αΦ an exactΦ-dependentn-form on V.54 Let us say that ifL andL′ are
Lagrangians, their variational problemsU 7→ SU andU 7→ S′U areequivalent
if for each compactU ⊂ V and fieldΦ ∈ K, we have that any infinitesimal
perturbation ofΦ leaves the value ofSU unchanged if and only if it leaves the value
of S′U unchanged.55 Lagrangians that differ trivially have equivalent variational
problems.56 It follows that trivially differing Lagrangians have the same space of
solutions—indeed, they have the same Euler–Lagrange equations.57

REMARK 20 (Uniqueness of Lagrangians). The previous remark shows that if∆
does admit a Lagrangian, it will admit infinitely many that differ trivially. Some
∆ also admit multiple Lagrangians that do not differ trivially—e.g., the Newto-
nian equations for a particle moving in a spherical potential in three-dimensional
Euclidean space.58

REMARK 21 (Existence of Lagrangians). Not every set of equations∆ admits a
Lagrangian.59 A charged particle moving in the electromagnetic field of a mag-
netic monopole is an example of a system that does not admit of Lagrangian treat-
ment.60

54I.e.,L′ = L + DK whereK ∈ Ωn−1,0
loc (V ×K).

55That is: the variational problemsU 7→ SU andU 7→ S′U for LagrangiansL andL′ are equivalent
if for every compactU ⊂ V, every fieldΦ ∈ K, and every tangent vectorδΦ ∈ TΦK with support
contained inU, we have that∂SU (Φ)(δΦ) = 0 if and only if ∂S′U (Φ)(δΦ) = 0.

56Let L′ = L+DK with K ∈ Ωn−1,0
loc (V ×K). Then for any compactU ⊂ V, Φ ∈ K, andδΦ ∈

TΦK with support contained inU, we have∂SU (Φ)(δΦ)−∂S′U (Φ)(δΦ) =
R

U ∂DK(Φ)(δΦ). But
∂D = −D∂, so the right hand side is−

R
U D∂K(Φ)(δΦ), which vanishes (by Stokes’s theorem and

the fact thatδΦ vanishes on the boundary ofU ).
57That is, if LagrangiansL andL′ differ by a term of the formDK, then they share the same

Euler–Lagrange operatorE.
58See[Crampin and Prince, 1988] and[Henneaux and Shepley, 1982] for this example. For field-

theoretic examples, see[Nutku and Pavlov, 2002]. For a topological condition onV ×W sufficient to
ensure that∆ does not admit nontrivially differing Lagrangians, see[Anderson and Duchamp, 1980,
Theorem 4.3.ii].

59The problem of determining whether a given set of differential equations admits a Lagrangian is
known asthe inverse problem of the calculus of variationsamong mathematicians and asHelmholtz’s
problemamong physicists.[Prince, 2000] is a helpful survey of results concerning finite-dimensional
systems.[Anderson and Duchamp, 1980,§5] includes examples of field theories that do not admit
Lagrangian formulations.

60See[Anderson and Thompson, 1992, pp. 4 f.]. For other examples, see[Prince, 2000].
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4.2 The Structure of the Space of Solutions

The choice of a LagrangianL allows us to equipS with a closed two-form,Ω.61

So whenΩ is nondegenerate,(S,Ω) is a symplectic space; otherwise, it is presym-
plectic.62 Roughly speaking, one expects thatΩ is nondegenerate if and only if the
equations,∆, of our theory have the property that specifying initial data deter-
mines a unique inextendible solution.63

The choice of a Lagrangian brings into view the sort of structure required for the
construction of a quantum theory. A set of differential equations∆ alone does not
appear to determine such structure, and it is not known how to quantize a differen-
tial equation directly, without the introduction of a Lagrangian or a Hamiltonian.
If ∆ admits a LagrangianL, then it also admits the whole class of Lagrangians
that differ trivially from L (see remark 20 above). Unsurprisingly, trivially dif-
fering Lagrangians induces the sameΩ on S.64 But when∆ admits Lagrangians
L andL′ that differ nontrivially, these Lagrangians can induce distinct geomet-
ric structures onS; and one expects that these distinct (pre)symplectic structures
will lead to distinct quantizations of the given classical theory.65 In the case men-
tioned above of a particle moving in a spherical potential, each of these elements
is present: multiple nontrivially differing Lagrangians lead to distinct symplec-
tic structures on the space of solutions, which lead in turn to physically distinct
quantizations.66

61Recall from footnote 53 above that we have the decomposition∂L = E+DM, with E unique and
M unique up to the addition of aD-exact form. We now defineZ := ∂M. Z ∈ Ωn−1,2

loc (V ×K) and

is uniquely determined byL up to the addition of a term of the formDY, with Y ∈ Ωn−2,2
loc (V ×K).

Let Φ ∈ S be a solution, letδΦ1, δΦ2 ∈ TΦS, and letΣ ⊂ V be an instant relative toΦ. Then we
defineΩΣ(Φ, δφ1, δΦ2) :=

R
Σ Z(Φ, δΦ1, δΦ2). We assume nice boundary conditions at infinity,

so thatΩΣ is well-defined, and so that replacingZ by Z + DY makes no difference toΩΣ. We find
that the value ofΩΣ is independent of the instant chosen—becauseZ(Φ, δΦ1, δΦ2) is closed as an
(n − 1)-form onV and we have been careful in our choice of notion of instant (see fn. 47). So we
drop the subscript, and think ofΩ as a two-form onS, closed becauseZ is ∂-exact.

62Lagrange appears to have been the first to equip the space of solutions to a dynamical problem
with this symplectic structure; see[Weinstein, 1981,§2], [Souriau, 1986], or [Iglesias, 1998].

63As we will see below in 6.2, if the equations of motion admit gauge symmetries (so that uniqueness
fails in a certain dramatic way), thenΩ is presymplectic. I believe it is widely thought that this is the
only way thatΩ can fail to be symplectic—at least for the sort of examples that arise in physics.

64ReplacingL by L + DK altersZ a term of the formDY, Y ∈ Ωn−2,2
loc (V × K). But because

it is D-exact, this new term will not contribute to the integral over space that definesΩ (by Stokes’s
theorem and boundary conditions).

65When (as in the Newtonian case) the equations of motion are second-order and the space of solu-
tions is finite-dimensional, LagrangiansL andL′ induce the same two-form on the space of solutions
if and only if they differ trivially; see[Crampin and Prince, 1988,§II ]. Presumably this in fact holds
for a much wider range of cases.

66See[Henneaux and Shepley, 1982].
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4.3 Symmetries and Conserved Quantities

Given a set of equations∆ and a LagrangianL admitted by∆, there are three
distinct notions of symmetry we might consider.67 Roughly speaking, asymmetry
of ∆ is a map fromK to itself that fixesS as a set and that is generated by an
object local in the fields and their derivatives.68 We can then consider the subset
of variational symmetries, which also leave the variational problem ofL invariant,
or the subset ofLagrangian symmetriesthat leaveL itself invariant. The three
notions are distinct: every Lagrangian symmetry is a variational symmetry, but
some theories have variational symmetries that are not Lagrangian symmetries;
similarly, every variational symmetry is a symmetry of the associated equations of
motion, but some equations that admit Lagrangians have symmetries that are not
variational symmetries of any Lagrangian for the theory.69

For present purposes, it is natural to focus on variational symmetries of phys-
ical theories. For, on the one hand, the class of Lagrangian symmetries excludes
some physically important symmetries—and in any case, within the Lagrangian
approach it is not clear that it is more natural to focus on symmetries of the La-
grangian than on symmetries of the variational problem. On the other hand, the
class of symmetries of equations that are not variational symmetries does not ap-
pear to include any symmetries of absolutely central physical interest—and it is
at the level of variational symmetries (rather than symmetries of equations) that
the powerful results of Noether, cementing a connection between certain special
types of one-parameter groups of variational symmetries and certain special types
of conserved quantities in classical field theories, are naturally situated.70

Here is a statement of the central result. Let us call a one-parameter group,
ξ = {gt}, of diffeomorphisms fromK to itself aNoether groupfor L if its in-
finitesimal generator leaves invariant the variational problem ofL and is local in
the appropriate sense.71 Given a Noether groupξ = {gt} for (K, L), there is

67See[Olver, 1993, Chapters 2, 4, and 5] for the relevant notions.Warning: terminology varies—
sometimes myLagrangian symmetriesare calledvariational symmetries, sometimes myvariational
symmetriesare calleddivergence symmetries, etc.

68See[Olver, 1993,§5.1] for details.
69The wave equation in (2+1) dimensions has a dilational symmetry that is not a variational sym-

metry and inversion symmetries that are variational but not Lagrangian; see[Olver, 1993, Examples
2.43, 4.15, 4.36, and 5.63]. Example 4.35 of the same work shows that Galilean boosts are variational
symmetries for then-body problem but are not Lagrangian symmetries. Indeed, no Lagrangian for
Newtonian particles subject to forces derived from a potential can be invariant under the full group of
symmetries of neoNewtonian spacetime; see[Souriau, 1997, Remark 12.136].

70Note, however, that there do exist results establishing links between symmetries of equations with
conserved quantities, without detouring through the Lagrangian framework; see, e.g.,[Bluman, 2005].

71 More precisely, letξ be a one-parameter group of diffeomorphisms fromK to itself and letX be
the corresponding vector field onK (i.e.,X is the vector field whose flow isξ). ξ is a Noether group
if the following two conditions hold. (i)X is aninfinitesimal variational symmetry ofL: there exists
anR ∈ Ωn−1,0

loc (V × K) such that∂L(Φ, (X(Φ)) = DR(Φ) for all Φ ∈ S. (ii) X is local: for
anyΦ ∈ K, X(Φ) ∈ TΦK is local onV, in the sense that at any pointx ∈ V, we find thatX(Φ)(x)
depends only on the value atx of Φ and finitely many of its derivatives (recall that an element ofTΦK
is itself a map fromV to W ).
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a mapJξ, called theNoether currentassociated withξ, that maps solutions to
(n − 1)-forms onV.72 Given an arbitrary solution,Φ ∈ S, and an instantΣ ⊂ V
we integrateJξ(Φ) over Σ to give theNoether charge, Qξ,Σ(Φ) :=

∫
Σ

Jξ(Φ).
We note thatQξ,Σ(Φ) is independent of theΣ chosen (so long as the integral is
well-defined!).73 That is:Qξ,Σ(Φ) is a quantity that is constant in time within the
solution(V,Φ). Thus we might as well denote it simplyQξ(Φ), and think of the
Noether charge,Qξ, associated withξ as a function onS.

REMARK 22 (Noether Charges Generate Symmetries). SinceΩ is a closed two-
form, (S,Ω) is a symplectic or presymplectic space: so the results of sections
3.2 and 3.3 above apply. As one would expect,Qξ is in fact the symplectic/a
presymplectic generator of the one-parameter groupξ (thought of now as acting
onS). The beauty of Noether’s result is that it shows how to construct the generator
of ξ via the integration of local objects on spacetime.

REMARK 23 (Trivial Conservation Laws). So far, nothing we have said guaran-
tees thatQξ is an interestingfunction onS—it might, for instance be a the zero
function, ifJξ(Φ) is exact as an(n−1)-form onV. Such trivial Noether charges do
in fact occur whenΩ is presymplectic andξ is a group of gauge transformations.
We will see examples of this in section 6.2 below.

5 TIME AND CHANGE IN WELL-BEHAVED FIELD THEORIES

Turn we now to the representation of time and change in physical theories. In the
remaining sections Hamiltonian formulations of theories will play an important
role. So we henceforth restrict attention to theories with second-order equations of
motion.

In this section, we discuss ideally well-behaved theories. We impose three fur-
ther assumptions, which are in effect jointly for this section only: (a) global ex-
istence of solutions; (b) uniqueness of solutions; (c) our spacetime admits a time
translation symmetry under which the variational problem of our Lagrangian is
invariant.

We will see that in this context, we have threeR-actions: a notion of time
translation on spacetime; a notion of time translation on the space of solutions of
the theory; and a notion of time evolution on the space of initial data of the theory.
We also find that the space of solutions and the space of initial data are isomorphic
as symplectic spaces, and that there is a natural intertwining of the notion of time

72The Noether current associated toL andξ is the element ofJξ ∈ Ωn−1,0
loc (V × K) given by

Jξ(Φ) := R(Φ) −M(Φ, X(Φ)), whereX is the infinitesimal generator ofξ, R is the object intro-
duced in the preceding footnote, andM is the object introduced in footnote 53.

73 BecauseJξ(Φ) is closed as an(n − 1)-form on V and because we have been careful in our
choice of notion of instant (see fn. 47). Note, in fact, that so long asΣ, Σ′ ⊂ V are compact(n− 1)-
manifolds that determine the same homology class inV, we will have

R
Σ Jξ(Φ) =

R
Σ′ Jξ(Φ) (see,

e.g.,[Lee, 2003, p. 431] and[Lee, 2000, p. 300 f.] for relevant notions and results). Hence we get a
sort of conservation law even if, e.g.,Σ andΣ′ are not spacelike according to the geometry ofV. See
[Torre, Unpublished] for an introduction to such conservation laws.
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translation on the space of solutions with the notion to time evolution on the space
of initial data. So in this domain one can say simply (if awkwardly) that time
is represented as a symmetry of the laws—and leave it open whether one means
time translation or time evolution, since in the end the two come to much the same
thing.

This section has five subsections. The first is devoted to the Lagrangian picture,
the second to the Hamiltonian, the third to the relation between these pictures,
the fourth to a discussion of the representation of time and change. The final
subsection offers an overview.

5.1 The Lagrangian Picture

Let us be more precise about the special assumptions in play in this section. We
impose the following conditions on our spacetimeV, equations of motion∆, and
LagrangianL.

Global Existence of Solutions.We assume that each admissible set of initial data
for ∆ is consistent with a solution defined on all ofV.74

Uniqueness of Solutions.If Φ andΦ′ are solutions that agree in the initial data
that they induce on an instantΣ ⊂ V , then they agree at any pointx ∈ V at
which they are both defined.

Time Translation Invariance of the Lagrangian. We require our spacetimeV
to have a nontrivial geometrical structure, strong enough to single out a class
of (n − 1)-dimensional submanifolds that count as instants and a class of
one-dimensional submanifolds that count as possible worldlines of point-
particles. Let̄ξ = {ḡt} be a one-parameter group of spacetime symmetries
of V , and consider the orbits of̄ξ in V (the orbit[x] of ξ̄ throughx ∈ V is
the image of the curvex(t) := ḡt · x). We call ξ̄ a time translation group
for V if the orbits of ξ̄ are possible worldlines of point-particles according
to the geometry ofV ; in this case, we call these orbitsworldlines adapted
to ξ̄. We will typically denote time translation groups asτ̄ .

Let Ḡ be a group of spacetime symmetries ofV. Given ḡ ∈ G we can
define a diffeomorphismg : K → K via g(Φ(x)) = Φ(ḡ−1 · x). In decent
Lagrangian theories, one expects that ifξ̄ = {ḡt} is a one-parameter group
of spacetime symmetries, thenξ = {gt} is a Noether group forL. In this
situation,ξ will map solutions to solutions; so that eachgt ∈ ξ restricts to a
map fromS to itself; these maps are symplectic automorphisms of(S,Ω) (I
won’t bother introducing notation to distinguish between the action ofξ on
K and the restriction of this action toS). In this section we assume that each
time translation group,̄τ , of V gives rise in this way to a Noether group,τ,
of L. I will call such aτ adynamical time translation group.

74Since we are restricting attention to theories with second-order equations of motion, specifying
initial data involves specifying the field values and their time-rate of change at some initial instant.
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Within the class of theories that arise in physics, it appears to be an immediate
consequence of the uniqueness assumption that the formΩ induced byL on the
space of solutions in nondegenerate, and hence symplectic. We denote byH the
corresponding conserved quantity guaranteed by Noether’s theorem (in physically
realistic theories,H arises by integrating the stress-energy of the field over an
arbitrary instant).75 Of course,H generates, viaΩ, the action ofτ onS.

EXAMPLE 24 (Field Theory in Newtonian Spacetime). In Newtonian spacetime,
each symmetry can be written as the product of a time translation with an isometry
of absolute space. In coordinates adapted to the privileged absolute frame, we can
write points of spacetime as(t,x). Then the (orientation-preserving) symmetries
of V are of the form(t,x) 7→ (t + s,R(x) + c), wheres ∈ R implements a time
translation,R is a matrix implementing a rotation in absolute space, andc ∈ R3

implements a spatial translation. Up to a choice of temporal unit, there is a unique
time translation group,̄τ : (t,x) 7→ (t + s,x); the worldlines of the points of
absolute space are adapted to this group. We are supposing that the corresponding
groupτ acting on the space of solutions is a dynamical time translation group. The
Noether charge associated withτ, H : S →R, assigns to each solution the total
energy of the system at any instant (since we are considering a theory invariant
under time translations, the value of the total energy along a slice is a constant).76

EXAMPLE 25 (Field Theory in Minkowski Spacetime). The symmetry group of
Minkowski spacetime is the Poincaré group. Each inertial frame picks out a notion
of simultaneity, and a time translation group,τ̄ ; the worldlines of observers at rest
in the chosen frame will be adapted to this group. (Equivalently, such group is
determined by the choice of a timelike vector in spacetime.) In Poincaré-invariant
field theories we can choose inertial coordinates(t, x1, x2, x3) such that our cho-
senτ̄ acts via(t, x1, x2, x3) 7→ (t+s, x1, x2, x3). In such coordinates, the Noether
current is just the componentT 00 of the stress-energy tensor of the field—the
Noether charge being given, as always, by the integral of the Noether current over
any instant.77

EXAMPLE 26 (Field Theories in a Curved Spacetime). While a generic general
relativistic spacetime admits no non-trivial symmetries, a solution in which, intu-
itively, the geometry of space is constant in time admits a time translation group.

75For the stress-energy tensor and its role in the examples below, see[Choquet-Bruhat and DeWitt-
Morrette, 1989,§II.7] and[Deligne and Freed, 1999,§2.9].

76The Noether charge generating spatial translation (rotation) in a given direction (about a given axis)
assigns to a solution the corresponding component of the linear (angular) momentum of the system at
an instant. In fact, we get a momentum map (see fn. 34) for the action of the group of symmetries
of Newtonian spacetime—the Poisson bracket algebra of the Noether charges mirrors the Lie bracket
relations between the infinitesimal generators of the corresponding one-parameter groups. It is impos-
sible, however, to construct a momentum map for the symmetry group of neo-Newtonian spacetime;
see[Woodhouse, 1991,§3.4] for this and other examples in which the construction of a momentum
map is impossible.

77One can again construct a momentum map (see fn. 34)—with spacelike translations generated by
the components of linear momentum, etc., in the familiar way.
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Let V be a globally hyperbolic and time-oriented general relativistic spacetime
that possess such āτ . Let Xa be the vector field tangent to the orbits ofτ̄ (soX is
a timelike Killing field). LetT ab(Φ) be the stress-energy tensor of the fieldΦ and
suppose that∇aT ab = 0 (this typically holds in cases of physical interest). Let
Σ ⊂ V be an instant (i.e., a Cauchy surface) and letna be the field of unit future-
pointing normal vectors alongΣ. We can define the energy-momentum vector of
T ab relative toXa asP b := XaT ab and define the energy alongΣ as

∫
Σ

P anadx.
This last quantity is in fact the Noether charge, and is independent of theΣ.

5.2 The Hamiltonian Picture

The basic idea behind the Hamiltonian approach is to work with the space of initial
data of the equations of the theory rather than with the space of solutions to the
equations—roughly and heuristically speaking, this means working with the space
of instantaneous states of the theory rather than with its space of possible worlds.

Deterministic equations of motion tell us what the state of the system must be
at earlier and later times if it is in a given initial state. So, at least for well-behaved
equations of motion, the dynamical content of the equations of motion ought to
be encodable in a flow on the space of initial data, with the integral curves of this
flow being the dynamically possible trajectories through the space of instantaneous
states.

The special assumptions in play in this section (global existence and uniqueness
of solutions and the presence of a dynamical time translation group) imply (at least
for the sort of the theories that arise in physics) that the space of initial data carries a
symplectic structure that generates the dynamics of the theory when supplemented
by the function that assigns to an initial data set the total energy of a system in that
state. The dynamics can be thought of as encoded in anR-action on the space of
initial data that implements time evolution. As we will see, these structures on the
space of initial data—symplectic structure, Hamiltonian, and group action—are all
closely related to the corresponding objects on the space of solutions that arise on
the Lagrangian side.

Intuitively speaking, an instantaneous state of the field is a specification at each
point of space of the value of the field and its time rate of change; and in giv-
ing a sequence of such instantaneous states, we describe how the values of these
variables evolve through time at each point of space. So in order to construct a
Hamiltonian formulation of a theory in which the total history of a system is de-
scribed via a trajectory through the space of initial data, we need to effect some
sort of notional decomposition of spacetime into space and time.78

78Note that we did not require any such decomposition in setting up the Lagrangian formalism in
section 4 above. It is, of course, crucial to distinguish the symplectic space of solutions that arises in
this formalism from the symplectic velocity phase space that arises in some Lagrangian treatments—
the latter does, while the former does not, presuppose a division of spacetime into instants. Cf fn. 6
above.
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Informally, we can picture what is required as being a preferred family of ob-
servers together with a notion of simultaneity. Spacetime is partitioned by the
worldlines of these observers (these need not be at rest relative to one another, but
we do require that the worldlines involved be possible worldlines of point-particles
according to the geometry ofV ). Each observer carries a clock; and we suppose
that the set of points at which these clocks readt = 0 forms an instant inV. We
call such a set of observers equipped with such a notion of simultaneity aframe.
We say that a frame isadapted tothe time translation group̄τ when the following
two conditions obtain. (i) The worldline of each observer is an orbit of the group
τ̄ acting onV. (ii) Up to a choice of origin and a choice of unit of measurement,
τ̄ gives us a parameterization of the set of instants ofV, which allows us to deter-
mine ratios of temporal intervals; we require that the clock readings respect these
determinations.

Still speaking informally, we can say that relative to a choice of frame, the
state of the field at timet is an assignment of field value and momentum to each
observer (i.e., the values of the field and its time rate of change at the spacetime
point the observer occupies at the given instant), and that a history of the field is
an assignment of these quantities along the worldline of each observer. So we can
take an initial data set to be a pair of functions (corresponding to the field value
and its time rate of change) defined on the space of observers of our frame—this
space acts as a sort of abstract instant, with the same topological and geometrical
structure as the concrete instants that arise as subsets ofV.

We can make this more precise as follows.

DEFINITION 27 (Slicing). LetV be a spacetime with geometry and letS be an
(n− 1) -dimensional manifold (possibly carrying a Riemannian metric). Then an
S-slicing of V is a diffeomorphismσ : R × S → V such that: (i) eachΣt :=
σ({t} × S), t ∈ R, is an instant inV (with σ providing an isomorphism between
the geometry ofΣt and the geometry ofS, if any); (ii) eachXx := σ(R × {x}),
x ∈ S, is a possible worldline of a point-particle according to the geometry ofV.
We callS the abstract instantof σ and eachΣt an instant in the slicing. When
V admits a time translation group̄τ , we call a slicingσ of V adaptedto τ̄ if the
following conditions are met: (a) eachXx is an orbit ofτ̄ ; (b) any two instants of
the slicing are related by a time translation inτ̄ ; (c) up to a choice unit and origin,
the parameterizations of eachXx given byσ and byτ̄ agree.

EXAMPLE 28 (Newtonian Slicings). In Newtonian spacetime there is of course
a unique partition of spacetime by instants and (up to a choice of unit) a unique
time translation group̄τ . Furthermore, in this setting it is possible to takeS to
be the space of worldlines of the points of absolute space.79 So the only freedom
in constructing a slicing adapted tōτ is in choosing an origin and a unit for the
parameterization of the instants by the reals.

79This space comes equipped with a natural Euclidean structure—since the distance between points
of absolute space is constant in time, we can define the distance between two worldlines of such points
to be the distance between the points.
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EXAMPLE 29 (Flat Minkowski Slicings). In the setting of Minkowski spacetime
it is sometimes natural to restrict attention to instants which arise as surfaces of
simultaneity for inertial observers. In this case, our abstract instantS will again
have the structure of Euclidean space. In order to construct a slicing, we must
choose an instantΣ0 ⊂ V corresponding tot = 0, an isometry fromS to Σ0, a
unit of temporal measurement, and a notion of time translation associated to an
inertial observer.

EXAMPLE 30 (Generic Minkowski Slicings). More generally, in the Minkowski
spacetime setting it is possible to allow arbitrary Cauchy surfaces to count as
instants—in this case, one will chooseS to have some non-trivial Riemannian
geometry. Now there is a truly vast—indeed, infinite-dimensional—family of in-
stants to choose from (as we allow the geometry ofS to vary). On the bright side,
a generic instant admits no nontrivial isometries—so having chosenS andΣ there
will be no freedom in constructing an isometry from one to the other.

Let us consider a Lagrangian theory satisfying all of the present conditions, and
fix a slicing of V adapted to a notion of time translation,τ̄ that gives rise to a
dynamical time translation groupτ. We can then construct a Hamiltonian version
in the following steps.

1. Given an instant and a solution, construct the instantaneous field configura-
tion and momentum.Let Σ be an instant contained in the given slicing and
let Φ : V → W be a solution. We defineφ : Σ → W, the field configuration
on Σ, by φ := Φ |Σ . And we defineφ̇ : Σ → W, the field velocity onΣ,
as follows: at eachx ∈ Σ, φ̇(x) is the rate of change atx of the field val-
ues along the orbit of̄τ throughx.80 In order to construct the instantaneous
momentum of the field, we apply the usual recipe for constructing canonical
momentum variables, definingπ := ∂L

∂φ̇
(π is a map fromΣ to W ∗).

2. Given the instantaneous field configuration and momentum, construct the
corresponding initial data.This is just a matter of usingσ to pull backφ
andπ, so that we can regard them as functions onS rather thanΣ. Sloppily,
I will use the same names for initial data defined onS and the corresponding
functions defined onΣ ⊂ V.

3. Construct the space of initial data,I. LetQ be the space of allφ : S → W
that can arise via the previous two steps as we allowΦ to vary inS.81 The
set of all pairs(φ, π) that can arise via these steps is just cotangent bundle,
T ∗Q. This space is the space,I, of initial data for our theory. It carries a
canonical symplectic structure,ω (see example 7 above).

80That is, letx0 ∈ Σ and findy0 ∈ S, t0 ∈ R such thatσ(t0, y0) = x0 and define the curve
x : R → V by x(t) := σ(t, y0); then letφ̇(x) := limh→0

1
h

(φ(x(t0 + h))− φ(x0)) .
81Allowing Σ and the slicing to vary as well would make no difference in the present case, so long

asS and its geometry are held fixed.
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4. Construct a Hamiltonian.We defineh : I → R, the Hamiltonian on the
space of initial data, as follows. Let(φ, π) ∈ I be initial data and letΣ ⊂ V
be an instant (not necessarily one in our slicing). LetΦ be the solution that
induces(φ, π) on Σ and defineh(φ, π) :=

∫
Σ

π(x)φ̇(x) − L(Φ)(x)dx (in
the present context, the result does not depend on the instantΣ chosen).82

5. Construct the Dynamics.Togetherh andω determine a vector fieldχ onI
that encodes the dynamics of our theory. The integral curves ofχ are the
possible dynamical trajectories—if the state is(φ0, π0) at timet = 0, then
the statet units of time later can be found by tracingt units of time along
the integral curve passing through(φ0, π0). This gives us a flow onI, which
preserves bothω andh (the flow is global rather than local because we are
assuming that solutions are defined for all values oft).

5.3 Relation between the Lagrangian and Hamiltonian Pictures

For each instantΣt := σ({t} × S) in our slicingσ, we defineTΣt
: S → I to be

the map that sends a solutionΦ to the initial data set(φ, π) ∈ I that results when
the slicingσ is used to pullback toS the initial data induced byΦ onΣt. Because
we are assuming global existence and uniqueness for solutions given initial data,
TΣt

is in fact a bijection. Indeed, it is a diffeomorphism. Furthermore,T ∗Σt
ω = Ω,

so eachTΣt
is in fact a symplectic isomorphism between(S,Ω) and(I, ω).

Note that in typical theories distinct instants in the slicing lead to distinct iso-
morphisms. IfΣt andΣt′ are instants in our slicing andTΣt = TΣt′ , then for each
solutionΦ, Φ induces the same initial data onΣt andΣt′—i.e., each solution is
periodic with period|t− t′| . So if TΣt

= TΣt′ for eachΣt andΣt′ , then every
solution would have to be a constant function onV .

The mapsTΣt
: S → I establish a simple relationship between our Hamiltoni-

ansH : S → R andh : I → R : h = H ◦ T−1
Σt

(we could have taken this as our
definition ofh).

TogetherΩ andH determine the flow onS that implements time translation at
the level of solutions while togetherω andh determine the flow onI that imple-
ments time evolution of initial data. Since anyTΣ relatesΩ andω on the one hand,
andH andh on the other, one would hope that it would also intertwine the group
actions corresponding to these flows. This is indeed the case. Let us writet ·S Φ
for the solution that results when we time-translate the solutionΦ by t units and
let us writet ·I (φ, π) for the state that initial data set(φ, π) evolves into aftert
units of time. Then we find thatt ·I TΣ(Φ) = TΣ(t ·S Φ).83

Relative to a slicing, each solutionΦ on V corresponds to a curve(φ(t), π(t))
in the space of initial data, with(φ(t), π(t)) := TΣt(Φ). And a curve of this form

82Here we use the fact thatπ takes values inW ∗ while φ̇ takes values inW ; and we rely on the
natural measure induced by the geometry ofV to allow us to treatL(Φ) as a function rather than an
n-form.

83That is, eachTΣ is equivariant for theR-actions·S and·I .
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is always a dynamical trajectory inI (i.e., an integral curve of the flow gener-
ating time evolution onI). Conversely, a dynamical trajectory(φ(t), π(t)) in I
determines a unique solutionΦ := T−1

Σ0
(φ(0), π(0))—and this solution can be

viewed as the result of laying down the instantaneous field configurationsφ(t) on
the instantsΣt in the slicing.

5.4 Time and Change

Change consists in a single object having a given property at a given time and
a distinct and incompatible property at a different time. Within the Lagrangian
approach, it is easy enough to draw a distinction between those solutions that rep-
resent change and those that do not: the changeless solutions are those which are
invariant under the action of a group of time translations. Correspondingly, we
will say that a dynamical trajectory in the space of initial data represents a change-
less reality when the corresponding solution onV is invariant under some time
translation group.84

This much is entirely straightforward. But it is worth pausing and thinking
about how change is represented at the level at which physical quantities are rep-
resented by functions onS andI. In the case of quantities defined on the space of
initial data, the story is straightforward. Letf ∈ C∞(I) correspond to some de-
terminable physical property of instantaneous states. Then if(φ0, π0) evolves into
(φ1, π1) andf(φ0, π0) 6= f(φ1, π1) then the solution including these states mani-
fests change with respect to the property represented byf.85 And we can of course
go on to ask, e.g., about the rate of change off along a dynamical trajectory.

But how should we phrase this in terms of functions defined on the space of
solutions?

Suppose that we are interested in the quantity that measures the volume of the
spatial region on which a given field takes on non-zero values. While such a quan-
tity is represented within the Hamiltonian framework by a functionf : I → R,
there is no function on the space of solutions that can be identified with this
quantity—for such functions assign values to entire physically possible histories,
and thus cannot represent quantities that take on different values at different in-
stants within a history (or rather, they cannot do so in the same direct way that

84Naively, one might think that a dynamical trajectory in the space of initial data should count as
representing a changeless reality only if it is constant—that is, if the system is represented as being in
the same instantaneous state at each instant of time. But this would be a mistake. Consider a well-
behaved theory set in Minkowski spacetime, and letΦ be solution invariant under the notion of time
translation associated with inertial frameA but not invariant under that corresponding to inertial frame
B. Surely this counts as changeless—and ought to whether we pass to the Hamiltonian picture via a
slicing adapted to frameA (which leads to a dynamical trajectory according to which the state of the
system is constant) or via a slicing adapted to frameB (which leads to a picture in which the state
undergoes nontrivial evolution).

85Even if Φ represents a state of affairs in Minkowski spacetime, changeless in virtue of being
invariant under the notion of time translation associated with inertial frameA, it may still represent
some physical quantities as undergoing change—such as the location of the centre of mass of a system
relative to inertial frameB.
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functions on the space of initial data can).
However: intuitively, for each instantΣ ⊂ V there is a functionfΣ : S → R

such thatfΣ(Φ) is the volume of the support of our field onΣ in the solutionΦ. So
it is tempting to say that our chosen quantity is represented as exhibiting change in
a solutionΦ if fΣ(Φ) 6= fΣ′(Φ) for instantsΣ,Σ′ ⊂ V, and that in order to speak
of the rate of change of our quantity we need to consider a parameterized family
Σt of instants, and calculateddtfΣt

(Φ).86

Of course, in the present context, it makes sense to employ our preferred slicing
in setting up this framework.87 For each instantΣt in our slicing we have a sym-
plectic isomorphismTΣt : S → I. If f : I → R is the function on the space of
initial data that represents the quantity of interest, thenft := f ◦TΣt

is the desired
function on the space of solutions that assigns to a solutionΦ the value off on
the initial data thatΦ induces onΣt. So each slicingσ determines a one-parameter
family of functions onS that encodes the instantaneous values of our chosen phys-
ical quantity relative to the instants inσ. So relative to a choice of slicing, it makes
sense to ask whether this quantity undergoes change, what the rate of change is,
and so on.

REMARK 31 (An Alternative Approach to Constructing{ft}). In the present
setting, rather than relying on our entire one-parameter family of isomorphisms,
{TΣt}, to set up our one-parameter family of functions{ft}, we could have used
Σ0 to constructf0 then used our dynamical time translation group to define

f−t(Φ) := f0(t ·S Φ).

5.5 Overview

We have seen that if we put in place a number of very strong assumptions, we
get in return a very clear picture of the representation of time and change. The
assumptions are: that our equations of motion,∆, are second-order; that these
equations have ideal existence and uniqueness properties and they derive from a
Lagrangian,L, that has a dynamical symmetry group,τ, that arises from time
translation group,̄τ , on our spacetime,V ; and that we have chosen a slicingσ of
V that is adapted tōτ .

Lagrangian Picture. The space of solutions,(S,Ω), is a symplectic space. The
function,H : S → R, that assigns to each solution the total instantaneous
energy relative tōτ is the symplectic generator ofτ (and also the Noether
conserved quantity associated with it).

86For this suggestion, see, e.g.,[Rovelli, 1991].
87Otherwise we can run into trouble. Consider aΦ defined on Minkowski spacetime such that for

each inertial observer the spatial volume of the region in which the field is nonzero is constant in time.
Because of length contraction, relatively moving inertial observers will assign different values to this
volume. So if we chooseΣ andΣ′ belonging to slicings corresponding to distinct inertial frames, then
we find thatfΣ(Φ) 6= fΣ′ (Φ) even thoughΦ is changeless according to each inertial observer.
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Hamiltonian Picture. We are able to construct a Hamiltonian version of our the-
ory: a symplectic space of initial data(I, ω) equipped with a Hamiltonian
h : I → R that generates the dynamics of the theory. The dynamics is
encoded in anR-action onI that implements time evolution.

Relation between the Pictures.To each instantΣ in our slicing corresponds the
symplectic isomorphismTΣ : S → I, that maps a solutionΦ to the initial
data that it induces onΣ. Each suchTΣ relatesH andh on the one hand and
Ω andω on the other—and intertwines the action of the group implement-
ing time translation onS with the action of the group implementing time
evolution onI.

Time. Time, in one of its facets, is represented in this scheme by threeR-actions:
the action via symmetries onV that implements time translation, the sym-
plectic action implementing time translation onS, and the symplectic action
implementing time evolution onI. Note: in some spacetimes there will only
be one notion of time translation, in others there will be many.

Change. In the Lagrangian picture, changelessness is represented in a straightfor-
ward way—some solutions are invariant under a time translation group of
their underlying spacetime. So change can be characterized as the absence of
changelessness and the definition can then be translated into the language of
the Hamiltonian approach. When it comes to representing change of given
physical quantities via the behaviour of functions on the space of initial data
and the space of solutions, things become a bit more interesting. Here it
is the Hamiltonian picture that underwrites a straightforward approach: one
finds the function on the space of initial data corresponding to the quantity
of interest, and examines its behaviour as the state evolves. On the La-
grangian side, things are more complicated. No function on the space of
solutions can directly represent a changeable quantity. But by employing
the slicing-dependent correspondence between the two pictures one can find
a one-parameter family of functions on the space of solutions, each of which
describes the value of the quantity along a distinct instant from the slicing.
One can use this one-parameter family to define the rate of change of the
quantity; and so on.

6 COMPLICATIONS

The account of the previous section was underwritten by several very strong as-
sumptions. I now want to consider the effect on the picture developed above if one
or another of these assumptions is dropped. My strategy is to leave untouched the
assumptions that we need to in order construct a Hamiltonian picture of the sort
developed above—that the equations of motion be second-order and that space-
time have enough geometrical structure to support slicings—and to consider the
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effect of dropping the assumptions: (i) that solutions are defined globally in time;
(ii) that there is a unique maximal solution consistent with any initial data set; (iii)
that the Lagrangian admits a dynamical time translation group that arises from a
time translation group on spacetime. I will in this section consider only the effect
of dropping one of (i)–(iii) at a time—in the next section I will turn to general
relativity, which is a theory in which (i)–(iii) fail, as does the assumption that
spacetime has enough solution-independent geometry to support slicings.

In briefest sketch, we find that:

1. If we drop the assumption that solutions exist globally in time, then time
evolution is no longer implemented by anR-action onI, andS andI are
no longer symplectically isomorphic. But time evolution is implemented by
a sort of local and infinitesimal counterpart of anR-action andS andI are
locally symplectically isomorphic. Overall, only small changes are required
in the picture of the representation of time and change developed above.

2. If we drop the assumption that specifying initial data suffices to determine a
unique solution, even locally in time, by considering the (broad and impor-
tant) class of theories whose Lagrangian and Hamiltonian versions exhibit
gauge freedom, then the space of solutions and the space of initial data are
presymplectic spaces that are not isomorphic (even locally). Furthermore,
time evolution will no longer be implemented by a one-parameter group, but
by a gauge equivalence class of such groups. Difficulties also appear on the
Lagrangian side. The problem appears to be that theories of this type feature
nonphysical variables. The remedy is reduction—the reduced space of so-
lutions and the reduced space of initial data are symplectic and isomorphic.
Much of the picture of the representation of time and change can reappears
at the reduced level.

3. If we drop the assumption that our Lagrangian is time-translation invariant,
then we have to make do with time-dependent Lagrangian and Hamiltonian
theories. Here the space of solutions and the space of initial data will be
symplectic spaces, and will be isomorphic. But we no longer have time
translation of solutions as a symmetry on the Lagrangian side, nor time evo-
lution as a symmetry on the Hamiltonian side. Still, we are able to construct
in the usual way a slicing-dependent one-parameter family of isomorphisms
between the space of solutions and the space of initial data, and this allows
us to reconstruct much of the familiar picture of the representation of time
and change.

6.1 Singular Dynamics

Let us suppose that the condition of global existence of solutions fails for our equa-
tions of motion—there exist initial data sets that cannot be extended to solutions
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defined on all ofV. But let us continue to suppose that our theory is otherwise well-
behaved: our spacetimeV has enough structure to support slicings; our equations
∆ are second-order and have unique solutions; and our Lagrangian,L, admits a
dynamical time translation group,τ, induced by a time translation group̄τ on V.
Then, at least for the sorts of cases that arise in physics, we can expect to find the
following.

Lagrangian Picture. The space of solutions,(S, ω), is a symplectic manifold.
The dynamical time translation group,τ, acts onS in the usual way: each
element of the group time-translates each solution by some given amount.88

τ is generated, viaΩ, by the Hamiltonian function,H : S → R that assigns
to a solution the instantaneous energy of that solution.

Hamiltonian Picture. We can construct a Hamiltonian picture as above: given a
time translation group̄τ , an adapted slicingσ, a solutionΦ, and an instant
Σ, we can construct the initial data thatΦ induces onΣ relative toσ, and use
σ to pull this back to our abstract instantS. We can then construct the space
of initial data,I, with its canonical symplectic formω, use our Lagrangian
to define a Hamiltonian,h : I → R, and study the resulting dynamics.
The essential novelty is that because some solutions have limited temporal
domains of definition, one finds that the vector field on(I, ω) generated by
theh is incomplete—it has integral curves that are defined only on a subset
of R. So time evolution is not represented by anR-action onI: in general
it does not make sense to ask of a given point in the space of initial data
what state it will evolve to at arbitrarily late times. However, the vector field
generated by the Hamiltonian, which as usual encodes the dynamics, can
be thought of as a sort infinitesimal generator of a locally defined action of
R on the space of initial data—in particular, if it makes sense to speak of
data setx evolving into data sety aftert units of time, then we find that the
map that sends a state to the statet units of time later is a symplectic (and
Hamiltonian-preserving) map between sufficiently small neighbourhoods of
x and sufficiently small neighbourhoods ofy.

Relation between the Pictures.As above, for each instant,Σ, in our slicing we
can defineTΣ(Φ) to be the pullback to the abstract instantS of the initial
data that the solutionΦ induces onΣ. But now each eachTΣ is only partially
defined as a function fromS to I (since the value ofTΣ(Φ) is undefined
whenΦ is not defined onΣ). Nonetheless, each suchTΣ is a symplectic
isomorphism between its domain of definition inS andI. 89 As usual, we
get a distinct such map for each instant we choose.

88Of course, if a solution is not defined for all time, then its domain of definition will differ from that
of its time-translate in the obvious way.

89So, intuitively, the space of solutions is bigger than the space of initial data—we can find natural
isomorphisms between the space of initial data and subspaces of the space of solutions.
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Time. The representation of time becomes a bit more complicated in the present
context: to each notion of time translation on spacetime corresponds a nice
symmetry on the space of solutions—and a merely infinitesimal symmetry
on the space of initial data.

Change. We can still represent changeable properties by functions onI, and de-
termine whether a given dynamical trajectory represents a change of such
properties by studying the behaviour of the corresponding function along the
trajectory. Despite the failure of global isomorphism between the space of
solutions and the space of initial data, we find that a choice of slicing yields
a one-parameter family of local isomorphisms,{TΣt

}, betweenI and sub-
spaces ofS. Given a functionf on the space of initial data corresponding
to a quantity of interest, the family{TΣt} can be used to construct a one-
parameter family of partially-defined functions{ft} onS that correspond to
the given changeable physical quantity. So the representation of change in
this case is much the same as in the case in which we have global existence
of solutions.

The real novelty here is the lack of a global isomorphism between the space of
solutions and the space of initial data. The phenomenon can be is well-illustrated
by simple classical mechanical examples.

EXAMPLE 32 (The Kepler Problem). Consider a point-particle of massm mov-
ing in thex-y plane subject to the gravitational influence of a point-particle of unit
mass fixed at the origin.90 Here our spacetimeV will be R and the spaceW of
field values will be the spaceQ = {(x, y)} of possible positions of the moving
particle. The Lagrangian isL = 1

2 (ẋ2 + ẏ2) + m
r , wherer2 := x2 + y2; the

corresponding Hamiltonian isH = 1
2 (ẋ2 + ẏ2) − 1

r . In order forL andH to be
well-defined, we have to limit the location of the body to points inQ := R2/(0, 0).
We restrict attention to the case whereH < 0. This is the case of orbits bounded
in space—so, in particular, we rule out parabolic and hyperbolic motions.

We find that there are two types of solutions. (i) Regular solutions, in which the
particle has non-zero angular momentum, are periodic and defined for all values
of t; they represent the particle as moving along an ellipse that has the origin
as a focus. (ii) Singular solutions, in which the particle has vanishing angular
momentum, are defined only fort0 < t < t0 + 2ε; they represent the particle as
being ejected from the origin at timet0 (i.e., |r(t)| → 0 ast → t0 from above),
travelling outward along a ray from the origin with decreasing speed until reaching
to a stop at timet0 + ε, then falling back into the origin along the same ray, with
|r(t)| → 0 ast → t0 + 2ε from below.

The space of solutions is topologically pathological. LetΦ(t) be a singular
solution defined fort ∈ (t0, t0 + 2ε). Let Λ ⊂ Q be the line segment along which
the particle moves according toΦ. It is possible to construct a sequence{Φk}

90For the structure of the space of solutions of the Kepler problem, see[Woodhouse, 1991,§2.3] and
[Marco, 1990b].
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of regular solutions with the following features: eachΦk has the same energy as
Φ—it follows that eachΦk represents the particle as moving periodically along an
ellipseEk with period2ε; for eachk, Ek is oriented so that the segment joining
its foci is included inΛ; ask → ∞, the eccentricity ofEk goes to infinity—so
that Ek → Λ ask → ∞. It follows that Φ is a limit of the sequence{Φk}.91

But now consider the solutionΦ′(t) := Φ(t + 2ε). This is a singular solution,
defined fort ∈ (t0 − 2ε, t0), that represents the particle as being emitted at time
t0−2ε, moving alongΛ, and then being absorbed at timet0. Φ′ is equally a limit of
{Φk}. Indeed, we can generate an infinite number of limits of{Φk} by temporally
translatingΦ by multiples of2ε.

Since we can find a sequence inS that converges to more than one limit point,S
is not Hausdorff.92 But, of course, the space of initial data for the Kepler problem
is justT ∗Q—which is Hausdorff. So the spaces are certainly not isomorphic!

Non-Hausdorff manifolds can be quite wild. But there are also relatively tame
examples, such as the following. LetX be the result of excising the origin from
the real line and adding in its place two new objects,a andb; a subset ofX is an
open ball if it coincides with an open interval inR that does not contain the origin,
or if it arises when one takes an open interval of real numbers containing0 and
replaces0 by one of{a, b}. We endowX with a topology by declaring that any
union of open balls inX is an open set.X is a manifold according to our present
standards. But it is not Hausdorff, since every neighbourhood ofa overlaps with a
neighbourhood ofb—and, of course, a sequence like{ 1

k} converges to botha and
b.

More generally, we can construct a non-Hausdorff manifoldXn,m
j by takingm

copies ofRn and identifying them everywhere except on a givenj-dimensional
hyperplane through the origin (1 < m ≤ ∞, 1 ≤ n < ∞, and0 ≤ j < n).93

The space of solutions corresponding to any fixed negative value of energy in the
planar Kepler problem is assembled out of copies ofX3,∞

1 .

EXAMPLE 33 (Singularities of then-Body Problem). Forn particles inR3 the
space of possible particle configurations isR3n. But this space includes collisions—
and the potential energy for then-body problem is singular at such points. So, as
before, we let∆ := {q ∈ R3n : qi = qj for somei 6= j} and letQ beR3n/∆
then take as our space of initial dataT ∗Q = {(q, p) ∈ T ∗R3n : q /∈ ∆}.

We pose the initial data(q, p) at timet = 0. We know that this determines a
maximal dynamical trajectoryt 7→ (q(t), p(t)), defined on an interval[0, t∗), with
0 < t∗ ≤ ∞ (the corresponding story for negative times is, of course, the same).
Clearly it is possible to choose(q, p) so thatt∗ is finite—if we letp = 0 for n > 1,

91The topology on the space of solutions can be constructed as follows. For eacht ∈ R, take
the position and velocity of the particle at a given time as coordinates on the space of solutions, and
construct the set of open balls relative to these coordinates. Now take the union of these sets ast varies.
The result is a basis for the basis for the topology we seek.

92Recall that a topological spaceX is Hausdorff if for any x, y ∈ X it is possible to find disjoint
openU, V ⊂ X with x ∈ U andy ∈ V. A sequence in a Hausdorff space has at most one limit.

93The example of the preceding paragraph isX1,2
0 .
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for instance, the system is going to collapse and a collision will occur. Let us call
our dynamical trajectorysingular if t∗ < ∞. It can be proved that ift∗ < ∞, then
ast → t∗, (q(t), p(t)) → ∆, in the sense thatlimt→t∗ min1≤i<j≤n rij = 0. Let
us say that a singular trajectory ends in acollision if there is a point(q1, p1) ∈
∆ such thatlimt→t∗(q(t), p(t)) = (q1, p1); otherwise, we say that it ends in a
pseudocollision.

Consider the following cases.94

n = 1. This is the case of a single free particle. The dynamics is non-singular.

n = 2. This is the Kepler problem.95 The only singularities are collision singu-
larities. These occur if and only if the angular momentum of the system
vanishes.

Famously, these singularities can be regularized.96

This is clear enough physically: one simply imposes the condition that any
collisions that occur are elastic. This allows one to sew together a solution
which ends with a collision at timet0 with one, that, intuitively begins at
time t0 with the particles having interchanged their velocities. Continuing
in this way, one constructs continuous and piecewise analytic solutions of
eternal temporal extent. Because collision solutions are now infinite in tem-
poral extent, the space of solutions, in this new sense, is isomorphic to the
extended space of initial data that includes the collision states that lie inT ∗∆
(let us interpret such states as representing the velocity that the particles will
have when next emitted).

Mathematically, there are a number of underpinnings that can be given to
this procedure.97 An older one proceeds in terms ofanalytic continuation—
thinking of the original collision solution as a complex function, one asks
whether there is any analytic continuation of this function past the time of
collision. Under a more modern approach, one looks for a way of continu-
ing singular solutions that preserves the continuous dependence of evolution
on initial data.98 In the case of the two-body problem, either approach vin-

94For surveys of the singularities of then-body problem, see[Diacu, 1992] and[Diacu, 2002]; for a
popular treatment,[Diacu and Holmes, 1996, Chapter 3].

95Begin with the two-body problem. Restrict attention to the plane of motion of the particles; choose
a frame in which the centre of mass of the two-body system is at rest at the origin and denote the
positions of the bodies as~q1 and~q2. Obviously if we know~r = ~q2 − ~q1 then we know the positions
of both particles (since we know their masses and the location of their centre of mass). Now note that
the equation of motion for~r is that for a single particle moving in an gravitational potential around the
origin, if we take the origin to have unit mass, and the moving particle to have massm = m1m2

m1+m2
.

96For various approaches to the regularization of two-body collisions, see[Souriau, 1982], [Marco,
1990a] and[Cushman and Bates, 1997,§II.3].

97See[McGehee, 1975] for these.
98More precisely, one excises fromT ∗R6n an open set with compact closure that contains a colli-

sion; the boundary of this set falls into two pieces, corresponding to initial data of trajectories entering
the set and initial data of trajectories leaving the set; evolution gives a diffeomorphism from the subset
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dicates extension of singular solutions by elastic collisions as the unique
tenable method of extension.

n = 3. Singular trajectories end in collisions. Collisions involving only two bod-
ies can be regularized as elastic collisions. But some three body collisions
are non-regularizable (according to any of several criteria).99 Such three-
body collisions are complex, and presumably make it difficult to determine
the topology of the space of solutions—so in this case, unlike then = 2
case, one does not have a clear picture of the relation between the global
structure of the space of solutions and the structure of the space of initial
data.

n ≥ 4. For n ≥ 4, as usual, singular trajectories can end in collisions: two-body
collisions are regularizable; but at least some collisions involving larger
numbers of particles are not. Furthermore, forn > 4 it is known that pseu-
docollisions can also occur—so it would appear to be more difficult then
ever to determine the topology of the space of solutions.100

REMARK 34 (Quantization of Singular Systems). When the space of solutions
and the space of initial data are isomorphic, it is, of course, a matter of indifference
which space one takes as the starting point for quantization. When dynamics is
singular and these spaces are no longer isomorphic one faces a real choice. And
the choice is not entirely pleasant—one has to choose between the space of initial
data, on which the dynamics is implemented by an incomplete vector field, and
the space of solutions, which one expects to have a complicated and pathological
topology. Presumably there is no guarantee that the two approaches always lead to
the same quantizations in the domain of singular dynamics.101

6.2 Gauge Freedom

We next want to consider what happens when we drop the assumption that speci-
fying initial data suffices to determine a unique maximal solution to our equations
of motion. To this end, we are going to assume that our equations of motionunder-
determinethe behaviour of the field, in the radical sense that for given initial data

of the former corresponding to non-singular solutions to the subset of the latter corresponding to non-
singular solutions; one asks whether this can be extended to a diffeomorphism of one whole piece to
the other.

99See[McGehee, 1975].
100 See[Saari and Xia, 1995]. The question is open forn = 4; but see[Gerver, 2003] for a pos-

sible example. Pseudocollisions require that the positions of at least some of the particles become
unbounded ast → t∗—by exploiting arbitrarily great conversions of potential energy into kinetic en-
ergy, these particles escape to infinity in a finite time. As emphasized by Earman ([1986, Chapter III]
and[this volume]), this means that pseudocollisions involve a rather radical and surprising failure of
determinism—which is most dramatic when one considers the time reverse of such a process, in which
particles not originally present anywhere in space suddenly swoop in from infinity.

101For approaches to the quantization of systems with singular dynamics see, e.g.,[Gotay and De-
maret, 1983] and[Landsman, 1998].
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the general solution consistent with that data contains at least one arbitrary function
of the full set of independent variables.102 There is a wide class of physical theo-
ries whose equations exhibit thisprima faciepathological behaviour—including,
most importantly, Maxwell’s theory of electromagnetism, general relativity, and
their generalizations.

In this subsection I will first sketch a little bit of the theory of Lagrangian treat-
ments of such theories without making any special assumptions about time trans-
lation invariance, the global existence of solutions, or the structure of spacetime.
These further assumptions will later be brought into play, and will underwrite a
consideration of the Hamiltonian form of a theory that is well-behaved except
in possessing under-determined dynamics, and of the representation of time and
change in such theories. This discussion will be followed by three examples.

Let us begin by introducing the notion of a family of gauge symmetries of a La-
grangian theory. Recall that a group,G, acting on the space,K, of kinematically
possible fields is a group of variational symmetries of a Lagrangian,L, defined on
K if the action ofG is appropriately local and leaves the variational problem of
L invariant.103 We call a group,G, of variational symmetries of(K, L) a group
of gauge symmetriesif it can be parameterized in a natural way by a family of
arbitrary functions on spacetime.104 Roughly speaking, each function on space-
time generates a Noether group of symmetries of(K, L)—a one-parameter group
of (suitably local) symmetries of the variational problem ofL.105 Since the set of
functions on spacetime is infinite-dimensional, any group of local symmetries of a
theory is infinite-dimensional.

Most familiar groups of symmetries of physical theories—the group of isome-
tries of a spacetime with non-trivial geometry, the group that acts by changing
the phase of the one-particle wavefunction by the same factor at each spacetime
point, etc.—are finite-dimensional, and hence not do not count as groups of gauge
symmetries in the present sense.

It is easy to see that the equations of motion of a Lagrangian theory admitting
such a group of gauge symmetries under-determine solutions to the theory. Let

102On the relevant notion of under-determined equations of motion, see, e.g.,[Olver, 1993, pp. 170–
172, 175, 342–346, and 377].

103For a more precise definition, see[Zuckerman, 1987, p. 274].
104Let us be more precise. First, letY be a vector space, and letΓ be a space of functions fromV

to Y (more generally, letΓ be a space of sections of some vector bundleE → V ). We assume that
Γ includes all smooth, compactly supported maps fromV to W, but leave open the precise boundary
conditions, smoothness conditions, etc., required to characterizeΓ. (Special care regarding boundary
conditions is required whenΓ contains elements with noncompact support).

Now we define a group ofgauge symmetriesparameterized byΓ as a pair of linear and local maps,
ε 7→ Xε and ε 7→ Rε sending elementsε of Γ to local vector fields onS and to elements of
Ωn−1,0

loc (V × K), respectively, such that∂L(Φ, Xε(Φ)) = DRε(Φ) for all Φ ∈ S andε ∈ Γ.
So eachε ∈ Γ is associated with an infinitesimal generator of a Noether group forL (cf. fn. 71 above).

105A bit more precisely: the discussion of the previous footnote shows that the mapε 7→ (Xε, Rε) is
a map fromΓ to the set of generators of Noether groups of(K, L); in fact, the image of this map will
be infinite-dimensional in nontrivial examples, although it may have a nontrivial kernel (in example 38
below, constant functions all generate the same (trivial) Noether group).
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ε be a function on spacetime that vanishes everywhere but on some compact set
U ⊂ V ; if we allow the corresponding Noether groupξ = {gt} to act on a solution
Φ, then fort 6= 0 the resulting solutionsΦt = gt · Φ will agree withΦ outside of
U, but in general disagree withΦ insideU. Thus if we choose an instantΣ ⊂ V
which does not intersectU, we find thatΦ andΦt induce the same initial data
on Σ, but differ globally—so uniqueness fails for the equations of motion of the
theory.

Recall from section 3.3 that a presymplectic form is a degenerate closed two-
form, and that the imposition of such a form on a space serves to partition the
space by submanifolds called gauge orbits. An argument very similar to that of
the previous paragraph shows that ifL admits a group of gauge symmetries, then
the formΩ thatL induces on the space of solutions is presymplectic, and that the
corresponding gauge orbits are such that two solutions belong to the same gauge
orbit if and only if they are related by an element of the group of gauge symmetries
of L.106 So gauge symmetries ofL are gauge transformations of(S,Ω), in the
sense stipulated in section 3.3 above—they preserve the gauge orbits of the space
of solutions.

It follows from general facts about presymplectic forms that if a function on
S generates a one-parameter group of gauge symmetries, then that function is a
constant function. In particular: the Noether conserved quantity,Qξ : S → R,
associated with a one-parameter group of gauge symmetries,ξ, must be a constant
function.107 Such conserved quantities are trivial, in the sense that they do not
provide any means to distinguish between physically distinct solutions.

So much we can say about any Lagrangian theory admitting a group of gauge
symmetries. Let us now specialize to the case where our equations of motion,∆,
are second-order, our spacetime,V, has enough geometrical structure to admit slic-
ings, solutions exist globally in time, and our Lagrangian,L, admits a dynamical
time translation group,τ. With these further assumptions in place, we can inves-
tigate the implications that giving up on local uniqueness of solutions has for the
picture of time and change developed in section 5 above. We find the following.

Lagrangian Picture. We are assuming that we have a notion of time translation
arising out of the structure of our background spacetimeV. This notion gives
rise, in the usual way, to a dynamical time translation group,τ. The corre-
sponding conserved quantity is the usual Hamiltonian,H, which assigns to
each solution its instantaneous energy. So far so good. But now recall from
the discussion of section 3.3 above that in the setting of a presymplectic
space, if a function generates a given one-parameter family of transforma-
tions of the space, then it also generates all one-parameter families of trans-

106Recall that in fn. 61 above,Ω was defined as the integral of a certain object over an arbitrary
instantΣ ⊂ V. If we consider an infinitesimal local symmetryXε which has no effect on solutions
alongΣ, thenΩ will not seeXε—i.e.,Xε(Φ) will be a null vector at eachΦ ∈ S. See[Deligne and
Freed, 1999,§2.5] and[Woodhouse, 1991, p. 145].

107In fact, it will be the zero function, because the Noether currentJξ will be exact as an(n−1)-form
onV . See[Zuckerman, 1987, p. 274].
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formation gauge equivalent to the given one. In the present case, this means
that in addition to the dynamical time translation group,τ, H generates all
one-parameter groups of transformation of(S,Ω) that agree up to gauge
with τ.

Hamiltonian Picture. Having fixed a notion of time translation in spacetime and
an associated slicing of spacetime into instants, we can proceed as usual
to construct the space of initial data that arise when the configuration and
momentum variables of the field are restricted to an arbitrary instant in our
slicing.108 As in the well-behaved case, given an instantΣ ⊂ V of our slic-
ing and a solutionΦ, we can construct a corresponding initial data set(φ, π)
on our abstract instantS, by pulling back toS the initial data thatΦ induces
on Σ. In the well-behaved case, we found that the space of initial data had
the structureT ∗Q, whereQ was the space of allφ that arise as instanta-
neous field configurations by restricting solutions to instants. In the present
case we find that the(φ, π) that arise as initial data sets form a subspace of
T ∗Q (whereQ is again the space of allφ that arise as restrictions of solu-
tions to instants).109 In addition, we may also find that in order to construct
consistent dynamics, we need to further restrict admissible initial data. The
upshot is that we take as our space of initial data a subspaceI ⊂ T ∗Q.
I comes equipped with a natural geometric structure: the cotangent bun-
dleT ∗Q comes equipped with its canonical symplectic form (see example 7
above); the restriction of this form toI yields a presymplectic formω. When
all goes well, the gauge orbits determined byω have the following structure:
initial data sets(φ, π) and (φ′, π′) arising as the initial data induced on a
given instantΣ ⊂ V by solutionsΦ andΦ′ belong to the same gauge orbit
in (I, ω) if and only if Φ andΦ′ belong to the same gauge orbit in(S,Ω).110

One can go on to define a Hamiltonian function,h, on (I, ω) in the usual
way. Of course, since(I, ω) is a merely presymplectic space,h generates a
whole gauge equivalence class of notions of dynamics (i.e., one-parameter
groups of symmetries of(I, ω)). Suppose that according to one such notion
of dynamics, initial statex0 evolves into statex(t) at timet. Then although
other notions of time evolution generated byh will in general disagree about
what statex0 evolves into at timet, they will all agree that the state att lies
in [x(t)] , the gauge orbit ofx(t).111

Relation between the Pictures.As usual, for each instantΣ in our slicing we
108On constructing the constrained Hamiltonian system corresponding to a given Lagrangian theory

admitting gauge symmetries, see[Dirac, 2001], [Gotayet al., 1978], and[Henneaux and Teitelboim,
1992]. For philosophical discussion, see[Earman, 2003] and[Wallace, 2003].

109This is because so-calledfirst-class constraintsarise: it follows from the definition of the momenta,
pi := ∂L

∂q̇i
, that some components of the momenta are required to vanish identically.

110Warning: it is not difficult to construct (unphysical) examples in which this nice picture fails—see
example 36 below.

111In fact, for each pointy ∈ [x(t)] , there is a notion of time evolution generated byh according to
whichx0 evolves intoy at timet.
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can defineTΣ : S → I, the map that sends a solution to the (pullback to
S of the) initial data that it induces onΣ. In the setting of section 5, these
maps gave us isomorphisms between the space of solutions and the space
of initial data. But in the presence of gauge symmetries, these maps arenot
isomorphisms—since the existence of gauge symmetries implies that many
solutions induce the same initial data on any givenΣ. The situation is most
dramatic when we consider a theory with only finitely many degrees of free-
dom which admits gauge symmetries: for then the space of solutions will be
infinite-dimensional while the space of initial data will be finite-dimensional
(see example 37 below).112 When all goes well, we get the following picture
of the relation between solutions and dynamical trajectories in the space of
initial data (holding fixed a notion of time translation and a slicing adapted
to it).

1. LetΦ be a solution and letx(t) = (φ(t), π(t)) be the curve inI that
arises by lettingx(t) be the initial data set thatΦ induces on the in-
stantΣt ⊂ V. Thenx(t) is a dynamical trajectory of the Hamiltonian
version of the theory.

2. Given a dynamical trajectory,x(t), of the Hamiltonian version of the
theory we find that there is a unique solutionΦ ∈ S such that the curve
in I that corresponds toΦ in the sense of the preceding clause is just
x(t).

3. If Φ,Φ′ ∈ S belong to the same gauge orbit in the space of solu-
tions, then the corresponding dynamical trajectories,x(t) andx′(t) in
I agree up to gauge (in the sense that for eacht, x(t) andx′(t) belong
to the same gauge orbit inI).

4. If dynamical trajectoriesx(t) andx′(t) in I agree up to gauge, then
the solutionsΦ,Φ′ ∈ S to which they correspond belong to the same
gauge orbit inS.

Time. Our notion of time translation lifts in a nice way from our spacetimeV to
the space of solutions,S, where we get the usual representation of time via
an R-action. Even here there is an oddity: the Hamiltonian that generates
this action also generates eachR-action gauge-equivalent to it. The situation
is messier still in the space of initial data: given a notion of time translation
on spacetime and a slicing adapted to that notion, we can construct a Hamil-
tonian picture; but in the presence of gauge symmetries, we find that there
are many dynamical trajectories through each point in the space of initial
data. In effect, our single notion of time translation in spacetime splits into
a multitude ofR-actions on the space of initial data, each with equal claim
to be implementing the dynamics of the theory.

112So in this case we see that no map from(S, Ω) to (I, ω) is an isomorphism; intuitively this is true
for any theory admitting local symmetries.
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Change. The evolution of arbitrary quantities under the dynamics defined on the
space of initial data is indeterministic: ifx0 = (φ0, π0) is an initial data set,
there will be distinct dynamical trajectoriesx(t) andx′(t) passing through
x0 at timet = 0; for an arbitrary functionf : I → R, we have no reason
to expect thatf(x(t)) = f(x′(t)) for t 6= 0; so fixing the state at time
t = 0 does not suffice to determine the past and future values of the quantity
represented byf. But since in this situationx(t) andx′(t) will agree about
which gauge orbit the state lies in at each time, we find that the evolution
of gauge-invariant quantities (those represented by functions on the space
of initial data that are constant along gauge orbits) is fully deterministic—
given the initial state, one can predict the value of such a quantity at all
times. Furthermore, our slicing allows us to associate with each gauge-
invariant function,f, on the space of initial data a one-parameter family
{ft} of gauge-invariant functions on the space of solutions: letft(Φ) be the
value thatf takes on the initial data set thatΦ induces onΣt. In this way
we can represent change of gauge-invariant quantities via functions on the
space of initial data or the space of solutions in the usual way.

This last point, especially, ought to arouse the suspicion that our theory, in the
form currently under consideration, contains surplus structure. For while the the-
ory has some quite disappointing features—ill-posed initial value problem, trivial
conservation laws, a merely presymplectic geometric structure, failure of even lo-
cal isomorphism between the space of solutions and the space of initial data—one
finds that there is a large subset of physical quantities that behave just as the quan-
tities of a well-behaved theory do. One naturally wonders whether there might be
a well-behaved theory governing the behaviour of these quantities lurking some-
where in the background.

This sort of suspicion motivates the application to(S,Ω) and (I, ω) of the
reduction procedure discussed in section 3.3 above. When all goes well, the fol-
lowing picture emerges: the reduced space of solutions (i.e., the space of gauge
orbits of the space of solutions) and the reduced space of initial data (i.e., the
space of gauge orbits of the space of initial data) are both symplectic spaces—and
these reduced spaces are isomorphic.113 The Hamiltonian functions correspond-
ing to time translation on the original space of solutions and time evolution on
the original space of initial data project down to the reduced spaces. The result-
ing reduced Hamiltonians generates time translation and time evolution on their
respective spaces.

In typical examples that arise in physics, one sees that the original theory’s
invariance under a group of gauge symmetries was in fact a sign that physically
otiose variables had been included in the theory. Indeed: the fact that the original
space of initial data is presymplectic with a symplectic reduced space indicates that
within the original Hamiltonian formulation of the theory one can partition the set
of variables parameterizing the original space of initial data into two classes, that

113example 36 below is an (unphysical) case where this isomorphism fails.
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we will call the class ofphysically relevant variablesand the class ofphysically
otiose variables; specifying the initial values of all variables suffices to determine
the values for all times of the physically relevant variables while leaving wholly
arbitrary the evolution of the physically otiose variables.114 At least locally the
physically relevant variables can be taken to parameterize the reduced space of
initial data. This provides a strong reason to think that the Hamiltonian theory
defined on the reduced space of initial data gives a perspicuous representation of
the physics under investigation, involving as it does exactly those quantities whose
evolution is determined by the original theory. And this in turn provides good
reason to think of the reduced space of solutions as representing possible histories
of the system whose possible instantaneous states are represented by points in the
space of initial data.115

REMARK 35 (Reduction and Determinism). Suppose that one is presented with
a prima facie indeterministic theory, in which many future sequences of states
are consistent with a given initial state. Then one could always construct a de-
terministic theory by simply identifying all of the futures consistent with a given
state. As noted by Maudlin, it would be foolish to apply this strategy whenever
one encountered an indeterministic theory: (i) general application of this strategy
would render determinism true by fiat; and (ii) one would often end up embracing
trivial or silly theories.116 For example: in Newtonian physics, the initial state in
which space is empty of particles is consistent with a future in which space re-
mains empty, and also with a future in which particles swoop in from infinity, then
interact gravitationally for all future time (see fn. 100 above); to identify these
futures—to view them as mere re-descriptions of a single physical possibility—
would be absurd.

Now, reduction is a special case of the general strategy that Maudlin objects to.
But since just about any wise course of action is a special case of a strategy that
is in general foolish, this is not in itself an objection to reduction. We ought to
check whether the complaints that Maudlin quite rightly registers against the gen-
eral strategy redound to the discredit of the special case. I claim that they do not.
(i) It is true that reducing theories with gauge symmetries convertsprima faciein-
deterministic theories into deterministic ones. But this is unobjectionable: the sort
of indeterminism that is aprima faciefeature of a theory with gauge symmetries
(namely, the existence of quantities whose evolution is wholly unconstrained by
the initial state of the system) appears to be unphysical. (ii) For the sort of theories

114In a presymplectic manifold satisfying suitable technical conditions, every point has a neighbour-
hood admitting a chart whose coordinates fall into two classes—those that parameterize gauge orbits
and those that parameterize the directions transverse to the gauge orbits; see[Abraham and Marsden,
1978, Theorem 5.1.3]. In the space of initial data, it is natural to take the variables of the first type to
be physically otiose and those of the second type to be physically relevant.

115Since this space arises by identifying solutions related by elements of the group of gauge sym-
metries of the theory, while the reduced space of initial data arises by identifying initial data that are
induced on a given instant by solutions related by elements of the group of gauge symmetries of the
theory.

116See[Maudlin, 2002, pp. 6–8].
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that arise in physics, one does not have to fear that reduction will lead to a trivial or
absurd result—in known cases, reduction carries one to a well-behaved symplec-
tic space that is a suitable setting for a physical theory. Indeed, in such cases, it
is (almost unanimously) agreed that the resulting symplectic space parameterizes
the true degrees of freedom and provides the correct setting for the dynamics of
the original theory.117

EXAMPLE 36 (A Pathological example). Before proceeding, it is important to
emphasize that it is not hard to cook up simple (but unphysical) examples that
do not follow the pattern sketched above for theories with gauge symmetries.118

Consider a particle moving in thex-y plane with LagrangianL = 1
2eyẋ2. The

corresponding Euler–Lagrange equations tell us thatx is constant in time while
the evolution ofy is wholly arbitrary. So the space of solutions consists of pairs
(x0, y(t)) wherex0 ∈ R andy(t) : R → R an arbitrary smooth function; two
solutions(x0, y(t)) and (x′0, y

′(t)) belong to the same gauge orbit if and only
if x0 = x′0. So the reduced space of solutions is justR—which, having an odd
number of dimensions, cannot carry a symplectic structure. On the Hamiltonian
side one finds that the momentum conjugate tox and the momentum conjugate to
y both have to vanish—which means that the space of initial data isR2 = {(x, y)},
with every point being gauge equivalent to every other.119 So the reduced space
of initial data is a single point—which is not isomorphic to the reduced space of
solutions.

EXAMPLE 37 (Particles on a Line). We consider two gravitating point-particles
moving on a line. For simplicity, we choose units so that Newton’s constant is
unity, assume that the particles have unit mass, and set aside worries about colli-
sions and their regularization. We consider three theories of this system.

The Newtonian Theory. We denote the positions of the particles asq1 and q2

with q2 > q1. We interpret these as giving the positions of the particles rel-
ative to a frame at rest in absolute space. The Lagrangian for this system is
L = T − V where the kinetic energy isT := 1

2 (q̇2
1 + q̇2

2) and the potential
energy isV = − 1

q2−q1
. The usual Newtonian equations of motion follow.

It is helpful to consider a variant formulation of this theory. We define new
configuration variables,r0 := 1

2 (q1 + q2) andr1 := q2 − r0 = 1
2 (q2 − q1)

(sor0 is the position of the centre of mass of the system, andr1 is half the
relative distance between the particles). In terms of these variables, our La-
grangian isL(r0, r1, ṙ0, ṙ1) = 1

2 (ṙ2
0+ṙ2

1)+
1

2r1
. The equations of motion tell

117General relativity provides the sole instance in which there is any dissent from the consensus
view; see[Kuchǎr, 1986] and[Kuchǎr, 1993]. This is also the case that Maudlin is concerned with—
he, like Kuchǎr, worries that unreflective application of reduction to general relativity leads to absurd
conclusions about time and has hampered conceptual progress in quantum gravity. Part of the burden
of section 7 below is to show that no absurdities follow from the application of reduction in that case.

118For the following example, see[Henneaux and Teitelboim, 1992,§1.2.2]. For further discussion
of such examples, see[Gotay, 1983].

119This is an example where one constraint arises directly from the definition of the momenta while
the other is required in order to formulate consistent dynamics.
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us thatr0 is a linear function of time (since the centre of mass of an isolated
system moves inertially) whiler1(t) solvesr̈1 = − 1

2r2
1
, and so describes the

relative motion between the particles as they interact gravitationally.

The Leibnizean Theory. In this theory, space and motion are relative, and so the
relative distance,r1, between the particles is the only configuration variable
(or rather,r1 is half the relative distance). The Lagrangian for the Leibnizean
theory isL′(r1, ṙ1) := 1

2 ṙ2
1 + 1

2r1
. The equation of motion is̈r1 = − 1

2r2
1
.

So the Leibnizean theory gives the same dynamics for the relative distances
between the particles as the Newtonian theory.

The Semi-Leibnizean Theory.We take bothr0 andr1 as configuration variables,
and take as our LagrangianL′′(r0, r1, ṙ0, ṙ1) := 1

2 ṙ2
1 + 1

2r1
(so L′′ is a

function ofr0, r1, ṙ0, andṙ1 which happens to depend only onr1 andṙ1).
We apply the variational algorithm: as always, it leads to the conclusion that
a curvex(t) := (r0(t), r1(t)) is a solution to the equations of motion if and
only if ∂L′′

∂ri
− d

dt
∂L′′

∂ṙi
= 0 is satisfied at each point on the curve fori = 0, 1.

For i = 1, we again find thaẗr1 = − 1
2r2

1
, so we get the same dynamics for

the evolution of the relative distances as in the Newtonian and Leibnizean
cases. But fori = 0, our condition on curves is empty, sinceL′′ does not
depend on eitherr0 or ṙ0. It follows that a curvex(t) := (r0(t), r1(t))
counts as a solution to our equations of motion ifr1(t) describes a motion
permitted by the Newtonian or Leibnizean theory andr0 is any (continuous
and appropriately differentiable) function whatsoever.

Let us contrast the structure of these three theories.

Symmetries. The group of variational symmetries of the Newtonian theory is
three-dimensional, consisting of Galilean boosts and spatial and temporal
translations. The group of variational symmetries of the Leibnizean the-
ory is one-dimensional, consisting of time translations. But the variational
symmetry group of the semi-Leibnizean theory is infinite-dimensional: in
addition to temporal translations, it includes time-dependent spatial trans-
lations of the centre of mass as a group of gauge symmetries. Ifr0(t) and
r1(t) are continuous functions, thenx(t) = (r0(t), r1(t)) is a kinemati-
cal possibility. LetΛ(t) be any other continuous function fromR to itself.
Thenx′(t) := (r0(t) + Λ(t), r1(t)) is also a kinematical possibility and
L′′(x(t)) = L′′(x′(t)) for all t (sinceL′′ doesn’t care at all aboutr0). That
is, the mapΦΛ : (r0(t), r1(t)) 7→ (r0(t) + Λ(t), r1(t)) from the space of
kinematical possibilities to itself preserves the Lagrangian, and hence is a
variational symmetry. Indeed, for each suchΛ we get a distinct variational
symmetry ofL′′. So the space of continuousΛ : R → R parameterizes a
group of gauge symmetries ofL′′.
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Gauge Symmetries and the Initial Value Problem.We can exploit these sym-
metries to show how drastically ill-posed the initial value problem for the
semi-Leibnizean theory is. Suppose that att = 0 we fix values forr0,
r1, ṙ0, andṙ1. Let x(t) = (r0(t), r1(t)) be a solution satisfying those initial
data. Now selectΛ : R → R such thatΛ(0) = 0 and Λ̇(0) = 0. Since
ΦΛ is a Lagrangian symmetry,ΦΛ(x(t)) = (r0(t) + Λ(t), r1(t)) is also a
solution—which, of course, satisfies the specified initial data at timet = 0.
In this way, we can construct an infinite-dimensional family of solutions for
each specified set of initial data.

Structure of the Space of Solutions.The spaces of solutions for the Newtonian
and Leibnizean theories are symplectic spaces, of dimension four and two,
respectively. As we have seen the space of solutions of the semi-Leibnizean
theory is infinite-dimensional. And the form thatL′′ induces on this space is
degenerate—the space is not symplectic. The associated gauge orbits have
the following structure:x(t) = (r0(t), r1(t)) andx′(t) = (r′0(t), r

′
1(t)) lie

in the same gauge orbit if and only ifr1(t) = r′1(t) for all t (i.e., solutions lie
in the same gauge orbit if and only if they agree about the relative distances
between the particles—what they say about the motion of the centre of mass
is irrelevant).

Hamiltonian Picture. Writing pi = ṙi, we find that the spaces of initial data for
our theories are as follows.

1. For the Newtonian theory, the space of initial data isT ∗R2 = {(r0, r1,
p0, p1) : ri, pi ∈ R} carrying its canonical symplectic structureω =∑

i=0,1 dri∧dpi. The Hamiltonian isH(r0, r1, p0, p1) = 1
2 (p2

0+p2
1)−

1
2r1

. The equations of motion are the usual deterministic Newtonian
equations.

2. For the Leibnizean theory, the space of initial data isT ∗R = {(r1, p1) :
r1, p1 ∈ R} carrying its canonical symplectic structureω = dr1∧dp1.
The Hamiltonian isH ′(r1, p1) := 1

2p2
1− 1

2r1
. The equations of motion

are the usual deterministic Leibnizean equations.

3. Recall that in constructing the Hamiltonian system corresponding to
a given Lagrangian system, we must first construct the momentum
variables corresponding to the position variables of the Lagrangian
system. The semi-Leibnizean theory has two position variables,r0

and r1. Our recipe tells us that the corresponding momentum vari-
ables arepi := ∂L′′

∂ṙi
, for L′′ the semi-Leibnizean Lagrangian. As

usual,p1 := ṙ1. But becauseL′′ is independent oḟr0, we find that
p0 ≡ 0. It follows that the space of initial data for this theory is the
spaceΓ = {(r0, r1, p1) : r0, r1, p1 ∈ R} that arises when we restrict
attention to those states in the space of initial data for the Newtonian
theory in whichp0 = 0; restricting the symplectic structure of the
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Newtonian theory toΓ yields a presymplectic structure (the vectors
pointing in ther0 direction are the null vectors). The gauge orbits have
the following structure:x = (r0, r1, p1) andx′ = (r′0, r

′
1, p

′
1) lie in the

same gauge orbit if and only ifr1 = r′1 andp1 = p′1. The Hamiltonian
for this theory isH ′′(r0, r1, p1) := 1

2p2
1 − 1

2r1
, which determines the

usual Newtonian/Leibnizean behaviour forr1 andp1 while leaving the
evolution ofr0 wholly unconstrained. That is, ifx(t) andx′(t) are
curves in the space of initial data corresponding to solutions of this
Hamiltonian problem, then one finds that in generalx(t) 6= x′(t) for
t 6= 0, but [x(t)] = [x′(t)] for all t. Note that each such curvex(t)
corresponds to a point in the space of solutions, and that the condition
[x(t)] = [x′(t)] for all t just says that for the points in the space of
solutions that correspond to the curvesx andx′, themselves lie in the
same gauge orbit.

Reduction. As one would expect, the reduced space of initial data of the semi-
Leibnizean theory is isomorphic to the space of initial data of the Leibnizean
theory, and the reduced space of solutions of semi-Leibnizean theory is iso-
morphic to the space of solutions of the Leibnizean theory—in both cases,
this is because identifying points in the relevant gauge orbits amounts to
droppingr0 as a dynamical variable. So reduction implements our physi-
cal intuition thatr0 is an extraneous variable that ought to be excised and
eliminates the pathologies of the semi-Leibnizean theory. Furthermore, the
reduced space of initial data (reduced space of solutions) inherits from the
original theory a Hamiltonian (Lagrangian) that is really that of the Leib-
nizean theory—so these reduced spaces carry dynamical theories with the
correct dynamics and symmetry groups.

Of course, this is a toy example—one of the simplest possible. And it has been
set up here so that it is clear from the beginning that the variables of the semi-
Leibnizean theory can be segregated into the physically relevantr1, which plays
a role in the Lagrangian and whose dynamics is deterministic, and the physically
otioser0, which plays no role in the Lagrangian, and whose evolution is com-
pletely unconstrained by the dynamics. So it has been clear from the beginning
thatr0 ought to be excised from the theory—there has been no temptation to keep
it on board and to conclude that we have an indeterministic theory on our hands.

But note that if we had stuck with our original Newtonian variables,q1 andq2

(with q1 < q2), and had writtenL′′ := 1
2 (q̇2 − q̇1)2 − 1

2(q2−q1)
then things would

not have been quite so clear: the equations of evolution forq1 andq2 would have
mixed together physically relevant information and physically otiose information
and it would have taken a little bit of work to see what was going on.

When we are faced with Lagrangian theories admitting groups of local sym-
metries, we know (unless they exhibit the sort of pathological behaviour we saw
in example 36 above ) that there is some way of separating the variables into the
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physically relevant and the physically otiose (it is easiest to see this on the Hamil-
tonian side). But it is not always easy to find such a separation. This is one of
several reasons why we end up working with such theories rather than with the
more attractive reduced theories that stand behind them.

EXAMPLE 38 (Maxwell’s Theory). We consider the electromagnetic field. Let
V be Minkowski spacetime, and fix an inertial frame and an associated set of
coordinates(x0, x1, x2, x3). We choose as the target space for our fieldW = R4.
So the kinematically possible fields are of the formA : V → R4 (subject to
some unspecified differentiability and boundary conditions).A is the usual four-
potential.

We defineFυν := ∂Aυ

∂xµ
− ∂Aµ

∂xυ
(υ, ν = 0, . . . , 3). So a kinematically pos-

sible field A(x) determines a matrix-valued function,F. We label the compo-
nent functions making upF according to the following scheme, thus identify-
ing components of theF with components of the electric and magnetic fields,
E(x) = (E1(x), E2(x), E3(x)) andB(x) = (B1(x), B2(x), B3(x)):

Fµν(x) =

∣∣∣∣∣∣∣∣
0 −E1(x) −E2(x) −E3(x)
E1(x) 0 B3(x) −B2(x)
E2(x) −B3(x) 0 B1(x)
E3(x) B2(x) −B1(x) 0

∣∣∣∣∣∣∣∣
We take as the Lagrangian for our theoryL := − 1

2

(
|B(x)|2 + |E(x)|2

)
. Writing

A(x) = (A0(x), A1(x), A2(x), A3(x)) andA(x) := (A1(x), A2(x), A3(x)), we
find that the equations of motion for our Lagrangian are:

∇2A0 +
∂

∂x0
(∇ ·A) = 0

∇2A−∂2A
∂x2

0

= 0

(here∇ := ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) is the ordinary three-dimensional gradient operator).
These equations are equivalent to the usual vacuum Maxwell equations for the
electric and magnetic fields:̇B = −∇ × E, ∇ · B = 0, Ė = ∇ × B, and
∇ ·E = 0.

Let Λ : V → R be a continuous function (appropriately differentiable and
satisfying appropriate boundary conditions). Then the mapΦΛ : A 7→ A′ :=
A + dΛ is a map from the space of kinematically possible fields to itself. If one
calculates the matricesF ′ andF corresponding toA andA′, one findsF ′ = F.
SoE andB are invariant under our gauge transformationA 7→ A′. It follows that
L(ΦΛ(A)) − L(A) = 0, so ΦΛ is a Lagrangian symmetry—in particular,A′ is
a solution if and only ifA is. SinceΛ was arbitrary, and sinceΛ andΛ′ lead to
distinct symmetries so long asdΛ 6= dΛ′, we have in fact found a huge family of
symmetries of our theory. Indeed, theΦΛ form a group of gauge symmetries of
our theory in the official sense introduced above.
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Of course, it follows that the initial value problem forA is ill-posed: letA(x)
be a solution for initial data posed on the instantx0 = 0 and letΛ be a nonconstant
function that vanishes on a neighbourhood of the hypersurfacex0 = 0; thenA and
A′ = A + dΛ are solutions that agree onx0 = 0 but do not agree globally.

And, of course, the form that our Lagrangian induces on the space of solutions
is degenerate. The corresponding gauge orbits have the following form: solutions
A andA′ belong to the same gauge orbit if and only if there is aΛ : V → R
such thatA′ = A + dΛ. An equivalent condition is thatA andA′ lie in the same
gauge orbit if and only if they lead to the sameE andB —which is just to say
that the reduced space of solutions is the space of solutions to the field equations
for E andB (remember, we are working in a fixed coordinate system, so these are
well-defined). This reduced space is a symplectic manifold.

We can construct the Hamiltonian theory corresponding to our Lagrangian the-
ory (our chosen inertial coordinates give us a slicing). For convenience, we take
the configuration variables for our Lagrangian theory to beA0(x) andA(x). LetQ
be the space of possible(A0,A) andT ∗Q be the corresponding cotangent bundle,
carrying its canonical symplectic structure. A point inT ∗Q consists of a quadru-
ple (A0(x),A(x), π0(x),π(x)) of fields on spacetime, withA0 and π0 taking
values inR andA andπ taking values inR3. Our usual procedure tells us that
the momentumπ0 corresponding toA0 is identically zero (our Lagrangian does
not depend onȦ0); the momentumπ corresponding toA is π(x) = −E(x). So
the spaceΓ of initial data for our theory is the subspaceT ∗Q of points of the
form (A0(x),A(x), 0,π(x))—so we can take points inΓ to be triples of the form
(A0,A,π). The presymplectic form thatΓ inherits from its embedding inT ∗Q
yields gauge orbits of the following form:(A0,A,π) and(A′0,A

′,π′) belong to
the same gauge orbit if and only ifπ = π′ and∇×A =∇×A′ . Sinceπ = −E
andB = ∇×A, this tells us that two points in the space of initial data lie in the
same gauge orbit if and only if they correspond to the same electric and magnetic
fields. If follows that the reduced space of initial data is just the space of instan-
taneous states of the electric and magnetic fields. We again find that the space of
reduced space of initial data is symplectically isomorphic to the reduced space of
solutions.

In present case, as in the semi-Leibnizean example above, we can view the given
Lagrangian theory as containing surplus unphysical variables, whose evolution
is undetermined by the dynamics, alongside physically sensible variables whose
evolution is fully determined by the dynamics. In the present case, however, it is a
bit harder to make this division explicit: clearly the good variables are the electric
and magnetic fields and the bad ones are those that encode additional information
in A—all we care about is which gauge orbitA lies in, so a specification ofA
gives us surplus information. Reduction allows us to avoid ever mentioning this
sort of surplus information.

We can formulate a Hamiltonian version of Maxwell’s theory in the setting
of the reduced space of initial data: points in this space specify the values of
the electric and magnetic fields at points of space at a given time; this space is
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symplectic; and it is possible to find a Hamiltonian on this space that drives the
dynamical evolution encoded in Maxwell’s equations forE andB.120

It is natural to wonder whether the reduced space of solutions also supports a
Lagrangian version of Maxwell’s theory. That is, is there a Lagrangian in terms of
E, B, and their derivatives whose variational problem has as its Euler–Lagrange
equations the Maxwell’s equations forE andB?

At first sight, it might seem that we could just employ our original Lagrangian,

L := −1
2

(
|B|2 + |E|2

)
,

for this purpose. But this leads to the wrong equations of motion. And there
is reason to worry thatE andB are ill-suited to the variational approach, since
their six components are not independent—they can be derived from the three-
component vector potential—and so cannot be varied independently.121 So it is
not obvious that the reduced space of solutions does support a Lagrangian version
of Maxwell’s theory.

Whether or not this problem is insuperable in the case of Maxwell’s theory in
Minkowski spacetime, other problems lie ahead. Suppose that we construct our
spacetime,V,by rolling up one of the spatial dimensions of Minkowski spacetime:
V is locally Minkowskian but has the global structure ofR3 × S1. This makes a
surprising difference to our theory. It is still true that the gauge orbits in the space
of solutions are of the following form:[A] := {A + dΛ} for all appropriateΛ.
And it is still true that specifying a gauge orbit[A] determines the behaviour of
the electric and magnetic fields on spacetime. But it is no longer quite true that
we can go in the other direction: in order to specify a gauge orbit[A], one has to
specify in addition toE andB also a single complex number, which we will call
the holonomy. Intuitively, the holonomy measures the phase change that results
when an electron is transported along a given loop that wraps once around the
closed dimension of space. Thus a point in the reduced space of solutions can
be viewed as consisting of a specification ofE andB plus the holonomy. This
extra number ruins everything: for whileE andB are appropriately local objects,
assigning a property to each point of spacetime, the holonomy is a nonlocal item.
This becomes even more clear if we look for a way of describing the reduced
space of solutions that does not have the strange feature of including two very
different sorts of variable: the best way to proceed appears to be to describe a
point in the reduced space of solutions as an certain sort of (highly constrained)
assignment of a complex number to each closed curve in spacetime. So in such a
topologically nontrivial spacetime, in order to specify a gauge orbit[A] we need to
specify nonlocal information. The present framework requires that a Lagrangian
field theory involve an assignment of a property of each point of spacetime, and so

120See, e.g.,[Marsden and Weinstein, 1982].
121See[Goldstein, 1953, p. 366] for this point. See[Sudbery, 1986] for a way around this worry—

which, however, requires a slight generalization of the present notion of a Lagrangian theory.
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cannot accommodate this example.122

REMARK 39 (Lagrangians and the Reduced Space of Solutions). In the very sim-
ple particle theory considered in example 37 we saw a case in which the reduced
space of solutions of a theory admitting gauge symmetries inherited from the orig-
inal theory a Lagrangian that encoded the gauge-invariant aspects of the original
dynamics. But in the more interesting case of Maxwell’s theory, considered in
example 38, it seems less likely that there is any sense in which the reduced space
of solutions arises directly from a local Lagrangian, without passing through a
formulation admitting gauge symmetries. And this seems very unlikely indeed if
we choose our spacetime to be topologically nontrivial, because in this case the
Maxwell field appears to involve a non-local degrees of freedom.

Note that things become even worse in non-Abelian Yang–Mills theories. In
these theories, the space of fields is the space of connection one-forms on a suitable
principal bundleP → V over spacetime, the Lagrangian is a direct generalization
of the Lagrangian of Maxwell’s theory, and the group of gauge symmetries is the
group of vertical automorphisms ofP. The reduced space of solutions is the space
of connections modulo vertical automorphisms ofP. Even whenV is Minkowski
spacetime, the best parameterization of the reduced space of solutions would ap-
pear to be one that deals with holonomies around closed curves in spacetime.123

So it would again appear difficult (perhaps impossible) to capture this reduced
space of solutions via the variational problem of a local Lagrangian.124 Indeed, it
seems plausible the prevalence of gauge freedom in physical theories is grounded
in the fact that by including nonphysical variables one is sometimes able to cast an
intrinsically nonlocal theory in to a local form.125

6.3 Time-Dependent Systems

Let us assume that our spacetime,V, admits a slicing, and that our equations of
motion, ∆, are second-order and exhibit good existence and uniqueness proper-
ties.126 But we now assume that our LagrangianL is time-dependent,in the sense

122That is, we seem to be talking about properties that require something bigger than a point to be
instantiated, in violation of Humean supervenience (see fn. 45 above).

123There is, however, considerable controversy among philosophers regarding the best interpretation
of classical non-Abelian Yang–Mills theories. See[Healey, Unpublished], [Maudlin, Unpublished],
and[Belot, 2003,§12].

124Under a usage distinct from the present one, any Hamiltonian theory on a velocity phase space
(i.e., a tangent bundle) counts as a Lagrangian theory; see, e.g.,[Abrahamet al., 1988, Chapter 8].
Under this alternative use, Lagrangians are not required to be local and a variational principle plays no
necessary role. It may well be that there are treatments of theories that are Lagrangian in this sense, but
not in the sense that I am concerned with here.

125On this point, see, e.g.,[Belot, 2003,§13]. For further speculation about the importance of gauge
freedom, see[Redhead, 2003].

126Recall from section 5.2 above that a slicing of a spacetime is a decomposition into space and time;
not every slicing satisfies the stronger condition that this decomposition meshes with a time translation
group onV. Only spacetimes with geometries strong enough to determine a family of instants and a
family of possible point-particle worldlines admit slicings.
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that it does not admit a dynamical time translation group,τ, arising from a time
translation group,̄τ , onV.

The time-dependent Lagrangian theories that arise in physics fall under the two
following cases.

Case (A): V admits a time translation group̄τ , but this group does not correspond
to a symmetry of the equations of motion. Example: A system of particles
in Newtonian spacetime, subject to forces arising from a time-dependent
potential.

Case (B): V does not admit a time translation group. For example, let(V, g)
be a curved general relativistic spacetime without temporal symmetries and
take the Klein–Gordon equation for a scalar field on(V, g), ∇a∇aΦ −
m2Φ = 0, as the equation of motion (note that the metric onV plays a
role in defining the derivative operators); the corresponding Lagrangian is
L = 1

2

√
−g∇a∇aΦ + m2Φ2.

We will also need that notion of a time-dependent Hamiltonian system.

DEFINITION 40 (Time-Dependent Hamiltonian Systems). Atime-dependent
Hamiltonian system(M,ω, h) consists of a symplectic manifold(M,ω), called
the phase space, together with a smooth functionh : R × M → R, called the
Hamiltonian. We often writeh(t) for h(t, ·) : M → R.

Ordinary Hamiltonian systems (see definition 8 above) are special cases of
time-dependent Hamiltonian systems in whichh(t) is the same function onM
for each value oft; we will also call such systemstime-independent Hamilto-
nian systems.In a time-independent system, the dynamical trajectories could be
thought of as curves in in the phase space, parameterized up to a choice of ori-
gin, with exactly one such curve passing through each point of the space. In the
time-dependent case, the situation is more complicated. For each value oft, we
can solveω(Xh(t), ·) = dh(t) for the vector fieldXh(t) generated byh(t). We can
then declare that a curveγ : R → I is a dynamical trajectory of(I, ω, h) if for
eacht ∈ R, γ̇(t) = Xh(t)(γ(t)) —that is, for eacht, the tangent vector toγ at
x = γ(t) is given by the value of the vector fieldXh(t) at x. Notice that while
in the case of a time-independent Hamiltonian system, there is a single dynamical
trajectory through each point of the phase space, in the present case there will in
general be many such trajectories through each point (since which states come im-
mediately afterx ∈ I depends on the tangent to the dynamical trajectory through
x; and in the time-dependent case, this tangent will vary as we consider posing
initial datax at different possible instants).

Given the set of assumptions that we have in play, we expect to to find the
following when we investigate a time-dependent Lagrangian theory.

Lagrangian Picture. One can apply the usual variational procedure to pass from
a Lagrangian to a set of equations of motion. We can also follow the usual
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procedure in order to equip the corresponding space of solutions,S, with a
two-form,Ω—and, as usual, one presumes that for the sort of examples that
arise in physics, uniqueness of solutions to the equations of motion implies
thatΩ is symplectic.127 Note, however, that in time-dependent theories of
the types under consideration,S doesnot carry a one-parameter group im-
plementing time translations: in theories falling under Case (A) above, such
a group acts on the space of kinematically possible fields, but (in general)
maps solutions to non-solutions; in theories falling under Case (B), there
is no available notion of time translation. We can as usual use the stress-
energy tensor of the field to define the energy of the field along any given
instant—but the result is no longer independent of the instant chosen.

Hamiltonian Picture. A choice of slicing for our spacetimeV leads to a Hamil-
tonian picture which is in many ways similar to that which emerges in the
time-independent case. LetS be a manifold homeomorphic to an arbitrary
instantΣ ⊂ V (and with the geometry, if any, shared by such instants) and
let σ be a slicing ofV employingS as an abstract instant: it is helpful to
think of the choice ofσ as the choice of a preferred family of observers
equipped with a notion of simultaneity. Then we can set about construct-
ing a Hamiltonian version of our theory, following in so far as possible the
recipe from the time-independent case.

1. Given an instantΣ in our slicing and a solutionΦ, we define:φ, the
restriction of the field toΣ; φ̇ the time rate of change ofΦ alongΣ
relative to the observers and clocks that defineσ; andπ := ∂L

∂φ̇
, the

field momentum alongΣ relative to the slicingσ.

2. Given a solutionΦ and instantΣ in our slicing, we useσ to pull back
to S the initial data (φ, π) induced byΦ onΣ, and henceforth think of
φ andπ as functions defined onS, when convenient.

3. LetQ be the space of allφ : S → W that arise in this way; thenT ∗Q
is the space of all pairs(φ, π) that arise in this way. This is our space of
initial data, I. It carries a canonical symplectic form,ω (see example
7 above).

4. The construction of the Hamiltonian is the first stage at which we run
into any novelty.128 Let Σt be an instant in our slicing, and define
h(t) : I → R (t fixed, for now) ash(t)(φ, π) :=

∫
Σt

πφ̇ − L(Φ)dx,

whereΦ is the solution that induces(φ, π) on Σt, and φ̇ is the field
velocity thatΦ induces onΣt. In general, this construction yields a
different real-valued function onI for each value oft. One expects
that h(t)(φ, π) gives the total instantaneous energy when initial data

127For a discussion of the construction of(S, Ω) in the time-dependent case, see[Woodhouse, 1991,
§2.4].

128For this construction see, e.g.,[Kay, 1980,§1].
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(φ, π) are posed on instantΣt. But imposing the same initial data at
distinct times in general leads to states with different total energies
(since, roughly speaking, we are dealing with systems subject to time-
dependent potentials).

5. Now consideringt as a variable, we see that we have defined a smooth
h : R × I → R. So (I, ω, h) is a time-dependent Hamiltonian sys-
tem in the sense of definition 40 above. The resulting dynamics can be
thought of as follows. Suppose that we are interested in the dynamics
that results when we pose our initial data on a fixed instantΣt0 in our
slicing. Then, for eachs ∈ R we can ask what statex ∈ I, posed on
Σt0 , evolves into afters units of time; we call the resultgt0

s (x). This
gives us a mapgt0

s : I → I for eachs; and the set{gt0
s }s∈R forms a

one-parameter group; each ofgt0
s is a symplectic automorphism ofI

but does not leaveh invariant. So here we have the dynamics imple-
mented by symmetries of(I, ω) that are not symmetries of(I, ω, h).
Letting t0 vary gives us a one-parameter family of such one-parameter
dynamics-implementing groups.

Relation between the Pictures.As in the time-independent setting, for eachΣ
in our slicing, we can define the mapTΣ : S → I that sends a solution to
the initial data it induces onΣ. Because we are assuming global existence
and uniqueness for solutions to our equations of motion, each such map is
a bijection. Furthermore, as in the time-independent case, each suchTΣ is
in fact a symplectic isomorphism betweenS andI. We can use these maps
to show that the time-dependent Hamiltonian system constructed above en-
codes the correct dynamics for our equations of motion: letΦ be a solution
and letx0 be the initial data induced byΦ on the instantΣ0, and letx0(t)
be the corresponding dynamical trajectory in the space of initial data; then
for eacht ∈ R, x0(t) is the initial data thatΦ induces onΣt.

In the time-independent case, we also found that the mapsTΣ intertwined
the actions of the group implementing time translation on the space of so-
lutions and time evolution on the space of initial data. In the present case,
we have, so far, nothing corresponding to time translation on the space of
solutions, while on the space of initial data, we have a whole family of no-
tions of time evolution (indexed by a choice of instant upon which initial
data are to be posed). Now note that for each instantΣt in our slicing and
eachs ∈ R we can definêgt

s := T−1
Σt

◦ gt
s ◦ TΣt

; the family{ĝt
s}s∈R is a

one-parameter group of symplectic automorphisms of(S,Ω) which isnot a
group of variational symmetries of our Lagrangian. The result of applying
ĝt

s to a solutionΦ is the solution that would result if the initial data induced
by Φ onΣt had been posed instead on the instantΣt−s.

129

129Of course, in the time-independent case, this reduces to time translation of solutions—so we can
regard the transformationŝgt

s as generalizing the ordinary notion of time translation of solutions.
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Time. In the present context, time translation may or may not be a symmetry of
our spacetime. But even if it is, there is no corresponding symmetry of the
dynamics. And so our picture is hobbled—we do not get nice actions of
the real numbers on the space of solutions and on the space of initial data
that implement time translation and time evolution. On the space of initial
data, for each instant at which we might choose to pose initial data, we
get a one-parameter group implementing time evolution—but this is not a
symmetry of the Hamiltonian. On the space of solutions, we have no natural
group action corresponding to time-translation. If we choose a slicing and
an instant, then we can get anR-action that gives us information not about
time translation of solutions, but about what solution results if we take the
initial data that a given solution induces on that given instant and re-pose it
on another instant.

Change. Some physical quantities will be represented by functions on the space
of initial data: for example, in a theory of two Newtonian particles subject to
time-dependent external forces, relative distance between the particles will
be encoded in a function on the space of initial data. But some quantities will
be represented by one-parameter families of functions on the space of initial
data: energy will be an example of such a quantity in any time-dependent
system.130 As we have done above with the Hamiltonian, let us use the
symbolf(t) to denote such a one-parameterone-parameter family—we can
think of an ordinary function as being a degenerate case, wheref(t) is the
same function onI for eacht ∈ R. Let x(t) be a dynamical trajectory inI.
Thenx(t) represents the quantity modelled byf(t) as changing if and only
if ∃t1, t2 ∈ R such thatf(t1)(x(t1)) 6= f(t2)(x(t2)).

On the space of solutions, we expect that, once we have chosen a slicing,
each quantity of interest will be represented as usual by a one-parameter
family of functions—as usual, we denote such a family of functions onS
by {ft}. Suppose that a quantity of interest is represented byf(t) on the
space of initial data, and letΣt0 be an instant in our slicing. Then we define
ft0 := f(t0) ◦ TΣt0

: S →R. Carrying this out for eacht ∈ R gives us
our desired{ft}. As usual, we view a solutionΦ ∈ S as representing our
quantity as changing if∃t1, t2 ∈ R such thatft1(Φ) 6= ft2(Φ).

REMARK 41 (Artificially Time-Dependent Theories). If we have a time-independent
Lagrangian theory but perversely choose a slicing that is not adapted to our notion
of time translation, then we the result of following the above procedure would be
a time-dependent Hamiltonian system.

130It is not hard to find other examples. In a field theory set in a nonstationary spacetime, the abstract
instant will not carry a Riemannian metric (since the instantsΣ ⊂ V do not share a Riemannian
geometry). In this case, we find that an initial data set that represents the field as having two sharp peaks
will correspond to instantaneous states in which the peaks are different distances apart, depending on
the instantΣt in the slicing upon which the initial data are posed. So in this sort of example, even
relative distance is represented by a family of functions on the space of initial data.
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REMARK 42 (Quantization of Time-Dependent Systems). There is no special
difficulty in quantizing a time-dependent Hamiltonian treatment of a system with
finitely many degrees of freedom. But it is not in general possible to construct
a well-behaved quantum Hamiltonian for a time-dependent field theory.131 For
this reason, the standard construction of free quantum field theories on curved
spacetimes take as their starting point the space of solutions rather than the space
of initial data.132

7 THE PROBLEM OF TIME IN GENERAL RELATIVITY

General relativity differs from the theories considered above in being generally
covariant. It is widely accepted that this leads to certain characteristic technical and
conceptual problems, grouped together under the rubricthe problem of time.This
section forms an extended commentary on the problem of time in general relativity.
The first subsection below is devoted to a discussion of the general covariance of
general relativity and some of its direct consequences. The following subsection
contains a discussion of the problem of time itself—essentially that change cannot
be represented in the theory in the way familiar from the discussion of sections 5
and 6 above. The final subsection discusses a strategy for finding time and change
in general relativity (this discussion is intended by way of further clarification of
the problem of time, rather than as a suggested resolution).

It is important to emphasize that while the present discussion focuses on general
relativity, the problems under discussion arise whenever one has a theory that is
generally covariant in an appropriate sense.

7.1 The General Covariance of General Relativity

Let V be a spacetime manifold, with or without geometrical structure. Recall that
a Ck (0 < k ≤ ∞) diffeomorphismd : V → V is a Ck bijection with Ck

inverse.133 Leaving the degree of differentiability unspecified, we will denote by
D(V ) the group of diffeomorphisms fromV to itself.134

131See, e.g.,[Kay, 1980,§2.1].
132See[Wald, 1994, Chapter 4].
133A diffeomorphismd : V → V is calledsmall if it is homotopic to the identity, otherwise it is

large. For ease of exposition, I implicitly restrict attention to small diffeomorphisms below. I will often
speak of the pullback of a tensor by a diffeomorphism. The most important case will be the pullback
d∗g of a spacetime metricg by a diffeomorphismd. Intuitively (V, d∗g) is the spacetime geometry
that results if we liftg off V, then used to permute the identities of points ofV, then layg back down.
(V, g) and(V, d∗g) share a set of spacetime points and have isomorphic geometries; they differ only
as to which points inV play which geometric roles—unlessd is a symmetry of the metric, in which
case they do not differ even about this.

134Special care is required in dealing with groups of diffeomorphisms: on the one hand, the group
of Ck diffeomorphisms from a compact manifold to itself has a nice differentiable structure—it is
a Banach manifold—but is not a Banach Lie group because the operation of group multiplication is
not smooth; on the other hand, the the group of smooth diffeomorphisms from a compact manifold to
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Roughly speaking, we want to say that a theory is generally covariant when it
hasD(V ) as a symmetry group.135 So for each of the several notions of symmetry
of a theory, we have a corresponding notion of general covariance. Following
[Earman, Unpublished], I will single out the following two as the most important
for our purposes:

Weak General Covariance:D(V ) is a group of symmetries of the equations∆
of the theory.

Strong General Covariance:D(V ) is a group of gauge symmetries of the La-
grangianL of the theory.

Of course, Strong General Covariance implies Weak General Covariance (since
every gauge symmetry is a variational symmetry, and therefore a symmetry of
the equations of motion). But the converse is not true (a theory may be weakly
generally covariant even if it does not admit a Lagrangian, and hence is not eligible
to be strongly generally covariant).

We have been allowingV to carry a fixed geometrical background, encoded in
some tensors that do not vary from solution to solution. We could have allowed
V to carry further nongeometric solution-independent structure.136 On the other
hand, in any nontrivial theory the fields governed by the equations of motion will
of course vary from solution to solution. So we have have a distinction between
theories in which is equipped with nontrivial solution-independent structure and
theories in which it is not.137

Intuitively, a theory is weakly generally covariant if and only if its solutions
carry no solution-independent tensors (or spinors, or . . . )—for it is precisely when
we have some fixed background tensors painted onV that the equations of motion
can “care” about the distinction between a solutionΦ and its pullbackd∗Φ by a
diffeomorphismd : V → V.

Of course, general relativity is weakly generally covariant—indeed, in the im-
portant vacuum sector of general relativity the spacetime metric is the only basic

itself has a less desirable differentiable structure—it is a mere Fréchet manifold—but it is a Fréchet Lie
group; see[Adamset al., 1985] and[Milnor, 1984] for details. The situation is even worse for groups
of diffeomorphisms from a noncompact manifoldV to itself: it appears that one needs to presuppose
some geometrical structure onV in order to give the group a differentiable structure; see[Cantor,
1979] and [Eichhorn, 1993]. See[Isenberg and Marsden, 1982] for tactics for circumventing these
difficulties.

135See[Norton, 1995] for the tangled history of the notion of general covariance.
136For example, in studying in the motion of charged matter in a strong external electromagnetic

field, we might employ a theory in which the Maxwell field as well as the spacetime geometry was
solution-independent and only the motion of the matter varied from solution to solution.

137Note that the distinction made here between solution-independent and solution-dependent struc-
tures does not coincide with the Anderson–Friedman distinction between absolute and dynamical ob-
jects (see[Friedman, 1983,§II.2]): solution-independent objects are required to be the same from
solution to solution while absolute objects are only required to be the same from solution to solution
up to diffeomorphism.
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quantity of the theory, and it is solution-dependent.138

The question whether general relativity satisfies Strong General Covariance is
a bit more subtle. Intuitively, it ought to: for at the formal level diffeomorphisms
of V are variational symmetries of the Lagrangian of the theory, and the group
of such diffeomorphisms is parameterized in a suitable sense by the set of vector
fields onV. But, as we will soon see, this is a point at which technicalities about
boundary conditions cannot be ignored.

But we can block out such technicalities by restricting attention to the subset
Dc(V ) ⊂ D(V ), consisting of compactly supported diffeomorphism fromV to
itself.139 Dc(V ) turns out to be a group of gauge symmetries of the Lagrangian of
general relativity (Dc(V ) is parameterized by the family of compactly supported
vector fields onV ). So the counterpart of condition (2) above goes through when
D(V ) is replaced byDc(V ).

In order to say more, and to approach the question of the significance of gen-
eral covariance for questions about time, we turn below to two special cases: (i)
general relativity in the spatially compact domain; (ii) general relativity in the do-
main in which asymptotic flatness is imposed at spacelike infinity. The first case
is central to cosmology: by requiring space to be compact, one eliminates wor-
ries about boundary conditions at spatial infinity; this permits one to investigate
universes packed with matter while maintaining control over technical issues. The
second case is of more strictly mathematical and conceptual interest (the asymp-
totic boundary conditions of greatest physical interest impose asymptotic flatness
at null infinity rather than spatial infinity; these allow one to investigate gravita-
tional radiation). After discussing these cases, I briefly turn to the question whether
every theory can be given a generally covariant formulation.

General Relativity as a Cosmological Theory

We restrict attention to vacuum general relativity in which the spacetime metric,
g, is the only field. So we take as our space of kinematically possible fields the
space of Lorentz signature metrics on some fixedn-dimensional spacetime mani-
fold V.140 The equation of motion for this theory isRab − 1

2Rgab = 0, whereRab

is the Ricci curvature ofg andR is the scalar curvature ofg; here and throughout
we require the cosmological constant to vanish.

Recall that a subsetΣ ⊂ V is called aCauchy surfaceof (V, g) if every inex-
tendible timelike curve in(V, g) intersectsΣ exactly once; it follows that a Cauchy
surface is an(n−1)-dimensional spacelike submanifold onV. We call(V, g) glob-
ally hyperbolicif it possesses a Cauchy surface. If(V, g) is globally hyperbolic,

138In this regime, the Einstein Field equations just tell us that if metricg onV counts as a solution if
and only if the Ricci curvature tensor ofg vanishes. And clearlyg is Ricci-flat if and only ifd∗g is. So
D(V ) maps solutions to solutions.

139That is, a diffeomorphismd : V → V is in Dc(V ) if and only if there exists a compact set
U ⊂ V such thatd acts as the identity onV/U.

140So a kinematically possible field is a section of the bundle of symmetric bilinear forms of Lorentz
signature overV.
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then it can be foliated by Cauchy surfaces, and all of its Cauchy surfaces are home-
omorphic to one another. Indeed, if(V, g) is globally hyperbolic, thenV is home-
omorphic to a manifold of the formS×R for some(n−1)-dimensional manifold
S, with all the Cauchy surfaces of(V, g) homeomorphic toS. For the purposes of
this discussion of general relativity as a cosmological theory we restrict attention
to solutions with compact and orientable Cauchy surfaces.141

We can proceed to construct Lagrangian and Hamiltonian versions of our the-
ory.

Lagrangian Picture. The Lagrangian for general relativity is theEinstein-Hilbert
Lagrangian, L =

√
−gR. The space of solutions is, of course, infinite-

dimensional. Let us call a solutionwell-behavedif it admits a foliation by
Cauchy surfaces with constant mean curvature.142 It is believed that the
set of well-behaved solutions forms a large open subset of the full space of
solutions; and it is known that within the space of well-behaved solutions
the only singularities that occur are mild ones at metrics that admit Killing
fields (these are vector fields that can be thought of as the infinitesimal gen-
erators of spacetime symmetries).143 The groupD(V ) is a group of gauge
symmetries of the Einstein-Hilbert Lagrangian: each one-parameter group
of diffeomorphisms fromV to itself is a group of variational symmetries of
this Lagrangian, and the groupD(V ) can be parameterized by arbitrary vec-
tor fields onV.144 So, in accord with the theory of gauge theories developed
in section 6.2 above, we find that the space,S, of well-behaved solutions
carries a presymplectic form,Ω (henceforth I drop the qualifier and speak of
S as the space of solutions).145 As usual, this presymplectic form induces
a partition of the space of solutions by gauge orbits. Two metrics,g andg′,
belong to the same gauge orbit if and only if there exists a diffeomorphism
d : V → V such thatg′ = d∗g. Of course, the conserved quantities associ-
ated with one-parameter groups of diffeomorphism are trivial—each is the
zero function onS. Indeed, in this context, general relativity has no non-
trivial Noether quantities—beyond diffeomorphisms, the only continuous,
local symmetries of the laws are metric rescalings, which are not variational
symmetries.146

141The restriction to globally hyperbolic solutions is not required for construction of a Lagrangian
version of general relativity, but is required for the Hamiltonian treatment and plays a role in some
of the results cited below concerning the structure of the space of solutions. The requirement that the
spatial topology be orientable is required for the Hamiltonian treatment.

142Mean curvature will be defined below on p. 69, in the course of the discussion of the space of
initial data.

143For the structure of the space of well-behaved solutions, see[Isenberg and Marsden, 1982].
144See[Crnkovíc and Witten, 1987] and [Woodhouse, 1991, pp. 143–146]; the latter provides an

argument that non-compactly supported diffeomorphisms belong in the group of gauge symmetries of
the Lagrangian.

145See also[Frauendiener and Sparling, 1992] for a construction of the presymplectic form on the
space of solutions which does not proceed via the Lagrangian formalism.

146See[Torre and Anderson, 1996, esp. p. 489].
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Reduced Space of Solutions.The space,S ′, of gauge orbits of the space of so-
lutions of general relativity is a symplectic space with mild singularities at
points corresponding to solutions with Killing fields.147 Let us call a point
[g] in the reduced space of solutions ageometry—since distinct representa-
tives of [g] representV as having the same spacetime geometry, but differ
as to the distribution of geometrical roles to points ofV. So far as I know,
it makes no sense to speak of this reduced space as the space of solutions
as arising from the variational problem for a local Lagrangian. Indeed, a
geometry[g] would not appear to assign any particular local property to any
pointx ∈ V.

Hamiltonian Picture. The construction of the corresponding Hamiltonian picture
requires a bit of care.148 We want to mimic as much of the procedure of sec-
tion 5 above as we can, given that we do not have available a slicing (which
requires that spacetime have a nontrivial solution-independent geometry).
We proceed as follows.149

1. Construct the space of initial data. Up until now, we have been able to
proceed as follows: (i) choose a slicingσ of V and an instantΣ ⊂ V
in σ, then construct the space of possible instantaneous field configu-
rations,Q, by looking at all theφ : Σ → W that arise by restricting
solutionsΦ to Σ; (ii) construct the space of initial dataI ⊆ T ∗Q by
finding all pairs(φ, π) that are induced as initial data onΣ (whereπ
is the instantaneous field momentum, defined viaπ := ∂L

∂φ̇
, with φ̇ is

the time rate of change of the field according to the observers associ-
ated with the slicingσ). We found thatI was a proper subset ofT ∗Q
whenever the LagrangianL of the theory admitted a group of gauge
symmetries.
Without relying on a notion of slicing, we can construct a space of
initial data via a procedure surprisingly close to the usual one.
If Σ ⊂ V is an instant andg is a solution to the Einstein field equa-
tions, thenq := g |Σ is a symmetric covariant tensor of rank two. But
in the present setting, the restriction of a solution to an arbitrary instant
is not a good candidate for an instantaneous configuration of the field:
intuitively, since the gravitational field of general relativity is a space-
time geometry, an instantaneous configuration of this field should be a
spatial geometry. But, of course,q := g |Σ is a Riemannian metric on

147See[Isenberg and Marsden, 1982].
148For the constructions that follow see[Wald, 1984, Appendix E.1] or [Beig, 1994].
149The construction sketched here does not rely on the lapse and shift fields. Fixing the behaviour

of these nonphysical fields allows one to pass from initial data on an abstract instantS to a solution
on S × I for some (possibly small) intervalI of real numbers. As such they allow one to establish a
bijection between the space of initial data and a set of solutions of limited temporal extent. I avoid the
lapse and shift here because I want to concentrate on global results and on physical fields. For a very
helpful introduction to the lapse and shift formalism, see[Marsdenet al., 1972,§III ].
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Σ if and only if Σ is spacelike according tog. Soq = g |Σ represents
an instantaneous state of the field if and only ifΣ is spacelike.150 So
it seems reasonable to take as the space of possible instantaneous field
configurations,Q, the space of Riemannian metricsq that arise by re-
stricting each solution to the hypersurfaces that it renders spacelike.151

The definition of instantaneous field momenta is more complicated. In
the familiar case, the slicingσ plays an important role. But nothing
like that is available in the present case: it is awkward to introduce a
solution-independent notion of slicing in the context of general rela-
tivity, considered as a dynamical theory.152 There is, however, a way
around this difficulty. Consider a solutiong and an instantΣ ⊂ V that
g represents as being spacelike. Relative tog we can choose a slic-
ing of V in the usual sense (since relative tog we can single out the
instants and possible worldlines of point-particles as submanifolds of
V ). We call such a slicingGaussianfor Σ if it corresponds to a set of
freely falling observers whose clocks all read zero as they pass through
Σ, and whose worldlines are all orthogonal toΣ. For sufficiently small
t the hypersurfaces of constantt according to the Gaussian observers
will be Cauchy surfaces carrying Riemannian metricsq(t) := g |Σt

.

So given a Gaussian slicing forΣ, we can definėqab := ∂qab(t)
∂t |t=0,

which is a symmetric covariant tensor of rank two onΣ. In fact, q̇ab

is independent of the Gaussian slicing chosen, and can be viewed as
telling us about the geometry of the embedding ofΣ in (V, g). We can
take a similar view of theextrinsic curvatureof Σ in (V, g), kab := 1

2
q̇ab, and themean curvaturealongΣ in (V, g), k := qabkab. Now: rela-
tive to our Gaussian slicing, the tensorq̇ab(0) represents the velocity of
the gravitational field, in the sense that it encodes information about the
time rate of change of the field; as usual, we can define the correspond-
ing momentum asπab := ∂L

∂q̇ . For the Einstein-Hilbert Lagrangian we

haveπab =
(√

qkab − kqab
)

(so the momentum is a symmetric con-
travariant tensor of rank two).153 We take as our space of initial data

150In the spatially compact globally hyperbolic regime, a submanifold of(V, g) with the topology of
a Cauchy surface for(V, g) is a Cauchy surface if and only if it is spacelike according tog; see[Budic
et al., 1978, Theorem 1].

151As usual, the fieldq is taken to be defined on an abstract instant,S, diffeomorphic to the concrete
instantsΣ ⊂ V. In order to constructQ we choose an instantΣ ⊂ V and a diffeomorphismd : S →
Σ, and used to pull back toS all of the q that arise as restrictions ofΣ of solutions that renderΣ
spacelike.Q is of course independent of the choice ofΣ andd.

152Suppose thatσ is a slicing relative to a metricg on V. Then the restriction ofg to the instantsΣt

in σ will be reasonable instantaneous field configurations, and so relative toσ the solutiong ought to
correspond to a curve in the space of initial data of the theory. But what happens if we look at another
solutiong′ relative toσ? In general, the result of restricting this new solution to an instantΣt in σ
will not be an instantaneous state of the field—soσ will not give us the means to associate with each
spacetime solutiong a trajectory in the space of initial data.

153If we calculateq̇ relative to a non-Gaussian slicing of(V, g), then we will in general get an answer
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the spaceI ⊂ T ∗Q of pairs(q, π) that arise as the field configuration
and momentum induced by solutions on instants they render spacelike
(with q andπ functions living on an abstract manifoldS). As is to be
expected in a theory with gauge symmetries,I is a proper subspace
of T ∗Q and the restriction of the canonical symplectic form onT ∗Q
equipsI with a presymplectic form,ω. The gauge orbits ofω have the
following structure: initial data sets(q, π) and(q′, π′) belong to the
same gauge orbit if and only if they arise as initial data for the same
solutiong.154

2. Construct a Hamiltonian. Application of the usual rule for construct-
ing a Hamiltonian given a Lagrangian leads to the Hamiltonianh ≡ 0.

3. Construct dynamics. Imposing the usual dynamical equation, accord-
ing to which the dynamical trajectories are generated by the vector
field(s) Xh solving ω(Xh, ·) = dh, leads to the conclusion that dy-
namical trajectories are those curves generated by null vector fields.
So a curve inI is a dynamical trajectory if and only if it stays always in
the same gauge orbit. This is, of course, physically useless—since nor-
mally we expect dynamical trajectories for a theory with gauge sym-
metries to encode physical information by passing from gauge orbit
to gauge orbit. But in the present case, nothing else could have been
hoped for. A non-zero Hamiltonian would have led to dynamical tra-
jectories which passed from gauge orbit to gauge orbit—but this would
have been physical nonsense (and worse than useless). For such dy-
namics would have carried us from an initial state that could be thought
of as an instantaneous state for solutiong to a later instantaneous state
that could not be thought of as an instantaneous state for solutiong.
In doing so, it would have turned out to encode dynamical information
very different from that encoded in Einstein’s field equations.

Reduced Space of Initial Data.We can pass to,I ′, the space of reduced initial
data: a point in this space consists of a gauge equivalence class of points in
the space of initial data. Like the reduced space of solutions, the reduced
space of initial data is a symplectic space with mild singularities.155 Indeed,
it is presumed that the two reduced spaces are canonically isomorphic as
symplectic spaces, under the map that takes a gauge orbit of initial data

quite different from that generated by a Gaussian slicing. But if we use this new notion of the field
velocity in our definition of the field momentum, we find that our new observers agree with our original
Gaussian observers about the value of the field momentum at each point ofΣ. So, rather surprisingly,
in general relativity the field momentum depends on the instant chosen, but not on a slicing.

154More precisely:(q1, π1) and (q2, π2) belong to the same gauge orbit if and only if there is a
solutiong, instantsΣ1, Σ2 ⊂ V, and diffeomorphismsd1 : S → Σ1 andd2 : S → Σ2 such that
for i = 1, 2 (qi, πi) is the pull back toS by di of the initial data thatg induces onΣi. Note that if
Σ1 = Σ2 but d1 6= d2, then(q1, π1) and(q2, π2) will be distinct but gauge-equivalent descriptions
of the geometry of a single Cauchy surface in(V, g).

155See[Fischer and Moncrief, 1996].
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to corresponding gauge orbit of solutions.156 I ′ inherits fromI the trivial
Hamiltonianh ≡ 0; this induces the trivial dynamics onI ′ according to
which the dynamical trajectories are constant curves of the formx(t) = x0

for all values oft.

Relation between the Pictures.The space of solutions and the space of initial
data are not isomorphic—this is a general feature of theories with gauge
symmetries. On the other hand, as we just noted, the reduced space of solu-
tions and the reduced space of initial data are believed to be isomorphic. In
the case of a theory on a fixed background spacetime, a slicing yields a one-
parameter family of symplectic isomorphism between the space of solutions
and the space of initial data that serves the dual purposes of intertwining the
temporal symmetries of their respective spaces and allowing us to construct
a representation of change on the space of solutions. In the present case we
have only a single canonical isomorphism between the two spaces.

Time. On neither the space of solutions nor reduced space of solutions do we find
an action of the real numbers implementing time translation. Nor do we
find a non-trivial action implementing time evolution on the reduced space
of initial data, since the Hamiltonian trajectories are all trivial there. On the
space of initial data, we do have non-trivial Hamiltonian trajectories. But a
dynamical trajectory on the space of initial data cannot in general be viewed
as encoding time evolution: there is nothing, for instance, to prevent such a
trajectory from being periodic, even when the solution corresponding to the
gauge orbit the trajectory lives in is not periodic in any sense.

There is, however, a class of dynamical trajectories on the space of initial
data that can be viewed as encoding dynamics—those trajectories that cor-
respond to sequences of initial data that could be stacked to form sensible
spacetime geometries (when this is possible, the result is always a solution
of the field equations). Through each point of the space of initial data there
are in fact many such trajectories. But, as is usual in theories with gauge
symmetry, there is no privileged way of cutting down this multitude to a
distinguished subset that encode time evolution via anR-action.

Change. Let us take some changeable physical quantity like the instantaneous
spatial volume of the universe. How would we represent such a quantity on
the various spaces in play? On both the space of solutions and the reduced
space of solutions, we face our usual problem: points in these spaces rep-
resent history timelessly, so no function on such a space can represent in a
direct way a changeable physical quantity. In the past, we were able to get
around this problem using one of the following strategies. (i) We could find a
function onf on a space arising on the Hamiltonian side, then use a slicing-
dependent one-parameter family of isomorphisms between this space and

156If (q, π) is the geometry of a Cauchy surface ing, then canonical isomorphism betweenI′ andS′
sends[q, π] to [g].



72 GORDON BELOT

the (reduced) space of solutions to find a one-parameter family of functions
on the latter space encoding the behaviour of the given quantity. (ii) Or we
could find a function on the (reduced) space of solutions encoding the value
of the quantity of interest at a given instant, then use a dynamical time trans-
lation group on the (reduced) space of solutions to generate a one-parameter
family of such functions. Neither of these strategies will work this time: we
do not have a one-parameter family of isomorphisms indexed by instants,
nor a notion of time translation on the (reduced) space of solutions.

We are in fact no better off on the reduced space of initial data: there too
points correspond to entire histories of the system, and individual functions
are ill-suited to represent changeable quantities. And on the space of initial
data we face an unattractive dilemma: if we seek to represent changeable
quantities via non-gauge invariant functions, then we face indeterminism; if
we employ gauge-invariant functions, then we are faced with essentially the
same situation we met in the reduced space of initial data.

General Relativity in the Asymptotically Flat Regime

It is illuminating to consider a second sector of general relativity, in which one re-
quires solutions to be asymptotically flat at spatial infinity. This case is of marginal
physical interest, but it helps us to clarify the source of the problems we ran into
in the spatially compact case.

In this regime our spacetime isR4 and kinematically possible fields are assign-
ments of Lorentz signature metrics toV that are required to be, in an appropriate
sense, asymptotically flat at spatial infinity.157 Instants are also required to satisfy
asymptotic conditions.

In this setting it is natural to considerD∞(V ), the group of diffeomorphisms
that leave the boundary conditions invariant, rather than the full group of diffeo-
morphisms. We find that the subgroup,D∞0 (V ), of D∞(V ) consisting of dif-
feomorphisms asymptotic to the identity at infinity is the largest group of gauge
symmetries of the Lagrangian formulation of the theory and thatD∞(V ) is the
semi-direct product ofD∞0 (V ) with the Poincaŕe group (every element ofD∞(V )
can be thought of as a product of an element ofD∞0 (V ) and a Poincaré symmetry
acting at infinity).158 The space of solutions of this theory carries a presymplectic
form and breaks into gauge orbits, with two solutions in the same gauge orbit if

157There are several notions of asymptotic flatness at spatial infinity. In this section, results are cited
that are derived using three distinct but closely related approaches: (i) that of[Andersson, 1987]; (ii)
that of [Ashtekaret al., 1991]; and that of[Beig andÓ Murchadha, 1987]. For ease of exposition, I
gloss over the differences in these approaches in the text—I do not believe that the result is misleading.
For the relations between approaches (i) and (iii), see[Andersson, 1987, Definitions 2.3 and 2.4] and
[Andersson, 1989, p. 78]. Both of approaches (ii) and (iii) are situated by their protagonists with
respect to that of[Beig and Schmidt, 1982]; see[Ashtekar and Romano, 1992,§7] and[Beig andÓ
Murchadha, 1987,§§4 and 5].

158See[Andersson, 1987, Theorem 2.2] and[Ashtekaret al., 1991,§3.3].
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and only if they differ by a diffeomorphism inD∞0 (V ).159 Diffeomorphisms in
D∞0 (V ) fix the gauge orbits; those inD∞(V ) but notD∞0 (V ) permute them. The
significance of this is most clear at the level of the reduced space of solutions:
this is a symplectic space carrying a representation of the Poincaré group—and in
particular, for each notion of time translation at spatial infinity, this space carries a
non-zero Hamiltonian generating this notion.160

One can also give a Hamiltonian treatment of this sector of general relativity.161

One constructs the space of initial data as in the spatially compact case, except
that conditions must be imposed on the asymptotic behaviour of the instantaneous
field configuration and momentum. The resulting space carries a presymplectic
form. Initial data sets(q, π) and (q′, π′) belong to the same gauge orbit if and
only if there is a solutiong and instantsΣ,Σ′ ⊂ V such thatΣ andΣ′ are related
by an element ofD∞0 (V ) andg induces(q, π) on Σ and (q′, π′) on Σ′.162 Just
as on the space of solutions, we have a set of functions that can be viewed as
the infinitesimal generators of the Poincaré group at infinity. Corresponding to a
generator of time translations at infinity is a Hamiltonian on the space of initial data
that generates a gauge equivalence class of notions of dynamics, each of which
carries one from gauge orbit to gauge orbit (compare with the notion of dynamics
on the space of initial data of an ordinary theory with gauge symmetries). So a
generic dynamical trajectory,x(t), generated by such a Hamiltonian will represent
a nontrivial trajectory through the space of initial data; the same Hamiltonian will
generate many trajectories through each point in the space of initial data; but each
of these trajectories will agree for each value oft about the gauge orbit in which
the state of the system dwells at that time.

One expects that the reduced space of initial data should be a symplectic space
isomorphic to the reduced space of solutions and carrying a representation of the
Poincaŕe group. Choosing a notion of time translation at infinity should pick out
a Hamiltonian on the reduced space of initial data whose dynamical trajectories
encode the dynamics of the theory: fixing a notion of the time translation, the
corresponding Hamiltonian, and an arbitrary point in the reduced space of initial
data, we should find that the Hamiltonian trajectory through this point encodes a
sequence of equivalence class of instantaneous data, and that any way of picking
representatives of these classes that stack to form a sensible spacetime geometry
encodes a solution of the theory.

So the situation in this case is very different from that we saw above in the
spatially compact case. We have representations of the Poincaré group on the
reduced space of solutions and on the reduced space of initial data, and we have
these representations encoded in structures on the space of solutions and the space

159See[Ashtekaret al., 1991,§3].
160See[Andersson, 1987].
161See[Beig andÓ Murchadha, 1987].
162As in the spatially compact case, distinct points in the space of initial data can correspond to the

same field configuration and momentum induced byg on Σ ⊂ V, if we use distinct diffeomorphisms
to pull back these tensors to the abstract instantS.
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of initial data.
And we can represent changeable physical quantities in a quite familiar way,

via smooth functions on the reduced space of initial data. Special cases aside, such
functions change their values as the state moves along the dynamical trajectories
in that space. And we can calculate the rate of change of such quantities, etc.
The situation is more complicated if we seek to represent change via functions
on the space of solutions—this requires some of the apparatus to be developed
below in section 7.3. But at least at the intuitive level, it is clear what needs to be
done: because for each point in the reduced space of solutions, there is, for each
notion of time translation at infinity, a one-parameter family of points in this space
that correspond to the time translates of the given point, it ought to be possible
to find, for any function on the reduced space of initial data that corresponds to a
changeable quantity, a one-parameter family of functions on the reduced space of
solutions that encode the value of that quantity at different moments of time.

Is General Covariance Special?

Einstein believed that the general covariance of general relativity was a very spe-
cial feature with momentous physical consequences. Motivated by the observation
that in special relativity there is a tight connection between the fact that the laws
assume the same form in every inertial frame and the fact that all inertial observers
are equivalent (so that there is no notion of absolute velocity), Einstein hoped that
because the laws of his theory of gravity held in arbitrary coordinates the theory
would be one in whichall observers were equivalent (so that there would no notion
of absolute motion whatsoever).

But, notoriously, the means were inadequate to the end: in general relativity
there is a perfectly cogent (and coordinate-independent) distinction between those
observers who are accelerated and those who are unaccelerated, between those
who are rotating and those who are not.163

Einstein’s requirement that the laws of his theory should hold in arbitrary coor-
dinate systems is just the translation into the language of coordinates of our first,
weak, sense of general covariance. The preceding paragraph points out that this
requirement does not have the powerful consequences that Einstein believed it to.
Even worse, it was pointed out already by Kretschmann in 1917 that this weak
sense of general covariance is not a very unusual feature: many pre-general rela-
tivistic theories can be given a weakly generally covariant formulation.164 Indeed,
there is a recipe that takes as input a Lagrangian field theory on a fixed background
spacetime and gives as output a strongly generally covariant reformulation/relative

163Einstein’s line of thought founders on the following observation: in special relativity Lorentz
transformations are symmetries of the spacetime metric that is used to determine the state of motion
of an observer, in general relativity an arbitrary diffeomorphism is certainly not a symmetry of the
spacetime geometry of a given solution—but this geometry again plays a role in determining the state
of motion of an observer. See[Friedman, 1983, Chapters II and V].

164On Kretschmann, see[Rynasiewicz, 1999].
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of the given theory.165

EXAMPLE 43 (Artificial General Covariance). LetT0 be the theory of a mass-
less Klein–Gordon scalar field,Ψ propagating on a fixed background spacetime,
(V0, g0). The Lagrangian forT0 is L0(Ψ) := 1

2gab
0 ∇aΨ∇bΨ and the correspond-

ing equation of motion is�0Ψ = 0, where�0 is the d’Alembertian corresponding
to g0.

166 Given T0 we can construct a strongly generally covariant theoryT as
follows.167 Let V be a manifold diffeomorphic toV0. The spacetime ofT is the
bare manifold,V, unequipped with any geometry.T involves two fields,X and
Φ : X takes values inV0 while Φ takes values inR. A pair (X, Φ) counts as kine-
matically possible only ifX : V → V0 is a diffeomorphism.168 The Lagrangian
L of T is constructed as follows: for any kinematically possible(X, Φ), then-
form L(X, Φ) onV is the pullback toV by X of then-form L0(Ψ) onV0, where
Ψ := Φ ◦X−1. L admitsD(V ) as a group of gauge symmetries—soT is strongly
generally covariant. Note that a kinematically possible pair(X, Φ) is a solution
of T if and only if Ψ = Φ ◦X−1 is a solution ofT0. This is equivalent to saying
that a pair(X, Φ) is a solution if and only ifΦ is a solution of the massless Klein–
Gordon equation�Φ = 0, with � the d’Alembertian corresponding to the metric
g := X∗g0 onV.

This shows that there are relatively ordinary theories, like the theory of Klein–
Gordon field, that can be given strongly generally covariant formulations. So
even strong general covariance fails to distinguish general relativity from perfectly
pedestrian theories.

Nonetheless, it is difficult to shake the feeling that the special nature of general
relativity among physical theories has something to do with its general covariance.
Indeed, it would appear that at the present time the best that can be said is that what
makes general relativity special is that its most natural and perspicuous formula-
tions are generally covariant. But that is just to say that we do not yet understand
the matter, I think.

In this connection, it is natural to ask whether the difficulties that we encounter
in representing time and change in general relativity arise for the artificially strongly
generally covariant theory of example 43.

EXAMPLE 44 (Artificial General Covariance and the Problem of Time). Let us
return to the theoriesT0 andT of example 43, and let us assume for convenience
that the spacetime,(V0, g0), of T0 does not admit any isometries. Suppose that we

165It is not obvious how one should individuate theories in the present context. For discussion and
suggestions, see[Sorkin, 2002, p. 698] and[Earman, Unpublished,§4].

166The d’Alembertian corresponding to a Lorentz metricg is defined just as the Laplacian of a Rie-
mannian metricg : as divg ◦gradg where divg is the divergence operator ofg and gradg is the gradient
operator ofg.

167 See[Lee and Wald, 1990, p. 734] or [Torre, 1992,§II ]. The same procedure will work for
any scalar field with a first-order Lagrangian that features a non-derivative coupling of the field to the
spacetime metric.

168Strictly speaking, this takes us outside of our official framework for Lagrangian field theories,
since the value thatX takes at distinct points ofV are not independent of one another.
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were simply handedT . Would there be any way to represent changeable quantities
via functions on a symplectic space associated withT?

Let S be the space of solutions ofT, and letS ′ be the corresponding reduced
space (i.e., the space of gauge orbits ofS). As one would expect, two solutions
(X, Φ) and (X ′,Φ′) lie in the same gauge orbit ofS if and only if there exists
d ∈ D(V ) such thatX ′ = X ◦ d andΦ′ = Φ ◦ d. The spaceS is, of course,
presymplectic while the spaceS ′ is symplectic. But since solutions in the same
gauge orbit will not agree about the value ofΦ or X at any point ofV, it is difficult
to view a diffeomorphism equivalence class of solutions as assigning properties to
points ofV, and so it would appear to be impossible to think ofS ′ as the space
of solutions corresponding to some local Lagrangian. By following a procedure
like that used in the discussion of general relativity above, we can construct the
space of initial data,I, of T, and the corresponding reduced space,I ′. The latter
will be a symplectic space. But note that the Hamiltonians onI andI ′ vanish.
So although we have been able to construct symplectic spaces, we do not have the
nontrivial flows associated with time translation or time evolution that we require
to set up our representation of change via functions on these spaces. So far, the
present case looks very much like the case of spatially compact general relativity.

But now note that from knowledge ofT alone we can reconstructT0. The field
X has as its target space the manifoldV0. We takeT0 to be the theory of a scalar
field Ψ onV0 with LagrangianL0 given as follows: letΨ be a kinematically possi-
ble field ofT0 and letX : V → V0 be an arbitrary diffeomorphism; then we define
L0(Ψ) to be then-form on V0 that results when we useX−1 to pullback toV0

then-form L(X, Ψ ◦X); the result is independent of theX chosen. The resulting
equations of motion is�0Ψ = 0. Noting that�0 arises as the d’Alembertian of a
unique metricg0 onV0 and that field propagates causally relative tog0, it is natural
for us to viewg0 as the geometrical structure ofV0, and go on to consider slicings
relative tog0, etc.

With T0 in hand, we can construct the space of solutions,S0. Relative to a
slicing of (V0, g0), we can represent any changeable quantity—e.g., the volume of
the support of the scalar field—via functions onS0 in the usual way.

Finally, note thatS ′ is canonically symplectically isomorphic toS0.
169 So we

can transfer our representation of change from the latter space to the former. So
there is a way to avoid the problem of time in this case.170

There is, however, an obvious worry about this approach. Letg̃0 be a metric on
V distinct fromg0. Then�0 is not the d’Alembertian of̃g0; but presumably this
operator is still definable in terms of̃g0. So according tõg0 the Euler–Lagrange
equations ofL0 on V0 are not the Klein–Gordon equations, but some less famous

169Via the map that sends an equivalence class,[X, Φ], of solutionsT to the solutionΨ = Φ ◦X−1

of T0. It is at this point that we require the assumption theg0 does not admit isometries: in general,S′
is isomorphic to the quotient ofS0 by the action of the isometry group ofg0.

170Note that we must choose a slicing of(V0, g0) in order to get a family of functions onS′ corre-
sponding to a changeable physical quantity. Such functions tell us things like how large the volume of
the support of the field is at the instant when the geometry of space assumes a given form.
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equations. Now, the above strategy amounts to thinking ofT asreally the theory
of a Klein–Gordon field on a spacetime isomorphic to(V0, g0). But it was no part
of our data thatT is a Klein–Gordon theory. So what is to stop us from thinking of
T asreally a theory of a field obeying some less famous equations on a spacetime
isomorphic to(V0, g̃0)? In this case we would use slicings of(V0, g̃0) to set up our
representation of change, etc.

Here are two things one might say in response to this worry. (1) We sought and
found a natural way of representing change via functions onS ′. It is no problem
if there are others. (2) We normally demand that of a physically reasonable theory
that its field propagate along the nullcones of the spacetime metric. This will be
true of T0 only for metricsg̃0 conformally equivalent tog0.

171 Every slicing of
(V0, g0) is also a slicing of(V0, g̃0) for eachg̃0 conformally related tog0 (since
conformally related methods agree about which lines are timelike and which hy-
persurfaces are spacelike). So relative to such a slicing we can consider a quantity
that is conformally invariant in the sense that for eachΣ ⊂ V in our slicing, this
quantity has the same value onΣ in (V0, g̃0,Ψ) for eachg̃0 conformally related to
g0. Such a quantity is represented by the same one-parameter family of functions
on the reduced space of solutions ofT whether we viewT as secretly a theory of
a Klein–Gordon field on a spacetime isomorphic to(V0, g0) or as secretly a theory
of some other sort of field on a spacetime isomorphic to to(V0, g̃0).

7.2 The Problem of Time

In each of the theories considered in sections 5 and 6 above, the dynamical con-
tent of the theory was encoded in a flow (possibly time-dependent, possible merely
local) on a symplectic space of states within the Lagrangian or Hamiltonian formu-
lation of the theory. That this fails in general relativity, conceived of as a theory of
the universe as a whole, is what sets that theory apart. And, of course, this feature
means that the standard strategies for representing change also fail for this theory:
since one does not have a flow corresponding to time evolution on the reduced
space of initial data, no function on that space can represent a changeable physi-
cal quantity; it follows that one does not have the apparatus required to represent
changeable quantities via functions on the reduced space of solutions either.

This nexus is the problem of time: time is not represented in general relativity
by a flow on a symplectic space and change is not represented by functions on a
space of instantaneous or global states.172

Before proceeding to discuss the significance of this problem it is important to
be clear about its nature and sources.

171Recall that metricsg0 andg1 onV are conformally related if there is a positive scalarΩ : V → R
such thatg1 = Ωg0.

172The canonical presentations of the problem of time are[Kuchǎr, 1992] and[Isham, 1993]. For
philosophical discussions, see[Belot and Earman, 2001], [Butterfield and Isham, 2000], and[Earman,
2002]. For critical reactions to this literature, see[Maudlin, 2002] and[Healey, 2002].
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• If one approaches the problem of time via a focus on the transition from
the space of initial data to the reduced space of initial data, the problem can
appear especially urgent. For in passing from the space of initial data to the
reduced space of initial data, one identifies initial data sets that correspond
to distinct Cauchy surfaces within a single solution.Prima facie, this in-
volves treating the current state of the universe and its state just after the Big
Bang as thesame state. Moral: according to general relativity, change is an
illusion.

But this is too hasty. For of course the reduced space of initial data is canon-
ically isomorphic to the reduced space of solutions.173 And in this latter
space, some points represent worlds in which there is change (e.g., worlds
which begin with a Big Bang) and some represent changeless worlds (e.g.,
world modelled by Einstein’s static solution). So it is hard to see how gen-
eral relativity teaches us the moral announced.

So I would like to disavow formulations of the problem of time that rely on
this way of speaking. More constructively, I would like to suggest that it is
helpful to concentrate on the reduced space of solutions rather than on the
reduced space of initial data in setting up the problem of time. In the well-
behaved theories of section 5 the space of initial data and the space of solu-
tions are symplectically isomorphic, but we nonetheless think of these two
spaces as having distinct representational functions—roughly and heuristi-
cally speaking, one is suited to represent possible instantaneous states while
the other is suited to represent possible worlds. This distinction is grounded
by the fact that relative to a slicing one finds that for eacht ∈ R, the map
TΣt

that sends a solution to the initial data that it induces on the instant
Σt ⊂ V defines a distinct isomorphism between the space of solutions and
the space of initial data. This makes it natural to think of points of the latter
space as representing states (universals) that can occur at distinct times and
to think of points in the space of solutions as representing possible worlds
composed out of such states. The elements of this story survived more or
less unscathed the introduction of various complicating factors in section
6. But in the case of cosmological general relativity we have only a sin-
gle canonical isomorphism between the reduced space of initial data and
the reduced space of solutions. In this context, it is difficult to deny that the
reduced space of solutions and the reduced space of initial data are represen-
tationally equivalent. And it seems straightforward that we should interpret
points in the reduced space of solutions as representing general relativistic
worlds rather than instantaneous states—so we should say that same thing
about points in the reduced space of initial data. Thus, we should resist any
temptation to think of the reduction procedure as telling us to think of an
early state of the universe and a late state of the universe as being the same

173Under the map that sends[q, π] to [g] if (q, g) describes the instantaneous state on some Cauchy
surface of(V, g).
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instantaneous state.

• Since we have been focussing on the Lagrangian rather then the Hamilto-
nian picture, but have nonetheless run straight into the problem of time, we
can conclude that this problem is not an artifact of the 3+1 decomposition
involved in the Hamiltonian approach. Likewise, the problem of time is a
feature of general relativity as a cosmological theory, but not of general rela-
tivity in the regime of asymptotic flatness at spatial infinity, nor of field the-
ories on fixed relativistic backgrounds, nor, I think, of the artificial strongly
generally covariant theory of examples 43 and 44 above. From this we can
conclude that the following arenot sufficient conditions for the problem of
time: the lack of a preferred slicing; the jiggleability of admissible slicings;
the invariance of the theory under a group of spacetime diffeomorphisms. It
appears that the problem arises when we employ a diffeomorphism-invariant
theory to model a situation in which we take geometry to be fully dynamical
(i.e., we do not smuggle in any background structure, at spatial infinity or
elsewhere).

For everything that I have said so far, the Problem of Time may sound like
no more than a diverting puzzle. Granted, time does not appear as a symmetry
in general relativity as it did in earlier theories (even in the infinitesimal sense
involved in a local flow). But, of course, part of the allure of the theory is that it
changes the nature of time in a fundamental way. And since successful applications
of the theory involve the representation of changeable physical quantities (e.g., the
perihelion of Mercury), it would seem that theremustbe some way of way of
generalizing the picture of the previous sections to cover general relativity. And
while it will be granted that a search for this generalization might turn out to be
enlightening, it may well not seem a very pressing project.

This puzzle begins to look far more urgent when we turn our attention to quanti-
zation. The good news is that upon reduction, one ends up with a symplectic space
representing the true degrees of freedom of general relativity. Without something
along these lines, quantization would be impossible. But the vanishing of the
Hamiltonian for cosmological general relativity means that two looming difficul-
ties block the road to the successful quantization of general relativity.

1. What is one to do next? Normally a Hamiltonian or a Lagrangian plays a
crucial role in quantization. One defines quantum dynamics via these ob-
jects. In the case of spatially compact general relativity the reduced space of
initial data inherits from the original space of initial data a Hamiltonian—
which vanishes, so that the corresponding dynamics is trivial. And it does
not appear to make any sense to speak of a local Lagrangian field theory of
the true degrees of freedom of the gravitational field. The way forward is
unclear.

2. And it is not clear how one would make sense of a quantization of general
relativity. While in the classical theory one can find change in solutions even
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without being able to find it at the dynamical level (in terms of quantities
on the space of solutions, etc.), it is not obvious how this could be done
at the quantum level. Perhaps the best that one can hope for is to be able
to speak of approximate time and change in a subset of quantum states that
approximate classical solutions. That seems perfectly acceptable—what one
should be aiming at, even, in a theory in which the geometry of space and
time are themselves quantized. But the usual techniques of semi-classical
approximation require a Hamiltonian.174

7.3 Finding Time in General Relativity

This final section discusses what is probably the most obvious way around the
problem of time. In the cases discussed in sections 5 and 6, we were able to repre-
sent change via functions on the (reduced) space of solutions of the theory because
we had a slicing,σ : S×R → V, that decomposed spacetime into space and time,
and thereby allowed us to identify functions on the (reduced) space of solutions
that corresponded to the values of a given quantity at different instants. But the
notion of a solution-independent decomposition of spacetime into space and time
makes no sense in general relativity, since solutions differ as to which curves count
as timelike and which hypersurfaces count as spacelike. Somewhat surprisingly,
it turns out to be possible to construct a Hamiltonian version of general relativity
without employing slicings. But— unsurprisingly—without some sort of decom-
position of spacetime into instants, it makes no sense to ask which states follow
a given state (so there is no real dynamics on the Hamiltonian side) nor to try to
construct a one-parameter family of functions on the reduced space of solutions
that corresponds to the instantaneous values of a quantity of interest. So it is natu-
ral to look for a surrogate of the notion of a slicing that applies to diffeomorphism
equivalence classes of solutions, rather than to individual solutions—and to hope
that this will lead to familiar-looking accounts of the representation of time and
change.

Throughout this final subsection, unless otherwise noted, I restrict attention to
spatially compact vacuum general relativity in four spacetime dimensions with
vanishing cosmological constant.

Let me begin with some definitions.

DEFINITION 45 (Geometry). A point in the reduced space of solutions of general
relativity is called ageometry. A geometry is an orbit of the action on the space
of solutions of the groupD(V ) of diffeomorphisms fromV to itself. We write[g]
for the geometry corresponding to a solutiong; we speak of a solution in[g] as a
solutionwith geometry[g].

174Thus, the WKB method aims to construct approximate eigenstates for the quantum Hamiltonian.
Analyses based upon decoherence, coherent states, etc., aim to show that the dynamics driven by
the quantum Hamiltonian approximates that of the corresponding classical system, and so on. See
[Landsman, this volume].
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DEFINITION 46 (Instantaneous Geometry). The groupD(S) of diffeomorphisms
from the abstract instantS to itself acts on the space of initial data. We call an orbit
of this action aninstantaneous geometry. We denote the instantaneous geometry
corresponding to an initial data point(q, π) by 〈q, π〉 . We speak of initial data
(q, π) as having the geometry〈q, π〉 .175

DEFINITION 47 (Time for a Solution). Let(V, g) be a solution. Atime for(V, g)
is a partition,{Σ}, of (V, g) by Cauchy surfaces, called theinstantsof the time. A
parameterized timeis a time together with a preferred parameterization of the set
of instants. Anaffinely parameterized timeis a time whose instants are parameter-
ized up to the choice of origin.176

DEFINITION 48 (Absolute Time). Letg be a solution. A time{Σ} for (V, g) is
calledabsoluteif every isometry ofg maps instants in{Σ} to instants in{Σ}. An
affinely parameterized time forg is calledabsoluteif each isometry ofg satisfies
the preceding condition and preserves the parameter difference between each pair
of instants. A parameterized time forg is calledabsoluteif each isometry ofg
maps each instant of the time to itself.

Every globally hyperbolic solution admits a parameterized time (since each
globally hyperbolic solution can be foliated by Cauchy surfaces, which can be
given an arbitrary parameterization). But it is not always possible to find absolute
times for solutions with large isometry groups. Minkowski spacetime does not
admit an absolute time.177 If a spacetime admits time translation or inversion as a
symmetry, then it does not admit an absolute parameterized time.

DEFINITION 49 (Time for General Relativity). A(plain, affinely parameterized,
or parameterized) time for general relativityis a map defined on a subset of the
space of solutions that assigns to each solution in its domain a (plain, affine, or pa-
rameterized) time for that solution, and does so in an appropriately smooth manner.

DEFINITION 50 (Geometric Time for General Relativity). A (plain, affinely pa-
rameterized, or parameterized) time for general relativity is calledgeometricif it
satisfies the following conditions. (i) Its domain of definition is closed under the
action ofD(V ) on the space of solutions. (ii) Ifg andg′ are in the domain of
the time andg′ = d∗g for some diffeomorphismd : V → V, then the foliation
assigned tog′ is the image underd−1 of the foliation assigned tog (if the time is
affinely parameterized, then we require that such ad preserve the time difference
between any two instants; if the time is parameterized, then we require that such

175Note that a instantaneous geometry isnot a point in the reduced space of initial data: initial data
induced by a given solution on distinct Cauchy surfaces correspond to the same point in the reduced
space of initial data, but (in general) to distinct points in the space of instantaneous geometries.

176We can think of a time for(V, g) as an unparameterized curve in the space of Cauchy surfaces of
(V, g); a parameterized time is a parameterized curve of this type; an affinely parameterized time is an
affinely parameterized curve of this type.

177A time invariant under the notion of time translation associated with a given frame will fail to be
invariant under boosts relative to that frame. The same argument will work in de Sitter spacetime, or in
other spacetimes admitting boost symmetries; see[Moncrief, 1992] for examples.
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a d map the instant labelled byt to the instant labelled byt). I will often shorten
geometric time for general relativityto geometric time.

REMARK 51 (Geometric Times are Absolute). The (plain, affinely parameter-
ized, or parameterized) time that a geometric time for general relativity assigns to
a solutiong is always absolute. For ifd : V → V is an isometry ofg, then con-
dition (ii) in the preceding definition tells us thatd preserves the time assigned to
g, together with its parameterization properties, if any. It follows that Minkowski
spacetime is not in the domain of definition of any geometrical time for general rel-
ativity, and that no solution invariant under time translation or inversion is in the
domain of definition of any parameterized geometric time for general relativity.

We can think of a (parameterized, affinely parameterized, or unparameterized)
geometric time for general relativity as a means of associating a geometry[g] in
the reduced space of solutions with a (parameterized, affinely parameterized, or
unparameterized) curve〈q(t), π(t)〉 in the space of instantaneous geometries; we
call such a curve adynamical trajectory. The correspondence between geometries
and dynamical trajectories is set up in the obvious way: letg be a solution in
the domain of definition of a given geometric time, and let(q(t), π(t)) be the
(parameterized, affinely parameterized, or unparameterized) curve in the space of
initial data that results when we look at the initial data induced byg on the instants
in the time assigned tog; 〈q(t), π(t)〉 is the dynamical trajectory we seek.178 If
g1 andg2 are solutions with the same geometry, then they are related by some
diffeomorphismd : V → V. In this cased also relates the foliations assigned to
them by our geometric time, sog1 andg2 will correspond to the same dynamical
trajectory in the space of instantaneous geometries.

A number of interesting examples of geometric times are known. Most have
very small domains of definition: (i) within the class of nonrotating dust solu-
tions, a geometric time is given by foliating each solution by the unique family of
hypersurfaces everywhere orthogonal to the dust worldlines; (ii) within the class
of solutions whose isometry groups are three-dimensional with spacelike orbits,
a geometric time is given by foliating each solution by the orbits of its isometry
group.179 Examples of wider scope are harder to come by but do exist.

EXAMPLE 52 (CMC Time). Recall that ifΣ ⊂ V is a Cauchy surface for
(V, g), then we can define tensorsqab and kab on Σ with the following mean-
ing: qab := gab |Σ is the Riemannian metric thatg induces onΣ and2kab is the
rate of change of this metric according to freely falling observers whose worldlines
intersectΣ orthogonally. Out of these tensors we can construct themean curva-

178Strictly speaking, in order to construct the curve(q(t), π(t)) in the space of initial data, we need
to introduce a slicing of(V, g) whose instants coincide with those of the given time, so that we can
pullback states on concrete instants to states on our abstract instantS; the arbitrariness involved in a
choice of slicing washes out when we quotient the space of initial data by the action ofD(S) to reach
the space of instantaneous states.

179Scheme (i) generalizes Einstein’s simultaneity convention to the context of dust cosmology; see
[Sachs and Wu, 1977,§5.3]. Note that schemes (i) and (ii) need not coincide within their shared domain
of definition; see[King and Ellis, 1973].
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ture, k : Σ → R, defined byk := qabkab (sok(x) is just the trace of the matrix
that encodes information aboutkab atx). A Cauchy surfaceΣ ⊂ V for a solution
g is called asurface of constant mean curvature,or simply aCMC surface,if k is
a constant function onΣ. Recall that unless otherwise noted, we restrict attention
to (3+1) spatially compact globally hyperbolic vacuum solutions with vanishing
cosmological constant.

Applicability. It is widely believed that a large class of solutions to Einstein’s
field equations can be foliated by CMC surfaces.

1. It is known that the set of solutions containing a CMC slice is an open
set in the space of solutions.180

2. It was once conjectured that all solutions contain at least one CMC
surface, but it is now known that this is not so.181

3. It is was once conjectured that all solutions admitting a CMC slice can
be foliated by such slices.182 This is now believed to hold only for
certain spatial topologies.183

4. It is believed that within the class of solutions foliated by CMC slices,
all solutions of a given spatial topology will exhibit the same range
of values of constant mean curvature, with the only exceptions being
stationary solutions (recall that a solution is stationary if it admits a
timelike Killing field—roughly speaking, the infinitesimal generator
of a time translation group).184

Invariance Properties. CMC foliations behave superbly well under isometries.185

Let (V, g) be a solution,{Σ} a set of CMC surfaces that foliatesV, and
d : V → V an isometry ofg. Thend leaves the foliation{Σ} invariant.186

If (V, g) is non-stationary, then: (a) any symmetryd of g preserves each leaf

180See, e.g.,[Isenberg and Marsden, 1982, p. 195].
181See[Bartnik and Isenberg, 2004, p. 32]. The corresponding conjecture for spatially compact dust

solutions is also false; see[Bartnik, 1988].
182For the original form of the conjecture, see, e.g.,[Isenberg and Marsden, 1982, Conjecture 3.2].

This conjecture is known to be true for flat spacetimes ([Barbot, 2005,§12]) and the corresponding
conjecture is known to be true in the (2+1) case ([Anderssonet al., 1997]). The counterpart of this
conjecture is known to be false for spatially compact dust solutions ([Isenberg and Rendall, 1998]) and
in the asymptotically flat vacuum case, where the Schwarzschild solution provides a counterexample
([Eardley and Smarr, 1979,§III ]).

183For the current conjecture, see[Rendall, 1996, Conjectures 1 and 2]. It is now believed that for
some spatial topologies, behaviour analogous to that of the Schwarzschild solution can occur; see
[Rendall, 1996] and[Andersson, 2004, p. 81]. In the (3+1) case, the revised conjecture is known to be
true for some types of highly symmetric solutions, even when some forms of matter are allowed; see
[Rendall, 1996, Theorems 1 and 2], [Andersson, 2004, pp. 81 f. and 95], and the references therein.

184For this, see[Rendall, 1996, Conjectures 1 and 2]. For the situation in highly symmetric cases and
in (2+1) dimensions, see the references of the previous two footnotes.

185See[Isenberg and Marsden, 1982,§3].
186This would fail for spacetimes admitting boost symmetries, such as Minkowski spacetime and de

Sitter spacetime. (Note that since we require vanishing cosmological constant, de Sitter spacetime does



84 GORDON BELOT

in {Σ}; and (b) for any real numberκ, there is at most one Cauchy surface
with constant mean curvatureκ. If (V, g) is stationary then:g is flat and any
CMC surface in(V, g) has vanishing mean curvature.187

CMC Time. Foliating each solution by its CMC slices, when possible, determines
a geometric time within the class of solutions we are considering. We can
render this an affinely parameterized geometric time as follows: for non-
stationary solutions, the parameter difference between slices of mean curva-
tureκ1 andκ2 is |κ2 − κ1| ; for stationary solutions, the parameter differ-
ence between two slices is the proper time elapsed between those slices. If
we restrict attention to non-stationary solutions, and assign to each slice the
parameter value given by its mean curvature, then we arrive at a parameter-
ized geometric time.

EXAMPLE 53 (Cosmological Time). Given a solution(V, g), the cosmological
time functionfor g is the mapτ : V → R ∪ {∞} that assigns to eachx ∈ V the
supremum over the length of all past-directed causal curves starting atx. Obvi-
ously there are many well-behaved spacetimes in whichτ(x) is badly behaved—
e.g., in Minkowski spacetime,τ(x) = ∞ for all events. We say that the cosmolog-
ical time function of a solution isregular if: (a) τ(x) < ∞ for all x and (b)τ → 0
along each past inextendible causal curve. Ifτ is a regular cosmological time func-
tion on (V, g) then: (i) (V, g) is globally hyperbolic; (ii)τ is a time function for
the solution in the usual sense (i.e., it is continuous and strictly increasing along
future-directed causal curves); and (iii) the level surfaces ofτ are future Cauchy
surfaces in(V, g) (i.e., these surfaces have emptyfutureCauchy horizons).188 In
spatially compact vacuum (2+1)-dimensional general relativity, it is known: (a)
that the cosmological time is regular for almost all spacetime topologies; and (b)
that in one important class of solutions the cosmological time coincides with the
CMC time.189 On the class of spacetimes with regular cosmological time functions
whose level surfaces are Cauchy surfaces, we construct a geometric time for gen-
eral relativity by foliating each solution by the surfaces of constant cosmological
time; parameterizing these foliations by the value the cosmological time function
takes on each leaf yields a parameterized geometric time for general relativity, so
long as we exclude solutions with a time reflection symmetry.

A geometric time for general relativity is, in effect, a means of separating out
from the infinite number of variables of the theory one relative to which the oth-

not count as a spatially compact vacuum solution for present purposes.) Note that in the asymptotically
flat case, the question of the invariance of CMC slices is much more involved; see[Bartniket al., 1990,
§5].

187Of course, in general a timelike Killing vector does not guarantee flatness. But it does so within
the class solutions presently under consideration.

188See[Anderssonet al., 1998, Propositions 2.2 and 2.5 and Corollary 2.6].
189See[Benedetti and Guadagnini, 2001]. In general, however, surfaces of constant cosmological

time are less smooth than CMC surfaces, so the two notions of time do not coincide; see[Benedetti
and Guadagnini, 2001, p. 331] or [Barbot and Zeghib, 2004,§5.4.1].
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ers are to be seen as evolving, by allowing us to pass from a point in the reduced
space of solutions to a (possibly unparameterized) curve in the space instantaneous
geometries. Instantaneous physical quantities such as the volume of the universe,
or the number of stars, or the size of the solar system can be represented by real-
valued functions on the space of instantaneous geometries. And so the choice of a
geometric time allows us to talk about change in the familiar way: we can check
to see whether a function on the space of instantaneous geometries that represents
a quantity of interest takes on different values at points corresponding to the dif-
ferent instantaneous geometries that occur in a given spacetime geometry. If our
geometric time for general relativity is affinely parameterized, we can calculate
the rate of change of quantities of interest (since we then have an affinely param-
eterized curve through the space of instantaneous geometries corresponding to a
given spacetime geometry). If we have a parameterized geometric time for general
relativity, we can even mimic the construction we used in earlier sections to repre-
sent changeable quantities by one-parameter families of functions on the reduced
space of solutions of the theory: given the functionf on the space of instantaneous
geometries that represents our quantity of interest, and a real numbert, we define
a partially defined functionft on the reduced space of solutions by settingft[g]
equal to the value thatf takes on the instantaneous geometry corresponding tot in
[g].

As delineated above, the problem of time in general relativity had two major
aspects.

1. Time is not represented in spatially compact general relativity, as it was in
earlier theories, via a flow on a symplectic space of states;

2. Change is not represented, as it was in earlier theories, via functions on sym-
plectic spaces corresponding to the spaces of possible instantaneous states
and worlds.

We now see that if we go as far as introducing a parameterized geometric time,
we can address the second of these worries by representing a changeable quantity
by a one-parameter family of functions on the reduced space of solutions, in the
usual way.

Does the introduction of a geometric time suffice to address the first worry? Any
geometric time singles out a subspace of the space of instantaneous geometries,
consisting of those〈q, π〉 that arise as instantaneous geometries of the Cauchy
surfaces picked out by that geometric time—e.g., only instantaneous geometries
portraying space as having constant mean curvature can arise according to the
CMC slicing scheme. If we introduce an affinely parameterized geometric time for
general relativity, then we do get a flow on the space of instantaneous geometries
that arise according to this geometric time (since this space is partitioned by the
affinely parameterized dynamical trajectories corresponding to geometries in the
domain of definition of the given geometric time). But one does not expect this
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space to be symplectic nor to be isomorphic to the reduced space of solutions.190

So a flow on the space of instantaneous geometries associated with our geometric
time is not a flow on a symplectic space. And since each dynamical trajectory on
the space of instantaneous geometries corresponds to a singe point in the reduced
space of solutions, we have no means of carrying our flow on the former space
over to a nontrivial flow on the latter.

A natural strategy to set up a representation of time via a flow on a symplectic
manifold is to attempt to parlay a choice of geometric time for general relativity
into a reformulation of of the theory as a nontrivial (but possibly time-dependent)
Hamiltonian system. In one important case, it is known that this can achieved.

EXAMPLE 54 (CMC dynamics). We consider the CMC time introduced in ex-
ample 52 above.191 We impose restrictions on the topology of our abstract instant
S.192 Let M be the space of Riemannian metrics onS with constant scalar cur-
vature -1.193 The cotangent bundleT ∗M is a symplectic space; an element of
T ∗M is of the form(γ, p) whereγ ∈ M andp is a symmetric contravariant ten-
sor density of rank two onS that is divergenceless and traceless according toγ.
We consider(γ, p), (γ′, p′) ∈ T ∗M to be equivalent if there is a diffeomorphism
d : S → S such that(γ′, p′) = (d∗γ, d∗p). The spaceI∗ := T ∗M/D(S) that
results when we quotient out by this equivalence relation inherits a symplectic
structure fromT ∗M. We will call points inI∗ conformal initial data. For each
t < 0 there is a geometrically natural symplectic isomorphism betweenI∗ and the
space of instantaneous geometries with constant mean curvaturet.194 And there
is a natural symplectic isomorphism between the latter set and the reduced space

190Intuitively, the space of instantaneous geometries that arise according to a given geometric time can
be thought of as the product of the reduced space of solutions with the real line (since each geometry
corresponds to a one-parameter family of instantaneous geometries relative to the geometric time).
So the space of instantaneous geometries of the given geometric time is not isomorphic to the space
of solutions—nor can it be symplectic, since it is the product of a symplectic space with an odd-
dimensional space.

191For an overview of the (3+1) case, see[Fischer and Moncrief, Unpublished,§§2 and 3]; for details
see[Fischer and Moncrief, 1996], [Fischer and Moncrief, 1997], and the references therein. For the
(2+1) case see[Moncrief, 1989] and[Anderssonet al., 1997]. The construction described below is
an example of deparameterization. For this notion and for finite-dimensional applications, see[Beig,
1994,§2].

192We impose two conditions. (i)S must be of Yamabe type -1, i.e., the only constant scalar curvature
Riemannian metrics thatS admits have negative scalar curvature. This is essential for the constructions
employed in the papers cited. (ii)S must not admit any Riemannian metrics with isometry groups of
positive dimension. This saves us from having to worry about singular quotient spaces.

193BecauseS is of Yamabe type -1, every Riemannian metric onS is conformally equivalent to a
metric inM.

194Let us ignore theD(S) symmetry for a moment. Given a pair(γ, p) and a timet < 0 there is a
unique positive scalarφ onS solving the the Lichernowicz equation for(γ, p, t),

∆γφ−
1

8
φ +

1

12
t2φ5 −

1

8
(p · p)µ−2φ−7 = 0

(here∆γ is the Laplacian forγ andµ is the volume form forγ). Our desired(q, π) is given by
q := φ4γ andπ := φ−4p + 2

3
tφ2γ−1.
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of solutions of general relativity (under which an instantaneous state is sent to the
unique geometry that it occurs in). So for eacht < 0 we have a symplectic iso-
morphism between the space of conformal initial data and the reduced space of
solutions.

Conversely, given a geometry[g] and a timet < 0 we can look for the point
in I∗ that corresponds to[g] according to the isomorphism labelled byt. Doing
this for eacht < 0 gives us a curve inI∗ corresponding to[g]. A generic point in
I∗ will lie on many such trajectories: in general ifx ∈ I∗ andt1 6= t2 then the
instantaneous geometry of constant mean curvaturet1 corresponding to(x, t1) and
the instantaneous geometry of constant mean curvaturet2 corresponding to(x, t2)
will reside in different spacetime geometries. If we look at the complete family
of trajectories inI∗ corresponding to all of the geometries in the reduced space of
solutions, then we find that these are generated by the symplectic structure ofI∗
together with a time-dependent Hamiltonianh(t) that is a simple function oft and
of spatial volume.195

Taking this example as our model, we can introduce the notion of aHamilto-
nianizationof general relativity associated with a given parameterized geometric
time for the theory. Suppose that we are given such a parameterized geometric
time. Suppose further that we are able to construct a symplectic spaceI∗ whose
points are (D(S)-equivalence classes of) tensors on the abstract instantS, and that
for each value oft we are able to construct a geometrically natural isomorphism
betweenI∗ and the set of instantaneous geometries corresponding tot according
to our parameterized geometric time. Composing these isomorphisms with the
canonical map from the space of instantaneous geometries to the reduced space
of solutions gives us a one-parameter family of symplectic isomorphisms between
I∗ andS ′.196 This allows us to associate each geometry[g] with a curvex(t) in
I∗ : for eacht, x(t) is the point inI∗ that gets mapped to[g] by the isomorphism
labelled byt. We callx(t) the dynamical trajectory associated with[g]. We now
consider the class of dynamical trajectories onI∗ that arise in this way, and ask
whether there is a (possibly time-dependent) Hamiltonian onI∗ that generates
them in concert with the symplectic structure ofI∗. If there is, then the resulting
(possibly time-dependent) Hamiltonian system is a Hamiltonianization of general
relativity based upon the given parameterized geometric time.

As we have seen, given a parameterized geometric time for general relativity we
can represent changeable quantities in the familiar way via one-parameter families
of functions on the reduced space of solutions. And if we go further and introduce
an associated Hamiltonianization of the theory, then we can represent time in the
familiar way via a (possibly time-dependent) Hamiltonian flow on the symplectic
spaceI∗, whose points we can think of as initial data posable at different times.

195The spatial volume is itself at-dependent function onI∗, since the same conformal data will lead
to instantaneous geometries with different volumes when supplemented by different values oft.

196Strictly speaking, these isomorphisms will be merely local (as in section 6.1) if the range of values
taken on by the time parameter varies from geometry to geometry.
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So these notions allow us to circumvent the problem of time by playing the same
roles that a slicing played in sections 5 and 6 when we considered theories set in
fixed background spacetimes.

Does the introduction of a geometric time or of an associated Hamiltonian-
ization violate general covariance? In one sense there is no violation—for these
notions are situated at the level of the reduced space of solutions, and so cannot,
e.g., treat diffeomorphic solutions differently.

But it remains true that the introduction of a geometric time violates the spirit
of general relativity, as the theory is generally understood today—most would like
to think of special relativity as dissolving any privileged distinction between time
and space and of general relativity as generalizing special relativity in a way that
does nothing to reinstate such a distinction.197

Note, however, that this is really an objection to the privileging of one geometric
time over others. It seems entirely in the spirit of general relativity to think of
the content of the theory as being elucidated by each of its Hamiltonianizations
and as being exhausted by the set of all Hamiltonianizations (that is, if we ignore
spacetimes with time translation or reflection symmetries).

Still, it is natural to ask what sort of considerations could lead us to recognize a
geometric time or associated Hamiltonianization as being thecorrectone.198

Classical Considerations.In the CMC Hamiltonianization sketched in example
54 above general relativity is recast as a time-dependent system. This is a bit
unsettling: we are used to thinking that time-dependent Hamiltonians only
arise when an open system is subject to external forces. So it is surprising
to encounter a time-dependent Hamiltonian system in a fundamental con-
text. Perhaps this is something we have to learn to live with: we are here
in effect singling out one of general relativity’s infinitely many variables
and treating it as time—and we expect there to be all sorts of complicated
nonlinear interactions between the variables of general relativity. However,
some interesting special cases are known of geometric times that lead to
time-independent Hamiltonianizations of general relativity.199

So we cannot rule out the possibility that there may be a geometric time of
wide scope that that allows us to reformulate general relativity as a time-
independent Hamiltonian theory with non-trivial dynamics.200 Clearly the

197On the other hand, many early relativistic cosmologists were happy to take the natural foliation of
nonrotating dust cosmologies by surfaces orthogonal to the dust worldlines as a sign that the distinction
between space and time, banished in Einstein’s account of electromagnetism, was reinstated at the
astronomical level. See[Belot, 2005,§3.2] for discussion and references.

198Note that some approaches in the philosophy of time and some approaches to the interpretation
of quantum mechanics would appear to require something like a preferred foliation of spacetime by
instants of time.

199This happens with the CMC time in the case where space has the topology of a two-torus; see
[Moncrief, 1989, p. 2913]. It can also be achieved for general relativity coupled to a perfect fluid—in
this case the conserved quantity that drives the dynamics is total baryon number; see[Moncrief, 1977]
and[Moncrief and Demaret, 1980].

200Note that given a non-trivial time-independent Hamiltonian onI∗, we can use ourt-dependent
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construction of such a geometric time would be of the first interest: it might
well seem that we had happened on thecorrect time, previously concealed
from us by the unperspicuous formulations of the theory that we had been
working with—much as it would have if classical mechanics had first been
given a time-reparameterization invariant formulation, and it had then been
discovered that a certain family of parameterizations allowed the equations
to be rewritten in a much simpler form.

Quantum Considerations. The question whether to privilege one geometric time
or to treat them all equally can be expected to have repercussions for quanti-
zation (which project provides the main motivation for looking for a Hamil-
tonian formulation of general relativity with nontrivial dynamics in the first
place). For one certainly does not expect that distinct Hamiltonian formu-
lations of general relativity corresponding to distinct choices of geometric
time should have equivalent quantizations—at least not if equivalent quan-
tizations are required to be unitarily equivalent.201

So what can we hope for? For long shots like the following. (1) Perhaps only
one geometric time will lead to an empirically adequate quantum theory of
gravity. (2) Perhaps there will be a natural class of geometric times (e.g.,
the ones that lead to time-independent Hamiltonians) that can be seen as
underwriting the equivalent quantum theories (perhaps in a liberalized sense
of “equivalent”).

Far more plausibly, the solution to the difficulties in quantizing general relativity
will come from some other direction entirely. But hopefully it will in any case be
worthwhile to be clear about the nature of the problem of time.
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up with unitarily equivalent quantizations. But as soon as one considers infinite-dimensional or nonlin-
ear phase spaces the situations changes radically—for example, what look like equivalent formalisms
at the classical level lead to distinct quantum theories. See[Ruetsche, Unpublished] and[Gotay, 2000]
for discussion, examples, and references. See[Gotay and Demaret, 1983] for a minisuperspace cosmo-
logical model that admits competing deparameterizations that lead to physically distinct quantizations.
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