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Abstract

The aim of this paper is to analyze the concepts of time-reversal
invariance and irreversibility in the so-called ’time-asymmetric quan-
tum mechanics’. We begin with pointing out the difference between
these two concepts. On this basis, we show that irreversibility is not
as tightly linked to the semigroup evolution laws of the theory -which
lead to its non time-reversal invariance- as usually suggested. In turn,
we argue that the irreversible evolutions described by the theory are
coarse-grained processes.
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1 Introduction

The problem of irreversibility owes its origin, in the nineteenth century, to the
discussions of the founding fathers of statistical mechanics about the mechan-
ical interpretation of the second law of thermodynamics. In those days, the
problem consisted in seeking for an adequate account of the compatibility be-
tween the irreversible macroscopic evolutions described by thermodynamics
and the reversible microscopic evolutions resulting from classical mechanics.
In the beginning of the twentieth century, classical mechanics was replaced
by quantum mechanics as the fundamental theory; however, this fact did not
affect the core of the problem: independently of measurement, quantum evo-
lutions turned out to be as reversible as the classical evolutions analyzed in
the original formulation of the problem. During the first half of the twentieth
century, the attempts to reconcile irreversible thermodynamic behavior with
reversible quantum dynamics were confined to a background position in the
face of the growing interest in the foundational problems of relativistic and
quantum mechanics. It was just in the second half of the century, mainly
since the 1960s, that the attention of the scientific community began to focus
again on the problem of irreversibility. One of the main factors responsible
for this change in the appreciation of the problem was the so-called ’time-
asymmetric quantum mechanics’ and its concept of intrinsic irreversibility,
that is, the irreversibility due not to the interaction between a system and
its environment, but to the dynamics of a closed system.
We shall subsume under the label ’time-asymmetric quantum mechanics

school’ (’TAQM-school’, for short) the members and the works of two groups
led by Arno Bohm at Austin and by Ilya Prigogine at Brussels. In spite of
the differences between the two groups, it can be said that the main technical
efforts of the TAQM-school has been directed to the formulation of a quantum
mechanics capable of accounting for irreversible quantum phenomena, such as
resonances, decaying processes, etc. Besides this general aim, the two groups
agree on the use of rigged Hilbert spaces as the formal tool for addressing
the issue of quantum irreversibility; according to their view, by means of this
formalism it is possible to turn standard quantum mechanics into a ’time-
asymmetric’ theory where irreversible quantum descriptions can be obtained.
The aim of this paper is to analyze the main claims of the TAQM-school

about irreversibility in the light of the distinction between the concepts of
time-reversal invariance and reversibility. This task will allow us to argue
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that, to the extent that irreversibility and non time-reversal invariance are
different concepts, the new quantum theory proposed by the TAQM-school
has to include the formal resources necessary to account for each one of
them. In fact, we shall identify two different elements in the formalism, each
one of which is responsible for an independent and particular feature of the
theory: its non time-reversal invariance and the irreversible character of its
evolutions. As a consequence, we shall argue that, contrary to a common
opinion, the theory’s ability to account for irreversible quantum processes is
independent of its ’time-asymmetry’, that is, its non time-reversal invariance
expressed by semigroup evolution laws. Finally, we shall show that, since
Gamow vectors are functionals, the decaying Gamow vector decays only in
a weak sense: this fact is the mathematical expression of the coarse-grained
nature of the irreversibility described by the theory.

2 Disentangling concepts

The concepts of irreversibility and time-reversal invariance have been exten-
sively discussed in the literature on philosophy of science. In this section
our aim is not to address this old discussion; here we shall briefly consider
the characterization of those concepts with the only purpose of supplying a
conceptual basis for our analysis of TAQM-school’s arguments.

Definition 1: A dynamical equation (law) is time-reversal in-
variant if it is invariant under the application of the time-reversal
operator T.

The time-reversal operator T performs the transformation t → −t and
reverses certain magnitudes which depend on the particular theory consid-
ered. Nevertheless, the central idea is that T must reverse all the dynamical
variables whose definitions in function of t are non-invariant under the trans-
formation t→ −t. For instance, in classical particle mechanics, the action of
T reverses the momenta but not the positions of the particles: Tp = −p and
Tq = q. In electromagnetism, in turn, T leaves the electric fields unchanged
and reverses the velocities of the charges and also the magnetic fields to the
extent that such fields change their direction in accordance with the veloci-
ties of the charges; then, Tv = −v, TB = −B and TE = E (for details, cf.
Earman 2002). As a result, given a time-reversal invariant equation L, if e(t)
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is a solution of L, then Te(t) is also a solution. If we call R the operator that
reverses the proper magnitudes but not the time variable, the time-reversal
state corresponding to e(t) is:

Te(t) = R e(−t) (1)

Although the concept of irreversibility has received many different char-
acterizations in the literature, here we shall not discuss each one of them in
detail. Since the irreversible evolutions treated by TAQM are usually de-
caying processes in closed and spatially bounded systems, we shall adopt a
characterization based on the concept of attractor1. As it is well known,
an attractor is defined as a subset of the phase space toward which a set of
evolutions tends for t → ±∞. We can extend this definition by considering
a generalized concept of attractor as a subset of the set of the possible states
of a system toward which a set of evolutions tends for t→ ±∞; this concept
can be applied not only to phase spaces, but also to any kind of sets of states.
Examples of generalized attractors are the attractors of classical dynamical
systems (fixed point, limit cycle, fractal, etc.) and any classical or quantum
equilibrium state. With this characterization, the concept of reversibility can
be defined as follows:

Definition 2: A solution (evolution) e(t) of a dynamical equation
is reversible if it has no generalized attractors, for any represen-
tation of e(t).

When the time dependent state e(t) can be represented as an n-uple
of dynamical variables in phase space, e(t) = (v1(t), ..., vn(t)), reversibility
requires that, for any dynamical variable vi(t), the limit limt→±∞ vi(t) does
not exist. In this case it can be said that the evolution e(t) is reversible if it
has no attractors in phase space.

1In fact, the irreversible processes studied by TAQM are decaying processes, as the
decay of excited states of molecules and nuclei, the weak decay of elementary particles
or certain resonances such as those of the neutral Kaon system. In these cases, the time
evolution tends to a final equilibrium state from which the system cannot escape: the
irreversibility of the process is due precisely to the fact that the evolution leaving the
equilibrium state is not possible. Since the aim of the TAQM is to find the adequate
dynamical equations to describe this kind of irreversible behavior, in this context the
concept of irreversibility can be elucidated in terms of the notion of attractor with no loss
of generality.
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Without entering into a discussion on the details of these two definitions
(for further discussions, cf. Albert 2000, Arntzenius 2004), it is quite clear
that the concepts of time-reversal invariance and irreversibility are different
to the extent that they apply to different mathematical (physical) entities:2

whereas time-reversal invariance is a property of dynamical equations and, a
fortiori, of the sets of its solutions, reversibility is a property of a single solu-
tion of a dynamical equation. Furthermore, as previously characterized, both
properties are not even correlated; in fact, they can be combined with each
other in the four possible cases. For instance, in classical particle mechanics
the application of the time-reversal operator T results:

Tq = q T
•
q= − •

q (2)

Tp = −p T
•
p=

•
p (3)

Nevertheless, depending on the particular form of the Hamiltonian we can
obtain:

• Time-reversal invariance and reversibility: Let us consider the
harmonic oscillator with Hamiltonian:

H =
1

2m
p2 +

1

2
k2 q2 (4)

The dynamical equations are time-reversal invariant as can be proved
by introducing eqs.(2) and (3) in:

•
q=

∂H

∂p
=
p

m

•
p= −∂H

∂q
= −k2q (5)

As a result, the set of trajectories in phase space is symmetric with
respect to the q-axis. On the other hand, the solutions q(t) and p(t)
have the following form:

q(t) = C cos(ωt+α) p(t) = Cmω sin(ωt+α) with ω =
k2

m
(6)

and, therefore, they have no limit for t → ±∞. In other words, each
trajectory is reversible since it is a closed curve in phase space.

2For simplicity, from here we will not distinguish between mathematical entities (equa-
tions and solutions) and physical entities (laws and evolutions), using both indistinctly.
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• Time-reversal invariance and irreversibility. Let us consider the
pendulum with Hamiltonian:

H =
1

2m
p2θ −

k2

2
cos θ (7)

Again the dynamical equations are time-reversal invariant since Tθ =
θ:

•
θ=

∂H

∂pθ
=
pθ
m

•
pθ= −∂H

∂θ
= −k

2

2
sin θ (8)

Therefore, the set of trajectories in phase space is symmetric with re-
spect to the θ-axis. However, not all the solutions are reversible. In
fact, when H = k2

2
, the evolution is irreversible since it tends to θ = π,

pθ = 0 (θ = −π, pθ = 0) when t → ∞ (t −→ −∞) (cf. Tabor 1989).
For H < k2

2
(oscillating pendulum) and H > k2

2
(rotating pendulum),

the evolutions are reversible.

• Non time-reversal invariance and reversibility. Let us now con-
sider the modified oscillator with Hamiltonian:

H =
1

2m
p2 +

1

2
K(p)2 q2 (9)

where K(p) = K+ when p ≥ 0, K(p) = K− when p < 0, and K+ and
K− are constants. This means that TK+ = K−. As a consequence,
if K+ 6= K−, the dynamical equations are non time-reversal invariant
since, for p ≥ 0:

•
p= −K2

+q T
•
p= −TK2

+Tq = −K2
− q 6= −K2

+q (10)

and for p < 0:

•
p= −K2

−q T
•
p= −TK2

−Tq = −K2
+ q 6= −K2

−q (11)

Nevertheless, the solutions q(t) and p(t) are, for p ≥ 0:
q(t) = C1 cos(ω+t+ α+n) p(t) = C1mω+ sin(ω+t+ α+n) (12)

and for p < 0:

q(t) = C2 cos(ω−t+ α−n) p(t) = C2mω− sin(ω−t+ α−n) (13)

6



where ω± =
K2
±
m
and the constants α±n change from one cycle n to

the next cycle n + 1 in such a way that the solutions turn out to be
continuous. It is clear that these solutions have no limit for t → ±∞:
each trajectory is reversible since it is a closed curve in phase space.

• Non time-reversal invariance and irreversibility. Let us consider
a damped oscillator represented by the following dynamical equation:

••
q +A2

•
q +k2q = 0 (14)

Given that T
••
q=

••
q , the equation is non time-reversal invariant since,

under the application of T, it becomes:

••
q −A2 •

q +k2q = 0 (15)

On the other hand, the solutions q(t) have the following form:

q(t) = Re
£
q0 e

−iαt¤ = q0 cosωt e−γt with α = ω − iγ (16)

Here cosωt is the oscillating factor and e−γt is the damping factor. As
a consequence, the evolutions are irreversible since they tend to zero
for t→∞.

Up to this point, we have considered general definitions of time-reversal
invariance and irreversibility. But since here we are interested in quantum
mechanics, we shall restrict our attention on the following kind of evolutions:

et = Ut e0 (17)

where e0 and et are vector states. The evolution operator is a unitary operator
Ut = e

−iGt, where G is the self-adjoint generator of the evolution.3 This kind
of evolutions are solutions of dynamical equations of the form:

i
det
dt
= G et (18)

3This analysis can also be applied to classical mechanics in the Koopman (1931)
formulation.
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Such a dynamical equation is time-reversal invariant since the time-reversal
operator T acts on i and G as follows: Ti = Ri = −i (what makes T and R
antilinear4), TGT−1 = RGR−1 = G (or, equivalently, T−1GT = R−1GR =
G). In fact, under the application of T, eq.(18) preserves its form:

T

µ
i
det
dt

¶
= −i dTet

d(−t) = i
dTet
dt

= T (G et) = TGT
−1
Tet = G Tet (19)

It is easy to prove that, if such an equation is time-reversal invariant, the set
{Ut : t ∈ R} of evolution operators forms a group. In particular, there exists
an operator

U−t = R−1UtR such that UtU−t = I (20)

where I is the identity operator. In fact,

U−t = R−1UtR = eR
−1[−iGt]R = eiR

−1GRt = eiGt (21)

and, therefore, UtU−t = e−iGt eiGt = I. It is also easy to show how Loschmidt’s
paradox arises in this case. Let us consider an initial state e0 that evolves
under Ut to et = Ute0. If now the state et is reversed, Ret = RUte0, the fur-
ther evolution under Ut, UtRet = UtRUte0, will lead to the reversed original
state Re0; in fact, since R

−1UtRUt = U−tUt = I:

Re0 = UtRUte0 ⇒ e0 = R
−1UtRUte0 = U−tUte0 = e0 (22)

On the other hand, the evolutions of the form et = Ut e0 are always re-
versible: they have no limit for t→ ±∞ because the unitary operator Ut does
not change the angle of separation (the inner product) or the distance (the
square modulus of the difference) between vectors representing two different
states. However, as it is well known, irreversible and, therefore, non-unitary
evolutions can be obtained from the original reversible unitary dynamics by
the introduction of some sort of coarse-graining. In its traditional form, a
coarse-grained description arises from a partition of a phase space into dis-
crete an disjoint cells: this mathematical procedure defines a projector (cf.
Mackey 1989) whose action is to eliminate some components of the state

4If T were linear, THT−1 = −H (where H is the Hamiltonian), with the consequence
that, for any state of energy E, there would be another state of energy −E. The antilin-
earity of T avoids this ’anomalous’ situation (for a detailed discussion on this point, cf.
Castagnino and Lombardi 2004b).

8



vector corresponding to the original description. If this idea is generalized,
coarse-graining can be conceived as a projection that reduces the number of
components of a vector et representing a state; the new coarse-grained state
ecgt then results:

ecgt = Π et (23)

where Π is a projector, that is, Π2 = Π. The evolution represented by ecgt
may now be irreversible; this is the case when there exists the limit

lim
t→±∞

ecgt = lim
t→±∞

Π et (24)

This situation is usual in the description of classical systems where, under
conditions of high instability, irreversible (non-unitary) coarse-grained evo-
lutions can be obtained from the underlying reversible (unitary) dynamics.
But it is worth stressing that et and ecgt correspond to different descriptive
levels: et is a reversible unitary evolution, and there is no way of extracting
irreversibility in this level; ecgt is an irreversible non-unitary evolution, but
it can be defined only in a coarse-grained level of description.
On the basis of this elucidation of the concepts of time-reversal invariance

and reversibility, the problem of irreversibility can be stated in a simple way:
how to explain irreversible evolutions in terms of time-reversal invariant laws.
With this characterization, there is no conceptual puzzle in the problem of
irreversibility: in principle, nothing prevents a time-reversal invariant equa-
tion from having irreversible solutions. However, difficulties arise when we
are dealing with dynamical equations having unitary solutions: as we have
seen, since unitary evolutions are always reversible, it is necessary to go to
a different level of description in order to obtain irreversibility. This point
will be relevant in the discussions about irreversibility as obtained by the
TAQM-school.
At this point it is worth while to emphasize that we have not talked at

all about the arrow of time, a problem addressed by Bohm and Prigogine in
their works. In Prigogine’s version of TAQM, the second law of thermody-
namics is introduced at the microscopic level as the criterion for retaining the
future directed decaying evolutions and discarding the past directed ones (cf.
Prigogine and George 1983, Antoniou and Prigogine 1993). In turn, Bohm
appeals to the ’preparation-registration arrow of time’ (Bohm et al. 1994,
Bohm and Wickramasekara 2002, Bohm et al. 2003a), rooted in an idea that
can be traced back to the works of Günther Ludwig (1983-1985): according
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to Bohm, this arrow expresses the asymmetry of the boundary conditions
introduced by macroscopic preparation and registration devices, which are
not described by quantum theory (cf. Bohm et al. 1997). We shall not ad-
dress these points in the present paper since, as it has been noted (cf. Sklar
1974 and, more recently, Castagnino et al. 2003, Castagnino and Lombardi
2005), the problems of irreversibility and of time’s arrow, even if related to
each other, are conceptually different: whereas the problem of irreversibility
asks for the explanation of irreversible evolutions in terms of time-reversal
invariant laws, the problem of the arrow of time is concerned with the possi-
bility of establishing a non-conventional and theoretically founded difference
between the two directions of time. The discussion of the problem of the
arrow of time in TAQM will be the subject of a future paper.

3 The rigged Hilbert space formalism

For the TAQM-school, the main reason to work with rigged Hilbert spaces
is their ability to model irreversible physical phenomena, such as decaying
processes, resonances and approach to equilibrium. In this section we shall
describe the central features of this formalism; this will be necessary to iden-
tify, in the following sections, the key formal elements responsible for the
non time-reversal invariance of the theory and for the irreversibility of its
evolutions.
A rigged Hilbert space (RHS) or Gel’fand triplet (Gel’fand and Vilenkin

1964) is a triplet of spaces:

Φ ⊂ H ⊂ Φ× (25)

where:

• i.) The intermediate spaceH is an infinite-dimensional separable Hilbert
space.

• ii.) The space Φ is a topological vector space, which is dense in H.
This means that, for any ψ ∈ H and for any positive number ε > 0,
there is another vector φ ∈ Φ such that ||ψ−φ|| < ε. The space Φ has
its own topology which is stronger than the topology that Φ possesses
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as a subspace of H.5 The topology in Φ is not given by a norm, but in
the cases of physical interest, by a countable infinite family of norms;
in these cases, Φ has the structure of a metric space.

• iii.) The space Φ× is the antidual space of Φ, and the vectors F ∈ Φ×,
F : Φ→ C, are functionals. The action of F ∈ Φ× on φ ∈ Φ is usually
expressed as F (φ) or, in Dirac’s notation, hφ|F i. The functionals F
fulfill the following conditions:

— a.) Antilinearity: For any φ,ϕ ∈ Φ and α, β ∈ C:
F (αφ+ β ϕ) = α∗ F (φ) + β∗ F (ϕ) (26)

where the star denotes complex conjugation.

— b.) Continuity: If φn 7−→ φ in Φ, then F (φn) 7−→ F (φ) in C.6

In a RHS, H ⊂ Φ× means that any vector belonging to H can be viewed
as a functional on Φ. If ψ ∈ H, then the functional Fψ belonging to Φ× is
uniquely defined by ψ as:

hϕ|Fψi := hϕ|ψi (27)

where hϕ|ψi is the usual scalar product in H.
RHSs have an important property that is essential to understand the

definition of the Gamow vectors. Under general assumptions, an operator A
on H can be extended into the antidual Φ× as A× by the duality formula:

hA†φ|F i = hφ|A× F i , ∀φ ∈ Φ , ∀F∈ Φ× (28)

where A† is the adjoint of A and A× is a linear and continuous operator on
Φ× (cf. Schäffer 1970).7 This property also applies when A is self-adjoint;

5This can be explained by noticing that the topology in Φ has more open sets, and,
consequently, more neighborhoods and less convergent sequences than H.

6This is sufficient to define continuity in the case that Φ is a metric space. Otherwise,
it is necessary to generalize this condition to more general structures called ’nets’ and
’filters’ (cf. Schäffer 1970).

7The assumptions are: (i) the domain D(A†) of A† includes the space Φ: Φ ⊂ D(A†),
(ii) for each φ ∈ Φ, A†φ ∈ Φ; in this case we say that Φ reduces A†, and(iii) the operator

A† is continuous on Φ in the own topology of Φ.
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in this case, A† = A, and the duality formula becomes:

hAφ|F i = hφ|A× F i , ∀φ ∈ Φ , ∀F∈ Φ× (29)

Different realizations of RHSs have been used in the physical literature
for distinct purposes. For instance, the Schwartz space8 S is included and
dense in the Hilbert space of complex square integrable functions in the real
line, L2(R) (cf. Reed and Simon 1972). The RHS:

S ⊂ L2(R) ⊂ S× (30)

has been used to give a rigorous mathematical foundation to Dirac’s for-
malism. This realization is time-reversal invariant and irreversibility is not
discussed in this case.
In the case of time-asymmetric quantum mechanics, Hardy functions play

a central role. A function f(x) is a Hardy function on the upper (lower) half-
plane Im z > 0 (Im z < 0) of the complex plane, f(x) ∈ H2

+ (f(x) ∈ H2
−),

iff:

• i.) f(x) is a complex function of real variable, f : R→ C.

• ii.) f(x) represents the boundary values of an analytic function f(z)
on the upper (lower) half plane Im z > 0 (Im z < 0) of the complex
plane. This means that, for any y0 > 0, y0 ∈ R, the complex function
of complex variable f(z) = f(x + iy0) (f(z) = f(x − iy0)) is analytic
in the upper (lower) half-plane. In this case it is said that f(z) is
the analytical continuation of the function f(x) in the upper (lower)
half-plane of the complex plane.

• iii.) The following inequality holds:

sup
y0>0

Z ∞

−∞
|f(x± iy0)|2 dx ≤ K with K > 0 (31)

8A function f(x) is a Schwartz function, f(x) ∈ S, iff: (i) f(x) is a complex function
of real variable: f : R → C, (ii) f(x) is continuous and derivable to any order, and (iii)
f(x) tends to 0 for |x|→∞ faster than the inverse of any polinomial:

lim
|x|→∞

xnf(x) = 0 ∀n = 0, 1, 2, ...

The same property is valid for the derivatives of f(x).
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where the sign + (−) corresponds to functions defined on the
upper (lower) half plane, and the constant K depends on f(z).

As a consequence of this definition, any Hardy function on the upper
(lower) half-plane, f+(x) ∈ H2

+ (f−(x) ∈ H2
−), is a limit of a complex function

f+(z) (f−(z)) that is analytic in the upper (lower) half plane (cf. Koosis
1980):

lim
y0→0

f±(z) = lim
y0→0

f±(x± iy0) = f±(x) a.e. (32)

where the almost everywhere restriction is referred to the Lebesgue measure
on R, and f+(x) ∈ L2(R) (f+(x) ∈ L2(R)). Therefore, any f(z) analytic
in the upper (lower) half-plane fulfilling condition iii.) uniquely determines
its boundary values on the real line, given by a Hardy function on the up-
per (lower) half-plane. After Titchmarsh’s theorem (Titchmarsh 1937), the
reciprocal is also true: any Hardy function on the upper (lower) half-plane,
uniquely determines a complex function f+(z) (f−(z)) that is analytic in the
upper (lower) half-plane:

f±(z) = f±(x± iy0) = ± 1

2πi

Z ∞

−∞

f±(x)
x− z dx (33)

and that fulfills condition iii.). Consequently, the functions on a half plane
with this property can be identified with their boundary values on the real
axis and, therefore, it is usual to assign the name ’Hardy function’ also to
them. Furthermore, it can be proved that the Hardy spaces H2

+ and H2
− have

the following important properties:

• a.) H2
+ and H2

− have no other function in common than the zero
function:

H2
+ ∩H2

− = {0} (34)

• b.) H2
+ and H2

− are closed subspaces of L
2(R) and, therefore, Hilbert

subspaces of L2(R):

H2
+ ⊂ L2(R) H2

− ⊂ L2(R) (35)

• c.) The direct sum of H2
+ and H2

− coincides with L
2(R):

H2
+ ⊕H2

− = L
2(R) (36)
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A Hardy function on the upper (lower) half-plane is called ’smooth’ if it is
infinitely differentiable and fast decreasing. Therefore, the space of smooth
Hardy functions on the upper (lower) half-plane is the intersection between
the Hardy space H2

+ (H2
−) and the Schwartz space S: S ∩H2

+ (S ∩H2
−). As

a consequence of a theorem by Paley and Wiener (1934), the intersections
S ∩H2

± are not only non-trivial but also dense in H2
±. If we endow S ∩H2

±
with the metric topology inherited from S, it can be shown that (cf. Bohm
and Gadella 1989):

S ∩H2
± ⊂ H2

± ⊂ (S ∩H2
±)
× (37)

are RHSs. However, these are not yet the RHSs used in time-asymmetric
quantum mechanics. As a consequence of a result due to van Winter (van
Winter 1974), any Hardy function on the upper (lower) half plane, f+(z)
(f−(z)), is uniquely determined by its boundary values on the positive real
semiaxis R = [0,∞). Therefore, instead of working with S ∩ H2

±, we can

work with S ∩H2
±
¯̄̄
R+
, that is, the restriction of the functions of S ∩H2

± to

R+. Since it can be proved that both S ∩ H2
±
¯̄̄
R+
are dense in L2(R+) (cf.

Bohm and Gadella 1989), then:

S ∩H2
±
¯̄̄
R+
⊂ L2(R+) ⊂

³
S ∩H2

±
¯̄̄
R+

´×
(38)

are also RHSs: these are the particular realizations used by the TAQM-school
in its time-asymmetric quantum mechanics.

4 Rigged Hilbert spaces in time-asymmetric

quantum mechanics

The TAQM-school works with vector states φ± ∈ Φ±, whose corresponding
wave functions in the energy representation, φ±(ω), belong to the space S ∩
H2
±
¯̄̄
R+
:

φ± ∈ Φ± φ±(ω) = hω|φ±i ∈ S ∩H2
±
¯̄̄
R+

(39)

As it is well known, in standard quantum mechanics the time evolution
of a state vector belonging to the Hilbert space H is given by the unitary
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evolution obtained from the Schrödinger equation:

∀ϕ ∈ H ϕ(t) = Ut ϕ = e
−iHtϕ for −∞ < t <∞ (40)

where H is the Hamiltonian operator and Ut = e
−iHt is a well defined unitary

operator on H. Let us now consider the action of the evolution operator
U−t = eiHt on the vectors φ± ∈ Φ±, where U−t is the adjoint (inverse) of Ut.
This strategy is justified by the fact that we want to obtain the evolution
operator U×t for the vectors belonging to Φ

×
± and, therefore, we have to begin

with the adjoint of Ut: U
†
t = U−t (cf. the duality formula 28):

hU †t φ|F i = hφ|U×t F i , ∀φ ∈ Φ , ∀F∈ Φ× (41)

The operator U−t is well defined on Φ±; however, its behavior on Φ+ and
Φ− is very different for different values of t. In fact, it is desired that the
action of eiHt on a function φ+(ω) lead to a new function ϕ+(ω) such that:

If φ+(ω) ∈ S ∩H2
+

¯̄̄
R+
, then ϕ+(ω) = eiωtφ+(ω) ∈ S ∩H2

+

¯̄̄
R+

(42)

In other words, eiHt should turn smooth Hardy functions on the upper half-
plane into smooth Hardy functions on the upper half-plane. But this require-
ment is not fulfilled for all values of t since the third property in the definition
of the Hardy functions (cf. eq.(31)) does not hold for t < 0. Precisely, only
for t ≥ 0:

sup
y0>0

Z ∞

−∞
|φ+(ω + iy0) ei(ω+iy0)t|2 dx = sup

y0>0

Z ∞

−∞
|φ+(ω + iy0)|2 e−2y0t dx ≤ K

(43)
Furthermore, one can show that, for each t0 < 0, there exists a function

φ+(ω) ∈ S∩H2
+

¯̄̄
R+
such that e−iωt0φ+(ω) /∈ S∩H2

+

¯̄̄
R+
. Therefore, condition

(42) only holds for t ≥ 0. An analogous argument can be applied to functions
φ−(ω) ∈ S∩H2

−
¯̄̄
R+
: the evolution operator eiωt turns smooth Hardy functions

on the lower half-plane into smooth Hardy functions on the lower half-plane
only for t ≤ 0 (cf. Bohm and Gadella 1989).
The above results can be summarized as follows:

If φ+ ∈ Φ+, then ϕ
+ = eiH+tφ+ ∈ Φ+ for t ≥ 0 (44)

If φ− ∈ Φ−, then ϕ− = eiH−tφ− ∈ Φ− for t ≤ 0 (45)
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where the semigroup generators H± are the restrictions of the self-adjoint
operator H to the subspaces Φ±. In turn, the evolution operators U+t :=
e−iH+t and U−t := e−iH−t can be extended into the antiduals Φ

×
± by means of

the duality formula (28):

hU+−tφ+|F+i = hφ+|U+×t F+i ∀φ+ ∈ Φ+ , ∀F+∈ Φ×+, ∀t ≥ 0 (46)

hU−−tφ−|F−i = hφ−|U−×t F−i ∀φ− ∈ Φ− , ∀F−∈ Φ×−, ∀t ≤ 0 (47)

where:
U+×t = e−iH

×
+ t U−×t = e−iH

×
− t (48)

and H×
± are the extensions of the self-adjoint operator H to the subspaces

Φ×± (cf. Bohm and Scurek 2000, Bohm et al. 2003a). Observe that U
+×
t and

U−×t are operators defined on Φ×+ and Φ
×
− respectively. Equations (46) and

(47) can, therefore, be written as follows:

heiH+tφ+|F+i = hφ+|e−iH×
+ tF+i ∀φ+ ∈ Φ+ , ∀F+∈ Φ×+, ∀t ≥ 0 (49)

heiH−tφ−|F−i = hφ−|e−iH×
− tF−i ∀φ− ∈ Φ− , ∀F−∈ Φ×−, ∀t ≤ 0 (50)

Summing up, the choice of Hardy functions for this particular realization of
the RHS is what allows the TAQM-school to obtain evolution operators that
form semigroups, instead of the group evolution operators of the traditional
Hilbert space formulation of quantum mechanics.
In addition to the states φ± ∈ Φ± with smooth wave functions φ±(ω), this

realization of the RHS formalism introduces new generalized vectors, that is,
functionals on the spaces Φ±. Loosely speaking, in a RHS, the smaller the
space Φ is, the bigger the space Φ× is. In this particular realization, the
spaces Φ± are restricted enough to permit their antiduals Φ×± to contain not
only the Dirac kets, but also more general kets. In fact, besides to eigenkets
with real eigenvalues, the spaces Φ×± may contain also eigenvectors of the
Hamiltonian having complex eigenvalues. For instance, there may exist a
vector ΨD ∈ Φ×+, called ’decaying Gamow vector’, and a vector ΨG ∈ Φ×−,
called ’growing Gamow vector’, such that they are eigenvectors of H×

+ and
H×
− with complex eigenvalues zR = ωR − iΓ2 and z∗R = ωR + iΓ2 respectively,

with Γ > 0 (cf. Bohm and Gadella 1989, Bohm et al. 2003b):

H×
+ Ψ

D = zRΨ
D = (ωR − iΓ

2
)ΨD (51)

16



H×
− Ψ

G = z∗RΨ
G = (ωR + i

Γ

2
)ΨG (52)

The Gamow vectors are related with resonances, which are usually described
by means of the analytical continuation of the scattering operator S in the
energy representation, S(ω):9 the analytical continuation of S(ω) in the up-
per and the lower half-planes of the complex energy plane possesses at least
a pair of complex conjugate poles at the points zR and z

∗
R, which turn out

to be the complex eigenvalues of the Hamiltonian (cf. Gadella 1997).10 The
imaginary part of these eigenvalues is precisely what breaks down the unitary
character of the time evolution and makes it possible to obtain exponentially
growing and decaying states. In fact, since the Gamow vectors belong to the
antidual spaces Φ×±, their time evolution has to be computed by means of
the duality formulas (49) and (50):

heiH+tφ+|ΨDi = hφ+|e−iH×
+ tΨDi ∀φ+ ∈ Φ+ , ∀t ≥ 0 (53)

heiH−tφ−|ΨGi = hφ−|e−iH×
− tΨGi ∀φ− ∈ Φ− , ∀t ≤ 0 (54)

Therefore, for ∀t ≥ 0:
hφ+|e−iH×

+ tΨDi = hφ+|ΨDi e−i(ωR−iΓ2 )t = hφ+|ΨDi e−iωRt e−Γ
2
t (55)

This expression represents an exponentially decaying process with lifetime
τ = 2

Γ
, whose limit when t goes to infinity results:

lim
t→∞

hφ+|e−iH×
+ tΨDi = lim

t→∞
hφ+|ΨDi e−iωRt e−Γ

2
t = 0 (56)

This means that, for t →∞, the decaying Gamow vector ΨD exponentially
decays in a weak sense. Analogously, the growing Gamow vector ΨG expo-
nentially decays in a weak sense for t→ −∞.
At this point we have all the conceptual and formal elements for assessing

the claims of the TAQM-school about irreversibility.

9As poles of the resolvent, Gamow vectors were first introduced by Grossmann (1964),
independently of RHSs. Later, they were unexpectedly discovered in the RHS formalism
as generalized eigenvectors of self-adjoint operators with complex eigenvalues (Lindblad
and Nagel 1970). The association between the poles of the S-matrix with the vectors in
the RHS was established in the 1980s (Bohm 1981, Gadella 1983, 1984).
10Second and higher order poles of the scattering operator S are treated in Bohm et al.

1997 and in Antoniou et al. 1998.
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5 Time-reversal invariance and irreversibility

in TAQM-school

One of the main purposes of the TAQM-school is to obtain a formulation of
quantum mechanics capable of explaining irreversible quantum phenomena;
according to their view, the use of RHSs is what turns standard quantum
mechanics into a time-asymmetric theory where irreversible quantum de-
scriptions are possible. But we have seen that non time-reversal invariance
and irreversibility are different concepts; therefore, it is worth while to ask
how and by means of which formal resources the new formalism accounts for
these two different features.
In its many works, the TAQM-school seems to suggest that, in the RHS

formalism, the fact that evolutions are described by means of semigroups
rather than groups is what permits irreversibility to be modeled in a natural
way. For instance, according to Antoniou and Prigogine (1993), semigroups
are the formal elements that describe the intrinsic irreversibility of large
Poincaré systems where the number of degrees of freedom tend to infinite
and ’continuous sets of resonances’ arise (for a detailed discussion, cf. Bishop
2004). In turn, according to Bohm, in the new formulation of quantum me-
chanics, ”the semigroup arrow is interpreted as microphysical irreversibility”
(Bohm et al. 1994, p.2593) and ”the semigroup e−iH

×
+ t, t ≥ 0, expresses in-

trinsic irreversibility on the microphysical level” (Bohm and Harshman 1998,
p.233; for a similar claim, cf. p.189). In particular, Bohm asserts that:
”It was realized by Antoniou that the RHS of Hardy class functions provided
the suitable mathematical framework for describing irreversibility at the mi-
croscopic level” (Bohm et al., 1997, p.491). These claims show that the
TAQM-school seems to establish a close link between the non time-reversal
invariance of the theory, expressed by semigroup evolution laws, and the ir-
reversibility of the processes described by it, as if the irreversible character
of the particular evolutions depended on the fact that they are described by
semigroups. In fact, the school’s proposal has been interpreted in this sense.
For instance, Bishop says that ”one of the important features of the RHS is
that evolution operators are often elements of semigroups rather than groups,
so that irreversible behavior can be modeled naturally” (Bishop 2004b, p.17;
for similar claims, cf. Bishop 2003), and that ”compared to the standard HS
framework, the RHS framework provides a significant advantage in the de-
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scription of irreversible processes in that semigroup evolutions arise naturally
in the latter” (Bishop 2004a, p.1685), since ”semigroups of operators are the
appropriate operators for the evolution of intrinsically irreversible processes”
(Bishop 2004a, p.1679). The same idea reappears when the author discusses,
in particular, the works of Prigogine’s and Bohm’s groups: ”the intrinsic irre-
versibility of LPS [large Poincaré systems] must be described by semigroups”
(Bishop 2004b, p.18); ”these semigroups fall out of the analysis quite natu-
rally in the RHS framework providing a rigorous description of irreversible
behavior in a scattering experiment” (Bishop 2004a, 1680). We shall argue
that this way of conceiving the contributions of the TAQM-school is mis-
guided: when the RHS’s realization used by the TAQM school is analyzed
from a mathematical viewpoint, the supposed link between the semigroup
evolution laws ant the irreversibility of the processes described by the theory
is not as close as those claims seem to suggest.
As we have seen, when time evolutions are governed by a unitary operator

Ut, the time-reversal invariance of the evolution law implies that the evolution
operators Ut (t ∈ R) form a group, in particular, that there exists an operator
U−t such that UtU−t = I. But the time-evolutions in TAQM’s formalism are
described by the operators U+×t and U−×t , which are defined only for t ≥ 0
and t ≤ 0, respectively; this means that U+×t with t < 0 and U−×t with t > 0
do not exist and, therefore, the sets {U+×t : 0 ≤ t ∈ R} and {U−×t : 0 ≥
t ∈ R} of evolution operators form two semigroups. This fact is what breaks
down the time-reversal invariance of the original theory: now we have two
semigroup evolution laws, each one of which is non time-reversal invariant. In
turn, semigroups arise as a result of using Hardy functions in this particular
realization of the RHS formalism. As it was explained, the impossibility of
defining an evolution operator for−∞ < t <∞ depends on the third property
in the definition of the Hardy functions, which implies that, for any Hardy
function φ±(ω) and for any y0 > 0, the functions φ±(ω±iy0) ei(ω±iy0)t must be
square integrable and all the integrals must be bounded by the same constant
K > 0. This means that the non time-reversal invariance of the theory is a
consequence of working with a particular realization of the RHS formalism,
based on Hardy functions.
On the other hand, an evolution is irreversible if it has a limit for t →

±∞. In the TAQM’ formalism, irreversibility is introduced by the fact that
processes that exponentially decay (grow) as e−

Γ
2
t (e

Γ
2
t) can be obtained: they

have a well defined limit for t → ∞ (t → −∞). And this, in turn, depends
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on the existence of the decaying (growing) Gamow vector ΨD (ΨG), which
is an eigenvector of the Hamiltonian with complex eigenvalue zR = ωR − iΓ2
(z∗R = ωR+i

Γ
2
). The possibility of defining Gamow vectors is a result of using

functions that can be analytically continued in the lower and in the upper
half-planes of the complex energy plane: each pair of Gamow vectors corre-
spond to the resonance determined by the pair of poles zR and z

∗
R of those

analytical continuations. But the property of having analytical continuation
in the half-planes of the complex plane is weaker than the property of being
a Hardy function since it is only the second property in the definition of the
Hardy functions. This means that the existence of Gamow vectors depends
neither on the use of Hardy functions, nor on the semigroup description of
the evolution law. For instance, Gamow vectors can be defined as functionals
on spaces of the form F(D(R)), where F stands for the Fourier transforma-
tion and D(R) is the space of infinitely differentiable complex functions with
compact support on the real line R. Each function of F(D(R)) is entirely
analytical and, considered as a complex function of the real variable R, a
Schwartz function. It can be proved that the space F(D(R))

¯̄̄
R+
of the re-

strictions to the positive semiaxis R+ of the functions belonging to F(D(R))
is dense in L2(R+). Therefore, the triplet:

F(D(R))
¯̄̄
R+
⊂ L2(R+) ⊂

³
F(D(R))

¯̄̄
R+

´×
(57)

is a realization of the RHS Φ ⊂ H ⊂ Φ×. In this RHS we can define two
functionals ΨDand ΨG belonging to Φ× such that they are eigenvectors of
the extension H× of the total Hamiltonian H to Φ×, with complex eigenval-
ues zR = ωR − iΓ2 and z∗R = ωR + iΓ2 respectively (as in eqs. (51) and (52)).
Here zR and z

∗
R are also the pair of complex conjugate poles of the analyt-

ical continuation of the scattering operator S in the energy representation.
However, in this case the space Φ is invariant under the action of the whole
group Ut = e

−iHt and, therefore, this group can be extended to the antidual
Φ× as U×t . As a consequence, the Gamow vectors Ψ

Dand ΨG evolve, for all
φ ∈ Φ and for all values of t, as:

hφ|U×t ΨDi = hφ|ΨDi e−iωRt e−Γ
2
t (58)

hφ|U×t ΨGi = hφ|ΨGi e−iωRt eΓ2 t (59)

This clearly shows that the very use of a RHS where the Gamow vectors can
be defined does not lead by itself to a semigroup description of the evolution
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law; this is the consequence of the construction of the spaces Φ± via Hardy
functions.
Summing up, the non time-reversal invariance of the theory proposed

by the TAQM-school is a consequence of the use of Hardy functions in the
realization of the RHSs; the irreversibility of certain evolutions is obtained
by means of Gamow vectors, which depend on working with functions that
can be analytically continued in the two half-planes of the complex energy
plane and, in particular, on the existence of poles in those continuations. But
the existence of Gamow vectors does not depend on the use of Hardy func-
tions. Therefore, the theory’s ability to describe irreversible evolutions does
not depend on its non time-reversal invariance. In fact, irreversible evolu-
tions can also arise in a time-reversal invariant theory based on an adequate
RHS. For instance, Gamow vectors can be obtained in a realization of the
RHS formalism in terms of functions that have analytical continuations but
are not Hardy functions (cf. Castagnino and Laura 1997, Castagnino et al.
2002). In this case, one may eventually define a pair of structures to describe
resonances, one for positive and the other for negative values of time (cf.
Castagnino et al. 2001). Here resonances are also related with the poles of
the corresponding function of complex variable; however, since the constraint
imposed by the Hardy functions does not exist, the time evolutions are gov-
erned by group evolution laws and, as a consequence, the theory remains as
time-reversal invariant as standard quantum mechanics in separable Hilbert
space. So, the assumption that the RHS of Hardy class functions provides
the suitable mathematical framework for describing irreversibility is, at least,
misleading. Conversely, in particular situations, the non time-reversal invari-
ant theory of the TAQM-school may describe only reversible evolutions: this
is the case of periodic systems, in whose descriptions Gamow vectors do not
take part. This fact is not surprising to the extent that the new formalism
must be capable of accounting also for the traditional reversible evolutions
described by standard quantum mechanics. These arguments clearly show
that the links between non time-reversal invariance and irreversibility are not
as strong as it is usually suggested in the literature on TAQM.
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6 The coarse-grained nature of irreversibility

The main scientific concern of Prigogine has been the status of the second
law of thermodynamics and, in general, of irreversible processes. Accord-
ing to him, if the second law has to be considered as a fundamental law,
it cannot be the result of coarse-graining, since coarse-grained descriptions
are unavoidably subjective, only due to our calculation techniques and mea-
surement limitations. On this basis, through all his works Prigogine was a
bitter enemy of any sort of coarse-graining: for him, it is absurd to conceive
irreversible processes, such as the combustion in a furnace or the burning of
a candle, as dependent on the observer and his experimental capacities (cf.
Prigogine and Stengers 1979). For this reason, Prigogine directed his efforts
to obtain an account of the objective and, from his viewpoint, necessarily
non coarse-grained irreversibility. Here our aim is neither to evaluate Pri-
gogine’s motivations nor to discuss the alleged relationship between coarse-
graining and subjectivity. Our only purpose is to analyze the way in which
irreversibility arises in TAQM-school’s proposal in order to determine if the
RHS formalism avoids coarse-graining as Prigogine assumes.
In time-asymmetric quantum mechanics, the elements of the antidual

spaces Φ×± represent ’generalized states’ (cf. Bohm et al. 2003b), which
evolve under the action of the operators U±×t as follows:

ϕ+(t) = U+×t ϕ+ = e−iH
×
+ tϕ+ ∀ϕ+ ∈ Φ×+, ∀t ≥ 0 (60)

ϕ−(t) = U−×t ϕ+ = e−iH
×
− tϕ+ ∀ϕ− ∈ Φ×−, ∀t ≤ 0 (61)

In the case in which the generalized state ϕ+ is the decaying Gamow vector
ΨD, Bohm claims that the evolution is given by11 (cf. Bohm et al. 2003a,
p.129, eq.(42)):

ΨD(t) = e−iH
×
+ tΨD = e−iωRt e−

Γ
2
tΨD ∀t ≥ 0 (62)

Therefore:
lim
t→∞

ΨD(t) = lim
t→∞

e−iωRt e−
Γ
2
tΨD = 0 (63)

These two last equations suggest that the Gamow vectors represent states in
the same sense as the vectors belonging to the spaces Φ± do, and that they

11Note that our sign convention does not coincide with Bohm’s, since he uses φ± ∈ Φ∓.
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decay ”by themselves”: ”the Gamow vector for the Friedrichs model decay
exponentially in the future, t > 0” (Antoniou et al. 2001). In other words,
it seems that the RHS formalism permits quantum states to evolve in an
irreversible way: quantum irreversible phenomena would be defined in the
same level of description as the reversible processes described by standard
quantum mechanics. However, this interpretation can be questioned when
the mathematical nature of the Gamow vectors in the context of the RHS
formalism is taken into account.
Let us remember that the vectors belonging to Φ× are functionals acting

on the elements of Φ. As a consequence of their very mathematical nature,
they have meaning not as isolated elements, but only in their relationship
with the vectors belonging to Φ:

φ ∈ Φ , F∈ Φ× F (φ) = hφ|F i (64)

Since the Gamow vectors are particular functionals belonging to Φ×±, they
only have mathematical meaning in expressions of the form:

φ+ ∈ Φ+ hφ+|ΨDi (65)

φ− ∈ Φ− hφ−|ΨGi (66)

Therefore, in mathematical precise terms, their time evolution has to be
computed as:

hφ+|e−iH×
+ tΨDi = hφ+|ΨDi e−izRt ∀t ≥ 0 (67)

hφ−|e−iH×
− tΨGi = hφ−|ΨGi e−iz∗Rt ∀t ≤ 0 (68)

with zR = ωR − iΓ2 . This means that the equations (62) and (63) are not
mathematically correct: what decays as t goes to infinity is not ΨD(t) but
hφ+|ΨD(t)i. As a consequence, if we want to conceive ΨD(t) as a generalized
state, we only can strictly say that the expectation value of the observable
A = |φ+ihφ+| in the state ΨD(t) decays exponentially:

hAiΨD(t) = |hφ+|ΨD(t)i|2 = |hφ+|ΨDi|2 e−Γt (69)

In other words, whereas hAiΨD(t) exponentially decays as t goes to infinity:
lim
t→∞

hAiΨD(t) = 0 (70)
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the generalized state ΨD(t) has only a weak limit:12

w − lim
t→∞

ΨD(t) = 0 (71)

This weak limit means that the generalized stateΨD(t) decays in a coarse-
grained sense from an observational point of view, that is from the perspective
given by the observable A = |φ+ihφ+|, for any φ+ ∈ Φ+.13 The basis for
this claim is that hAiΨD results from a projection of the vector ΨD(t) onto
a subspace defined by the operator A. But, as we have seen in Section
2, a projection amounts to a coarse-graining that reduces the number of
components of the vector representing the state. Therefore, hAiΨD(t) is the
result of a coarse-graining introduced by the observable A onto the evolving
state ΨD(t). In fact, since A2 = A, the observable A can be conceived as a
projector Π:

A = |φ+ihφ+| = Π (72)

Then, we can define a coarse-grained state ΨDcg as:

ΨDcg = ΠΨ
D = |φ+ihφ+|ΨDi (73)

With this definition:

|ΨDcgihΨDcg| = |φ+ihφ+|ΨDihΨD|φ+ihφ+| =
= |hφ+|ΨDi|2 |φ+ihφ+| = hAiΨD |φ+ihφ+| (74)

In other words, the expectation value of the observable A = |φ+ihφ+| in the
state ΨD can be viewed as the result of the action of the projector Π = A on
the vector ΨD. On this basis we can understand why hAiΨD(t) is a coarse-
grained magnitude: strictly speaking, this coarse-grained magnitude is what

12Let us consider a vector space V endowed with an inner product (.|.). We say that
the sequence {an}, an ∈ V has a weak limit a ∈ V , that is:

w − lim
n→∞an = a

iff
lim
n→∞(an|b) = (a|b)

for any vector b ∈ B, where B is a subspace of V .
13An analogous argument directed to show the coarse-grained nature of decoherence can

be found in Castagnino and Lombardi 2004a.
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decays for t→∞, and not the generalized state ΨD(t) as Bohm’s equations
(62) and (63) seem to suggest.
The conclusion of this argument is that, in spite of the efforts directed

to extracting irreversibility from quantum mechanics, there is no magic in
physics or in mathematics. If the evolutions of the quantum states of a closed
system are governed by unitary evolution operators, they have no generalized
attractors. Non-unitary evolutions can only be obtained by going to a level of
description different than the descriptive level with unitary evolutions. In the
case of the evolution described by Gamow vectors in RHS, the coarse-grained
magnitude that decays as t goes to infinity is the expectation value of the
observable A = |φ+ihφ+| in the generalized state ΨD, for any φ+ ∈ Φ+, and
there is no quantum law that prevents it from having this kind of behavior.
We do not want to finish this section without mentioning another argu-

ment which seems to be in conflict with the conception of a Gamow vector as
representing a truly quantum state: there is no unique, universally accepted
way of defining averages on Gamow vectors, in particular, mean values of
the energy (cf. Civitarese et al. 1999, Civitarese and Gadella 2004). Fur-
thermore, it is possible to construct an algebraic formulation for quantum
states and observables that includes singular states (cf. Antoniou et al. 1997;
Antoniou and Suchanecki 1997) and functionals having the properties of the
Gamow vectors (cf. Castagnino et al. 2001); these functionals have well de-
fined averages of the Hamiltonian, but all of them vanish. The consequence
of these results is that either we do not have a clear definition of energy on
Gamow vectors or this energy always vanish identically.

7 Conclusions

The questions related with time are one of the areas of inquiry where physics
and philosophy are more strongly intertwined. In particular, the phenomenon
of irreversibility has engaged the attention of many authors since the birth
of thermodynamics. This is precisely the case of the TAQM-school with
its proposal of a new quantum mechanics based on the use of RHSs: this
formalism would turn quantum mechanics into a non time-reversal invariant
(time-asymmetric) theory which permits irreversible behavior to be modeled
in a precise way. In this paper we have assessed this claim on the basis of a
detailed analysis of the formalism proposed by the school.
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As we have seen, although in principle nothing prevents a time-reversal
invariant theory from describing irreversible evolutions, in the case of dynam-
ical equations with unitary solutions, time-reversal invariance and reversibil-
ity seem to go hand-in-hand. Nevertheless, even in this case both properties
are different to the extent that they are related with distinct features of the
formalism: whereas time-reversal invariance implies the group structure of
the evolution operators, reversibility is a consequence of the unitary char-
acter of such operators. Therefore, even if the time-reversal invariance of a
theory is broken down by means of semigroup evolution laws, this fact does
not affect the reversible character of the evolutions if they are still described
by unitary operators. The only way to extract irreversibility from unitary
processes is by means of some mathematical procedure that leads to a level
of description different from the original dynamical level, where non-unitary
evolutions can be obtained.
These general considerations are directly applicable to TAQM. In this

case:

• the non time-reversal invariance of the theory is due to the semigroup
structure of the evolution laws which, in turn, is a consequence of the
use of a particular realization of the RHS based on Hardy functions.

• the irreversibility of the evolutions is due to the existence of Gamow
vectors in RHS, which depends on the use, not of Hardy functions, but
of functions having analytical continuations in the half-planes Im z > 0
and Im z < 0 of the complex plane.

Since irreversible evolutions given by Gamow vectors can be obtained in
time-reversal invariant versions of the theory where evolutions are described
by groups, irreversibility does not depend on the semigroup evolution laws
as the literature on the subject usually seems to suggest. On the other hand,
since Gamow vectors in RHS are functionals, the decaying Gamow vector
does not strictly decay in the infinite time limit, as it could be wrongly inter-
preted from TAQM school’s presentation; the decaying Gamow vector only
decays in a weak sense. In spite of Prigogine’s aversion to coarse-graining,
what strictly decays as time goes to infinity is a coarse-grained magnitude
which involves a generalized projection of the decaying Gamow vector.
In spite of these considerations, it is worth stressing that the arguments

presented here only concern the interpretation of the conceptual conclusions
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that can be drawn from the physical work of the TAQM-school. As a conse-
quence, they do not diminish the scientific value of the school’s contributions:
time-asymmetric quantum mechanics is a powerful theory for the description
of intrinsic irreversibility. In this sense, many irreversible phenomena have
been adequately modeled with the new formalism; for instance, it has been
successfully applied to nuclear physics and to the Lee-Oehme-Yang theory
for the neutral Kaon. In this paper, our aim has been to contribute to the
conceptual understanding and the interpretation of a theory whose fruitful
scientific results have been widely received by the physical community.
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