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Abstract : Although the philosophical literature on the founda-
tions of quantum �eld theory recognizes the importance of Haag�s
theorem, it does not provide a clear discussion of the meaning of
this theorem. The goal of this paper is to make up for this de�cit.
In particular, it aims to set out the implications of Haag�s theorem
for scattering theory, the interaction picture, the use of non-Fock
representations in describing interacting �elds, and the choice
among the plethora of the unitarily inequivalent representations
of the canonical commutation relations for free and interacting
�elds.

1 Introduction

Haag�s theorem on the representation of interactions in quantum �eld the-
ory (QFT) was �rst stated �fty years ago. Its importance was immediately
recognized by the community of mathematical physicists who were develop-
ing axiomatic approaches to QFT. The aim of this paper is to call attention to
the fact that Haag�s theorem has implications for a host of foundational and
philosophical issues surrounding QFT and to begin the project of assessing
its impact.
The philosophy of science literature that touches on Haag�s theorem shows

a tendency to either overstatement or vacillation (or both). Teller�s An in-
terpretative introduction to quantum �eld theory (1995) tells the reader that
�According to something calledHaag�s theorem there appears to be no known
consistent formalism within which interacting quantum �eld theory can be
expressed�(p. 115). Barton (1963, p. 157) is quoted as stating that �no �eld
theory exists which di¤ers from that of a free �eld.�What Barton actually
says is that that consequence follows from eight enumerated assumptions,
and he makes it clear that at least one of the assumptions must be rejected.
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Sklar�s Theory and Truth (2000) echoes Teller�s presentation with some vac-
illation added; Haag�s theorem, Sklar writes, �seemed to show the theory
[QFT] incapable of describing interactions�(p. 28). This uncertainty about
what Haag�s theorem shows is not untypical of the philosophical literature
(see for example Huggett and Weingard (1994, p. 376)). Heathcote (1989)
provides a brief but accurate statement of Haag�s theorem; but we will dis-
agree below with one of the morals Heathcote attempts to draw from the
theorem regarding the status of Fock representations. Bain (2000) gives a
nice discussion of how the LSZ formalism is able to side-step one of the im-
plications of Haag�s theorem,1 but this presentation lacks a clear statement
of Haag�s theorem and is not complemented with an appreciation of what
lessons Haag�s theorem teaches us about how relativistic QFT di¤ers from
ordinary non-relativistic QM.
Our take on the signi�cance of Haag�s theorem falls into three parts.

In the �rst instance, Haag�s theorem should not be thought of as posing a
problem for QFT but rather as illustrating the physical relevance of a math-
ematical fact that separates QFT from ordinary non-relativistic quantum
mechanics (QM). In the former but not the latter case there exist unitarily
inequivalent representations of the canonical commutation relations (CCR).
Two representations of the CCR (H1; fOi1g) and (H2; fOi2g) (where fOing is
the collection of operators appearing in the CCR) are unitarily equivalent
if and only if there exists some unitary mapping U from Hilbert space H1

to Hilbert space H2 such that for each operator O
j
1 2 fOi1g there exists an

operator Oj2 = UOj1U
�1 2 fOi2g. The importance of unitary equivalence is

that it guarantees physical equivalence in the sense that both representations
deliver the same expectation values for corresponding observables. The ques-
tion, then, is how to regard the unitarily inequivalent representations of the
CCR with which we are confronted in QFT. One response would be to regard
only one representation (up to unitary equivalence) as physically signi�cant
and dismiss the rest as unphysical. However, Haag�s theorem rules out this
response by showing that the existence of these inequivalent representations
is not �a matter of mathematical sophistication without relevance to �eld
theory,�as Haag (1955, p. 18) himself put it in the article in which what has
come to be known as Haag�s theorem was �rst stated.2

In the second instance, however, while Haag�s theorem does not show
that no quantum �eld theory exists which di¤ers from a free �eld theory,
it does pose problems for some of the techniques used in textbook physics
for extracting physical predictions from the theory. For example, it is true
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that Haag�s theorem implies that, if the �interaction picture� is consistent,
it does not describe non-trivial interactions. Since the interaction picture is
the basis of the standard approach to scattering theory contained in most
QFT textbooks, this may help to explain why Haag�s theorem has elicited
the degree of alarm exhibited in the above quotations. The alarm can be
assuaged by noting that there are methods for treating scattering in QFT
that do not rely on the interaction picture and, thus, do not run afoul of
Haag�s theorem. There is, however, un�nished business in explaining why
perturbation theory works as well as it does.
In the third instance, there are interesting issues surrounding Haag�s the-

orem that have received inadequate attention in the philosophical literature.
Extant philosophical discussions of QFT routinely assume the availability of
Fock representations. But the physics literature is replete with claims to the
e¤ect that, as a consequence of Haag�s theorem, interacting �elds have to be
described by non-Fock representations. Moreover, the philosophical litera-
ture has little to o¤er on the issue of how a choice is to be made among the
plethora of unitarily inequivalent representations of the CCR whose physical
relevance is made vivid by Haag�s theorem.
These issues are explored in the second part of this paper. The �rst part

of the paper is devoted to the exegesis of Haag�s theorem and discussion of
its history. Considering that the theorem was formulated half a century ago,
this undertaking is not as straightforward as one might expect. In his 1967
Cargèse lecture �Introduction to some aspects of the relativistic dynamics of
quantized �elds,�Arthur Wightman characterized the textbook literature on
Haag�s theorem as �execrable�(1967, p. 255). One of the examples that he
cites is Schweber (1962),3 one of the most widely used quantum �eld theory
texts in the 1960s and 1970s. This is particularly surprising since Schwe-
ber was a co-author of Wightman and Schweber (1955), which anticipated
Haag�s theorem (see Section 2 below). Another text that �ts Wightman�s de-
scription is Bjorken and Drell�s Relativistic quantum �elds (1965), the other
widely used text of the period. In their chapter on perturbation theory the
authors assume that the interacting �eld and the incoming free �eld are con-
nected at each time t by a unitary transformation U(t). In a footnote they say
that while the existence of such a transformation is �a theorem of ordinary
quantum mechanics, the proof breaks down for systems with a nondenumer-
able number of degrees of freedom�(note 5, p. 175), and they refer to Haag
(1955). The authors then continue: �Here we assume the existence of U(t).�
But Haag�s theorem says not just that the proof of the existence of U(t)
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breaks down in relativistic quantum �eld theory (QFT) but that, on pain of
identifying the interacting �eld with the free �eld, the said transformation
does not exist!
The text by Roman (1969, Sec. 8.4) contains a clear presentation of a

proof of Haag�s theorem, but the discussion of the implications of the theorem
is marred by some misstatements. In particular, there is the invocation of
what is termed a �converse� to a theorem of von Neumann, stating that
irreducible representations of the equal-time canonical commutation relations
(ETCCR) are unitarily equivalent. There is a theorem by von Neumann and
Stone to this e¤ect�for the case of a �nite number of degrees of freedom. But
for an in�nite number of degrees of freedom, the theorem breaks down, and
it is precisely this breakdown that is involved in Haag�s theorem.
More recent textbooks escape Wightman�s charge, but they do so by ig-

noring or saying very little about Haag�s theorem. The currently most widely
used and cited texts are Peskin and Schroeder (1995) and Weinberg (1995,
1996), neither of which mentions Haag�s theorem. This silence is also gener-
ally true of the textbooks of the 1980s and 1990s. Our (admittedly unsys-
tematic) survey found only two exceptions. In an appendix at the end of An
introduction to quantum �eld theory, Sterman (1993) reviews the formalism
of the interaction picture and then notes that Haag�s theorem shows that the
assumed unitary transformation between the incoming and interacting �elds
�is not strictly speaking consistent with Poincaré invariance.�The reader is
then referred elsewhere for more discussion of �this fascinating point, which
however, has not been shown to a¤ect practical results� (p. 508). A fuller
account is contained in Ticciati�s (1999) Quantum �eld theory for mathemati-
cians, which bills Haag�s theorem as pinpointing a �serious formal weakness
in applying the interaction picture to �eld theory�(p. 84). Practice shows
that

the result of applying the interaction picture to �eld theory is a
perturbation series that does not converge [as implied by Haag�s
theorem] but whose �rst few terms yield wonderfully accurate
predictions. It appears then that the interaction picture provides
a sound approach to perturbation theory but may have no non-
perturbative validity. (p. 84)

But why a method based on demonstrably false premises yields such �won-
derfully accurate predictions�is a mystery that cries out for a resolution.
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The one exception to an otherwise disappointing textbook literature is
Barton (1963, Ch. 14). It supplies an accessible proof Haag�s theorem along
with a generally good discussion of the signi�cance of the theorem. The mild
quibble we have with the latter is that the reader is left with a choice of three
�schools of thought on what to do next.�The most �optimistic� school of
thought, the one Barton himself prefers, is to abandon the assumption that
unitarily inequivalent representations of the CCR do not have to be employed
in relativistic QFT. But this is not an optional �school of thought� but a
demonstrable necessity.4

The plan of our paper is as follows. A brief sketch of the history of
Haag�s theorem is given in Section 2. Haag�s original proof is reviewed in
Section 3, along with the Hall-Wightman version of the theorem. Section 4
is devoted to some clari�cations of and quali�cations to the theorem. Ex-
planations for why the interaction picture and perturbation theory work, in
spite of Haag�s theorem, are explored in Section 5. Section 6 discusses di¤er-
ences in the formulations of scattering theory in QFT and ordinary QM that
result from Haag�s theorem. Section 7 examines the claim that Haag�s theo-
rem shows that non-Fock representations are required to describe interacting
�elds. Haag�s theorem tells us that the choice among the unitarily inequiv-
alent representations of the CCR depends on the dynamics. The question
of whether the choice is fully determined by the dynamics is taken up in
Section 8. Concluding remarks are given in Section 9. Some technical details
of important concepts are provided in the Appendix.

2 How Haag�s theorem came to be

In non-relativistic QM quantization involves �rst and foremost the choice of
a suitable representation of the CCR (�the choice problem�). In their most
familiar guise the CCR take the form

[qj; qk] = 0 = [pj; pk]; [qj; pk] = i�jk (1)

where j; k = 1; 2; ::: index the degrees of freedom. For a �nite number n
of degrees of freedom the most familiar representation of the CCR is the
Schrödinger representation, which is obtained by taking the Hilbert space to
be L2C(Rn), the space of all complex-valued, square-integrable functions on
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Rn, and setting

qjf(x1; : : :) = xjf(x1; : : :) f 2 L2C(Rn) (2a)

pkf(x1; : : :) = i
@

@xk
f(x1; : : :) (2b)

An obvious technical drawback of (1)-(2) is that the operators qj and pk
are unbounded and, thus, the equations are not meaningful until the do-
mains of de�nition of the operators is stated. In order to avoid this problem,
mathematicians prefer to use the exponentiated Weyl form of the canonical
commutation relations (WCCR)

Uj(r)Uk(s)� Uk(s)Uj(r) = 0 = Vj(r)Vk(s)� Vk(s)Vj(r) (3)

Uj(r)Vk(s) = Vk(s)Uj(r) exp(irs�jk), r; s 2 R,

which arise if Uj(r) = exp(irpj) and Vk(s) = exp(isqk). If the the represen-
tation of (3) is in terms of unitary groups of operators strongly continuous
in r and s, then (by Stone�s theorem) the generators of the groups are self-
adjoint operators, and on a common dense domain these operators satisfy
(1).5 The form (3) of the CCR also makes possible the powerful Stone-von
Neumann theorem, which states that, for a �nite number of degrees of free-
dom, irreducible and strongly continuous representations of the WCCR by
unitary groups of operators are all unitarily equivalent; indeed, they are all
equivalent to the (exponentiated) Schrödinger representation. For ordinary
QM and more generally for the quantum mechanics of systems with a �-
nite number of degrees of freedom, this theorem seems to solve the choice
problem, at least if the representations are required to be irreducible and
strongly continuous; for then the theorem shows that the choice among such
representations is a matter of convenience since it has no measurable physical
consequences.6

When the number of degrees of freedom is in�nite�as in QFT�the Stone-
von Neumann theorem does not hold, and an uncountable number of unitar-
ily inequivalent representations of the WCCR are available. This fact may
have been known as early as the 1930s by the few mathematical physicists
who were concerned with such matters, but as far as we are aware unitar-
ily inequivalent representations were not explored in depth until the early
1950s, �rst in a book by Friedrichs (1953) and then more systematically
by Gårding and Wightman (1954). The �rst glimmerings that inequivalent
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representations were not simply playthings of mathematicians but are neces-
sarily implicated in the description of interacting quantum �elds came from
the work of van Hove (1952). The van Hove model was designed to provide
an idealized but computationally tractable treatment of the interaction of a
neutral scalar �eld with recoilless nucleons. The divergences van Hove en-
countered in the perturbation calculations were blamed on the fact that the
state vectors for the interaction model are �orthogonal�to the state vectors
in the Fock space of the free �eld, the said �orthogonality�being the physi-
cists�lingo for the mathematical concept of disjoint representations which,
for the case of irreducible representations, is coextensive with the concept of
unitarily inequivalent representations (see Appendix).7

To Wightman and Schweber (1955) goes the credit for recognizing and
stating in precise terms the signi�cance of van Hove�s model. They were
emphatic that unitarily inequivalent representations �are not pathological
phenomena whose construction requires mathematical trickery ... but occur
in the most elementary examples of �eld theory�(p. 824), and motivated by
van Hove�s model they gave a toy example to illustrate the moral that the
choice of representation depends on the dynamics of the �eld.8 However, they
did not attempt to state or prove a theorem to show how this moral �ows
from the general features that a treatment of interacting �elds are expected
to satisfy.
Haag received a preprint of the Wightman and Schweber (1955) paper,9

and he obviously saw the need for providing the missing theorem. A state-
ment of such a theorem was given in the same year by Haag (1955) in two
versions. The �rst version has a heuristic proof that appeals to the form
of typical Hamiltonians for interacting �elds, while the second version was
intended to be more general and does not invoke the form of typical Hamil-
tonians. However, Haag�s proof of this second version is opaque. Hall and
Wightman (1957) opined in a footnote that �In the opinion of the present
authors, Haag�s proof is, at least in part, inconclusive ...�(note 10, p. 41).
They then add that �It will not have escaped the discerning reader of Haag�s
paper that, while we have generalized his results, eliminated one of his as-
sumptions (the asymptotic condition), completed his proofs, and sharpened
his conclusions, the essential physical points are Haag�s� (ibid.). This ad-
dendum may have been in part an exercise in diplomacy, but it is also an
accurate assessment; for while Haag�s proof was inconclusive, the essential
insights were his. In any case, although Hall and Wightman are responsible
for applying the label �Haag�s theorem��a label that has stuck�the version of
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this theoremmost often quoted in the physics literature is due to them. Thus,
the �Haag-Hall-Wightman (HHW) theorem�would be a more appropriate
label, and it will be applied here.

3 The heuristic version of Haag�s theorem
and the Haag-Hall-Wightman theorem

Before presenting the HHW theorem, it will be useful to state the gist of the
heuristic version of Haag�s original theorem (Haag 1955, pp. 30-1) which pops
up again and again in the literature (see, for example, Wightman 1967). This
argument takes the form of a reductio. Suppose that we are trying to describe
both a free scalar �eld and a self-interacting scalar �eld using the same Hilbert
space H. Suppose that we demand of the vacuum state that it be the unique
(up to phase) normalized state j0i 2 H that is invariant under Euclidean
translations. And suppose that the vacuum state is the ground state in that
it is an eigenstate of the Hamiltonian with eigenvalue 0.10 These suppositions
are ful�lled in the case of the free scalar �eld with mass m > 0, the usual
no-particle state j0F i (�bare vacuum�), and the free �eld Hamiltonian HF .
Since the vacuum state j0Ii of the interacting �eld (�dressed vacuum� or
�physical vacuum�) should also be invariant under Euclidean translations,
it follows from the stated assumptions that j0Ii = cj0F i, jcj = 1, and since
j0Ii is annihilated by the Hamiltonian H for the interacting �eld, it follows
that Hj0F i = 0. But the typical Hamiltonians for interacting �elds take the
form HF +HI , where HI describes the interaction of the �eld with itself, and
such Hamiltonians do not annihilate j0F i (H �polarizes the vacuum�). (As
an illustration, consider the �4 �eld11 in (3 + 1)-dim Minkowski spacetime
with (formal) Hamiltonian

H = HF + �

Z
: �4 : d3x� C (4)

where HF =
1

2

Z
fm2 : �2 : + : jr�j2 : + : �2 :gd3x

and where � is the momentum �eld conjugate to �, C is a c-number constant
chosen to give the ground state energy zero, and : : indicates the Wick
normal product. This H will not annihilate the bare vacuum j0F i since the
factor that follows the coupling constant � contains a term with a product

8



of four creation operators (and there is only one term of this form, so it will
not be canceled by another term) (Bogoliubov et al. 1975, Sec. 25.1)). Thus,
we arrive at a contradiction: it follows from the announced assumptions that
Hj0F i = 0, but for typical interaction Hamiltonians Hj0F i 6= 0.
The relative simplicity of this �rst version of Haag�s original theorem is

purchased at the expense of generality since it appeals to the fact that typical
Hamiltonians for interacting �elds do not annihilate j0F i. It was the ambition
of the second version of his theorem to dispense with any reference to the
particular form of the interacting �eld Hamiltonian. However, it was Haag�s
attempted proof of this second version that Wightman found �inconclusive.�
A pair of theorems presented in Hall and Wightman (1957) was designed to
�ll the gap. We will label them the Haag-Hall-Wightman (HHW) theorem,
Parts I and II; Hall and Wightman label them the �rst and second parts of
the �Generalized Haag�s theorem�because they apply to any pair of neutral
scalar �elds.
HHW Theorem, Part I. Consider two neutral scalar �elds12 �j, j = 1; 2,

and their conjugate momentum �elds �j such that each pair (�j; �j) gives an
irreducible representation of the equal time CCR (ETCCR)

[�j(x; t); �j(x
0; t)] = i�(x� x0) j = 1; 2 (5)

[�j(x; t); �j(x
0; t)] = [�j(x; t); �j(x

0; t)] = 0.

Suppose that Euclidean transformations (a;R) (where a stands for a transla-
tion and R for a rotation) of the �eld are induced by unitary transformations
Uj(a;R):

Uj(a;R)�j(x; t)U
�1
j (a;R) = �j(Rx+ a; t) (6)

Uj(a;R)�j(x; t)U
�1
j (a;R) = �j(Rx+ a; t)

And suppose that the �elds are related at some time t by a unitary transfor-
mation V (t):

�2(x; t) = V (t)�1(x; t)V
�1(t); �2(x; t) = V (t)�1(x; t)V

�1(t) (7)

Then
U2(a;R) = V (t)U1(a;R)V

�1(t) (8)

Further, if there are unique normalizable states j0ji invariant under Euclidean
transformations

Uj(a;R)j0ji = j0ji (9)
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then
cj02i = V (t)j01i (10)

where jcj = 1.
HHW theorem, Part II. Consider �elds satisfying the hypotheses of Part

I. Suppose that Poincaré transformations (a;�) (where � stands for a proper
Lorentz transformation) of the �elds are induced by unitary transformations
Tj(a;�):

Tj(a;�)�j(x) = �j(�x+ a); j = 1; 2 (11)

Suppose further that the states j0ji are Poincaré invariant

Tj(a;�)j0ji = j0ji (12)

and that no states of negative energy exist. Then the �rst four vacuum
expectation values of the two �elds (the four-point �Wightman functions�)
are equal:

h02j�2(x1):::�2(x4)j02i = h01j�1(x1):::�1(x4)j01i (13)

In the general case in which �1 and �2 are arbitrary �elds, it can only
be proven that the �rst four Wightman functions are equal. However, in
the special case in which one of the �elds�say, �1�is a free �eld, it can be
proven that all Wightman functions are equal, and hence that �2 is also a
free �eld. There are two routes to this result. One approach is to apply the
Jost-Schroer theorem: Let � be a Hermitian scalar �eld with the vacuum as
a cyclic vector, and suppose that its two point vacuum expectation values
coincide with those of a free �eld of mass m > 0; then � is a free �eld of
mass m (see Jost 1961). This result was extended to the zero-mass case
by Pohlmeyer (1969). Alternatively, one could take the route of Greenberg
(1959), who strengthened Part II of the HHW theorem by proving, under the
same hypotheses, that if �1 is a free �eld, then all of the n-point Wightman
functions of the two �elds are equal. The Wightman reconstruction theorem
(Streater andWightman 1964, p. 118) entails that, granting certain plausible
assumptions, the two �elds are unitarily equivalent; thus �2 is also a free �eld.
Either way, if �1 is a free �eld, then �2 is also a free �eld.
Like the heuristic version of Haag�s theorem, the formal HHW theorem

takes the form of a reductio argument. The conclusion that both �elds are free
�elds is unacceptable because the intention is to represent an interacting �eld;
therefore, at least one of the assumptions of the theorem must be dropped.
In the HHW theorem, an obvious candidate is the assumption that at some t
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there exists a unitary transformation V (t) relating the �elds. The analogous
response to the heuristic version of Haag�s theorem is to reject either the
assumption that the vacuum state of the interacting �eld lies in HF or the
assumption that the full interaction HamiltonianH is a well-de�ned operator
on HF (or both). This explains why Haag�s theorem is sometimes parsed as
the statement that the physical vacuum, the Hamiltonian for the interacting
�eld, and the Schrödinger dynamics for the interacting �eld do not exist in
the Hilbert space of the free �eld HF but require a di¤erent, �renormalized�
Hilbert space HR.13

Such a gloss, however, may be puzzling to the mathematically minded
reader who will immediately point out that all in�nite dimensional separable
Hilbert spaces are the same (i.e. isomorphic), and that an isomorphism from
the renormalized Hilbert spaceHR of the interacting �eld�where j0Ii and the
interacting �eld Hamiltonian H naturally live�to HF can be used to identify
j0Ii and H with corresponding objects in HF . This is correct; however, no
such identi�cation can make the respective representations of the CCR by
the free and interacting �elds unitarily equivalent.
Here is another way to appreciate this result, on the assumption that

the vacuum states for the free and the interacting �elds are both no-particle
states. Suppose for sake of reductio that the annihilation operators aF and
aI for the free and interacting �elds respectively are connected by a trans-
formation of the form aI(f) = UaF (f)U

�1 for a unitary U .14 Then the
vacuum state for the interacting �eld could be de�ned as j0Ii := U j0F i
since aI(f)j0Ii = UaF (f)U

�1U j0F i = 0. So the statement that j0Ii =2 HF

should be construed as a short hand way of saying that the Hilbert space
descriptions of the free and interacting �elds belong to unitarily inequivalent
representations of the CCR.
The mathematically minded reader may still be troubled by a second

puzzle about how a Hilbert space description HR of the interacting �eld is
possible. For if HF +HI is a well-de�ned operator on HR then so it would
seem is HF , and so, contrary to what Haag�s theorem was supposed to show,
the free and the physical vacuum, as well as the free and interacting �eld
dynamics, can be described within the same Hilbert space. The fallacy that
generates this puzzle is the assumption that the �+�in HF + HI should be
taken to mean that each operator in the formal sum is separately well-de�ned
on HR, whereas in fact only the combined operator has meaning. Indeed,
this moral has also been taken as a statement of Haag�s theorem (see Klauder
2000, p. 131).
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4 Taking stock

Before proceeding to a discussion of the implications of Haag�s theorem, a
number of comments are in order. They fall into two groups of three. The
�rst group concerns the proof of the HHW theorem and the second group
concerns the limitations of all versions of Haag�s theorem.
To begin with the �rst group, the �rst thing to note about the HHW ver-

sion of Haag�s theorem recapitulated in the preceding section is that it relies
heavily on the Wightman formalism for QFT. In particular, the hypotheses
of the theorem are used to show that the Wightman functions are boundary
values of analytic functions and that the values of the �rst four Wightman
functions are uniquely determined from their values at equal times. However,
Haag�s theorem is emphatically not a hostage to the Wightman formalism,
as is shown by the fact that results to the same e¤ect can be proven by
alternative means. Another style of proof using the Yang-Feldman repre-
sentation of quantum �eld is given by Lopuzanski (1961, 1965). Yet another
proof based on the algebraic approach to QFT is given by Emch (1972, pp.
247-53). It is safe to conclude that Haag�s theorem is a robust result that is
not dependent on any particular formalism for QFT.
Second, while Poincaré covariance of the �elds and the Poincaré invari-

ance of the vacuum state are important ingredients of the HHW theorem,
Wightman himself played down the importance of relativistic invariance:

The strange representations15 associated with Haag�s theorem
are, in fact, an entirely elementary phenomenon and appear as
soon as a theory is euclidean invariant and has a Hamiltonian
which does not have the no-particle state as a proper vector [vac-
uum polarization]. This will happen whether or not the theory is
relativistically invariant and whether or not there are ultraviolet
problems in the theory. (1967, p. 255)

Wightman is correct insofar as vacuum polarization may occur in any two
theories with an in�nite number of degrees of freedom, relativistic or not;
consequently, unitarily inequivalent representations must be used for these
theories. However, the HHW theorem licenses the stronger statement that
in a relativistic theory satisfying its assumptions, vacuum polarization must
occur. Relativistic invariance need not be invoked to prove Part I of the
HHW theorem; Euclidean invariance is su¢ cient. This result implies that,
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if the free and interacting representations are unitarily equivalent, then the
vacuum for the free �eld j0F i is also (up to phase) the vacuum for the inter-
acting �eld; that is, vacuum polarization does not occur, (HF +HI)j0F i = 0.
However, Poincaré invariance is used in the proof of Part II of the HHW
theorem. In informal terms, Part II establishes that in a relativistic QFT,
(HF +HI)j0F i = 0 (the nonoccurrence of vacuum polarization) implies that
(HF +HI) must be a free Hamiltonian. The relativistic assumptions in Part
II of the HHW theorem are needed to derive the equality of the �rst four
vacuum expectation values for arbitrary times from the equality of the vac-
uum expectation values for equal times. To do this, Hall and Wightman
rely on the fact that for a Poincaré covariant �eld and Poincaré invariant
vacuum, the vacuum expectation values are the boundary values of analytic
functions (Hall and Wightman 1957). Intuitively, the properties of arbitrary
time vacuum expectation values do not follow from equal-time vacuum ex-
pectation values in a Galilean invariant QFT because time is absolute. In a
relativistic QFT, Poincaré invariance constrains arbitrary time vacuum ex-
pectation values because a time translation is equivalent to a Lorentz boost
plus a space translation plus a Lorentz boost. In sum, relativistic invariance
is an essential ingredient of the HHW version of Haag�s theorem.
Furthermore, it is known that Euclidean invariance plus the existence

of an in�nite number of degrees of freedom is not su¢ cient to force the
use of inequivalent representations. This is demonstrated by the existence
of counterexamples: there exist Galilean invariant QFT�s in which vacuum
polarization does not occur and in which non-trivial interactions may be
represented on the Fock representation for a free �eld (see Lévy-Leblond 1967,
1971; Hepp 1969, Ch. 3).16 However, it is not established that relativistic
invariance is essential in forcing the use of inequivalent representations, and
as far as we are aware, it is open that there are examples of Galilean QFTs
that do display vacuum polarization.
Third, the role of an in�nite number of degrees of freedom was not made

explicit in the above sketch of the HHW theorem. Of course, one knows
from the Stone-von Neumann theorem that when the system at issue has
only a �nite number of degrees of freedom the HHW will not apply. But
which assumptions of the theorem fail? For systems with a �nite number
of degrees of freedom, there can exist multiple normalizable states invariant
under Euclidean translations (Hall and Wightman 1957, p. 125; Streit 1969,
pp. 679-670). Thus, the assumption of Part I of the HHW theorem that j0ji
are the unique normalizable states invariant under Euclidean transformations
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is physically unreasonable for such systems.
The second group of comments concerns the limitations, not just of the

HHW theorem, but also of other versions of Haag�s theorem. The �rst and
most obvious comment is that the crucial assumption of spatial translation
invariance can be killed in various ways, e.g. by �putting the system in a box�
and using periodic boundary conditions or by having the system interact with
an appropriate external potential (see Reed and Simon 1979, Sec. XI.15). In
such cases Haag�s theorem does not apply and the conclusion of the theorem
can be escaped.
Second, Haag�s theorem relies on the ETCCR. The mathematically more

precise expression of the ETCCR in (4) assumes that spatial-smearing (i.e.
smearing � and � with suitable test functions f of compact support on a
spacelike hyperplane of Minkowski spacetime) is su¢ cient to produce well-
de�ned operators �(f; t):=

R
�(x; t)f(x)dx and �(f; t):=

R
�(x; t)f(x)dx. In

reaction to Haag�s theorem there were rumblings that perhaps smearing with
functions of time as well as space is required and, thus, that equal-time CCR
are not a suitable basis for treating interacting �elds (Streater and Wight-
man 1964, p. 168; Bogoliubov et. al. 1975, p. 561). These suspicions
were substantiated to some extent for boson �elds by the work of Baumann
(1987, 1988). Suppose that the sharp-time neutral scalar �eld �(f; t) and
is conjugate momentum �(f; t) exist for all times and give an irreducible
representation of the ETCCR. Then using plausible technical assumptions,
Baumann showed that in a spacetime of dimension (n + 1) with n > 3 the
�eld is a free �eld. The same is true for n = 3 with the possible exception
of the (�4)3+1 �eld17 And for n = 2 the ETCCR are ful�lled by the (�

4)2+1
�eld but no other save possibly for (�6)2+1. Powers (1967) proved even more
restrictive result for Fermion �elds. Suppose that a sharp-time Fermion �eld
and its conjugate momentum �eld exist for all times, give an irreducible
representation of the equal-time canonical anti-commutation relations (ET-
CAR), and are covariant with respect to the Poincaré group. Suppose also
that there is a unique Poincaré invariant vacuum state and that this state is
cyclic with respect to the sharp-time �elds. Then using plausible technical
assumptions, Powers showed that the �eld is a free �eld.
Although Baumann�s results limit the applicability of Haag�s theorem,

they do not undercut the main moral, viz. in the program of trying to
construct mathematically well-de�ned Hilbert space representations for rela-
tivistic quantum �elds, unitarily equivalent representations will have to come
into play.18 (This moral extends beyond interacting �elds since, as will be
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discussed below, free �elds of di¤erent masses possess unitarily inequiva-
lent Fock representations.) Subsequent no-go results do not show that �eld
theorists do not have to worry about Haag�s theorem because some of its
assumptions do not hold in all cases of interest; rather, what the subsequent
results show that even more assumptions have to be abandoned in order to
obtain well-de�ned Hilbert space descriptions of interacting �elds.
Third, Haag�s theorem only captures one of the reasons why unitarily

inequivalent representations of the CCR come into play in the description
of interacting �elds. In the physicists� lingo, the move from one inequiva-
lent representation to another is marked by divergences. Haag�s theorem is
concerned with infrared divergences that are associated with Euclidean in-
variance and the in�nite volume of space. These divergences can be tamed,
and Haag�s theorem rendered inapplicable, by compactifying space (e.g. by
identifying x with x0 when x0 = x mod some �xed vector). However, such
a theory may still be plagued by divergences of other types; for example,
irreducible representations for a free scalar �eld and a �4 �eld in spatially
compacti�ed (2 + 1)-dim Minkowski spacetime are known to belong to in-
equivalent representations because of ultraviolet divergences that occur at
high energy-momentum (Ja¤e 1999, note 2, p. 140).
To summarize, while it is well to recognize all of the caveats and nu-

ances listed above, they should not cause one to lose sight of the key point
of relevance here; namely, Haag�s theorem was instrumental in convincing
physicists that inequivalent representations of the CCR are not mere math-
ematical playthings but are essential in the description of quantum �elds�in
particular, because the choice of an appropriate representation depends on
the dynamics of the �eld. We will have more to say about the choice problem
in Section 7. But �rst we take up the implications of Haag�s theorem for the
interaction picture and for scattering theory.

5 The interaction picture

In the canonical approach to QFT, the interaction picture is an important
means of representing interactions and extracting predictions that can be
compared with experimental results. The conundrum posed by Haag�s the-
orem for the interaction picture was pithily stated by Roman (1969): �The
most sobering consequence of Haag�s theorem is that the interaction picture
of canonical �eld theory cannot exist unless there are no interactions� (p.
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391). To see how this comes about we brie�y recapitulate the assumptions
underlying the interaction picture in QFT.
Split the full interaction Hamiltonian H into free and interacting parts,

H = HF + HI . In analogy to Dirac�s interaction picture formalism for or-
dinary QM, the interaction picture in canonical QFT uses an irreducible
representation of the ETCCR in which the evolution of the states is gov-
erned by HI and the evolution of the operators is governed by HF . This
picture is intermediate between the Schrödinger picture�in which the states
evolve under the full Hamiltonian H and the operators are stationary�and
the Heisenberg picture�in which the states are stationary and the operators
evolve under the full Hamiltonian H. In particular, in the interaction picture
the evolution of the �eld operators is generated by HF , so the �elds are free.
By stipulation, the interaction picture (indicated by the subscript I) co-

incides with the Heisenberg picture (indicated by the subscript H) at time
t0:

�I(x; t0) = �H(x; t0); �I(x; t0) = �H(x; t0) (14a)

j (t0)iI = j iH (14b)

Let V (t1; t2) represent the unitary evolution operator from t1 to t2 for the in-
teraction picture states: j (t2)iI = V (t2; t1)j (t1)iI . Since in the interaction
picture the evolution of the states is generated by HI ,

V (t1; t2) = e�iHI(t2�t1) (15)

= eiHF (t2�t1)e�iH(t2�t1) (16)

It follows from (14) and the dynamics of the states and operators in the two
pictures that, at any time t, the representations are related by V (t; t0):

�I(x; t) = V �1(t; t0)�H(x; t)V (t; t0) (17a)

�I(x; t) = V �1(t; t0)�H(x; t)V (t; t0) (17b)

j (t)iI = V �1(t; t0)j iH (17c)

The quantity that is of physical interest is the amplitude

Hh�inj outiH = lim
t1!�1;t2!+1

�
Ih�(t1)jV (t1; t0)V �1(t2; t0)j (t2)iI

�
(18)

:=I h�injSj outiI (19)
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The limits t ! �1 are taken for convenience: at these times particles
are assumed to be in�nitely far apart and therefore not interacting; thus,
the states j�(�1)iI , j (+1)iI are free states (Schweber 1962, p. 318).
In the interaction picture, this means that at t = �1 the representation
is the Fock representation for the free �eld �I(x; t). S-matrix elements in
the interaction picture can be evaluated using perturbative methods. An
account of how perturbation theory is applied is the beyond the scope of this
paper,19 but it should be noted that the application makes essential use of
the interaction picture. The terms of the perturbation series are evaluable
by virtue of the fact that at t = �1 the action of �I on the vacuum can be
calculated. In contrast, even at t = �1, we do not have a concrete Hilbert
space representation for �H , so we do not know how to evaluate vacuum
expectation values of �H .
All of the assumptions of the HHW are adopted in this canonical approach

to treating interactions. Some of the assumptions of the theorem are general
presuppositions of canonical QFT while others are speci�c to the interaction
picture. The assumption that the �elds give irreducible representations of the
ETCCR�s, is a standard assumption of this approach (see Schweber (1962,
pp. 650-651)).20 Likewise, it is typically assumed that Poincaré (and hence
Euclidean) transformations are induced by unitary operators (see Schweber
(1962, p. 265)). The assumption that there are no negative energies is
justi�ed on physical grounds. That the �elds transform appropriately un-
der Euclidean and Poincaré transformations is taken to be a requirement of
a QFT with or without interactions (see Schweber (1962, p. 265)). The
assumption that there exist unique normalizable vacuum states that are in-
variant under Poincaré transformations follows from Wigner�s classi�cation
of representations of the inhomogeneous Lorentz group (Schweber 1962, pp.
165-166; Streater and Wightman 1964, pp. 21-22, 27-29). This assumption
holds at all times for the Heisenberg picture; for the interaction picture, it
certainly holds at t = �1, when the representation is taken to be a Fock
representation so the no-particle state is the vacuum state for the �eld �I ,
which is governed by HF . The assumption that there is some time at which
the �elds in the representations are related by a unitary transformation, holds
at all times in virtue of the fact that at each time t the �elds in the repre-
sentations are related by the unitary transformation V (t; t0). Thus, at times
t = �1, all the assumptions of the theorem hold for the Heisenberg pic-
ture representation, which represents an interaction, and for the interaction
picture representation, which is a Fock representation for a free system.
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The conundrum is now evident: the interaction picture presupposes all of
the assumptions needed for the HHW theorem; but this theorem shows that
the interaction picture cannot be used to represent a non-trivial interaction.
And yet the interaction picture and perturbation theory work. Some expla-
nation of why they work is called for. We suspect that the full explanation
will have a number of di¤erent pieces. Here we will only point to what we
believe is a critical piece in the overall scheme.
The HHW theorem demonstrates that the interaction picture is predi-

cated on an inconsistent set of assumptions. In response to this reductio of
the assumptions, at least one must be abandoned. Note, however, that if the
interaction picture is to ful�ll its purpose of enabling the evaluation of the
scattering matrix elements via perturbation theory, some key assumptions
must be retained. In particular, the unitary equivalence of the Heisenberg
and interaction pictures is essential. Note also that the problem brought to
light by Haag�s theorem is not directly related to the employment of perturba-
tion theory as an approximation method; all of the assumptions of the HHW
theorem are embraced before the perturbation series is even introduced.
To see how the e¤ectiveness of the interaction picture and perturbation

theory can be explained in the face of Haag�s theorem, consider the simple
case of two free neutral scalar �elds �m1

and �m2
, with masses m1 6= m2,

and their conjugate momentum �elds �m1 and �m2. If m2 = m1 + �m, one
might seek to treat the �m2

�eld in the interaction picture by writing its
Hamiltonian as the sum of the Hamiltonian for �m1

plus a term of the formR
�m : �2m1

(x) : d3x. Then �m1
plays the role of �I and �m2

plays the role of
�H . But irreducible representations of these �elds are unitarily inequivalent,
as shown by Haag type theorems. The heuristic proof derives from the fact
that the (formal) Hamiltonian for the �m2

�eld polarizes the vacuum of the
�m1

�eld. A more rigorous proof can be found in Reed and Simon (1975,
Theorem X.46). So the situation is much worse than the above quote from
Roman indicates: the interaction picture cannot exist even if there are no
interactions!
Nevertheless, there is a perfectly good sense in which the interaction pic-

ture and perturbation theory do work for free �elds of di¤erent masses, at
least for physical quantities that matter for explaining experimental out-
comes. This is because although Haag�s theorem undercuts global unitary
equivalence, it is compatible with local unitary equivalence. We quote the
version of local equivalence given in Reed and Simon (1975)
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Given any bounded region B � R3 and the free �elds �m1
; �m1

and �m2
; �m2 acting on the respective Hilbert spaces H1 and H2,

there is unitary map VB : H1 ! H2 such that VB�m1
(f)V �1

B =
�m2

(f) and VB�m1(f)V
�1
B = �m2(f) for all suitable test functions

f with support in B. (p. 329)

Thus, insofar as one is concerned with explaining the results of experiments
on local observables for free �elds of di¤erent masses, Haag�s theorem poses
no obstacle to using perturbation theory. Of course, these remarks do noth-
ing to address questions about whether the local perturbation expansion is
de�ned term by term, whether the expansion converges etc. But these issues
have nothing directly to do with the bite of Haag�s theorem since they arise
any time a perturbation series is employed and, as noted above, the use of
a perturbation series as an approximation method is not the source of the
problem brought to light by Haag�s theorem.
What is true of the case of free �elds of di¤erent masses is also true of a

free �eld with massm and HamiltonianHF and the renormalized (�
4)1+1 �eld

with formal Hamiltonian H = HF + �
R
: �(x)4 : dx (see Glimm and Ja¤e

1968, 1970a, 1970b).21 This result was to be expected: the normal-ordered
�4 �eld in (1 + 1)-dim Minkowski spacetime does not have ultraviolet diver-
gences, and thus it is not surprising that local unitary equivalence to the
free �eld is obtained since restricting to bounded regions of space quashes
infrared divergences. Unfortunately, in higher spacetime dimensions the ul-
traviolet divergences are more severe and local unitary equivalence does not
hold (Ja¤e 1999, note 2, p. 140). However, Haag�s theorem is not respon-
sible for the problems created by ultraviolet divergences, so solving them is
beyond the scope of this paper.22

If the interaction picture were valid, it could be used as a basis for scat-
tering theory; in particular, if (17a,b) were valid, the transformation V (t; t0)
could be used to construct to construct the S-matrix:

S(�1;+1) = lim
t1!�1;t2!+1

V (t1; t0)V
�1(t2; t0) (20)

Unfortunately, the HHW theorem blocks this route to scattering theory for
quantum �elds. But fortunately, there is another approach that does not rely
on the interaction picture. Before turning to this matter we want to comment
on the hyperventilation of philosophers over Haag�s theorem (recall the ex-
amples cited in the Introduction). The fact that Haag�s theorem undermines
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a standard textbook treatment of interactions (i.e., the interaction picture)
is one of the main causes of this hyperventilation. Indeed, the remarks by
philosophers to the e¤ect that Haag�s theorem seems to show that there is
no consistent formalism for interacting quantum �eld theory are charitably
interpreted as referring to this fact. One way to soothe the hyperventilation
is to take note of the existence of the strategy outlined above for explaining
why, in spite of Haag�s theorem, the interaction picture works. Another way
is to note that various problems in QFT can be treated without the use of the
interaction picture. One example is the existence of alternative approaches
to scattering theory (such as the one described in the next section). Another
example is the (limited) success of constructive �eld theory in producing
representations in which non-perturbative calculations can be carried out.

6 Scattering theory

To describe how scattering theory in QFT can be formulated without running
afoul of Haag�s theorem, it will be helpful to begin with a brief review of
scattering theory in ordinary QM. Suppose that the free and interacting
dynamics are given respectively by UF (t) := e�iHF t and U(t) := e�iHt, H =
HF+HI . One would like to be able to say that, in some appropriate sense, as
t! �1 the free and interacting dynamics coincide. The strongest sense of
convergence is that (U(t)�UF (t)) goes to zero in the operator norm topology
as t! �1. But this would mean that U�(t)UF (t)! 1 in the operator norm
topology, which can happen if and only if H = HF (Reed and Simon 1979,
p. 386).
To achieve a positive result it is necessary to use a weaker sense of con-

vergence and, perhaps, also to require convergence only for a limited subset
of states (�scattering states�). To this end, associate with the Hamiltonian
H governing interactions a set of scattering states MS(H) � H and with
the free Hamiltonian HF two sets of scattering states M�

S (HF ) � H. What
we would like to obtain is the result that for every j i 2 MS(H) there are
j i+ 2M+

S (HF ) and j i� 2M�
S (HF ) such that the following limits exist:

lim
t!�1

jjUF (t)j i� � U(t)j ijj = 0 (21)

This condition holds just in case

lim
t!�1

jjU�(t)UF (t)j i� � j ijj = 0 (22)
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The latter is just the condition that the wave operators 
� exist in the strong
limit sense:


� := s- lim
t!�1

U�(t)UF (t)E
�
S (HF ) (23)

where E�S (HF ) projects onto M�
S (HF ). And one would also like asymptotic

completeness in the sense that each ofM�
S (HF ) spansH. The existence of the

wave operator and the satisfaction of asymptotic completeness in ordinary
QM is proven for various cases, the simplest being that where HF = ��
and H = HF + V (r) with V (r) vanishing faster than 1=r2 as r ! 1 (see
Prugoveµcki 1981).
In relativistic QFT, Haag�s theorem makes hash out of this picture since,

in informal terms, the theorem indicates that H and HF are not de�ned on
the same Hilbert space. Moving from strong to weak convergence does not
help since the latter, like the former, assumes that the Hamiltonians of the
free and interacting �elds are de�ned on the same Hilbert space.23 More
formally, the HHW theorem undermines this approach in precisely the same
manner that it undermines the interaction picture. This can be seen from
the fact that the wave operators 
� can be expressed in terms of V (t; t0),
the unitary evolution operator for the interaction picture introduced in the
preceding section:

V (t; 0) = eiHF te�iHt (24a)


� = s� lim
t!�1

V �(t; 0) (24b)

This conundrum is resolved by Haag-Ruelle scattering theory (see Haag
1958 and Ruelle 1962). Because the details of this approach are so compli-
cated and require so many technical niceties, only a skeleton outline will be
presented here. The basic move is to de�ne in the Hilbert space H of the
interacting �eld surrogates of the free �eld states in the asymptotic regimes
t ! �1 and t ! +1. Denote the subspaces spanned by these surrogate
states Hin and Hout respectively. Demonstrating the existence of these sur-
rogate states permits the de�nition of an identi�cation map I from a dense
subset of the Hilbert space HF of the free �eld to the surrogate asymptotic
states inH. The goal is then to show that analogues ~
� of the wave operators
of (23) exist in the strong limit sense:

~
� := s- lim
t!�1

U�(t)IUF (t) (25)
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and that ~
+ and ~
� de�ne partial isometries from HF to Hin and Hout

respectively. Surrogates 'in and 'out of the asymptotic free �elds can be
de�ned on Hin and Hout respectively in terms of the operators creating and
destroying the asymptotic particle states. If asymptotic completeness holds�
i.e.,Hin = Hout = H�then the in and out �elds are connected by an S-matrix,
'out = S�1'inS, where S(�1;+1) := ~
+(~
�)�. This formalism is not
subject to Haag�s theorem because�unlike the interaction picture�it neither
posits nor entails the existence of a unitary transformation connecting H (or
Hin or Hout) to HF that relates the interacting �eld to a free �eld.
In sum, although Haag�s theorem poses an obstacle to transferring the

usual way of doing scattering theory in ordinary QM to relativistic QFT,
the Haag-Ruelle approach shows how to maneuver around this obstacle and
to obtain in QFT analogues for most of the signi�cant features of ordinary
scattering theory.24

To our knowledge, the developers of Haag-Ruelle scattering theory nowhere
present it as a response to Haag�s theorem. But even if this was not the in-
tent of the developers, our claim is that for understanding the foundations
of QFT it is fruitful to see the Haag-Ruelle approach as bridging a conun-
drum created by Haag�s theorem. In support of this interpretation we can
cite the best of authorities. In the preface to their exposition of Haag-Ruelle
scattering theory, Reed and Simon (1979) comment that

The �rst conceptual problem that must be faced is that there is no
natural �free�dynamics for the interacting dynamics to approach
as t ! �1. This is somewhat surprising since one might think
that the Hamiltonian [HF ] of this free �eld would play the role
of of free dynamics. In the �rst place, the two Hamiltonians [HF

and HI ] act on two di¤erent Hilbert spaces ... a general result
known as Haag�s theorem. (p. 317)25

7 Fock and non-Fock representations

One of the better summaries of Haag�s theorem to be found in the philo-
sophical literature is in Heathcote (1989, pp. 91-92). But we want to take
issue with the claim made there that Haag�s theorem shows the necessity of
using non-Fock representations. It is not hard to see how this claim might
have been inferred from discussions of Haag�s theorem in the physics liter-
ature.26 But the claim is suspect. Haag�s theorem does indubitably show
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that QFT cannot be done in one �universal receptacle,�i.e. a single unitary
equivalence class of representations. A fortiori QFT cannot be done within
a �xed Fock space, in particular, the Fock space for, say, a free neutral scalar
�eld of mass m. But does Haag�s theorem itself show that interacting �elds
require non-Fock representations? As noted above, Haag�s theorem shows
that an irreducible representation of the CCR for a neutral scalar �eld of
mass m0 6= m is unitarily inequivalent to that for the �eld of mass m al-
though, of course, both representations are Fock representations. Similarly,
a Haag style argument applies to the �2 �eld of mass m since the (formal)
Hamiltonian for this �eld �polarizes the vacuum�of the free �eld of mass
m. But in (n + 1)-dim Minkowski spacetime with 1 � n � 3, the standard
renormalization procedure applied to the �2 �eld leads to a representation
that is unitarily equivalent to the Fock representation of the free �eld with
mass m0 =

p
m2 + �, where � is the self-coupling constant of the �2 �eld (see

Ginibre and Velo 1970). By the previously mentioned result for free �elds
of di¤erent masses, this Fock representation of the renormalized �2 �eld of
mass m is unitarily inequivalent to Fock representation of the m �eld. In-
deed, the renormalization procedure should yield this result since, classically,
the �2 �eld obeys ���m2� = ��, which is equivalent to the Klein-Gordon
equation of a free scalar �eld with renormalized mass m0 =

p
m2 + �. In

sum, Haag�s theorem applies to cases where the inequivalent representations
are both Fock representations. Thus, if it is true that non-trivial interactions
have to be described using non-Fock representations, considerations beyond
those invoked in Haag�s theorem have to be invoked. Before we turn to such
considerations, we need to say in more detail just what is involved in a Fock
representation.
As detailed in the Appendix, a Fock representation of the CCR is char-

acterized by the existence of a vacuum state which is annihilated by all of
the annihilation operators a(f) and from which a dense set of states can be
built by acting on the vacuum with creation operators a�(f), where f ranges
over elements of the complexi�ed test function space (or �one particle Hilbert
space��see Appendix). Such a representation contains a self-adjoint operator
N , de�ned on some dense domain, having the spectrum f0; 1; 2; :::g and sat-
isfying the commutation relation [N; a�(f)] = 1. This operator is referred to
as the total number operator. The existence of an operator N having these
properties guarantees that the representation is unitarily equivalent up to
multiplicity to a Fock representation (Dell�Antonio and Doplicher 1967). For
a free �eld, this N counts the number of quanta of excitation of the �eld. The
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failure of a representation to admit a total number operator means, loosely
speaking, that there are too many quanta of excitation to count. For this
reason such representations were dubbed �myriotic� by Friedrichs (1953),
who was the �rst to investigate them.
One source of confusion about whether Haag�s theorem implies that non-

Fock representations have to be used derives from a slide between the absolute
and relative senses of �myriotic representations.�How easy it is to be caught
in the slide is illustrated by a toy example from Bogoliubov et al. (1975).
Consider the transformations of canonical variables pk; qk given by

p0k = exp(�k)pk, q0k = exp(��k)qk (26)

where the �k are positive constants. The associated �annihilation�and �cre-
ation�operators are de�ned by

ak :=
1p
2
(pk � iqk); a�k :=

1p
2
(pk + iqk), (27)

The e¤ect of (26) is to transform these operators as follows:

a0k = cosh(�k)ak + sinh(�k)a
�
k (28)

a0�k = cosh(�k)a
� + sinh(�k)ak

From the fact that the pk and qk obey the standard CCR, it follows that

[am; an] = 0 = [a
�
m; a

�
n]; [am; a

�
n] = �mnI (29)

The primed creation and annihilation operators de�ned by (28) also obey
(29) when they are substituted for their unprimed counterparts. Now in
the case of ordinary QM, where the index k takes on only a �nite number
of values, the transformations (28) are unitarily implementable. But in the
case of an in�nite number of degrees of freedom the �k can be chosen so

that the series
1P
k=1

sinh2(�k) diverges, in which case the transformations (28)

are not unitarily implementable. But�and this is the crucial point�both the
primed and unprimed creation and annihilation operators can �gure in Fock

representations. In the case where the series
1P
k=1

sinh2(�k) diverges, these

Fock representations are relatively myriotic: e.g. if the vacuum state in the
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unprimed Fock representation is j0i, then a formal calculation of the expec-
tation value of the primed total particle number operator N 0 =

1P
k=1

a0�k a
0
k gives

h0jN 0j0i = h0j
1P
k=1

a0�k a
0
kj0i =

1P
k=1

sinh2(�k) = 1, which is to say, intuitively,
that the unprimed vacuum contains an in�nite number of primed quanta
and, more precisely, that N 0 is not a well de�ned operator in the unprimed
Fock space.27 Conversely, the unprimed total particle number operator N is
not a well-de�ned operator in the the primed Fock space.
Immediately following this example, Bogoliubov et al. (1975) say:

One might suppose that it is possible to use the [sic] Fock rep-
resentation also in the theory of interacting �elds ... But Haag�s
theorem shows this is not true: at any �nite time we must use a
strange representation of the CCR (in which, roughly speaking,
each state contains an in�nite number of particles). (p. 560)

As far as we have been able to determine, the term �strange representation�
was �rst used in Haag (1955). In the quoted passage �strange�seems to be
used to mean �myriotic�and the reader is being invited to slide between the
absolute and relative senses of myriotic and conclude that Haag�s theorem
shows that an interacting �eld requires a representation of the CCR that is
absolutely strange or myriotic, i.e. non-Fock.
Haag�s theorem by itself does not entail that non-Fock representations

must be used for interactions. But, regardless of what Haag�s theorem does
or does not show, one can ask whether is it true that interacting �elds require
non-Fock representations. By way of answering, start with a Hermitian scalar
�eld � and its conjugate momentum �eld �, and assume that they satisfy
the CCR. De�ne the associated annihilation operators by a(f) := [�(f) +
i�(f)]=

p
2, where f ranges over elements of the test function space. Require

that there be a Fock vacuum state in the sense of a cyclic vector j0i such that
a(f)j0i for all f . Then j0i must be a so-called quasi-free state (see Emch
1967, p. 242). (In algebraic QFT this can be made more precise. Start with
a real linear symplectic space (T ; �) and build over this space the Weyl CCR
algebra W(T ; �), a C�-algebra that encodes an exponentiated version of the
CCR (see the Appendix). Corresponding to any positive symmetric bilinear
map � : T �T ! R satisfying a certain inequality (see Appendix), there is
a state !� on W(T ; �) determined by its action on the generators W (f) of
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the algebra: !�(W (f)) = exp(��(f; f)=2). Such a state is called quasi�free.
It is known that a pure quasi-free state determines a GNS representation
that is a Fock representation with the GNS vector j
�i being the no-particle
vacuum state (see Manceau and Verbeure 1968). The converse is also true:
If the GNS representation determined by a state ! on W(T ; �) is a Fock
representation in which the GNS vector is the no-particle vacuum, then ! is
a pure quasi-free state.)
The signi�cance of this result lies in the fact that, because of the Gaussian

nature of a quasi-free state, the n-point functions of such a state have very
special properties: all odd n-point functions vanish and the even n-point
functions are sums of products of two point functions; thus, all the trun-
cated n-point functions (a.k.a. connected n-point functions) vanish except
for n = 2. A proof that a local quantum �eld theory whose truncated n-point
functions vanish beyond some some �nite order cannot lead to non-trivial
scattering was given by Greenberg and Licht (1963). In this sense, Fock
representations are generally inappropriate for interacting �elds. This is not
to say, however, that they are never appropriate for describing interacting
�elds. Indeed, in cases where Haag�s theorem does not apply, not only can
interacting �elds be given a Fock representation, but the Fock representation
for the interacting �eld can be unitarily equivalent to that of the free �eld.
One case in point is the �4 �eld with m > 0 on the cylindrical spacetime
that results from �rolling up� (1 + 1)-dim Minkowski spacetime along the
space axis; there is no ultraviolet divergence for the (�4)1+1 case, and the
compacti�cation of space squelches the infrared divergence.
We have devoted so much attention to the discussion of Fock representa-

tions because of their importance for the interpretation of QFT; in particular,
they are relevant to the issue of whether the particle notion is essential to
an understanding of the theory. The availability of a Fock representation
is not su¢ cient to underwrite a particle interpretation; the latter requires a
demonstration that the quanta of excitation of the �eld can and do, under
appropriate circumstances, display particle-like behavior. But the availabil-
ity of a Fock representation does seem to be a necessary condition; for if there
is no total particle number operator then identifying the quanta of excitation
with particles leads to the embarrassment that it is not meaningful to ask
how many particles are present. Thus, the existence of cases where Fock
representations are not available is a blow to those who want to think that
particles have some fundamental status in QFT and a support to those who
think particles have secondary if not epiphenomenal status in QFT.28
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8 The choice problem

As a consequence of the Stone-von Neumann theorem one can say that in
ordinary QM (and, more generally, in the quantum mechanics of systems
with a �nite number of degrees of freedom) the kinematics, as given by the
CCR algebra, determines the representation up to unitary equivalence. Since
a unitary transformation between representations preserves self-adjointness,
eigenvalue spectra, and every other property that might a¤ect physical pre-
dictions, unitary equivalence of representations of the CCR is surely su¢ cient
for physical equivalence. It follows that in ordinary QM the choice of rep-
resentation is one of convenience�one is free to exercise one�s esthetic incli-
nations in choosing among the representations picked out by the kinematics,
secure in the knowledge that the choice does not a¤ect anything that could
possibly be checked by experiment.
In QFT the kinematics, as given by the CCR algebra, does not deter-

mine the representation up to unitary equivalence. How then is the prac-
titioner of QFT to choose among the vast array of unitarily inequivalent
representations? Haag�s theorem shows that inequivalent representations are
not mere mathematical playthings but (as Wightman and Schweber (1955)
noted) �arise in the most elementary examples of �eld theory� and, thus,
that the choice problem has to be taken seriously.
The pioneers of the algebraic approach to QFT initially responded by

denying that there was a real problem to be solved. The underpinnings of
this attitude was supposed to be provided by Fell�s theorem (see Appen-
dix), which shows that di¤erent representations�even unitarily inequivalent
representations�of a Weyl CCR algebra cannot be distinguished by the de-
termination of a �nite number of expectation values if the determinations are
made with �nite accuracy. But unless a severely operational perspective is
adopted, the indistinguishability of representations guaranteed by Fell�s the-
orem does not guarantee that the representations are genuinely physically
equivalent.29

A more promising approach to solving the choice problem takes a cue
from Haag�s theorem, which has sometimes been glossed as saying that the
choice of representation depends on the dynamics. Could it be that an appro-
priate representation not only depends on but is determined (up to unitary
equivalence) by the dynamics? One sometimes encounters sentiments to this
e¤ect. For example, Florig and Summers (2000) write that �Roughly speak-
ing, the kinematical aspects determine the choice of CCR-algebra, whereas
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the dynamics �x the choice of the representation of the given CCR-algebra
in which to make the relevant, perturbation-free computations�(p. 452).30

The latter part of the remark might seem viciously circular since �dy-
namics� in the Schrödinger sense involves a Hamiltonian operator, which
presupposes a representation. A way out of this problem is provided by
the algebraic approach. Start with a one parameter group a(t) of automor-
phisms of the Weyl CCR algebra, which group is to be thought of as giving
the �Heisenberg dynamics�of the �eld. (In the case of the Klein-Gordon �eld
this group will be a group of symplectic transformations of the symplectic
vector space of real valued solutions of the classical Klein-Gordon equation;
see Arageorgis et al. 2002.) Then look for a Hilbert space representation
of the Weyl CCR algebra in which the action of a(t) is implemented by a
strongly continuous unitary group U(t). The self-adjoint generator H of U(t)
is the Hamiltonian that implements the Schrödinger dynamics of the �eld.
One would like the representation to be such that H is a positive operator.
And one would like the the representation to contain a vacuum vector j
i
in the sense that U(t)j
i = 0 and that j
i is a cyclic vector. Proving the
existence and uniqueness (up to unitary equivalence) of such a representation
would constitute a demonstration that the dynamics determines a vacuum
representation. There are theorems of this type for linear �elds (see Wein-
less 1969 and Kay 1978). We are unaware of corresponding existence and
uniqueness results for interacting �elds.
In addition, another discovery of relativistic QFT shows that in general

the dynamics cannot determine the representation up to unitary equivalence.
This is the phenomenon of spontaneous symmetry breaking where there is
a symmetry of the dynamics that is not unitarily implementable; here the
choice of representation depends on the way the symmetry is broken as well
as on the dynamics. Cases of spontaneous symmetry breaking include linear
�elds, such as the zero mass Klein-Gordon �eld. Spontaneous symmetry
breaking provides another example of why inequivalent representations have
to be taken seriously in QFT. But since it is not directly relevant to Haag�s
theorem it will not be discussed further here.31

The need to refer to features of the state in choosing a representation
also points to a general strategy for resolution of the choice problem. By the
GNS theorem, any state ! on a C�-algebra in general, and a CCR algebra
in particular, determines a representation that is the unique (up to unitary
equivalence) cyclic representation that respects the expectation values spec-
i�ed by !.32 The choice of representation now reduces to the choice of state.
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The choice of state may be guided by the desire to respect the dynamics. For
example, �nding a state ! on the Weyl CCR algebra that is invariant un-
der the automorphism group a(t) giving the algebraic Heisenberg dynamics
guarantees that the GNS representation determined by ! satis�es all of the
conditions enumerated above, save possibly for the positivity of the Hamil-
tonian. But the choice of state and, thus, the choice of representation may
be guided by other factors as well.

9 Conclusion

Haag�s theorem can be viewed as a reductio argument showing that it is not
possible to apply a set of seemingly natural mathematical assumptions to
interacting quantum �elds. The initial reactions to the theorem varied. Per-
haps the most darkly pessimistic reaction was that given in Freeman Dyson�s
(1956) Mathematical Reviews summary of Haag (1955). Haag�s theorem and
the work of van Hove (1952) that inspired it were taken to

make even clearer than before the fact that the Hilbert space of
ordinary quantum mechanics is too narrow a framework in which
to give a consistent de�nition to the operators of quantum �eld
theory. It is for this reason that attempts to build a rigorous basis
for �eld theory within the Hilbert-space framework ... always
stop short of any non-trivial examples. The question, what kind
of enlarged framework would make consistent de�nitions possible,
is the basic unsolved problem of the subject.

A less pessimistic reaction was championed by Wightman and his collabora-
tors (and is endorsed by us): namely, what Haag�s theorem shows is not that
the Hilbert space framework per se is too narrow for describing interacting
�elds, but rather that a single, universal Hilbert space representation does
not su¢ ce for describing both free and interacting �elds;33 instead, unitarily
inequivalent representations of the CCR must be employed.
On any reading, Haag�s theorem undermines the interaction picture and

the attendant approach to scattering theory. A convincing explanation of
why, nevertheless, the interaction picture and perturbation theory work is
still lacking, but we indicated one route to such an explanation. Dyson�s
pessimism is not justi�ed by Haag�s theorem because mathematically con-
sistent alternatives to the canonical approach exist. Haag-Ruelle scattering
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theory is available as a mathematically consistent alternative framework for
scattering theory. The (�4)1+1 model constructed by Glimm and Ja¤e is a
well-de�ned Hilbert space representation for this interaction. Since Haag�s
theorem applies in this case, this example demonstrates that the theorem can
be circumvented by adopting a representation that is unitarily inequivalent
to the Fock representation for a free �eld.
The story does not end here. Haag�s theorem initiated a pattern that

has continued to the present day. Haag�s theorem concerns only the in�-
nite volume divergences. Following their success with the (�4)1+1 theory,
constructive �eld theorists investigated interactions of di¤erent forms and
in higher dimensional spaces that are plagued by other types divergences.
This work revealed that, in order to obtain well-de�ned representations, ad-
ditional assumptions of the Haag�s theorem reductio need to be modi�ed or
abandoned�for example, the use of the equal-time version of the CCR. The
constructive QFT program is far from complete. Critically, a model for a
non-trivial interaction in four-dimensional spacetime has yet to be found.34

Dyson-esque pessimism is one response to this situation. There is also the
by now familiar alternative: speculation that yet further assumptions will
have to be abandoned. For example, Klauder (2000) has questioned the
assumption of irreducibility.
The absence of discussion of Haag�s theorem from the latest generation of

textbooks on QFT is an indication that it has dropped out of the conscious-
ness of scholars in the mainstream of the �eld. Axiomatic and constructive
�eld theorists have digested the moral and moved on to other problems. But
this does not mean that Haag�s theorem can be ignored by philosophers of sci-
ence. On the contrary, the theorem provides an entry point into a labyrinth of
issues that must be confronted in any satisfactory account of the foundations
of QFT.
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Appendix: The Algebraic approach to QFT, Weyl algebras,
Fock representations, and all that
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A �-algebra is an algebra closed with respect to an involution A 3 A 7!
A� 2 A satisfying: (A�)� = A; (A + B)� = A� + B�; (cA)� = �cA� and
(AB)� = B�A� for all A;B 2 A and all complex c (where the overbar denotes
the complex conjugate). A C�-algebra is a �-algebra equipped with a norm,
satisfying kA�Ak = kAk2 and kABk � kAk kBk for all A;B 2 A, and is
complete in the topology induced by that norm.
A representation of a C�-algebra A is a �-automorphism � : A ! B(H)

where B(H) is the algebra of bounded linear operators on a Hilbert space
H. The representation � is faithful i¤ for any A 2 A, �(A) = 0 implies
that A = 0. � is irreducible i¤ �(A)00 = B(H), where �(A)00 is the double
commutant of �(A) (i.e., the set of all bounded operators that commute
with any bounded operator that commutes with �(A)). In an irreducible
representation every vector j i 2 H is cyclic (i.e., f�(A)j ig is a dense set).
Two representations � and �0 are unitarily equivalent i¤ there is a unitary
map V : B(H�)! B(H�0) such that �

0(A) = V �(A)V �1 for all A 2 A.
The basic result on representations, called the Gelfand-Naimark-Segal

(GNS) theorem, shows that each state (i.e. normed positive linear func-
tional) on the algebra determines a cyclic representation: if A is a C�-
algebra and ! is a state on A, then there is a Hilbert space H!, a �-
automorphism �! : A ! B(H!), and a cyclic vector j
!i 2 H! such that
!(A) = h
!j�!(A)j
!i for all A 2 A. The GNS representation is the unique
(up to unitary equivalence) cyclic representation. A state ! on a a C�-algebra
is said to be mixed if it can be written as a nontrivial convex combination
of other states; otherwise it is said to be pure. The GNS representation
determined by a state ! is irreducible just in case ! is pure.
If � : A ! B(H) is a representation of the C�-algebra A, the associated

von Neumann algebra is the weak closure of �(A) or, equivalently, the double
commutant �(A)00. The folium F(�) of a representation � consists of all states
that can be represented as density matrixes on H�. The representations �
and �0 are called disjoint if F(�)\F(�0) = ?. For irreducible representations,
disjointness coincides with unitary inequivalence. Two representations � and
�0 are said to be weakly equivalent if for any state ! in the folium of �, any
A1; A2; :::; An 2 A, for �nite n, and any positive �1; �2; :::; �n, there is a state
!0 in the folium of �0 such that j!(Ai)� !0(Ai)j � �i, i = 1; 2; :::; n, and vice
versa with ! and !0 interchanged. Fell�s theorem guarantees that any two
faithful representations of a C�-algebra are weakly equivalent. Weyl CCR
algebras (to be described below) are C�-algebras that encode the CCR in
an exponentiated form. Since all representations of a Weyl CCR algebra are
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faithful, it follows from Fell�s theorem that they are all weakly equivalent.
A Weyl CCR algebra W(T ; �) express the CCR on a symplectic space

(T ; �) where T (�test function space�) is a vector space and � is a non-
degenerate, anti-symmetric, bilinear form on T .35 Denoting elements of the
quantized space by �, the �symplectically smeared��elds �(�; f), f 2 T , are
required to satisfy

[�(�; f1); �(�; f2)] = i�(f1; f2)I, for all f1; f2 2 T (A1)

In the case of the Klein-Gordon �eld, T can be taken to be pairs ('; �)
of Cauchy data on some time slice, say, t = 0, consisting of real valued
functions in, say, C10 . The symplectic form is given by �('1; �1;'2; �2) =R
('1�2 � �1'2)d

3x. Equation (A1) expresses the heuristic form of the CCR

['(x1); '(x2)] = 0 = [�(x1); �(x2)], ['(x1); �(x2)] = i�(x1;x2)I (A2)

Note that, unless otherwise speci�ed, the results stated below hold for arbi-
trary (T ; �), and not merely for the special case of a linear �eld theory.
The Weyl algebra W(T ; �) encodes an exponentiated version of (A1).

It is generated by the objects W (f) (which are the formal counterparts of
exp(�i�(�; f))) that are required to satisfy

W (f)� = W (�f) (A3)

and
W (f1)W (f2) = exp(�i�(�; f)=2)W (f1 + f2) (A4)

The algebra is formed by taking complex linear combinations of the W (f).
The �-operation comes from (A3) and the requirement that for any element
A of the algebra and any c 2 C, (cA)� = �cA�. There is a unique norm
satisfying kA�Ak = kAk2 for all elements A, and taking the closure in this
norm produces the promised C�-algebra W(T ; �).
The expectation values

!�(W (f)) = exp(��(f; f)=2) (A5)

of the generators W (f) determine a state on W(T ; �) if � is a positive sym-
metric bilinear form on T obeying the inequality

(�(f1; f2))
2 � 4�(f1; f1)�(f2; f2), for all f1; f2 2 T (A6)
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Such states are called quasi-free. It is worth emphasizing that the Weyl CCR
algebra depends only on the real symplectic space (T ; �) and not on the
complex structure which needs to be added to form a �one particle Hilbert
space�(see below). Roughly speaking, � determines the imaginary part of
the Hilbert space inner product while � determines the real part. This is one
source of unitarily inequivalent representations: the GNS representations of
the same W(T ; �) determined by the states !� corresponding to di¤erent
choices of � can be unitarily inequivalent.
Kay and Wald (1991, Prop. 3.1) show that for any symplectic space

(T ; �) and any � satisfying (A6), there is an associated �one particle Hilbert
space�in the sense that there is a complex Hilbert space h and a linear map
K : T ! h such that
(i) KT + iKT is dense in h,
(ii) �(f1; f2) = realhKf1; f2i for all f1; f2 2 T , where h; i denotes the inner
product on h, and
(iii) �(f1; f2) = 2imaghKf1; f2i for all f1; f2 2 T .
The symmetric (boson) Fock space F(h) over h is de�ned as �n=1n=0 (
nshn)
where h0 = C and 
nshn is the symmetrized n-fold tensor product of h with
itself. The creation and annihilation operators de�ne a pair of linear maps

a : f 7! a(f), a� : f 7! a�(f) (A7)

from h to F(h) such that the a(f) and a�(f) have a common dense domain
D, and [a(f); a(g)] = [a�(f); a�(g)] = 0 and [a(f); a�(g)] = hf; giI for all
f; g 2 h. A representation of the Weyl CCR algebra is said to be a Fock
representation just in case
(a) there is a unit vector j0i 2 D (�the Fock vacuum�) such that a(f)j0i = 0
for all f 2 h, and
(b) D is the span of fa�(f1)a�(f2):::a�(fn)j0ig, f1; f2; :::fn 2 h and n =
0; 1; 2:::: .
The GNS representation determined by a pure quasi-free state !� onW(T ; �)
is a Fock representation. But note that, in accord with what was said above,
di¤erent pure quasi-free states can produce unitarily inequivalent Fock rep-
resentations.
In a Fock representation, the total particle number operator

N :=
P
ffjg

a�(fj)a(fj), where the sum is taken over an orthonormal basis ffjg

of h, is a densely de�ned self-adjoint operator that is independent of the
chosen basis, and it has spectrum f0; 1; 2; :::g. In fact N is characterized
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by the properties that it is self-adjoint with spectrum f0; 1; 2; :::g and that it
satis�es the commutation relationNa�(f) = a�(f)(N+1) (see Chaiken 1968).
A representation of the CCR having such a number operator is necessarily
unitarily equivalent up to multiplicity to a Fock representation, i.e. is a direct
sum of Fock representations (see Dell�Antonio and Doplicher 1967).
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Notes
1Though, in our view, Bain�s explanation is not complete. See Section 6

below.
2See Ruetsche (2002) for further discussion of philosophical issues sur-

rounding unitarily inequivalent representations.
3See pp. 416 and 419 for sample passages.
4Good treatments of Haag�s theorem are found in Streater and Wightman

(1964), Emch (1972), and Bogulubov et al. (1975), which are devoted to the
axiomatic and algebraic approaches to QFT, approaches that are generally
ignored by working physicists.

5Note, however, that without further restrictions, (1) does not imply (3).
The generators of the version of the Weyl CCR algebra given in the Appendix
combine the U�s and the V �s.

6Note however that the Stone-von Neumann theorem assumes that the
con�guration space is Rn. For systems where this is not the case it is easy
to give examples where, although only �nitely many degrees of freedom are
involved, there are in�nitely many unitarily inequivalent representations of
the ordinary CCR (1). These niceties will be ignored here.

7Here we are following Summers (2001), which can be highly recom-
mended for anyone wishing an overview of history of the Stone-von Neu-
mann theorem, inequivalent representations, and related matters. See also
Rosenberg (2004).

8Wightman and Schweber credit van Hove as their main inspiration: �Our
illustrations ... are based on the fundamental work of van Hove, and our
discussion may be regarded as an alternative explication of his results�(1955,
p. 825). The footnote to van Hove�s (1952) also cites Friedrichs (1953) and
�R. Haag, CERN lectures, 1953 (unpublished).�

9See Haag (1955, note 15, p. 21).
10This does not include the case of zero mass particles. But it will be seen

in Section 8 below that this case is �even worse�in that there are unitarily
inequivalent representations for the same dynamics.

11The classical �n �eld of mass m obeys the equation ���m2� = ��n�1,
where � is the self-coupling constant.

12We consider neutral scalar �elds for convenience. The theorem also holds
in the more general case of �elds with spin indices (Streater and Wightman
1964, p. 166). The commutation relations in (4) below are then CCR�s or
CAR�s, as dictated by the Spin-Statistics Theorem.
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13Ja¤e (1969) writes: �By a general result, called Haag�s theorem, the
Hamiltonian for [the interacting �eld] cannot exist on Fock space.�(p. 577).
And Glimm and Ja¤e (1970a) write: �[T]here is a general theorem due to
Haag ... which says roughly that in order for these three objects [the phys-
ical vacuum, the Hamiltonian for the interacting �eld, and the Schrödinger
dynamics for the interacting �eld] to exist [HF ] must be replaced by a new
Hilbert space [HR]...�(p. 364).

14f stands for a �test function.�If ffkg, k = 1; 2; :::, is a basis for the test
function space, then the annihilation operators can be written in the more
familiar notation ak := a(fk).

15The issue of whether Haag�s theorem necessarily invokes �strange� or
non-Fock representations will be discussed below in Section 7.

16The version of Haag�s theorem proved by Streit (1969) and Emch (1972,
pp. 247-253) does not make reference to the Poincaré group. This theorem
is not contradicted by the mentioend examples of Galilean QFTs since some
of the premises of the theorem are not satis�ed in these examples (see Fraser
(2005) for details.)

17Here we are using the standard convention that (�m)n+1 is the �
m �eld

on a spacetime with dimension n + 1, with n � 1 being the dimension of
space.

18We presume that in cases where spacetime smearing is required to pro-
duce well-de�ned operator valued distrubutions it is possible to de�ne a
relevant algebra of such smeared �elds and that a Haag type moral will ap-
ply, i.e. unitarily inequivalent respresentations of the algebra are needed to
describe systems with di¤erent dynamics. But we know of no precise results
to this e¤ect.

19See Bjorken and Drell (1965, Chapters 16, 17) or Schweber (1962, Chap-
ters 11, 13).

20Actually, things are a bit more complicated because renormalization af-
fects the commutation relations. The renormalized interaction picture �eld
�ren obeys �

�ren(x; t);
@�ren(y; t)

@t

�
=

i

Z
�(x� y) where Z = 0

But, strictly speaking, the �renormalized�interaction picture representation
for �ren(x; t) cannot be employed to evaluate scattering matrix elements. To
do this, it is essential that the free �eld �I(x; t) be represented on its Fock
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space, which contains n-particle states. �ren(x; t), however, cannot be given
a Fock space representation in the standard way because it obeys the above
non-standard ETCCR�s.

21The Glimm and Ja¤e construction of the renormalized Hilbert space HR

for (�4)1+1 �eld uses the algebraic approach sketched in the Appendix. They
produce a representation � of the algebra A which is the norm closure of
[BA(B), where A(B) is the von Neumann algebra generated by bounded
functions of the smeared �eld �(f; 0) =

Z
�(x; 0)f(x)dx with f having sup-

port in a bounded region B of space. They prove that for each bounded
region B there is a unitary map UB from the Hilbert space in which the
representation of the free �eld lives to HR such that �(A) = AR = UBAU

�
B

for all A 2 A.
22One could seek to control ultraviolet divergences by using a preferred

set of states. In the case of the free scalar �eld the preferred states�called
Hadamard states�are those that yield a well-de�ned expectation value for
the renormalized stress-energy tensor of the �eld (see Wald 1994). Any two
quasi-free Hadamard states determine representations of a Weyl CCR algebra
that are locally quasi-equivalent, i.e. any subrepresentation of one is unitarily
equivalent to some subrepresentation of the other (see Verch 1994). Perhaps
there is some preferred set of states for interacting �elds which, in analogy
with Hadamard states, control the far-ultraviolet modes of the �eld and
which underwrite a result to the e¤ect that any such state determines a
representation of the Weyl CCR algebra that is locally quasi-equivalent to
the representation determined by a quasi-free Hadamard state.

23Bain (2000) argues that Haag�s theorem can be evaded by employing the
LSZ asymptotic condition, and attributes its success to the fact that it uses
a weak limit (pp. 384-6). The LSZ asymptotic condition is a special case of
Haag-Ruelle scattering theory. Thus, while it is true that the LSZ asymptotic
condition provides a formulation of scattering theory that is consistent with
Haag�s theorem, it is misleading to attribute its success to the fact that it
employs a weak limit since Haag-Ruelle scattering theory demonstrates that
the S-matrix can also be consistently de�ned using strong limits.

24Koshmanenko (1978, 1979) develops a generalized version of scattering
theory with di¤erent state spaces and shows that Haag-Ruelle scattering
theory is a special case.

25See also Streater (1975, pp. 797-8).
26This claim is explicitly made in some discussions. Lopuszanski�s (1961)
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version of Haag�s theorem is said to imply the need to use a �myriotic repre-
sentative of the commutation relations�(p. 747). �Myriotic representation�
is another name for non-Fock representation; see below.

27This example is used over and over in the literature. E.g. Wightman and
Schweber (1955, pp. 824-5) use it to illustrate the moral that the choice of
representation depends on the dynamics has the same structure: just make
the �k functions of the coupling constant describing the interaction.

28Contrast the views of Teller (1995) and Wald (1994).
29See Summers (2001) and Kronz and Lupher (2003).
30Streater and Wightman write that for systems with an in�nite number

of degrees of freedom �the kinematics gets mixed up with the dynamics in
the sense that the dynamics determine which representation of the canonical
commutation relations we must use�(1964, p. 168).

31See Earman (2004) for a user friendly introduction to some of the foun-
dational issues raised by spontaneous symmetry breaking.

32In the Wightman approach to QFT, the Wightman reconstruction the-
orem (Streater and Wightman 1964, Sec. 3-4) shows that if the Wightman
functions possess certain properties, then there is a separable Hilbert space
and a unique Poincaré invariant state�the vacuum�such that the Wight-
man functions are equal to the n-point functions of this state; and further,
any other representation with these vacuum expectation values is unitarily
equivalent to this one. From the algebraic point of view, the Wightman �eld
operators form a Borchers algebra (see Borchers 1962), and the axioms of
Wightman �eld theory imply that the Wightman functions de�ne a positive
linear functional on this algebra, so that the GNS theorem can be applied.

33Or even for describing free �elds of di¤erent masses.
34For a report on the state of constructive QFT as of 2000, see Rivasseau

(2000).
35The treatment given below closely follows that of Kay and Wald (1991)

and Wald (1994), to which the reader is referred for details.
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