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There is a huge chasm between the sort of lawful determination that figures in fundamental 

physics, and the sort of causal determination that figures in the ‘folk physics’ of everyday 

objects. For example, consider a rock sitting on a desk. In everyday life, we think of the rock 

as having a fixed stock of dispositions--the disposition to slide on the desk when pushed, to 

shatter when struck by a sledgehammer, and so on. When a strong interaction comes the 

rock’s way, the rock’s dispositions determine how it will respond. More generally, we think 

of the behavior of an ordinary object as being determined by a small set of conditions. The 

conditions typically specify the object’s dispositions to respond to various sorts of 

interference, and describe the sorts of interference that the object in fact encounters. Call this 

the ‘folk model’ (Norton this volume). 

 In fundamental physics, no small set of conditions suffices to determine an ordinary 

object’s behavior. Instead, differential equations describe how the exact physical state of the 

world at one time2 lawfully constrains its state at other times (Russell 1913). In the worst 

case--the case of non-local laws--one would have to specify the entire state of the world at 

one time, in order to determine the state of even a small region at some future time.3  And 

even if locality holds in the sense of relativity theory (so that no influences travel faster than 

light), one would still have to specify the state of a huge region of the world (Field 2003: 
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439). For example, in order to determine what a rock will do in the next 0.05 seconds, one 

would have to specify the exact present state of the entire Earth. 

 What to make of this chasm between the two sorts of determination?  One reaction 

would be to utterly renounce the folk model. The most extreme portions of Russell (1913) can 

be seen as advocating that reaction. That reaction would be too extreme. The folk model is 

useful. It seems to capture important features of the world. So there must be something right 

about it. What?  

 Norton (this volume) answers: the folk model is approximately correct, in certain 

limited domains. Here is the idea. When an old scientific theory is superseded by a new one, 

sometimes the new theory allows us to derive that, in a certain limited domain, the old theory 

is approximately correct. For example, one can derive from General Relativity that the 

classical theory of planetary orbits is approximately correct, provided that spacetime isn’t too 

curved. Norton argues that the folk model can be recovered as approximately correct, in an 

analogous way. 

 On this picture, our fundamental laws have a very special feature. They are such as to 

make the folk model approximately true in certain domains (including the domain of the 

mundane comportment of medium-sized dry goods).4  Not all laws have that feature. Some 

fundamental laws, represented by perfectly respectable differential equations, do not make the 

folk model even approximately true in any domains at all. 

 So there is a story to tell about how our laws yield the approximate truth of the folk 

model in certain domains. My aim is to tell part of that story. 
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1.  Extreme locality 

 

Why do ordinary objects behave in ways that fit the folk model?  The first step in answering 

is to explain why any objects exist in the first place. Why isn’t there just an amorphous soup, 

for example, or no stable matter at all?  Answering such questions is beyond the scope of this 

paper.5  But the questions are still worth posing, in order to emphasize that their answers are 

not obvious. It is not automatic that a system of fundamental laws should allow for stable 

objects--huge quantities of particles that tend to move as a unit. Thankfully, our laws do. 

 Now: given that there are relatively stable middle-sized objects, why does their 

behavior roughly accord with the folk model?  In answering, it is best to start by considering 

the extreme locality of the folk model. 

 Suppose that our fundamental physical laws are local, in the sense that the speed of 

light is the maximum speed of signal propagation.6  That sort of locality guarantees that the 

rock on your desk is isolated from very distant goings-on. For example, when it comes to 

what the rock will do in the next ten seconds, it absolutely does not matter what is going on 

now at the surface of the sun.7  That’s because not even light could get from the sun to your 

rock in ten seconds. 

 Locality, in the above technical sense, gives a certain guarantee that objects are 

isolated from distant goings-on. But the guarantee only concerns very distant goings-on, since 

the speed of light is so high. Example: for all the guarantee says, the observable behavior of 

your rock in the next second depends on whether someone blinks right now at the opposite 
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end of the Earth. (Remember that light can cover the diameter of the Earth in a twentieth of a 

second.) Indeed, for all the guarantee says, everything on the Earth could be so massively 

interconnected that any change anywhere on the Earth would make huge, unpredictable 

differences everywhere else within a twentieth of a second. 

 Thankfully, things aren’t nearly so interconnected. When it comes to the behavior of 

the rock sitting on your desk in the next second, you can pretty much ignore what’s going on 

right now at the other end of the Earth. It’s not that you have a guarantee that your rock’s 

imminent behavior is utterly independent of what’s going on at the opposite end of the Earth. 

For if there were a supernova there right now, that would certainly make a big difference to 

your rock in less than a second (Field 2003: 439). You don’t have a guarantee of absolute 

isolation. Instead, you have an assurance that subject to some very weak background 

conditions (for example, the condition that there will be no gigantic explosions, and that the 

mass of the Earth will remain roughly unchanged), the rough behavior of your rock is 

independent of what is going on at the opposite end of the Earth. Indeed, you have a similar 

assurance that the rough behavior of your rock is independent of what is going on down the 

block.8  That’s what it means for the generalizations that figure in the folk theory to be 

‘extremely local’. 

 In short, when it comes to the rough behavior of your rock, you can often treat it as if 

it were isolated from distant influences. Note the qualifications, though. Your rock isn’t really 

isolated from distant influences. For example, the exact microscopic trajectories of the rock’s 

molecules are sensitive to goings on in the next room, due to gravitational effects. But who 
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cares about the exact trajectories of rock molecules?  When it comes to getting around in the 

world, the rough macroscopic behavior of rocks is much more important. 

 Now: why is it that you can treat the rough macroscopic behavior of your rock as if it 

were independent of distant influences?  There are two factors.9  

 The first factor is that the forces acting on your rock from afar are either negligibly 

tiny or nearly constant. There are four forces to consider: strong, weak, electromagnetic, and 

gravitational. The strong and weak nuclear forces fall off in strength dramatically at greater 

than atomic-scale distances. Electromagnetic forces are stronger and longer-ranged, but--

around here anyway--there are few strongly charged macroscopic objects. So when it comes 

to the strong, weak, and electromagnetic forces, objects are only subject to tiny distant 

influences. 

 The one remaining force, gravitation, operates with significant strength even at long 

distances. But in our neighborhood of the universe, mass distributions do not rapidly and 

massively fluctuate. So gravitational forces on Earth don’t change much over short distance or 

time scales. As a result, we can treat the gravitational force as a fixed background. Relative to 

that background, changes in distant matters make only negligible gravitational differences to 

medium-sized objects on Earth.10  The bottom line is that differences in distant matters of fact 

only make for tiny differences in the forces acting on ordinary objects. 

 Here enters the second factor: statistical-mechanical considerations show that tiny 

differences in the forces acting on the rock are very unlikely to affect its rough macroscopic 

behavior. How does that go?  On the assumption of determinism, one standard story is that the 

fundamental laws supply a probability distribution over initial conditions of the universe. That 
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probability distribution induces a probability distribution over the states of typical rocks 

sitting on tables--a distribution that counts it as unlikely that small differences in forces would 

affect the rough behavior of those rocks 

 Putting the two factors together, we can conclude that differences in distant matters of 

fact are unlikely to make a difference to the macroscopic behavior of your rock. So when the 

folk model says that the behavior of your rock depends only on the nature of the rock, and on 

the strong interactions that come the rock’s way (e.g., shaking of the table), it doesn’t go too 

far wrong. Furthermore, what goes for your rock goes for many ordinary objects. 

 

2.  Default behavior, and the importance of isolation 

The folk model ascribes default--or ‘inertial’--behaviors to many systems. And the model 

says how such systems are disposed to deviate from their default behaviors, if they encounter 

interference (Maudlin 2004). For example, the default behavior of the rock on your desk is to 

just sit there and do nothing. And your rock is disposed to slide along the desk if pushed. 

 Given this framework, one can partially represent the causal structure of a situation 

with a graph. Each node in the graph represents a system, and arrows represent interactions in 

which one system perturbs another from its default behavior.11  

 However, the framework is useless unless systems can to a large degree be treated as 

isolated from their surroundings. For consider a system whose rough behavior is sensitive to a 

wide range of variations all over the place. That system won’t have a single behavior that is 

stable enough to be usefully treated as a default. Furthermore, no manageable list of 

deterministic dispositions will capture interesting regularities about the behavior of the 
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system. And if one insisted on representing such a system in the sort of causal graph 

described above, the system would require so many incoming arrows that the graph would be 

useless. 

 In contrast, the folk model is useful to us because so many systems can be treated as 

isolated from so much of their environments. As a result, the generalizations that figure in the 

folk model are fairly simple, and the associated causal graphs (of ordinary situations) are 

fairly sparse (Woodward this volume). 

 So it really is crucial to the applicability and success of the folk model that many 

systems can be treated as isolated from much of their environments. The same is true of many 

special sciences. For example, consider the second law of thermodynamics, according to 

which closed (isolated) systems never decrease in entropy. Strictly speaking, the law never 

applies to reasonable-sized systems, since long-range gravitational effects ensure that such 

systems are never completely isolated. The law has practical applications only because many 

systems (e.g., gasses in sealed cannisters) can be treated for many purposes as if they were 

isolated. 

 

3.  Sensitive systems 

The rock sitting on your desk can be treated as isolated from much of its environment. But not 

all ordinary systems can be treated as isolated in this way. For example, some rocks may be 

precariously balanced; others may be a hairsbreadth away from cracking in half. In other 

words, some systems are sensitive: their rough behavior depends sensitively on small 
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differences in forces--and hence on distant matters, even when the dependence is not 

mediated by strong nearby interactions. How well does the folk model fit such systems?  

 In general, of course, the folk model needn’t fit such systems very well at all. But here 

on Earth, many sensitive systems are either detector-like or quasi-chancy. And the folk 

model accommodates detector-like and quasi-chancy systems quite well. I will explain each 

category in turn. 

 

3.1  Detector-like systems 

A system is detector-like if it is sensitive to distant influences, but only those of a very 

particular kind (or of a small number of kinds). Examples: devices that measure tiny seismic 

vibrations, fancy light detectors, cosmic ray detectors, and spy devices that eavesdrop on 

distant rooms by bouncing lasers off window panes. The rough behavior of such systems is 

sensitive to distant influences. And such influences needn’t be mediated by a strong 

interaction. For example, a good light detector can register the presence of a single photon. 

But such systems are not sensitive to just any old distant influence. Seismic detectors only are 

sensitive to vibrations in the ground, light detectors to light (and usually just light coming 

from a particular direction), and so on. 

 Detector-like systems can easily be incorporated into the folk model. For though they 

are sensitive to distant influences, they are sensitive to only very particular distant influences. 

So they can be treated as isolated, excepting the particular influences that they detect. Think 

of it this way. The folk model is useful because so many objects can be treated as isolated 

from so much. Insensitive systems (such as rocks on tables) are insensitive to distant 
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influences, and so are well described by the folk model. But detector-like systems are almost 

completely insensitive to distant influences, since they are sensitive to such a narrow range of 

distant influences. As a result, they too are well described by the folk model. 

 So much for detector-like systems. Before turning to quasi-chancy systems, however, 

we will need some background on the nature of statistical explanation. 

 

3.2  Statistical explanation 

Some physical processes are downright ruled out by fundamental dynamical laws. For 

example, classical mechanics downright rules out a process in which a motionless, isolated 

particle suddenly accelerates though it is subject to no force. 

 That is one way for fundamental laws to explain why a particular sort of process does 

not occur. But it is not the only way. For example, consider a process in which an 

unsuspended boulder hovers in midair. Such a process is perfectly compatible with the 

fundamental dynamical laws (all that is needed is a sufficient imbalance between the number 

of air molecules hitting the bottom of the rock, and the number hitting the top). But 

nevertheless our laws make such a process exceedingly unlikely (Price 1996). Perhaps the 

laws are indeterministic, and they ascribe a very low chance to such a process. Or perhaps the 

laws are deterministic, and only a very small range of lawful initial conditions lead to the 

occurrence of such a process. In the former case, the explanation appeals to the objective 

chances that figure in the indeterministic laws. In the latter case, the explanation appeals to an 

objective probability distribution over initial conditions of the universe (see Loewer 2004 and 

Albert 2001). But either way, the explanation depends on an objective probability distribution 
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over lawful histories. That distribution determines which sorts of histories the laws count as 

likely or typical, and which sorts the laws count as unlikely or anomalous.12  The following 

discussion will appeal to such objective distributions. 

 

3.3  Extreme quasi-chancy systems 

Some systems are sensitive to a great range of distant influences. An extreme example of such 

a system is the Brownian amplifier: a device that includes a tiny speck of dust haphazardly 

floating in a sealed glass container. The amplifier makes a sound every ten minutes: a whistle 

if the speck’s last fluctuation was to the left, and a beep if it was to the right.13  Even under 

the assumption of determinism, the Brownian amplifier is incredibly sensitive to distant 

influences. For example, consider a tiny change in the amplifier’s distant environment: 

displacing a one-pound moon rock by one foot. Very shortly, the pattern of sounds produced 

by the amplifier will be completely different in the original and the displaced-rock scenarios. 

 It seems therefore that the amplifier cannot be treated as isolated (or even as almost 

isolated). For its behavior--even its rough macroscopic behavior--depends on the state of 

pretty much every chunk of matter for miles around. But there is a trick. Think of the 

amplifier as having a chancy disposition: the disposition to beep-with-chance-50%-and-

whistle-with-chance-50%. That chancy disposition is stable with respect to distant influences. 

In other words, if you treat the amplifier as if it were a chancy device, faraway goings-on will 

not affect the chances you should ascribe to it. 

 The fundamental laws license your treating the amplifier in this way. Here is why. 

Restrict attention to creatures with powers of observation and control rather like ours. The 
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fundamental laws make it extremely unlikely that such creatures can do better in predicting or 

controlling the amplifier’s behavior than to treat it as a device that produces a random 

sequence of beeps and whistles. 

 To evaluate this claim, consider a gambler who repeatedly places bets (at fair odds) on 

what sound the amplifier will make next.14  If the gambler can do better than to treat the 

amplifier as a 50/50 chance device, then she’ll likely win money over a long sequence of bets. 

She can do that only by following an appropriate rule. For example, suppose that the gambler 

thinks that the machine is very likely to produce the same sound as it last produced. Then she 

will follow the rule ‘Bet on beep whenever the last sound was a beep’.15  Or suppose that she 

thinks that the machine is somehow coupled to the value of the Euro. Then she might follow 

the rule ‘Bet on beep whenever the Euro just increased in value with respect to the Dollar’. 

 The fundamental physical laws make it extremely unlikely that any such rule would 

allow the gambler to cash in. That is the sense in which the laws make it unlikely that we can 

do better than treat the amplifier as a 50/50 chance device, in predicting its behavior.16  

 Here is why the laws make it unlikely that the gambler cashes in. For the purposes of 

this discussion we may assume that the laws are deterministic.17  Now consider rules of the 

form ‘Bet on beep whenever condition C holds’, where condition C is one that the gambler is 

capable of detecting before placing her bet. The laws make it very likely that, of the sounds 

that Brownian amplifiers make after condition C holds, about half are beeps. For example, the 

laws make it likely that, of the sounds that Brownian amplifiers make immediately after the 

Euro has risen with respect to the dollar, close to half are beeps. 
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 And why is that?  Why is it that creatures like us are not capable of sensing conditions 

that distinguish upcoming beeps from whistles?  After all, we have assumed determinism, and 

so we have assumed that such conditions exist. (One such condition is a gigantic particle-by-

particle specification of every state of the world that leads to the machine beeping next.) The 

reason is that creatures like us cannot detect such complicated conditions. We can detect 

relatively simple macroscopic conditions, such as ‘the rock is on the left side of the desk’. 

With the help of special apparatuses, we can even detect a certain very limited range of 

conditions concerning microscopic matters. But remember that the Brownian detector is 

sensitive to the position of nearly every chunk of matter for miles around. It is also sensitive 

to the detailed trajectories of the air molecules in the chamber that holds the dust speck. A 

condition that managed to pick out upcoming beeps would have to put detailed, horrendously 

complicated constraints on all of these matters, and more. Creatures like us have no hope of 

detecting such conditions. 

 There is one loose end. Where did the 50% come from?  Why is it that for any 

condition we can detect, that condition is followed by beeps approximately 50% of the time?  

Why not 10%?  Or no stable percentage at all?  Strevens (1998) has offered a beautiful answer 

in the tradition of Poincaré’s (1905) ‘method of arbitrary functions’.18  Here is the basic idea. 

 Suppose that you must choose a color scheme for a black-and-white dart board.19  

Your goal is to guarantee that close to half of the darts thrown at the board land in a black 

region. The thing for you to do is to choose a scheme that (1) alternates very rapidly between 

black and white, and (2) is such that in any smallish square region, about half of the region is 

colored black. One such scheme is an exceedingly fine checkerboard pattern. 
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 Such a scheme is a good idea because the distribution of landing-places on the board 

is likely to be relatively smooth.20  For example, it is unlikely that any player will be accurate 

enough to cluster all of her throws in a single square millimeter of the board. As a result, 

conditions (1) and (2) make it extremely likely that about half of the darts will land on black. 

In other words, the board’s color scheme allows a weak qualitative condition on the 

distribution of landing-places (that the distribution is smooth) to provide a near-guarantee that 

about half of the darts land on black (Strevens 1998: 240). 

 The dynamics of the Brownian amplifier accomplish an analogous trick. Any smooth 

probability distribution over the state of the amplifier’s environment makes it very likely that 

the amplifier will beep about as often as it whistles. Indeed, something stronger is true. Think 

back to the gambler who suspects that an increase in the strength of the Euro indicates an 

upcoming beep. Any smooth probability distribution over the state of the amplifier’s 

environment makes the following very likely: of the sounds that the amplifier makes 

immediately after the Euro has gotten stronger, close to half are beeps. In other words, a 

gambler who guides her betting by the condition of the Euro is unlikely to cash in. And the 

same is true for any other condition simple enough for creatures like us to detect.  That is 

why, no matter what (relatively simple) condition a gambler uses to select her bets, the laws 

count it as very unlikely that she will cash in by betting on the amplifier. In other words, the 

laws count it as very likely that creatures like us (who are trying to predict the sounds that the 

amplifier will make) can do no better than to treat the amplifier as if it were a 50/50 chance 

device. 
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 So the folk model can apply to the amplifier. The amplifier is quasi-chancy: it has 

stable dispositions to act as a certain sort of chance device. Understood in this way, it is 

reasonable to treat the amplifier as isolated from distant influences. 

 The same is true of many other systems that are sensitive to a wide variety of distant 

influences. By the time a system is sensitive to a wide enough range of distant influences that 

it no longer counts as Detector-like, it very often ends up so sensitive that we can do no better 

than treat it as if it were genuinely chancy. The folk model can accommodate such quasi-

chancy systems by ascribing to them stable dispositions to produce particular chance 

distributions. 

 

3.4  Less extreme quasi-chancy systems 

The Brownian amplifier is the most extreme sort of quasi-chancy system, since creatures like 

us absolutely cannot do better than treat it as a 50/50 chance device. It is worth considering 

systems that are less extreme in this respect. Consider, for example, roulette wheels in casinos 

in the 1970s. One might think that humans cannot do better than treat such wheels as roughly 

uniform chance devices. But it turns out that measurable conditions (the initial velocities of 

the wheel and the ball) yield significant information about what quadrant the ball will land in. 

Indeed, gamblers have attempted to use such information to exploit Las Vegas casinos (see 

Bass (1985), as cited in Engel (1992: 96)). 

 So unlike the Brownian amplifier, people can do better than to treat 1970s roulette 

wheels as uniform chance devices. Nevertheless, doing better requires the sort of information 

and knowledge of detailed dynamics that few people possess. So for most purposes, it is still a 
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good approximation to think of the wheels as if they were uniform chance devices. The same 

is true for many ordinary systems. Such systems are not so sensitive as to utterly rule out that 

creatures like us could do better than treat them as chance devices. But they are sensitive 

enough that they are indistinguishable from chance devices by people with the sort of 

information ordinarily available. Such systems include precariously balanced rocks, leaves 

fluttering to the ground, light bulbs that are poised to burn out, crash-prone computers, and 

perhaps even the ping-pong-ball devices used to choose lottery numbers. 

 There is a tradeoff between simplicity and generality in whether to treat such systems 

as chancy. On the one hand, one can treat them as deterministic, in which case they will count 

as sensitive to a wide range of factors, and as having quite complicated dispositions. The 

nodes that represent the systems in causal graphs will have many incoming arrows. In 

representing the systems this way, one gains generality at the cost of complication. On the 

other hand, treating such systems as if they were chancy will simplify matters greatly, since 

they will count as isolated from much more of their environments. Such representations gain 

simplicity at the cost of accuracy and generality. 

 

4  Conclusion 

Folk models of everyday situations are enormously useful. What makes them useful is that so 

many ordinary objects can be treated as isolated from so much of their environments. As a 

result, we can often ascribe to objects salient default behaviors, from which they may be 

perturbed by interactions of only very particular kinds. 
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 An important reason we can treat so many systems as isolated in this way is a 

combination of insensitivity, and supersensitivity. Some systems are insensitive to small 

differences in forces and initial conditions. In combination with an appropriate statistical 

assumption, this licenses us to treat such systems as isolated. Other systems are very sensitive 

to differences in forces and initial conditions--but many such systems are so sensitive that we 

do better to treat them as chancy devices. By ascribing chancy dispositions to such systems, 

we can again treat them as mostly isolated. Again, this is licensed by an appropriate statistical 

assumption. 

 In attempting to reconcile the folk model of causation with fundamental physical laws, 

Russell focused on dynamical laws.  Little wonder, then, that he thought a reconciliation was 

impossible.  For as we have seen, the dynamical laws do not on their own underwrite the 

usefulness or approximate correctness of the folk model.  They do so only in conjunction with 

statistical assumptions: either probabilistic laws, or laws that supply a probability distribution 

over initial conditions.23 
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Notes 

                                                
1For helpful discussion and correspondence, thanks to the Corridor Group, Sheldon Goldstein, 

Chris Hitchcock, and Jim Woodward. 

2Here for convenience I speak as if rates of changes of physical quantities at a time count as 

part of the state of the world at that time. 

3Here I have assumed determinism, but a similar point holds under indeterministic laws. 

4Compare Norton (this volume: section 4.4): ‘Our deeper sciences must have quite particular 

properties so that [entities figuring in a superseded theory] are generated in the reduction 

relations.’ 

5For a particularly accessible introduction to quantum-mechanical derivations of the stability 

of matter, see Lieb (1990). For more technical treatments, see Lieb (1976) and the references 

therein. 

6More carefully: suppose that the physical state at any point of spacetime is nomically 

determined by the state on time-slice of the back light cone of that point. 

7Here the relevant ‘now’ is, say, the one determined by your rest frame. 

8You have that same assurance even if the laws turn out to violate relativistic locality (due to 

quantum-mechanical entanglement, for example). 

9I am indebted in the following two paragraphs to helpful correspondence with Jim 

Woodward. 

10The same cannot be said of larger objects. For example the tides depend on differing 

gravitational forces (due to the moon) at different places in the Earth. So when modeling the 
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tides, we are not free to think of the Earth as being in a near-constant gravitational field. 

Thanks here to Frank Arntzenius. 

11Such graphs are similar to the ‘interaction diagrams’ from Maudlin (2004: 439). 

12Of course, such explanations are worthwhile only when the histories in question are grouped 

into relatively natural categories. For example, the laws will count any single history—

specified in microscopic detail—as extremely unlikely. But that fact doesn’t make every 

history anomalous. Thanks to Roger White for raising this objection. 

13The Brownian amplifier is a variant of a device described in Albert (2001). 

14Assume that the gambler must bet several minutes in advance of the sound in question. 

15To ‘bet on beep’ is to bet that the next sound the machine will make will be a beep. 

16The connection between randomness and ‘invariant frequencies under admissible place 

selections’ is inspired by Von Mises’ definition of an infinite random sequence (see van 

Lambalgen 1987). 

17The arguments carry over in a straightforward way under indeterminism. 

18See also Keller (1986), Diaconis and Engel (1986), and Engel (1992). 

19This example is adapted from Diaconis and Engel (1986). 

20There are three subtleties here. First: the notion of smoothness employed here is not the 

technical notion of being continuous and infinitely differentiable.  Instead, in the present case 

it is that the probability density for different dart locations varies slowly on the length scale 

set by the fineness of the checkerboard pattern.  (An appropriately generalized notion of 

smoothness applies to other cases. Throughout this paper, it is this notion of smoothness that I 

employ.)  Second: the smoothness of a distribution depends on how the space of outcomes is 
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parameterized. In the present case, the relevant parameterization is the natural one, in terms of 

distances on the board as measured in standard units (Strevens 1998: 241). Third: since the 

conclusion concerns a whole sequence of throws, the relevant distribution is over sequences 

of landing places. That way, the resulting notion of smoothness rules out bizarre dependencies 

between the throws. For example, it rules out a distribution according to which the first throw 

is uniformly distributed, but subsequent throws are guaranteed to land in the same spot as the 

first one. 

23 Compare to Field (2003): ‘the notion of causation, like the notions of temperature and 

entropy, derives its value from contexts where statistical regularities not necessitated by the 

underlying [dynamical] physical laws are important.’ 


