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EMULATION, REDUCTION, AND EMERGENCE IN DYNAMICAL SYSTEMS 
 
 
 
Abstract 
The received view about emergence and reduction is that they are incompatible categories.  I 
argue in this paper that, contrary to the received view, emergence and reduction can hold 
together.  To support this thesis, I focus attention on dynamical systems and, on the basis of a 
general representation theorem, I argue that, as far as these systems are concerned, the 
emulation relationship is sufficient for reduction (intuitively, a dynamical system DS1 
emulates a second dynamical system DS2 when DS1 exactly reproduces the whole dynamics of 
DS2).  This representational view of reduction, contrary to the standard deductivist one, is 
compatible with the existence of structural properties of the reduced system that are not also 
properties of the reducing one.  Therefore, under this view, by no means are reduction and 
emergence incompatible categories but, rather, complementary ones. 
 
 
 
1. Introduction 
Emergence and reduction are traditionally viewed as incompatible categories (Beckermann 
1992; Kim 1992).  A property of a high level system is said to be emergent if it cannot be 
explained in terms of properties of the system’s constitutive parts or, more precisely, if it is not 
one of the properties of more basic parts, which, together, make up the system.  Thus, in order 
to speak of an emergent property P of system S2 we need to verify, first, that S2 is made up of 
another system S1 (intuitively, S1 is the system of the constitutive parts of S2  taken in isolation, 
or in relations different from those typical of S2; see Broad 1925, ch. 2) and, second, that P is 
not one of the properties of S1.  But then, the concept of emergence seems to yield a paradox:  
On the one hand, since S2 is made up of S1, S2 is reduced to S1; on the other one, since the 
property P of S2 is not one of the properties of S1, S2 is not reduced to S1.  The traditional 
solution denies that the constitution relationship (S2’s being made up of S1) is sufficient for 
reduction.  By contrast, the second horn of the dilemma is not questioned, for it is taken for 
granted that S2’s reduction to S1 entails that any property of S2 is also a property of S1. 
 This paper maintains that the traditional solution is irremediably flawed.  In fact, there are 
pairs of systems, S2 and S1, for which both the constitution relationship (S2 is made up of S1) 
and the reduction one (S2 is reduced to S1) clearly hold together.  Moreover, for these pairs of 
systems, it also turns out that some property of S2 is not a property of S1, so that any such 
property is emergent.  It follows that, contrary to the received view, emergence and reduction 
by no means are incompatible categories but, rather, complementary ones. 
 To support this thesis, I will consider some simple examples of dynamical systems for 
which the emulation relationship holds.  As intended here (Arnold 1977; Szlensk 1984; Giunti 
1997), a dynamical system is a kind of mathematical model that expresses the idea of an 
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arbitrary deterministic system, either reversible or irreversible, with discrete or continuous 
time or state space.  Such models allow us to study in a precise way a whole series of typical 
phenomena in complex systems.  Among them, in recent years, the phenomenon of emulation 
has gained growing attention (Wolfram 1983a, 1983b, 1984a, 1984b, 2002).  Intuitively, a 
dynamical system DS1 emulates a second dynamical system DS2 when the first one exactly 
reproduces the whole dynamics of the second one. 
 The emulation relationship can be defined in a precise way for any two arbitrary 
dynamical systems, and it has also been shown (Giunti 1997, ch.1, th. 11) that, if DS1 emulates 
DS2, there is a third system DS3 such that (i) DS2 is isomorphic to DS3; (ii) all states of DS3 are 
states of DS1; (iii) any state transition of DS3 is constructed out of state transitions of DS1.  In 
this paper, I will prove a more general version of this theorem [Virtual System Theorem VST]; 
such a proof is based on a weaker and simpler definition of emulation.  Because of this result, 
it makes perfect sense to claim that, if DS1 emulates DS2, then DS2 is made up of DS1, as well 
as DS2 is reduced to DS1.  Therefore, to show that both reduction and emergence can hold 
together, it will suffice to exhibit two dynamical systems DS1 and DS2, and a property P, such 
that DS1 emulates DS2, DS2 has P, but DS1 does not have P.  Finally, I will show that this 
situation already obtains for two pairs of simple finite discrete systems and that, in either case, 
the emergent property P is a strong form of irreversibility of system DS2. 
 
 
2. Dynamical systems and emulation 
A dynamical system is a kind of mathematical model that expresses the idea of an arbitrary 
deterministic system, either reversible or irreversible, with discrete or continuous time or state 
space.  Let Z be the integers, Z+ the non-negative integers, R the reals and R+ the non-negative 
reals; below is the exact definition of a dynamical system. 
 

[1] DS is a dynamical system iff there is M, T, (g t)t�T such that DS = (M, (g t)t�T) and 
1. M is a non-empty set; M represents all the possible states of the system, and it is 

called the state space; 
2. T is either Z, Z+, R, or R+; T represents the time of the system, and it is called the 

time set; 
3. (g t)t�T  is a family of functions from M to M; each function g t is called a state 

transition or a t-advance of the system; 
4. for any t, v � T, for any x � M, g0(x) = x  and g t+v(x) = gv(g t(x)). 

 
 [2] A discrete dynamical system is a dynamical system whose state space is finite or 
denumerable, and whose time set is either Z or Z+; examples of discrete dynamical systems are 
Turing machines and cellular automata.  [3] A continuous dynamical system is a dynamical 
system that is not discrete; examples of continuous dynamical systems are iterated mappings 
on R, and systems specified by ordinary differential equations. 
 [4] DS = (M, (g t)t�T) is a possible dynamical system iff DS satisfies the first three 
conditions of definition [1].  We can now define the concept of an isomorphism between two 
possible dynamical systems as follows.  [5] u is an isomorphism of DS1 in DS2 iff DS1 = 
(M, (g t)t�T) and DS2 = (N, (hv)v�V) are possible dynamical systems, T = V, u: M → N is a 
bijection and, for any t � T, for any x � M, u(g t(x)) = h t(u(x)). 
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 [6] DS1 is isomorphic to DS2 iff there is u such that u is an isomorphism of DS1 in DS2.  It 
is easy to verify that the isomorphism relation is an equivalence relation on any given set of 
possible dynamical systems. (The concept of set of all possible dynamical systems is 
inconsistent, and we must then take as the basis of the theory of dynamical systems a specific, 
sufficiently large, set of possible dynamical  systems.) 
 It is also not difficult to prove that the relation of isomorphism is a congruence with 
respect to the property of being a dynamical system, that is to say: if DS1 is isomorphic to DS2 
and DS1 is a dynamical system, then DS2 is a dynamical system.  This allows us to speak of 
abstract dynamical systems in exactly the same sense we talk of abstract groups, fields, 
lattices, order structures, etc.  We can thus define: [7] an abstract dynamical system is any 
equivalence class of isomorphic dynamical systems. 
 Dynamical systems are appropriate models to study several interesting phenomena in 
complex systems.  The one of emulation is typical of computational systems (Wolfram 2002), 
but it can in principle involve any two dynamical systems.  The intuitive idea is that a 
dynamical system DS1 emulates a second dynamical system DS2 when the first one exactly 
reproduces the whole dynamics of the second one. Here are some examples. A universal 
Turing machine emulates any Turing machine; for any Turing machine TM there is a cellular 
automaton CA such that CA emulates TM (Smith 1971, th. 3), and vice versa; the simple 
cellular automaton specified by Wolfram’s rule 18 emulates the one specified by rule 90 (both 
CA are monodimensional, with 2 possible values for cell, and neighborhood of radius 1; see 
Wolfram 1983b, 20). 
 Giunti 1997 (ch. 1, def. 4) gave a formal definition of the emulation relationship that 
applies to any two arbitrary dynamical systems.  Here, I will employ a weaker and simpler 
definition, which nevertheless suffices for the present purposes. 
 

[8] DS1 emulates DS2 iff DS1 = (M, (g t)t�T) and DS2 = (N, (hv)v�V)� are dynamical 
systems, and there is an injective function u: N → M such that,�for any c ∈ N, for any 
v ∈ V, there is t ∈ T such that u(hv(c)) = g t(u(c)).  Any function u that satisfies the 
previous condition is called an emulation of DS2 in DS1. 
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FIGURE 1 Emulation 
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3. Emulation, constitution, and reduction 
Giunti 1997 (ch.1, th. 11) proved that, if u is an emulation of DS2 in DS1, there is a third 
system DS3 such that (i) u is an isomorphism of DS2 in DS3; (ii) all states of DS3 are states of 
DS1; (iii) any state transition of DS3 is constructed out of state transitions of DS1.  This result 
still holds for the weaker definition of emulation [8], as the following theorem shows. 
 
Virtual System Theorem [VST ] 
• Let DS1 = (M, (g t)t�T) and DS2 = (N, (hv)v�V) be dynamical systems, and u be an emulation 

of DS2 in DS1; 
• let DS3 = ( N, ( hv)v�V), where N = u(N ) and, for any a ∈ N, for any v ∈ V,  hv(a) = 

u(hv(u-1(a)); the system DS3 is called the virtual u-system DS2 in DS1 (see figure 2); 
then: 
(i) u is an isomorphism of DS2 in DS3; 
(ii) all states of DS3 are states of DS1; 
(iii) for any state transition h v of DS3, for any a ∈ N, there is a state transition g t of DS1 such 

that hv(a) = g t(a). 
 
Proof of (i) 
By the definition of DS3, for any c ∈ N, u(hv(c)) = u(hv(u-1(u(c))) = hv(u(c)).  Therefore, by the 
definition of isomorphism [5], u is an isomorphism of DS2 in DS3.  
 
Proof of (ii) 
Obvious, by the definition of DS3.  
 
Proof of (iii) 
By the definition of DS3, for any v ∈ V, for any a ∈ N, hv(a) = u(hv(u-1(a)). Let c =  u-1(a). 
Since u is an emulation of DS2 in DS1, by definition [8], there is t ∈ T such that u(hv(c)) = 
g t(u(c)).  Therefore, hv(a) = g t(u(c)) = g t(a). Q.E.D. 
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FIGURE 2 The virtual u-system DS2 in DS1 
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 Because of [VST ], if a dynamical system DS1 emulates a second system DS2, it makes 
perfect sense to claim that DS2 is made up of DS1, as well as that DS2 is reduced to DS1.  In 
other words, I maintain that emulation1 is sufficient for both constitution and reduction.  In 
fact, in virtue of [VST ], the system DS2 turns out to be isomorphic to DS3 (i.e. the virtual u-
system DS2 in DS1), for whose constitutive parts (namely, its states and state-transitions) 
conditions (ii) and (iii), respectively, hold.  This, I maintain, is sufficient for claiming that both 
the constitution and the reduction relationship hold between DS2 and DS1. 
 
 
4. Emergence and reduction 
A property P of a high level system S2 is said to be emergent with respect to a lower level 
system S1 just in case (a) S2 is made up of S1 (intuitively, S1 is the system of the constitutive 
parts of S2  taken in isolation, or in relations different from those typical of S2; see Broad 1925, 
ch. 2) and (b) P is not one of the properties of S1.2 
 Therefore, since emulation is sufficient for both constitution and reduction, in order to 
show that emergence and reduction can hold together, it is sufficient to exhibit a pair of 
dynamical systems DS1 and DS2, as well as a property P, such that DS1 emulates DS2, DS2 has 
P, but DS1 does not have P.  In the next section, I will give two examples of such pairs of 
systems.  For each pair, both DS1 and DS2 are small finite discrete systems (with just three 
states), while the emergent property P is the strong irreversibility3 of system DS2. 
 
 
5. Examples of dynamical systems DS1 and DS2 such that (i) DS2 is reduced to DS1 and 

(ii) DS2 has emergent properties with respect to DS1 
To state the examples, we first need a few more general concepts of dynamical systems 
theory.  [9] A cascade is a dynamical system with discrete time, i.e., whose time set is either Z 
or Z+.  [10] A dynamical system is reversible iff its time set is either Z or R; [11] it is 
irreversible iff its time set is either Z+ or R+.  Note that any t-advance g t  (t > 0) of an 
irreversible cascade (M, (g t)t� Z +) can always be thought as being generated by iterating t 

                                                           
1 I recall that emulation, as defined here, is an exact relationship between two mathematical models; this sense 

of the term “emulation” is standard in both dynamical systems theory and computation theory, and it should 
not be confused with a common use of the same term, which refers to the relationship involved in the 
simulation of a physical system (e.g. a water flow) by a second one (e.g. a digital computer that, by means of 
appropriate software, implements a mathematical model of the water flow). 

2 In order to avoid trivial cases, it is also intended that P be a structural property of the mathematical kind that 
both S1 and S2 share.  This means the following.  (i) The two systems S1 and S2 are systems of the same 
mathematical kind K (for example, they are both dynamical systems, or groups, rings, etc.); (ii) the appropriate 
isomorphism relationship � is defined for the kind of system K; (iii) the property P is specific to the kind K, 
that is to say, for any system S, if S ∉ K, then S has not P ; (iv) the property P is preserved by the isomorphism 
�, that is to say, for any two systems S1 and S2 ∈ K, if S1 has P and S1�S2, then S2 has P. 

Also note that the characterization of an emergent property given in the text is not a formal definition; it is 
rather an explicit formulation of one of the senses of the term “emergence”, which is quite standard in either 
the philosophical or systems science literature. 

3 Strong irreversibility is defined in the next section.  It is easy to verify that strong irreversibility is a structural 
property (see note 2) of dynamical systems. 
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times a given function g: M → M (where g1 = g).4  Therefore, as far as an irreversible cascade 
is concerned, the whole dynamics of the system reduces to the behavior of its first 
t-advance g1. 
 [12] A dynamical system is logically reversible iff it is irreversible, but all its state-
transitions are injective; [13] it is logically irreversible iff it is irreversible and at least one of 
its state-transitions is not injective; [14] it is strongly irreversible iff there are two different 
states a and b and a state-transition gv  such that gv(a) = gv(b) and, for any state-transition g t, 
g t(a) � b and g t(b) � a.  Obviously, by definitions [12], [13] and [14], if a dynamical system is 
logically reversible, it is not strongly irreversible.5 
 Figure 3 shows a pair of cascades DS1 = (M, (g t)t� Z +) and DS2 = (N, (hv)v� Z +).  The state 
space of DS1 is M = {x, y, z}, and that of DS2 is N = {a, b, c}.  Each state-transition g t  of DS1 
is obtained by applying t-times the state-transition g1, defined by: g1(x) = y, g1(y) = z, g1(z) = z; 
analogously, an arbitrary state-transition hv  of DS2 is obtained from the first state-transition h1, 
defined by: h1(a) = c, h1(b) = c, h1(c) = c. The function u: N → M is defined as follows: u(a) = 
x, u(b) = y, u(c) = z.  Figure 3 then shows that (a) u is an emulation of DS2 is DS1, (b) DS1 is 
logically irreversible but not strongly irreversible, (c) DS2 is strongly irreversible.  From this, 
since emulation is sufficient for both constitution and reduction, it follows that (i) DS2 is 
reduced to DS1 and (ii) the property P of strong irreversibility is an emergent property of DS2 
with respect to DS1. 

                                                           
4 When time is discrete (either Z or Z+, but let us just consider the simpler case of Z+), dynamical systems reduce 

to iterated mappings.  In fact, on the one hand, if g: M → M is an arbitrary function, we can define the n-th 
(n > 0) iteration of g as g�g�...�g  (n times), where � is function composition; futhermore, by definition, the 0-th 
iteration is the identity function.  Now, if we take the family (gn)n�Z + of all the n-th iterations of g, it is 
immediate to verify that (M, (gn)n�Z +) is a dynamical system in the sense of definition 1 (also note that g1 = g).  
Conversely, if (M, (gn)n�Z +) is a dynamical system whose time set is Z+, then, by condition 4 of def. 1, and by 
the definition of family of the n-th iterations, (gn)n�Z + is the family of the n-th iterations of g1. 

5 Irreversibility is a complex concept, and dynamical systems theory allows us to make fine distinctions.  The 
use of just a non-negative time-set (either Z+ or R+) give us the weakest and most general concept of an 
irreversible system. 

To understand this, we must take into account the algebraic structure ({g t : t�Z +}, �), i.e., the set of all state 
transitions together with the composition operation �. By condition 4 of def. 1, it is immediate to verify that: 
(1) if T = Z or R, ({g t : t�Z +}, �) is a commutative group, whose unity is g0.  Furthermore, for any t, the 
algebraic inverse of g t  (which exists and is unique because ({g t : t�Z+}, �) is a group) is g - t ; this also entails 
that all state transitions are bijections, and that g - t  is the inverse function of g t  (i.e. the two concepts of 
algebraic inverse and inverse function coincide); (2) if T = Z+ or R+, ({g t : t�Z+}, �) is a commutative monoid, 
i.e., a commutative semigroup with unity; in this case too the unity is g0 but, since negative times are lacking, 
no state transition has an inverse. 

This is the situation from the formal point of view.  Intuitively, this means that, if we consider just a non-
negative time set, the system does not have the internal resources (i.e. the negative state transitions) to retrieve 
its past from the current state, even though it might be logically possible (it is possible if all state transitions are 
injective, i.e. if the system is logically reversible).  To put it in a different way.  The difference between a 
logically reversible system and a (fully) reversible one is that the second can itself retrieve its past.  For a 
logically reversible system, instead, retrieving its past is just possible, but it cannot be made by the system 
itself (we need to employ external resources to do it). 
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 Figure 4 shows a second pair of cascades DS1 = (M, (g t)t� Z +) and DS2 = (N, (hv)v� Z +) 
such that (i) DS2 is reduced to DS1 and (ii) the property P of strong irreversibility is an 
emergent property of DS2 with respect to DS1.  Note that DS2 is identical to the corresponding 
system in figure 3.  As for DS1, the one in figure 4 is a logically reversible system. 
 

 
 
 
 
 
6. Concluding remarks: Toward a general representational theory of reduction and 

emergence 
Traditionally, reduction has been analyzed in terms of a deductive relationship between two 
empirically interpreted formal theories, via correspondence rules between the terms of the two 
theories (Nagel 1961; Churchland 1979, 1985; Hooker 1981). By shifting attention from 
formal theories to mathematical models, it is natural to think of reduction in terms of some 
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FIGURE 4 DS1 emulates DS2, DS1 is logically reversible (thus, not strongly 
irreversible), and DS2 is strongly irreversible 

FIGURE 3 DS1 emulates DS2, DS1 is logically irreversible but not strongly 
irreversible, and DS2 is strongly irreversible 
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kind of representation relationship between two models.  This paper has argued that, if the 
two models are dynamical systems, the relationship of emulation is sufficient for reduction (in 
virtue of [VST]). 
 An important point needs to be stressed.  If we think of S2’s reduction to S1 as a form of 
deduction of theory S2 from theory S1 (more precisely, the deduction of a relevantly 
isomorphic image of S2 from S1; see Churchland 1985, sec. 1; Beckermann 1992, 108), then it 
is obvious that all the properties of S2 (more precisely, the properties referred to by statements 
of the relevantly isomorphic image of S2) are a fortiori properties of S1.  Therefore, if we take 
this kind of approach to reduction, there cannot be two theories S2 and S1 such that S2 is 
reduced to S1 and S2 has emergent properties with respect to S1. 
 But this need not be the case if we think of reduction as a form of representation between 
two models S1 and S2, which grants the construction, within the representing model S1, of an 
isomorphic (or, perhaps, just homomorphic) image of S2.  In fact, as I have just shown for the 
special case of dynamical systems, this view of reduction is compatible with the existence of 
structural properties of the reduced system that are not also properties of the reducing one.  
Therefore, under this view, reduction and emergence no longer are incompatible relationships 
but, rather, complementary ones. 
 At present, the representational theory of reduction and emergence has a precise 
formulation only if the models involved are dynamical systems.  Even though many 
interesting models in real science are of this kind, by no means is this special formulation 
sufficient to account for all relevant cases of reduction or emergence.  What we need is a 
general representational theory, as precise as the one restricted to dynamical systems, which 
apply to arbitrary models.  The formulation of such a general theory, however, is not an easy 
matter, for it involves a preliminary investigation of fairly hard questions like: What is, in 
general, a mathematical structure?  What is, in general, a mathematical model?  What is an 
isomorphism between two arbitrary models?  What is the relationship between two arbitrary 
models that generalizes the one of emulation between dynamical systems? 
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