Probability and Statistics in Boltzmann’s Early Papers on Kinetic Theory

Abstract

Boltzmann’s equilibrium theory has not received by the scholars the attention it deserves. It was always interpreted as a mere generalization of Maxwell’s work and, in the most favorable case, a sketch of some ideas more consistently developed in 1872 memoir. In this paper, I tried to prove that this view is ungenerous. My claim is that in the theory developed during the period 1866-1871 the generalization of Maxwell’s distribution was mainly a mean to get a more general scope: a theory of the equilibrium of a system of mechanical points from a general point of view. To face this issue Boltzmann analyzed and discussed probabilistic assumptions so that his equilibrium theory cannot be considered a purely mechanical theory. I claim also that the peculiar perspective adopted by Boltzmann and his view about probabilistic requirements played a role in the transition to the non equilibrium theory of 1872.
1. Overview

According to the prevailing view, Boltzmann’s work throughout the period 1866-1871 is an attempt to generalize Maxwell’s distribution and to formulate it in a more precise and complete way, both from a formal and from a physical point of view. However, upon deeper investigation, it becomes apparent that, in this period, Boltzmann worked out an original theory of the state of equilibrium, developing probabilistic concepts which will be fundamental for the transition to the non-equilibrium theory, particularly the concept of “diffuse” motion which represents the first version of the ergodic hypothesis. This paper relies on the following theses: (a) the analysis of the concept of diffuse motion is the theoretical leitmotiv of Boltzmann’s work during this period and, (b) the results obtained provide, at least from Boltzmann’s standpoint, the justification of two essential moves of the non-equilibrium theory in 1872: the collision mechanism and the differential equation of the distribution function (the so-called Boltzmann equation).

The research programme pursued by Boltzmann throughout the period 1866-1871 dealt with the analysis of a system of material points controlled by very general constraints. This research programme is closely linked to the kinetic theory of gases according to which gases can be viewed as a system of a huge number of free moving material points. In the introduction to his 1868 paper,
 Boltzmann pointed out that the analytical mechanics of his times studied the transformation of a completely specified physical state to another one via equations of motion. But dealing with the dynamical theory of heat, this strategy is impossible and useless. Impossible because of the huge number of particles, and useless, as Boltzmann himself often stressed, because the thermodynamic phenomena, and especially the equilibrium state, depend on general parameters only and not on the individual behaviour of the particles.

The study of the evolution of a system of points which can move freely for a sufficiently large time and constrained by very general constraints usually requires the integration of a certain parameter of motion on the whole trajectory, and this implies the introduction of the average of that parameter and the specification of the physical states of the system at the beginning and at the end of the integration period (in the following we will call these physical pieces of information the “details of motion”). Accordingly, two problems arise.

In the first place, it is necessary that the averages be exchangeable with the exact values of the same parameters. This requires an assumption on the stability of the averages. As we shall see, this assumption always consists of supposing that all the possible motion conditions are represented in the system or throughout the trajectory, so as to make the average of a quantity a “representative average.”
In the second place, a hypothesis able to eliminate the details of motion, which we cannot know because of the complication of the system, is needed. There are many hypotheses which can pursue this task. Boltzmann used the hypothesis of “closed trajectory,” Clausius and Thomson supposed a “stationary motion” and Szily analyzed other possibilities.

2. The mechanical analogy of the Second Principle.

The connection between the problem of the evolution of a system of material points and thermodynamics becomes apparent in Boltzmann’s paper in 1866, which is dedicated to the mechanical analogy of the second principle of thermodynamics. Indeed, while the first principle exactly corresponded to the principle of conservation of energy, no similar correspondence existed for the second law.
 Boltzmann’s analysis is divided into three different steps in which he deeply studied the relationships among three concepts: the stability of averages, the diffuse motion and the closure of the phase trajectory (from which the elimination of motion details followed).

In the first place, Boltzmann provided a mechanical interpretation of the temperature using the concept of thermal equilibrium. The model of gas discussed by Boltzmann consisted of two particles mutually interacting, but in equilibrium with the other particles of the system. The condition of equilibrium required that the average of the exchanged kinetic energy (i.e. the average of the kinetic energy of the two-particles subsystem) was steadily zero and this meant the temporal stability of the average of the kinetic energy. Boltzmann’s comment is particularly interesting:

From our assumption follows that, after a certain time, whose start and end will be labelled with t1 e t2, the sum of the [kinetic energies] of both atoms, as well as the motion of the gravity centres relatively to a certain direction, will again assume the same value.

Now, this consequence merely follows from the assumption of stability of the average kinetic energy exchanged. Thus, Boltzmann is claiming something that is anything but trivial: the closure of the phase trajectory of the two atoms is connected to the stability of averages. In order to understand the meaning of this statement, what conditions, in Boltzmann’s opinion, the stability of averages relied on must be clarified. In particular, Boltzmann argued that the averages are stable if all the possible values are equally represented, i.e. an average is “true” and “representative” (and therefore stable) if it is computed in a set in which all the possibilities are exemplified. Therefore, Boltzmann linked the stability of average to its representativeness, that is, to the fact that it derives from the joint presence of many different factors each contributing to the final result. From this view of the stability of the averages follows the consequence stated by Boltzmann: if all the motion conditions are represented, then two different instants exist, however separated, such that the system will be found exactly in the same physical state. Later on this kind of motion will be called “diffuse.” It is apparent that it is still a primitive version of ergodic motion.

In the second place, by deducting the mechanical analogy of the second principle, the three concepts mentioned above (stability of the averages, diffusion and closure of the phase trajectory) turn up again, even if in different relationships. The mechanical analogy Boltzmann had in mind was Hamilton’s principle of least action.
 Let a phase trajectory during a time i and such that the material point with mass m moves from configuration s0 and speed v0 to configuration s1 and speed v1 be considered. Let Ek be the kinetic energy and U the potential energy, then the principle of least action can be written in the following way:

(1)
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The equation (1) consists of a general term depending on the total energy E and on the integration time and of a particular one depending on the condition at the beginning and at the end of the trajectory. In order to obtain the second principle out of the equation (1), eliminating this term is necessary. In his review paper, C. Szily discussed three different assumptions:

(a) All the phase trajectories start from, and arrive at, the same configurations:
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(b) All the trajectories are closed and periodic, i.e. they arrive with the same configurations and motion conditions:
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(c) The law governing the movement of the material points on the trajectory is:



[image: image4.wmf]0

0

1

1

s

v

s

v

d

d

=

.

Condition (b), that is the closure of the phase trajectory, is the condition chosen by Boltzmann. However, he interpreted it in a peculiar way:

Now we suppose that each atom after a certain time (large as you want) whose start and end we will call t1 e t2, comes back to a state of the body with the same speed and direction of motion and in the same place, thus describing a closed course and after that it repeats its motion even if not in the same way, but in a way so similar as the average [kinetic energy] throughout the period t2 – t1 can be considered the average [kinetic energy] of the atom throughout a period arbitrarily large.

Contrary to Szily and to Clausius, Boltzmann did not require a strict periodicity for the phase trajectory. Provided the closure of the trajectory, the system could perform a completely different evolution as long as the average kinetic energy remained constant.
 The point, underlined by Clausius as well,
 was that it does matter if and not when the closure of the trajectory takes place. Furthermore, the closure condition was related to the diffusion of motion, which the stability of averages relied on. Thus, these three concepts were related again, even if in a different way. Here Boltzmann simply assumed the closure of the trajectory and the stability of averages, even though these two elements were linked via diffusion of motion.

In the third place, Boltzmann completed the article trying a generalization of his theory to the case in which the phase trajectory was not closed.
 This attempt did not lead to a convincing result, but the new constraint he imposed on the integration period was particularly interesting. Boltzmann required that the integration limits were ‘thought so separated each other that the average [kinetic energy] throughout t2 – t1 is the real average [kinetic energy]’. Once more, the concept of stability of the averages and the concept of diffusion of motion were connected. Moreover, in order to obtain the ‘real’ average kinetic energy, only how large the integration period was was relevant.
 This required, of course, that the free-moving evolution pass through all the possible physical states.

In any case, in this paper, the connections among the three concepts seem rather muddled. A definition of “possible physical states” is not provided and the problem of the elimination of the details of motion is still restricted to the special hypothesis of the closure of the phase trajectory. Furthermore, straightforward and general relationships are not developed, but as we have seen, the concepts are used in different combinations at different stages of the analysis. However, to Boltzmann’s eyes it was apparent enough that the discussion of the free evolution of a system of material points from a general point of view required the “diffusion” of the evolution itself. The problem remained to join this idea with a feasible perspective about the analysis of motion.

3. Rudolf Clausius’ contribution

The study of the relationships between thermodynamics and the evolution of a system of material points constrained by general constraints was not exclusively Boltzmann’s research programme.
 At the beginning of 1870s, Rudolf Clausius also treated the same problem in his papers on the virial theorem and on the mechanical analogy of the second principle. Clausius, like Boltzmann, faced the problems of the stability of averages and of the elimination of the details of motion. Furthermore, Clausius, like Boltzmann, generalized his theory to the case of non-closed phase trajectory.

In his article on virial theorem,
 Clausius pointed out that he has been dealing with a system ‘in which innumerable atoms move irregularly but in essentially like circumstances, so that all possible phases of motion occur simultaneously.’
 He exploited this assumption for computing the virial of a system moving in a conservative field of force. Such a system is subject to a potential function or, in Clausius’ terminology, to an ergal. By assuming that all the motion phases were ‘simultaneously’ represented by a large number of particles, he could replace the averages of potential and kinetic energy with the corresponding exact values. Note that, differently from Boltzmann, Clausius supposed a “spatial” simultaneous diffusion of motion phases among the particles, rather than a “temporal” diffusion on the whole phase trajectory.

The problem of the elimination of the details of motion became urgent with Clausius’ proof of the virial theorem. The motion of a particle was described by the following equations:
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X, Y, Z being the components of the force acting on the system. Clausius proved that:

(2)

[image: image6.wmf]i

i

i

dt

x

d

i

m

Xx

i

dt

dt

dx

i

m

0

2

2

2

0

0

2

)

(

4

2

1

2

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

ò

ò

.

It was necessary to cancel out the second term on the right side, which depends on the initial and final states of the system. In other words, a feasible integration time i had to be chosen in order to introduce the averages of the first two terms and to cancel out the third term, i.e. the details of motion. Such a problem is completely similar to Boltzmann’s in 1866. Clausius argued that if the trajectory is closed and periodic and i is chosen equal to the period, then the first two terms can be replaced by the period averages, and the third one can be cancelled out. The motion periodicity ensured the representativeness of the averages because the system, throughout a period, passes through all the physical states.

But, in order to generalize this result to the case of non-periodic trajectory, Clausius introduced the hypothesis of the stationary motion. A motion is said to be stationary if its parameters (speed, position) can assume values strictly included within certain limits. Among the instances of stationary motions, Clausius mentioned the periodic mechanical motion, the oscillation of elastic bodies and, of course, the atomic motion.
 If the motion is stationary and the time i is large enough, the exact values can be replaced by averages. Moreover, the details of motion float within given limits, so that they are able to assume only finite values. By choosing i large enough, the third term becomes smaller and smaller and can be neglected.
 Clausius applied the same reasoning to the other motion components and, by summing them up, he easily obtained the theorem.

The concepts of simultaneous diffusion and stationary motion appeared also in the paper in which Clausius discussed the mechanical analogy of the second principle of thermodynamics. The problem of replacement of averages with exact values (and vice-versa) turned up in two places.

In the first place, Clausius discussed the evolution of a material point subject to external work. According to his opinion, this external disturbance turned out in an alteration both of the phase trajectory and of the form of the potential function
 but he also proved that the latter alteration during a transition from to a phase trajectory to another one has no influence at all on the motion of the point. In order to generalize this proof to a system of points, Clausius replaced the variation of the potential function with its average. Accordingly he assumed the diffusion of the phases of motion:

We will imagine that, instead of one point in motion, there are several, the motions of which take place in essentially like circumstances, but with different phases. If, now, at any time t the infinitely small alteration of the ergal occurs which is expressed mathematically as U changing into U + (V, we have for each single point, instead of 
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Clausius used a similar strategy also in facing the problem of applying the principle of least action to a system of points. This required three assumptions. First, every phase trajectory has its own potential function even if this function can change in every trajectory. Second, he assumed that every phase trajectory was closed and periodic and the motion of the system as a whole was a set of periodic motions. Third, Clausius required every phase of motion being represented by a very large number of atoms:

Further, we will make a supposition which will facilitate our further considerations, and corresponds to what takes place in the motion which we name heat. If the body the heat-motion of which is in question is chemically simple, all its atoms are equal to one another; but if it is a chemical compound, there are indeed different kinds of atoms, but the number of each kind is very great. Now all these atoms are not necessarily found in likely circumstances. When, for instance, the body consists of parts in different states of aggregation, the atoms belonging to one part move differently from those belonging to the other. Yet we can still assume that each kind of motion is carried out by a very great number of equal atoms essentially under equal forces and in like manner, so that only the synchronous phases of their motions are different. In correspondence with this we will now presume also that, in our system of material points, different kinds of them may occur, but of each kind a very great number are present, and also that the forces and motions are such that at all times a great number of points, under the influence of equal forces, move equally, and only have different phases.
The usefulness of the latter assumption became immediately clear. The principle of least action for a single phase is:

(3)
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The elimination of the details of motion followed from the closure and the periodicity of the trajectory. For a system of points the equation (3) depends on the phase of the point for which it is computed, however if all the phases are equally represented, the integral of the equation (3) can be replaced by a summation extended to all the points of the system:

As, however, at a fixed time the points belonging to the group have different phases, and the number of the points constituting the group is so great that at every time all the phases may be considered to be proportionately represented, the value of the sum:
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referred to all these points, will not perceptibly vary. The same holds good for every other group of points of like kind and with equal motion; and hence we can at once refer the preceding sum to all the points of our system and likewise regard as constant the sum so completed.
Finally, in order to generalize the theory to the case of non-closed phase trajectories, Clausius resorted again to the concepts of stationary motion and diffusion:

Let us first consider only those components of the motions which refer to one determined direction – for example, the components in the x direction of our system of coordinates. We have then to do simply with motions alternately to the positive and the negative side; and if, in particular, in relation to elongation, velocity, and duration manifold varieties occur, there yet is in the notion of a stationary motion the prevalence of a certain uniformity, on the whole, in the way that the same states of motion are repeated. Accordingly it must be possible to exhibit a mean value for the intervals of time within which the repetitions take place with each group of points that are alike in their motions.

Thus, Clausius thought that the hypothesis of the stationary motion was capable of generalizing the analysis to non-closed trajectory. This opinion will be shared in 1887 by J. J. Thomson as well, when faced the problem of the principle of least action applied to a system of points:

If the motion be oscillatory, and i a period of complete recurrence; [the term within brackets in (1)] will have the same value [at the beginning and at the end], and therefore the difference of the values will vanish. The case when the motion is oscillatory is not, however, the only, nor indeed the most important, case in which this term may be neglected. Let us suppose that the system consists of a great number of secondary systems, or, as they generally called, molecules, and that the motion of these molecules is in every variety of phase; then the term [within brackets] taken for all the molecules, will be small, and will not increase indefinitely with the time, but will continually fluctuate within narrow limits. This is evidently true if we confine out attention to those coordinates which fix the configuration of the molecule relatively to its centre of gravity; and, if we remember that the motion of the centre of gravity of the molecules is by collision with other molecules and with the sides of the vessel which contain them continually being reversed, we can see that the above statement remains true even when coordinates fixing the position of the centres of gravity of the molecules are included. Thus if the time over which we integrate is long enough, we may neglect the term [within brackets] in comparison with the other terms which occurs in equation (1), as these terms increase indefinitely with the time
Thomson’s analysis fits almost perfectly with Clausius’ and it shares the same argument founded on stationary motion. Besides the analogy with Boltzmann, the differences have to be pointed out as well. First, Clausius meant the diffusion as ‘simultaneous’ representativeness of the motion phases. This concept appeared in Boltzmann, as we will see, in the 1871 trilogy only. Second, the notion of stationary motion was ambiguous. Clausius labelled as stationary motions which were strictly periodic, such as planetary motion; then it seems that he did not have the great difference between periodicity and diffusion completely clear. There was no straightforward link between the concept of stationary motion and the concept of diffusion and accordingly, the problem of stability was detached from the details of motion. Boltzmann tried to fill these gaps using a new and more effective point of view.

4. Equilibrium theory

The investigation of the evolution of a system of material points by means of the variation principles (e.g. the principle of least action) required constraints cancelling out the details of motion. But, if the evolution could be analyzed relying only on its invariants of motion, then the problem of the details would be dropped. Such an analysis was investigated by J. Maxwell during the same years. Maxwell’s statistical analysis of a system of material points was founded on the concept of distribution function, that is, on the evaluation of the number of particles in different “elementary” phase regions. If the probability associated with a complex phase region is meant as the sum of the probabilities associated with the elementary regions constituting it, it turns out that the probability associated with such elementary regions has to be an invariant of motion and has to be fixed by general constraints only (e.g. the total energy). This idea is well known in the modern equilibrium statistical mechanics where it corresponds to the definition of phase density.
 Thus, from Boltzmann’s point of view, the advantage of the statistical analysis was twofold: it focused on an invariant of motion and provided an evolution description depending on general parameters only, those of thermodynamic interest.

It is unclear whether Boltzmann was already aware of this interpretation of the statistical analysis of a system of material points when he decided to investigate the equilibrium of a system, or rather if it progressively emerged during the research. Anyway, there are some good arguments to claim that, at a certain moment, this interpretation found its way.

First, the problem of the invariance of the elementary phase regions can be found in Maxwell’s papers as well. Maxwell’s deduction of the form of the distribution function relied on the invariance of the elementary phase volumes before and after the collision.
 This step is an essential one, because for deduction, a close comparison between the distribution functions before and after the collision is required. This aspect could not escape a mind as interested in analytical presuppositions as Boltzmann’s. Not by chance, in 1872, Boltzmann will mention the invariance of the elementary phase volumes as a result whose proof ‘was provided by Maxwell and then significantly generalized by me.’

Second, this interpretation perfectly fits with Boltzmann’s famous thesis of “finitism” and with the next “combinatory” development of Boltzmann’s theory. Indeed, a prototype of this development can be already found in the second part of the 1868 paper.

Third, as we will see more deeply, this interpretation agrees with the “general solution” given by Boltzmann to the problem of equilibrium.

Now, even if the statistical analysis was significant progress for Boltzmann’s research programme, the way in which Maxwell had developed it was far from being satisfactory, for at least two reasons. First, Maxwell’s theory had some gaps due to the lack of mathematical exactness and of physical generality. In particular, it did not account for the effect of potential energy and provided a picture of the collision which was far too superficial.
 Second, Maxwell’s theory focused on a particular state only, i.e. the equilibrium state, and the statistical analysis completely addressed itself to the characterization of equilibrium, neglecting the problem of the whole evolution of the system.

Boltzmann felt that the new perspective had a lot to say about the free evolution of a system of points, but, in order to accomplish that, a translation of the equilibrium condition expressed by Maxwell’s distribution for a specific state in an analogous equilibrium condition holding for the whole evolution of the system was required.

All these elements have to be taken into consideration in evaluating the paper in which Boltzmann framed his equilibrium theory. In fact, the generalization of Maxwell’s distribution which can be found in it, did not represent the essential aim of the paper, but was rather simply a means by which to obtain the “general solution”, i.e. an equilibrium condition for the whole phase trajectory.
 Furthermore, the particular theoretical background with which Boltzmann faced the problem of equilibrium, pointed him directly toward the non equilibrium problem. Contrary to Maxwell and Clausius, Boltzmann did not intend to focus on a particular state, but rather he wanted to generalize the analysis to the whole evolution of the system, understanding each different state (including equilibrium) as steps of this evolution. While Maxwell and Clausius dealt only with empirical non equilibrium phenomena, i.e. the transport phenomena, Boltzmann was the only one to build a general theory of the non equilibrium state. The historical and conceptual reasons of this move can be found in the peculiar standpoint from which he faced the equilibrium theory.

In the first five sections of his paper, Boltzmann investigated Maxwell’s distribution and applied it to more and more complex cases treating external forces, potential energy, motion on lines, planes, space and so on. Next, Boltzmann discussed the theory in the case of fixed total energy. This implies that one phase co-ordinate is determined by the remaining, namely, in modern terminology, a hypersurface of constant energy is defined. Within this hypersurface, the remaining phase co-ordinates are still mutually independent and Boltzmann was able to develop a combinatory theory anticipating his famous 1877 memoir.

The last part of the article contains the “general solution” to the problem of equilibrium.
 Boltzmann’s argument is not completely clear and indeed it will be adjusted in 1871. He discussed a system of points with mass mi (i = 1, …, n) finding themselves within the volumes dsi = dxidyidzi of the configuration space and d( = duidvidwi of the speed space. The total energy of the system is fixed, thus one speed co-ordinate is automatically determined and the distribution function can be written as f(dsi, d(i-1, d(n) where d(n is an elementary phase surface defined by:
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After an infinitesimal time interval (t the co-ordinates will be transformed according to the following transformations:
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Introducing the potential function ((ds1, …, d(n) which depends on the system configuration, Boltzmann could write two sets of equations describing the behaviour of the system during the infinitesimal time interval (t:
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Now, the independence of the phase variables implies:

(4)
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while for the last couple of co-ordinates:

(5)
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Putting together the equations (4) and (5) Boltzmann could obtain a general relationship expressing the transformation law of the phase volumes:

(6)
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The equation (6) shows, though not yet in a completely straightforward way, that the phase volume is invariant relative to the particles’ motion, that is, the evolution of the system takes place passing through regions of equal phase volume. In this paper, as in all his works on kinetic theory, Boltzmann adopted a relative-frequency definition of probability: the probability attributed to a certain phase region is the ratio of the sojourn time spent by the system in that region relative to the total time. According to this interpretation, Boltzmann immediately gave a probabilistic meaning to the law (6) understanding it in terms of equal sojourn time, namely equiprobability, of elementary regions. As a consequence, the phase space density
 f for the individual configuration was constant on the whole phase space:

(7)
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the equation (7) holding for every couple of transformations. From that Boltzmann derived two important consequences.
 First, the probability attributed to an individual phase region is proportional to the volume of the region itself. Second, considering k successive transformations, it turned out:

(8)
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then the phase density is a constant of motion for the system. The equation (8), which is the most important result of the 1868 article, suggests many interesting remarks.

First, it is just the result Boltzmann was looking for. The equations (6), (7) e (8) expressed the invariance of the elementary phase volume, the dependency of the phase probability on the size of the region and the constancy of the equilibrium distribution function. These results held for the whole phase trajectory. Furthermore, note that the equation (6) is a special case of the well-known Liouville’s theorem. However, Boltzmann never explicitly admitted this similarity. In the following, I will call it the Boltzmann-Liouville theorem.

Second, the equi-probability of the elementary phase regions implied that Maxwell’s distribution derived from a uniform probability density on those elementary regions. This also justified Boltzmann’s combinatory analysis of this paper and in 1877.

Third, interpreting the phase space density as probability attributed to a phase region, Boltzmann introduced a primitive version of the concept of state probability. Martin J. Klein
 claimed that only in 1877 did Boltzmann apply the probability to the system as a whole and that, previously, the concept of probability regarded single particles only. Actually, in 1868 Boltzmann understood the distribution function in probabilistic terms and regarded this function as a feature of the system as a whole and this interpretation was maintained by Boltzmann again in the 1871 equilibrium theory.
 Further remarks on this issue will be given in section 6. What needs to be stressed here is that Boltzmann’s “general solution” fits with the interpretation given at the beginning if this discussion. The final result the Austrian physicist arrived at is the invariance of the probability attributed to the elementary phase volumes, which is the fundamental condition required for building a statistical analysis of the system evolution.

Fourth, with deeper investigation, this result is a remarkable advancement in comparison to Boltzmann’s previous strategy. Indeed, to integrate a motion parameter (e.g. the action) on the phase trajectory (1) the stability of averages and (2) the elimination of the motion details was needed. But now Boltzmann could unify these two assumptions in a unique hypothesis. Indeed, he generalized the equations (6), (7) and (8) to the whole available phase space, i.e. the whole hypersurface defined by the conservation of total energy. This amounted to say: (a) that the system passes through all the elementary phase regions, that is, the motion is diffused as required by the stability of averages; (b) that the initial and final states of a phase trajectory are irrelevant as all the elementary regions are equivalent regarding the phase volume; (c) that the result of the statistical analysis depends on general parameters only, in this case on the total energy. All these constraints, whose relationships Boltzmann had investigated already in 1866, were now unified, thanks to the statistical analysis in the concept of diffuse motion, which represents the first, rudimental version of the ergodic hypothesis.

However, a problem arises. Although the Boltzmann-Liouville theorem is a straightforward consequence of the dynamic character of the particles’ motion, its generalization to the whole phase space is not a move justifiable from a dynamical point of view. Maxwell was aware of this and actually in 1879 he sharply criticized Boltzmann’s argument pointing out its presuppositions and reframing it in a personal way. The most remarkable aspect of Maxwell’s paper is the formal clearness with which the conclusion follows.

Assuming the total energy conservation and Hamilton equations among the generalized co-ordinates q1, …, qn and momenta p1, …, pn and using the concept of action, Maxwell managed to get the following relationship between the initial phase volume dsd( and the final one ds(d((: 

(9)
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The equation (9) precisely expressed the theorem derived by Boltzmann, i.e. the invariance of the elementary phase volume. As the total energy E is fixed, one phase coordinate, e.g. the momentum p(1, can be eliminated; some substitutions yield:

(10)
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Maxwell pointed out that, strictly speaking, the equation (10) holds only for the phases actually passed through by the system throughout its dynamic evolution. In other words, in order to know which regions have the propriety (10) it would need to know the corresponding details of motion: ‘the motion of a system not acted on by external forces satisfies six equations besides the equation of energy, so that the system cannot pass through those phases, which, though they satisfy the equation of energy, do not also satisfy these six equations.’
 However, Boltzmann supposed the equation (10) to be constrained by the conservation of energy only, so that the equiprobability of the elementary phase regions immediately followed. As Maxwell noted, such a move surreptitiously needed an ergodic hypothesys: ‘the only assumption which is necessary for the direct proof [of the theorem]is that the system, if left to itself in its actual state of motion, will, sooner or later, pass through every phase which is consistent with the equation of energy.’

To justify this hidden assumption in Boltzmann’s theorem, Maxwell suggested a physical mechanism based on the collisions against the walls of the vessel. Thus, Maxwell was claiming that Boltzmann’s move was not justifiable by means of the mere internal dynamics of the system, but it required some kind of “external” influences in order to mechanically explain its probabilistic nature. In other words, Maxwell’s analysis makes clear the ambiguous nature of the hypothesis of diffuse motion showing that it is constituted of both dynamic and probabilistic elements.
Moreover, Maxwell’s analysis did not lack another consequence of the equation (10) either: since the distribution function is a function of the phase co-ordinates only, it followed that it is constant on the whole phase space. Accordingly, the probability attributed to any phase regions also depends only on the volume of the region itself. These consequences are connected to the ergodic hypothesis as well:

If the distribution of the N systems in the different phases is such that the number in a given phase does not vary with the time, the distribution is said to be steady. The condition of this is that [the distribution function] must be a constant for all phases belonging to the same path. It will require further investigation to determine whether or not this path necessarily includes all phases consistent with the equation of energy. If, however, we assume that the original distribution of the system according to the different phases is such that [the distribution function] is constant for all phases consistent with the equation of energy, and zero for all phases which that equation shows to be impossible, then the law of distribution will not change with the time and [the function] will be an absolute constant.
Therefore Maxwell was aware that the invariance of the phase volume generalized to the whole phase space is not a purely dynamic assumption.
 The different perspective from which Maxwell and Boltzmann understood the role of this assumption depends on their respective theoretical course. Boltzmann came from the study of the evolution of a system of material points where diffusion played an essential role by providing the stability of averages and the elimination of the details of motion. The transition to the statistical analysis essentially meant for Boltzmann a clarification of the concept of diffusion. On the contrary, Maxwell came from the study of the equilibrium state where diffusion played no role at all. Thus, it is no wonder that he considered the diffusion hypothesis as a hidden assumption in Boltzmann’s argument. 

5. The definitive form of the equilibrium theory: 1871 trilogy

Between 1869 and 1871, Boltzmann spent time doing research in Heidelberg and Berlin. His work on kinetic theory found a new synthesis in three papers published in 1871. These papers summed up his research about the equilibrium problem and prepared the transition to the non equilibrium theory. The aim of these articles is threefold: to provide a more accurate proof of the Boltzmann-Liouville theorem, to clarify the meaning of diffusion and to give it a physical foundation.

Already in the first paper, he made clear the crucial role played by diffusion and its connection with probability: ‘the different molecules of the gas will pass through […] all the possible states of motion and it is clear that it is of the highest importance knowing the probability of the different states of motion.’
 Boltzmann suggested two kinds of physical foundation for diffuse motion.

The first foundation is given by internal collision and by the external forces acting irregularly on the system of points:

The great irregularity of the thermal motion and the multiplicity of the forces acting on the body from outwards make probable that its atoms […] pass through all the possible positions and speeds consistent with the equation of energy.

Therefore Boltzmann, like Maxwell in 1879, claimed that the external influence can be a reason of irregular behaviour at a microscopic level. However, the role played by the internal collisions is more problematic because, as Maxwell will note, dynamical collisions are generally not able to create diffuse motion, then the latter is to be assumed. Actually, in his equilibrium theory, Boltzmann always considered dynamical collisions that cannot change the distribution function, but only keep it constant. How, thus, can the internal collisions provide the diffusion? A hypothesis is that Boltzmann was hinting at a broader view of collision which will appear in 1872. As we will see in section 7, the non equilibrium theory relies on a collision mechanism able to change the distribution function displacing the phase density toward uniformity. By attributing to the collision process a foundational role, Boltzmann was preparing the generalization of the view of collision which will represent one of the most important – and problematic – moves of his non equilibrium theory.

The second foundation is due to the intrinsic features of the particles’ motion. Indeed, the collisions were not deemed a necessary requirement for two reasons. First because, as has already been said, Boltzmann analyzed reversible collisions only. Second because, in 1871 he proposed a new argument for proving the Boltzmann-Liouville theorem from which a new view of the diffuse motion emerged. In particular, Boltzmann considered a system whose material points are governed by the following equations of motion:

(11)
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where the (s are function of the speed components and the (s, are function of the point positions. The equation (11) determined the state of the system at t( = t + (t when such a state was known at t. Furthermore, Boltzmann framed the hypothesis that the phase co-ordinates (positions and speeds) of the initial state were mutually independent, while, evidently, those of the successive state are function of the initial phase co-ordinates. From the differential calculus it turns out:
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Choosing a time interval small enough, the evolution of the system can be considered as an infinitesimal variation:
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from which, by means of differentiations, the following set of equations can be obtained:



[image: image27.wmf]r

r

r

r

r

r

r

r

r

r

r

r

w

w

w

w

w

w

w

w

w

w

w

w

¶

¢

¶

+

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

+

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

=

¶

¢

¶

¶

¶

+

=

¶

¢

¶

d

h

d

h

x

d

x

dh

h

h

dh

h

h

x

dh

x

h

dx

x

h

dx

h

x

x

dx

x

x

1

...

;

;

...

...

;

1

;

...

;

;

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


These equations can be laid out in a Jacobian matrix so that, neglecting the infinitesimal of higher order, the functional determinant follows:

(12)
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From the equation of motion, Boltzmann derived the following systems of equations:
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Substituting in the equation (12), considering constant the infinitesimal time interval and remembering that the (s and the (s do not contain the co-ordinates relative to which the derivation is performed:
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from which dsd( = ds(d(( and, as a consequence, the invariance of the density, f(s, () = f1(s(, ((). Boltzmann generalized again this result to all the values, consistent with the principle of conservation of energy (i.e. to ‘all the possible values’).

Boltzmann was perfectly aware of what Maxwell will claim almost ten years later, namely that the proved invariance holds only for the phase trajectory that effectively takes place. Indeed, he wrote that the distribution function can be obtained at t + (t only if it is given at t. However, if the phase co-ordinates can assume all the possible values, then only a phase trajectory exists in the phase space and the distribution function is an integral of motion. In this way, the distribution function is independent from the details of motion and can be immediately computed.

Boltzmann did not fail an important consequence of this supposition: the distribution function can be obtained without using the collision analysis. An attempt in this direction was pursued by Boltzmann in “Einige allgemeine Sätze,” where he developed an analogy between his theorem and Jacobi’s principle of the least multiplier. Boltzmann supposed that 2n – k among (1, …, (2n integrals of motion are fixed, while the remaining k can assume any value within the new phase hypersurface. Accordingly, from the diffusion hypothesis on the new surface, an expression for the distribution function follows:

(13)
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with C constant.

Boltzmann wrote about equation (13):

We can immediately derive [the distribution function] as soon as we know the integrals [(2n, …, (2n-k] being unnecessary knowing anything else about the kind of variation of  [q1, …, pk].

In other words, as long as the diffuse character of the motion holds, it is unnecessary taking into account collisions or the general evolution of the phase co-ordinates.

These remarks show that Boltzmann had good reasons for introducing a foundation for diffusion different from internal collisions and external forces. In “Einige allgemeine Sätze” he connected the concept of diffuse motion to the stationary motion framed by Clausius. Boltzmann discussed a phase trajectory in a limited hypersurface
 and noted that knowing one co-ordinate allows us to establish the others. But different kinds of motion can be given where that does not happen. He imagined a point in motion around a centre of force attracting the point with a force (a/r) + (b/r2). The resulting motion is constituted by a series of ellipses. If the angle formed by the apsidal lines of two consecutive ellipses is an irrational multiple of (, a precession of the elliptical orbit takes place and the resulting trajectory will tend to fill all the circular region between the circumference described by the major apsis and the one described by the minor apsis. This motion finds an analogy in the well-known Lissajous’s figures and it fills the whole available phase space.
 Boltzmann’s comment stressed two interesting consequences.

The first consequence is that for such a motion, the concept of probability as sojourn time can be defined, since only if all the phase regions can be crossed by the system, the concept of probability as a longer or shorter sojourn in a certain region is completely defined.
 The second consequence is that for a diffuse motion the phase co-ordinates ‘are mutually independent (only they limit each other within given limits).’
 By knowing one phase co-ordinate, we are not able to establish the others, but we can only define a new hypersurface whose dimension is less than the original one. Thus Boltzmann, even if vaguely and incompletely, linked the concept of diffuse motion to two concepts that can be found in the modern ergodic theory: the probability definition and the independence of the phase co-ordinates.

Stationary motion also appears in the last paper of the 1871 trilogy, where Boltzmann faced once again the problem of 1866: searching for a mechanical analogy of the second principle. The article was written as a consequence of a controversy with Clausius about priority
 and shows the great advancements made by Boltzmann not only in comparison with the beginning of his research programme, but also in comparison with other physicists. The condition of closure for the phase trajectory is abandoned and replaced by a probabilistic analysis:

If the orbits of the atoms are not closed and the probability of the different position of the atoms is undetermined, special cases can be found where (Q/T is not an exact differential. Thus, the transposition of the prove for this case is possible in the exactest way, only considering such a probability.

Furthermore, the replacement of averages with exact values derives from the following assumption:

If the body is constituted by a very large number of atoms having together the same states as a single atom passes through during a large time, then every time that an atom gets a certain kinetic energy, an other one loses it and the quantity of  E, at a certain time, does not differ from the average of E calculated on a very large interval of time.

In modern terms, Boltzmann’s statement is tantamount to saying that the phase average of a quantity defining the physical state is equal to its (infinite) temporal average. Clausius’ concept of simultaneous diffusion is unified with Boltzmann’s concept of temporal diffusion presented in 1868. But the advantages of the statistical analysis became more apparent when Boltzmann, implicitly continuing the controversy, showed that the main problem of Clausius’ article, the variation of the potential function, can be dealt with in a simpler and more effective way. The diffusion of motion permitted the replacement of the exact value of the potential ( with its average and the computation of this average required, of course, the distribution function f. Accordingly, the variation can be written:
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where the integral holds for the whole trajectory length s.

In other words, in the variation of the potential energy there are two terms to take into account. The first is due to the variation of the position of atoms, i.e. to the change of the distribution function f, the second is due to the variation of the form of the potential function (. The latter was the case discussed by Clausius, but Boltzmann immediately dismissed it claiming that the change of the forces not involved in performing work (remember that the position of the atoms remains unchanged) makes this term irrelevant in order to evaluate the variation of the potential energy. Clausius’ obscure reasoning is simply overcome by an argument based on probability. Furthermore, Boltzmann noted:
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No hint is present to the fact that this formula represents a definition of Clausius’ virial, but the connection is clear: using the distribution function, Boltzmann obtained all the results previously derived by Clausius, presenting them with a far clearer and terser argument. From this point of view, the article can be considered a contribution to the controversy about the mechanical analogy of the second principle.

Thus, in the 1871 trilogy, the concept of diffusion was clarified by means of many concepts which can be found in the modern view of ergodicity (independence of phase co-ordinates, link with the definition of probability function, equivalence between the instantaneous behaviour of a system and the behaviour of its constituents during a long time), even if their formulation is still obscure and their mutual relationships are still at a superficial level.

6. The concept of probability

In Boltzmann’s theory of equilibrium, wide use is made of probability, probabilistic assumptions and statistical arguments; however, this use is not free from ambiguities. We can distinguish three concepts of probability in a physical meaning, some of them are developed, some others are merely suggested or implicit and sometimes the term “probability” is applied also in the epistemic sense of “degree of belief”.

Mostly, the concept of probability is associated with two factors: (1) its application to the calculus of averages
 and (2) its interpretation as sojourn time. In other words, Boltzmann’s concept of probability is mostly a relative-frequency one and not an autonomous one. The relative-frequency meaning appears in Boltzmann’s first article and always has a privileged role.
 Jan von Plato suggested
 that the relative-frequency definition of probability was adopted by Boltzmann in relation to the interpretation of thermodynamic parameters as average mechanical parameter. Actually, if the temperature can be understood as “temporal average” of the kinetic energy, then the probability of a certain speed is understood as temporal average of all the possible speeds. Note that in this sense Boltzmann’s definition is strictly empirical: it does not derive from general conditions in which the system is found, but from the real development of a physical process. Thus, the definition of probability as sojourn time requires, in principle, a physical measurement process throughout a sufficiently long period. Boltzmann, anyway, never specified how long that period had to be.

Furthermore, in some places, a second concept of probability can be found which is quite near to the classical view. In “Losung eines mechanischen Problems,” a paper in which the Boltzmann-Liouville theorem is investigated, Boltzmann defined the probability of a certain trajectory characterized by values of some general parameters, as the ratio between the number of trajectories having those values and the number of all possible trajectories.
 In 1871 an analogous definition appeared as well, and Boltzmann tried to unify the classical definition and the concept of sojourn time.
 This move requires the ergodic hypothesis and will be repeated by Boltzmann in his memoir in1877.

But the classical meaning of probability also appeared in the problematic concept of equiprobability. Assumptions can often be found in Boltzmann’s papers concerning the equiprobabilities of directions of motion, positions of points and so on. Even though this concept could be translated in relative-frequency terms, it is not justifiable in an empirical way. Rather, the justification of equiprobability is connected with the indifference principle applied to the parameters (directions, co-ordinates) within a space of possible values. Accordingly, the equal probability does not derive from a measurement, but from the definition of general conditions and from the indifference principle.

Note that the concept of equiprobability does not concern the evaluation of averages, namely, it is an autonomous concept of probability. It represents the prototype of the state probability which will be deeply developed in 1877. The state probability is characterized by autonomy and by the fact that it is applied to the system as a whole, properties shared with the concept of equiprobability. Moreover, the probabilistic meaning of the distribution function is a further step toward the concept of state probability. Thus, Martin J. Klein’s above-mentioned claim according to which such a concept was only introduced in 1877, should be weakened at least. In fact, in the 1866-1871 theory of equilibrium remarkable anticipations of state probability can be found, which represents – at least implicitly – a third meaning of probability.

There are still two remarks I would like to make concerning Boltzmann’s use of probabilistic arguments during the period 1866-1871.

In the first place, Boltzmann’s justification for using probabilistic concepts and arguments is radically different from Maxwell’s.  Boltzmann’s first research programme dealt with a problem: to cancel out the motion details. The echoes of this problem can be easily heard in the articles on kinetic theory, when Boltzmann stated that the thermodynamic evolution of a system does not depend on the configurations of its molecules but on general parameters only.
 As a consequence, while from Maxwell’s point of view, the use of the probability was justified by the human impossibility to have access to certain information, from Boltzmann’s it was justified by the fact that such information was irrelevant.

In the second place, Boltzmann claimed that probabilistic arguments are not less reliable than dynamical arguments usually applied in mechanics. Boltzmann’s point is that probabilistic conclusions follow from probabilistic arguments in a way that is no less exact and no less logically consistent than the conclusions reached with other kind of arguments. What is different is only the presuppositions. If these presuppositions are satisfied (which always happens in structures as complex as gases), the conclusions follow with equal certainty. In other words, the connection between presuppositions and conclusions is a logical one and it is not a matter of (higher or lower) probability.

7. The transition to the non equilibrium theory

Non equilibrium theory in 1872 was made possible by the particular theoretical background with which Boltzmann faced and developed the equilibrium theory. Boltzmann’s research programme did not focus on a single state of the system, as Maxwell’s did, but on its whole evolution and this implied a radical alteration of the view of equilibrium. According to Maxwell, equilibrium is characterized by mechanical and thermal neutrality (equilibrium of the collisions and of temperature). According to Boltzmann, equilibrium is the final point of a process that can be described by the change of the distribution function:

As the time goes, the state of each molecule will constantly change by means of the motion of its atoms during the rectilinear motion, as well as by means of its collisions with other molecules; thus, generally speaking, the form of the function f will change, until this function will assume a value that will not be changed further by the motion of the atoms and by the collisions of the molecules. If this happens, we will say that, the molecules find themselves […] in equilibrium.

In the theory of 1872, many ideas found in the equilibrium theory of 1866-1871 come together. For instance, in the introduction to his article, Boltzmann exposed both his general position about statistical arguments, and dualism between simultaneous and temporal diffusion.

But still more remarkable is the fact that the equilibrium theory founded the theory of 1872 from a formal point of view as well. In particular, it seems to me that historians have not paid sufficient attention to the contribution of the equilibrium theory to the construction of Boltzmann’s equation. In order to obtain his equation, Boltzmann needed two fundamental ingredients: a suitable collision mechanism and the direct comparison of states with different dynamical “histories”.

The first ingredient is due to the fact that the reversible collision mechanism used in the previous papers was not able to bring a system in equilibrium starting from an arbitrary state. In order to introduce an ‘exact consideration of the collision process’,
 Boltzmann discussed the temporal variation of the distribution function as the result of a kind of balance between entering and exiting molecules in and from any phase region. Let a collision of the kind (x, x() ( (y, y(), where the first pair of elementary phase regions are called the “entering parameters” and the second pair the “exiting parameters” be considered. As is well known, the number of collisions causing the exit of a molecule from the phase region x during the infinitesimal time interval (:

(14)
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where ( is a function collecting all the “collision constraints”, in particular depends on the size of the phase volumes x, x(, y. The equation (14) has two characteristics that make the mechanism framed by Boltzmann absolutely original.

In the first place, the integral concerning the exiting parameter y holds for all the possible values from 0 to (. This means that an arbitrary pair of entering parameters (x, x() could originate any exiting parameter. Thus, no dynamical link exists between the two pairs of parameters. In this sense, as we shall soon see, the definition of the entering parameters and the definition of the exiting parameters are two independent processes.

In the second place, the probability of a collision with entering parameter x( directly depends on the value of the distribution function for that parameter. This is due to the fact that the probability of a collision with a molecule with a certain speed depends only on the number of molecules having that speed.
 However, in the selection of the exiting parameters, all the ordinate pairs of parameters (y, y() are considered equiprobable, that is, for such pairs a uniform distribution is supposed.

From a probabilistic point of view, Boltzmann’s collision mechanism can be understood as a two-step process of drawing. At the first step, the entering parameters are drawn from their real distribution in the system, but, at the second step, the exiting pairs of parameters are drawn from a uniform distribution constrained by the principle of conservation of energy only. This feature allows the mechanism to change the distribution on the system: the entering molecules are selected according to the starting distribution, but the exiting molecules are selected in a distribution which is uniform on the elementary phase regions. Of course, in the long run this process will transform the starting distribution to Maxwell’s distribution. From this point of view, no wonder that Boltzmann’s theory led to the equilibrium state, as further proved by the H-theorem. In fact, it was framed in order to obtain such a result. Similar remarks hold for the number of collisions increasing the molecules contained in the phase region x:

(15)
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The equation (15) also relied on the presupposition that all the collisions can originate in a molecule contained in the phase region x while the exiting parameter x( is drawn in a uniform distribution. The entire mechanism is justified by the fact that the equilibrium is characterized by a uniform distribution in the elementary events (in this case the possible pairs of parameters) and Boltzmann was aware of such a result from 1868. Thus, the close connection between equilibrium and equiprobability, contained in the Boltzmann-Liouville theorem generalized to the whole phase space (i.e. the hypothesis of the diffuse motion), is the foundation of the new non equilibrium theory.

The second ingredient became essential when Boltzmann finally managed to obtain a unique differential equation of the distribution function:

(16)
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In the equation (16) the comparison between the distribution functions is possible only by means of the functions ( expressing the dynamical detail of the collision process, that is, the details of motion. But Boltzmann claimed
 that the function ( remains constant, i.e. in all the phase space the equality ( = (( holds. From this and with the suitable simplifications Boltzmann’s equation in its usual form immediately follows:

(17)
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In this deduction too, diffusion plays an essential role. Indeed, the equation (17) requires that the elemental phase volume is invariant for the whole phase space. Moreover, this implies the stability of the averages and the equiprobability of the elementary phase regions. Thus, the various elements necessary to Boltzmann’s theory are connected by mutually logical relationships that are far from clear and the final result is not completely consistent. The first “birth-cries” of a new physical concept, that of the “statistical-mechanical system,” present us with an inconsistent entity where different factors from mechanics, formal theory of probability and Boltzmann’s peculiar interpretation of statistical arguments come together.

8. Concluding remarks

Throughout the period 1866-1871, Boltzmann investigated the problem of the equilibrium state and developed the statistical techniques and the assumptions founding them. These analyses led to the conceptual kernel of the new theory of non equilibrium: the collision mechanism and the Boltzmann equation. The results obtained in 1866-1871, which can be seen at work in the theory of 1872, are the Boltzmann-Liouville theorem, the diffusion of motion, the equiprobability of the elementary phase volumes. This implies a partial revision of some well-founded historical views concerning the conceptual development of Boltzmann’s theory. In particular, I will mention two of them.

The first consequence is that Boltzmann’s non equilibrium theory is not an isolated phenomenon, as sometimes was presented in the historical reconstructions; rather, it is closely connected to the equilibrium theory and to the research programme which generated it. It has to be contextualized in the broader framework of the study of the free evolution of a system of material points. This is proved by the fact that many ideas constituting the kernel of the non equilibrium theory can be found in Szily’s and Clausius’ papers as well. For instance the concept of simultaneous diffusion was introduced in Clausius’ articles on the virial theorem and the mechanical analogy of the second principle. Furthermore, Jan von Plato claimed that Boltzmann interpreted the ergodic motion of a system as a complex of periodical motions.
 A very similar idea can be found as a consequence of Clausius’ stationary motion. These ideas were, let’s say, in the air as the case of the nearly contemporaneous discovery of mechanical analogy teaches us. However, Boltzmann assimilated them differently from Clausius and Maxwell, developing a general analysis of the non equilibrium theory. On the contrary, Clausius and Maxwell faced the problem of non equilibrium only from the point of view of the transport phenomena.

The second consequence is that the theory of 1872 is not a purely mechanical theory as was often claimed. This opinion is partially due to the frequent use made by Boltzmann of the expression “analytical proof.”
 However, according to his point of view, “analytical proof” means an argument in which the conclusions logically follow from the premises. But Boltzmann was aware that his theory relied on probabilistic assumptions such as the diffusion of motion and that his results held “on average” only. Already in 1868, discussing the equilibrium theory, he explicitly stated that some exceptions existed due to the possibility that the assumption of mutual independence of the phase co-ordinates did not hold, ‘e.g. if all the points and the fixed centre are set in a line of a plane’.
 In this case, the motion would not be diffuse and an essential condition for the probabilistic argument would fail. Analogously, the H-theorem was proved by Boltzmann averaging among the possible evolutions of the H-function with regard to each parameter of collision.
 Furthermore, both the collision mechanism and the Boltzmann equation relied on not entirely dynamical assumptions, as Maxwell pointed out in 1879 and as Boltzmann recognized from 1868 on. Thus, generally speaking, we can say that in the development of Boltzmann’s thought, the elements of continuity are as important as, if not more important than the element of discontinuity.
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