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ABSTRACT 

While there is no universal logic of induction, the probability calculus succeeds as 

a logic of induction in many contexts through its use of several notions 

concerning inductive inference. They include Addition, through which low 

probabilities represent disbelief as opposed to ignorance; and Bayes property, 

which commits the calculus to a ‘refute and rescale’ dynamics for incorporating 

new evidence. These notions are independent and it is urged that they be 

employed selectively according to needs of the problem at hand. It is shown that 

neither is adapted to inductive inference concerning some indeterministic systems. 
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1. Introduction 

No single idea about induction1 has been more fertile than the idea that inductive inferences may 

conform to the probability calculus. For no other proposal has proven anywhere near as effective 

at synthesizing a huge array of disparate intuitions about induction into a simple and orderly 

                                                
1 The terms ‘induction’ and ‘inductive inference’ are used here in the broadest sense of any form 

of ampliative inference. They include more traditional forms of induction, such a enumerative 

induction and inference to the best explanation, which embody a rule of detachment; as well as 

confirmation theories, such as in traditional Bayesianism or Hempel’s satisfaction criterion, 

which lack such a rule and merely display confirmatory relations between sentences. Since the 

assumptions of Framework (Section 3 below) lack a rule of detachment, the positive analysis of 

this paper uses the latter approach. 
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system. No single idea about induction has wrought more mischief than the insistence that all 

inductive inferences must conform to the probability calculus. For it has obliged probabilists to 

stretch their calculus to fit it to cases to which it is ill suited and to devise many ingenious but ill-

fated proofs of its universal applicability. 

 This paper offers an alternative to this second idea. It is part of a larger project (Norton 

[2003], [2005]) in which it is urged that there is no single logic of induction, but many logics 

each adapted to particular contexts. The goal of the present paper is to understand why the 

probability calculus works so well as a logic of inductive inference, in the contexts in which it 

does; and to try to demarcate when it does not. To this end, the paper draws on an extensive, 

existing literature in presenting an axiom system for the probability calculus. However, unlike 

traditional axiomatizations, the goal is not to find the most parsimonious system. Instead the 

individual axioms have been carefully selected so that each expresses an intuitively natural idea 

about inductive inference that can be used independently. As a result, the ideas are logically 

stronger than they need be were the only purpose to deduce the probability calculus. These ideas, 

as developed in the Sections 3-6, are: Framework, Addition, Bayes property (=Narrowness + 

Multiplication) and Real values. 

 Excepting Framework, these ideas are independent of one another. The Bayes property, 

for example, is responsible for the dynamics of conditionalization under Bayes’ theorem; it is 

independent of Addition and Real values, and may be invoked independently of them. The 

proposal of this paper is that we should do just this. We should not assume that all these 

component notions apply in every context in which we may seek to use the probability calculus 

as a logic of induction. Rather we should determine which, if any, apply in the context at hand 

and use those only. I will suggest that following this course will help us avoid problems 

associated with the application of the probability calculus to inductive inference. 

 How are we to decide which components apply in a given context? A principled basis is 

supplied by what I call elsewhere a ‘material theory of induction’ (Norton [2003], [2005]). 

According to it, induction differs fundamentally from deduction in that inductive inferences are 

not licensed ultimately by universally applicable inference schemas into which particular content 

may be inserted. Rather they are licensed by contingent facts. Since different facts obtain in 

different domains, we should expect different inductive inference forms to be applicable in 

different domains. If we are reasoning about stochastic systems governed by a theory with 
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physical chances, the facts of that theory will likely license inductive inference forms involving 

the probability calculus. In domains in which different facts prevail, these forms may no longer 

be licensed. Section 8 provides illustrations and argues that neither Addition nor Bayes property 

is licensed for inductive inferences concerning some indeterministic systems not governed by 

physical chances.2 

2. Failure of Demonstrations of Universality. 
There have been numerous attempts to establish that the probability calculus is the universally 

applicable logic of induction. The best known are the Dutch book arguments, developed most 

effectively by de Finetti ([1937]), or those that recover probabilistic beliefs from natural 

presumptions about our preferences (Savage [1972]).3 Others proceed from natural supposition 

over how relations of inductive support must be, such as Jaynes ([2003], Ch. 2). 

2.1 Working Backwards 

These demonstrations are ingenious and generally quite successful, in the sense that accepting 

their premises leads inexorably to the conclusion that probability theory governs inductive 

inference. That, of course, is just the problem. The conclusion is established only in so far as we 

accept the premises. Since the conclusion makes a strong, contingent claim about our world, the 

demonstrations can only succeed if their premises are at least strong factually.4 That makes them 
                                                
2 The idea that one should investigate induction locally has been considered in the literature that 

gives a probabilistic analysis of induction, but without forgoing the idea that the probability 

calculus underwrites inductive inference even locally. For an entry to this literature, see Kyburg 

([1976]). 
3 Strictly speaking, these arguments purport to establish only that degrees of belief, as made 

manifest by a person’s preferences and behaviors, must conform to the probability calculus on 

pain of inconsistency. They become arguments for universality if we add some version of a view 

common in subjectivist interpretations that degrees of belief are only meaningful in so far as they 

can be manifested in preferences and behaviors. 
4 There is no escape in declaring that good inductive inferences are, by definition, those governed 

by the probability calculus. For any such definition must conform with essentially the same facts 
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at least as fragile as the conclusion they seek to establish. Since they are usually created by the 

simple expedient of working backwards from the conclusion, they are often accepted just 

because we tacitly already believe the conclusion. 

 For these reasons, all demonstrations of universality are fragile and defeated by a denial 

of one or more of the premises. A few examples illustrate this general strategy for defeating the 

demonstrations. Dutch books arguments are defeated simply by denying that some beliefs are 

manifested in dispositions to accept wagers. Or their results can be altered merely by adjusting 

the premises we will accept. Dutch book arguments commonly assume that there are wagers for 

which we are willing to accept either side. That assumption is responsible for the additivity of 

the degrees of belief the argument delivers. Its denial involves no incoherence, in the ordinary 

sense. It just leads us to a calculus that is not additive. (See Smith [1961].) Similarly, there is no 

logical inconsistency in harboring intransitive preferences. They will, however, not sustain a 

recovery of transitivity of beliefs in Savages’ ([1972], §3.2) framework, which is necessary for 

beliefs to be probabilistic.5 Finally, Jaynes ([2003], §2.1) proceeds from the assumption that the 

plausibility of A and B conditioned on C (written ‘(AB|C)’) must be a function of (B|C) and 

(A|BC) alone, from which he recovers the familiar product rule for probabilities, 

P(AB|C)=P(A|BC)P(B|C). That this sort of functional relation must exist among plausibilities, let 

alone this specific one, is likely to be uncontroversial only for someone who already believes that 

plausibilities are probabilities and has tacitly in mind that we must eventually recover the product 

rule.6 

                                                                                                                                                       

in that it must cohere with canonical inductive practice. Otherwise we would be free to stipulate 

any system we choose as the correct logic of inductive inference. 
5 Savage’s framework harbors a circularity. In its barest form, it offers you a prize of $1, say, for 

each of the three acts fA, fB, fC, if uncertain outcomes A, B or C happen, respectively. You 

prefer fA to fB just in case you think A more likely than B. So your preferences on fA, fB and fC 

will be transitive just in case you already have transitive beliefs on the possibilities of A, B and 

C. 
6 A simple illustration of an assignment of plausibilities that violates the functional dependence 

is ‘Plaus.’ It is generated by a probability measure P over propositions A, B, ... as a coarsening, 
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 The fragility of these demonstrations is very similar to the failure of attempts to show that 

Euclid’s fifth postulate of the parallels is the only postulate admissible in geometry. These 

attempts started by denying Euclid’s fifth postulate in the context of the other postulates and 

inferring from the denial some unusual geometric propositions that, we were to suppose, are 

incoherent. It was eventually realized in the nineteenth century that the denial of Euclid’s fifth 

postulate involved no inconsistency; it merely led us to different geometries. 

 While I believe all these demonstrations fail in establishing universality, they still have 

great value. For we learn from them that, in domains in which their premises hold, our inductive 

inferences must be governed by the probability calculus. 

2.2 The Surface Logic. 

There is a second sort of argument for universality, mostly suggested indirectly by impressive 

catalogs of the success of Bayesian analysis at capturing our intuitions about inductive inference. 

All these intuitions so far have been captured by the probability calculus; so, the thought goes, 

we should expect this success to continue. 

 In my view, the success is overrated and does not sustain the probability calculus as the 

unique logic of induction. In many cases, the success is achieved only by presuming enough 

extra hidden structures—priors, likelihoods, new variables, new spaces—until the desired 

intuition emerges. That does not mean that the logic on the surface is probabilistic, but only that 

this surface logic can be simulated with a more complicated, hidden structure that employs 

probability measures. 

  Two examples will illustrate the concern. Take Hempel’s original question of whether a 

non-black, non-raven confirms that all ravens are black. A probabilistic analysis gives an 

intuitively very comfortable result. But it only succeeds by adding a great deal of new structure 

to the original problem: populations with different distributions of ravens and black objects and a 

presumption that we are sampling randomly from them. That changes the problem to a new one 

amenable to probabilistic analysis. (For a survey, see Earman ([1992]), §3.3.) Consider 

ignorance, which, I argue below in Section 4.2, is not represented in an additive calculus. It may 

                                                                                                                                                       

with only two intermediate values: Plaus(A|B)  = ‘Low’ when 0 < P(A|B) < 1/2; and Plaus(A|B)  

= ‘High’ when 1/2 ≤ P(A|B) < 1 
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be introduced by associating beliefs with convex sets of probability measures. While additive 

measures were used to produce them, the sets themselves no longer conform to a logic with the 

formal property of Addition as defined below. Additive measures are merely the device used to 

generate a new system governed by a different surface logic. 

 Once again there is a geometric analogy. We can recover many non-Euclidean 

geometries by considering curved surfaces embedded in a higher dimensioned Euclidean space. 

That does not mean that Euclidean geometry is the universal geometry. It is not the geometry 

intrinsic to the surface. However we learn that Euclidean geometry can be used as a tool to 

generate that geometry, as could other geometries. 

3. Framework 
The system of properties for confirmation relations to be described here draws on the extensive 

literature in axioms for the probability calculus already developed. See especially Cox ([1961]) 

and, for surveys, see Fine ([1973]) and Fishburn ([1973]). 

3.1 The Properties 

The framework assumes a set of propositions A1, A2, … closed under the familiar Boolean 

operations  ∼ (negation), ∨ (disjunction) and & (conjunction). Where the context calls for it, the 

set will be assumed to be closed under countable disjunction. The universal proposition is Ω = 

A1 v A2 ∨ …. Implication ⇒ is stronger than material implication; A ⇒ B means that that 

propositions are so related7 that ∼A∨B must always be true; that is, ∼A∨B = Ω. The universal 

proposition, Ω, is implied by every proposition in the algebra and is always true. The 

proposition, ∅, implies every proposition and is always false. 

 The symbol [A|B] represents the degree to which proposition B confirms proposition A 

and is undefined when B=∅. The relation on these degrees 

[A|B] ≤ [C|D] 

(or equivalently [C|D] ≥ [A|B]) is interpreted informally as ‘D confirms C at least as strongly as 

B confirms A.’ It satisfies: 
                                                
7 For example, if we associate propositions with the sets of worlds in which they are true, then A 

⇒ B obtains just if A’s worlds are a subset of B’s. 
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F. Framework 

F1. Partial order. The relation ≤ is a partial order. That is, for any admissible8 propositions 

A, B, C, D, E and F: 

F1a. Reflexivity. [A|B] ≤ [A|B] 

F1b. Antisymmetry. If [A|B] ≤ [C|D] and [A|B] ≥ [C|D] then [A|B] = [C|D] 

F1c. Transitivity. If [A|B] ≤ [C|D] and [C|D] ≤ [E|F] then [A|B] ≤ [E|F] 

Antisymmetry allows us to define < and > in the usual way.9 We also suppose: 

F2. For all admissible propositions A and B: 

F2a. [∅|Ω] ≤ [A|B] ≤ [Ω|Ω] 

F2b. [∅|Ω] < [Ω|Ω] 

F2c. [A|A] = [Ω|Ω] and  [∅|A] = [∅|Ω]; 

and 

F3. Universal comparability. For all admissible propositions A, B, C and D 

[A|B] ≤ [C|D] or [A|B] ≥ [C|D]; 

and 

F4. Monotonicity. For all admissible propositions A, B and C, 

if A⇒B⇒C, then [A|C]≤[B|C]. 

3.2 Boundaries 

While these properties are natural, they nonetheless have significant content and it is far from 

clear that they will be applicable to all cases of inductive inference. Two properties are especially 

vulnerable, F3. Universal comparability and F1c. Transitivity, as is possibly F4. Monotonicity. 

3.2.1 Universal Comparability 

We cannot presume, as Keynes ([1921], Ch.3) correctly urged, that all degrees of confirmation 

are comparable. A tacit expectation of universal comparability is natural as long as we think of 

degrees of confirmation as real valued. The expectation rapidly evaporates once we use more 

complicated structures. Imagine for example that the degrees are real intervals in [0,1] with the 

                                                
8 Here and henceforce, ‘admissible’ precludes formation of the undefined [⋅|∅]. 
9  [A|B] < [C|D] and [C|D] > [A|B] just in case  [A|B] ≤ [C|D] but not [A|B] = [C|D]. 
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size of the interval betokening something about the bearing of evidence. Take two intervals 

[0.01, 0.99] and [0.49, 0.51]. If they must be comparable, the only relation that respects the 

symmetry of dispositions about the midpoint 0.5 is that they are equal. But that contradicts the 

presumption that the size of the interval represents some sort of difference in the degrees of 

confirmation. 

 However, even if degrees of confirmation are real valued, it does not follow that they are 

comparable. For two degrees to be comparable in the relevant sense, they must measure 

essentially the same thing. The mere fact that two scales employ real values is not enough to 

assure this. One hundred degrees Celsius on the mercury thermometer scale and on the ideal gas 

thermometer scale are equivalent since they measure the same thing, temperature. They are none 

of equivalent to, less than or greater than one hundred degrees Baumé of specific gravity. 

 Propositions can bear evidentially on one another in many ways and the range of 

variation is sufficiently great that we can surely not always presume comparability of the 

degrees, even if both are measured on the same numerical scale. Consider the hypothesis H that 

the half-life of radioactive decay of Radium 221 is 30 seconds and the evidence E that some 

Radium 221 atom did decay in a time period of 30 seconds. The two degrees, [E|H] and [H|E], 

are very different. In the first we take certain laws of physics, with their characteristic constants, 

as fixed and distribute belief over possibilities (decay in 30 seconds, decay in 40 second, etc.). 

Those laws provide physical chances for the possibilities and the bearing of H on E is detailed 

for us completely as a matter of physical law.10 In the second, we take an experimental fact as 

fixed and must now distribute belief over the possibility of different half lives for Radium 221. 

No physical law can fix the bearing of E on H, for now the range of possibilities must involve 

denial of physical laws; there is only one correct value for the half life. Even exactly how we are 

to conceive that range is unclear. Will we try to hold all of physics fixed and just imagine 

different half-lives for Radium 221? Or should we recall that the physical properties of Radium 

221 are fixed by quantum physics and chemistry, so that differences in half-lives must be 

reflected in difference throughout those theories. And how should those differences be effected? 

As alterations just to fundamental constants like h and c? Or in alterations to Schrödinger’s 

                                                
10 Or, more cautiously, Lewis’ ([1980]) ‘principal principle’ in effect enjoins us to endow our 

degrees of confirmation with the properties of a physical chance. 
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equation itself?  My point is not that we cannot answer these questions, but that answering them 

engages us in a very different project that is a mixture of science and speculative metaphysics. 

The way H bears on E in [E|H] is very different from the way E bears on H in [H|E].11 

 So, if we expect the degrees of confirmation simply to measure the bearing of evidence, 

as an objectivist about probability like Keynes would, then we should not expect the two sets of 

degrees always to be comparable. A subjectivist about probabilities has no easy escape. Of 

course the subjectivist simply supposes comparability and stipulates real valued prior 

probabilities that lead to real values for both [E|H] and [H|E] upon conditionalization. The hope 

is that the subjectivist’s assignments will eventually betoken something more than arbitrary 

numbers as the accumulation of evidence ‘washes out the priors’ and leads to a convergence of 

values for all subjectivists. If the very idea that the two degrees are comparable entered originally 

as a supposition without proper grounding, the convergence does not remove its arbitrariness. 

Oranges are not apples, even if we end up agreeing on how many apples make an orange. 

3.2.2 Transitivity 

The prevalence of real values for degrees of confirmation can also mislead us into expecting 

their transitivity universally. That expectation fades once we entertain the possibility that these 

degrees have more complicated structures.12  For example, that some hypothesis H entails true 

evidence E is generally taken to confirm H. Some hypotheses, however, are routinely assessed as 

being more deserving of support if they manifest certain virtues in the context of the successful 

deduction. These virtues include: simplicity, scope, fecundity and explanatory power, with the 

latter engendering the account of induction known as ‘inference to the best explanation.’ So three 

                                                
11 Humphreys ([1985]) uses related illustrations to object to the propensity interpretation of 

probability. For example, if proposition S asserts that a person is a smoker and C that the person 

has an undiscovered lung cancer, then the causal propensity of a smoker to have an undiscovered 

lung cancer is expressed by the direct probability P(C|S). Yet precisely because this causal 

propensity is uni-directional, the inverse probability P(S|C) does not express a causal propensity 

of people with undiscovered lung cancers to smoke. 
12 The discussion of Section 4 below raises the possibility of degrees of confirmation with a two-

dimensional structure, where lower degrees representing some mix of disbelief and ignorance. 
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hypotheses H1, H2 and H3 may score differently with regard to three virtues V1, V2 and V3. 

Allowing for three values, ‘high,’ ‘medium’ and ‘low,’ we may end up with the following 

assignments:13 

 

 V1 V2 V3 

[H1|E] high medium low 

[H2|E] medium low high 

[H3|E] low high medium 

Table 1. Intransitive degrees 

 

Following a simple rule that the majority wins, [H1|E] > [H2|E], since [H1|E] outscores [H2|E] in 

two of three virtues. Similarly [H2|E] > [H3|E] and [H3|E] > [H1|E], which violates transitivity. 

Indeed, if we assign equal importance to the three virtues and require a rule of comparison to 

rank solely on the basis of the values in the table, then any rule that yields [H1|E] > [H2|E] must 

also generate the intransitivity. For there is a cyclic symmetry in the values in that [H1|E] relates 

to [H2|E] in the same way as  [H2|E] relates to [H3|E] and  [H3|E] relates to [H1|E]. 

3.2.3 Monotonicity 

Monotonicity prohibits evidence from confirming a proposition more strongly than its deductive 

consequences. Yet, as Tversky and Kahneman ([1982]) showed in psychological experiments, 

people are easily led to violate this prohibition. If she is described appropriately, subjects will 

judge it more probable that Linda is a bank teller and a feminist than that Linda is a bank teller. 

Tversky and Kahneman interpret this to mean that people conflate probability with 

representativeness. Might there be a calculus of confirmation that violates monotonicity in that 

degrees of confirmation measure, in part, goodness of fit, in which Linda the bank teller and 

feminist would be a better fit to the evidence than Linda the bank teller? That could arise in a 

system of inductive inference with a rule of detachment that forces us to select among well-

confirmed hypotheses, using quantities [H|E] as scores. On evidence E = ‘the coin did not fall 
                                                
13 These virtues are discussed further in Section 5.3.3 below. 
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heads,’ it may score H = ‘the coin fell tails’ higher than H’ = ‘the coin fell tails or on edge.’ For 

if we must choose just one hypothesis to detach from E, it would in ordinary circumstances be H 

and not H’, even though H entails H’. 

4. Addition 

4.1 The Property: Disbelief versus Ignorance 

The range of degrees of confirmation for some proposition A spans from the maximal 

[A|Ω]=[Ω|Ω] to the minimal [A|Ω]=[∅|Ω]. Do these extreme values correspond to justification 

of complete belief in A and complete disbelief in A? Or do they correspond to complete belief in 

A and complete ignorance concerning A? The signal feature of a probability measure is that it is 

an additive measure and we shall see that this property is derived from choosing the first option: 

Underlying intuition of Addition: The range of degrees of confirmation span justification of 

complete belief and complete disbelief. 

This first option is characterized by a reciprocal relationship between degrees of confirmation for 

A and for its negation, ∼A. Complete disbelief in A corresponds to complete belief in ∼A. As the 

degree of confirmation [A|Ω] weakens from the maximum [Ω|Ω] that justifies complete belief, 

then the degree of confirmation [∼A|Ω] must strengthen accordingly from the minimal [∅|Ω] 

that justifies complete disbelief. We should expect, under the above intuition, that this reciprocal 

relation between degrees of confirmation will also hold when we divide any proposition B into 

two, exhaustive and mutually exclusive logical parts, A&B and ∼A&B; and that it will obtain 

when we conditionalize on any background C. The map that takes us from [A&B|C] to 

[∼A&B|C] will, in general, differ according to [B|C], since the maximum degree that can be 

assigned to [A&B|C] or [∼A&B|C] is set by [B|C] under F4. Monotonicity. So there is a family 

of functions, f[B|C](⋅). We express the above intuition by requiring: 

A’. Addition. For any propositions A and B and any admissible C, there exists a function 

[∼A&B|C] = f[B|C]([A&B|C]) 

where f is strictly increasing in [B|C]14 and strictly decreasing in [A&B|C].15 

                                                
14 That is, for each y, if x’>x, then z’>z, where z’=fx’(y) and z=fx(y). 
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To convert this form of Addition into a more familiar one, we note that, since f is strictly 

increasing in [B|C], the function f can be inverted in this argument.16 That is, there exists a 

function g, such that [B|C] = g([A&B|C], [∼A&B|C]) where g is strictly increasing in both 

[A&B|C] and [∼A&B|C]. This last function is presented in a more familiar way as an addition 

operator in a property equivalent to A’ Addition: 

A. Addition. For any admissible proposition Z and mutually contradictory propositions X 

and Y, there exists an addition operator ⊕ such that 

[X∨Y|Z] = [X|Z] ⊕ [Y|Z] 

 where ⊕ is strictly increasing in both [X|Z] and [Y|Z]. 

This second form justifies the name Addition, since it displays the sense in which the degree of 

confirmation of a proposition is fixed by the ‘adding up’ of degrees of confirmation of its logical 

parts. 

 Properties that ⊕ must carry for compatibility with the Framework F. are readily deduced 

from the logical properties of propositions, such as X∨Y= Y∨X, U∨V∨W = (U∨V)∨W = 

U∨(V∨W), X∨∅=X and Xv∼X=Ω: 

[X|Z] ⊕ [Y|Z] =  [Y|Z] ⊕ [X|Z] 

[U|Z] ⊕ [V|Z] ⊕ [W|Z] =  ([U|Z] ⊕ [V|Z]) ⊕ [W|Z] = [U|Z] ⊕ ([V|Z] ⊕ [W|Z]) 

[X|Z] ⊕ [∅|Z] = [X|Z] 

[X|Ω] ⊕ [∼X|Ω] = [Ω|Ω] 

4.2 Boundaries 

The obvious limitation of any calculus of inductive inference that employs A. Addition is that 

will be unable to incorporate directly degrees of confirmation that support ignorance, as opposed 

to disbelief. To see the difference, imagine that we have an atom of Radium-221 with a half life 

of 30 seconds. On that background evidence, we assign familiar probabilities to the outcomes of 

radioactive decay in the next 30 seconds (D) or no decay in the next 30 seconds (∼D): 

                                                                                                                                                       
15 That is, for each x, if y’>y, then z’<z, where z’=fx (y’) and z=fx(y). 

16 If it were not invertible, there would be unequal values x and x’ such that fx’(y) =fx(y), which 

would violate the strict increase of f in x. 
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P(D)=0.5     P(∼D)=0.5     P(D∨∼D)=1 

Now consider an atom of the first radioactive element to be mentioned in the first text book of 

nuclear chemistry that will be published in the year 2100. One might reasonably protest that the 

evidence given supports no real belief towards either of the corresponding propositions D’, that 

an atom of this element decays in a 30 second time period, or ∼D’. Assigning a probability of 0.5 

to each seems excessive. We certainly do not believe the consequence often associated with 

probabilities that, in situations like this, decay will happen roughly one in two times. But then if 

we assign a probability of less than 0.5 to one of D’ or ∼D’ to flag our uncertainty, because of the 

additivity of probabilities, we must assign a probability greater than 0.5 to the other over which 

we are equally uncertain. 

 The Shafer-Dempster theory of belief functions (Shafer [1976], pp. 23-24) was devised to 

accommodate just such a situation. In it, we may represent ignorance by assigning beliefs as: 

Bel(D)=0     Bel(∼D)=0     Bel(D∨∼D)=1 

where the last assignment reflects our certainty in the logical truth D∨∼D. Or, if on the evidence 

of present day text books, we incline slightly to believing that the text books of 2100 will favor 

discussion of very short lived elements, we may shift our belief just a little toward D: 

Bel(D)=0.1     Bel(∼D)=0     Bel(D∨∼D)=1 

These belief functions Bel are non-additive. They violate the property A. Addition; Bel(D∨∼D) is 

not a strictly increasing function of Bel(D) and Bel(∼D). 

 While this example does not show precisely what formal properties are to be associated 

with ignorance,17 it does display how deviations from A. Addition do allow some sort of 

representation of ignorance. 

 It is common to form convex sets of probability distributions as a way of representing 

ignorance in probabilistic analysis. If Px is the distribution that assigns Px(D) = x and 

Px(∼D)=1—x, then we may represent complete ignorance over D as the convex set spanning the 

two extreme cases of P0 and P1; that is, the set {Px: 0≤x≤1}. This proposal has the very real 

advantage of allowing us to deal with ignorance in a systematic way. However it is not helpful 

for the present project of understanding formally the various components ideas that have led to 

                                                
17 That project is reserved for Norton (unpublished). 
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the success of probability theory as a calculus of induction. First, the representation is not 

literally correct. That is, ignorance is not the maintaining of all possible beliefs at once; it is the 

maintaining of none of them. So we should regard the device of convex sets as a way of 

simulating ignorance through a convenient fiction. And it is an arbitrary one, since it corresponds 

to a uniform distribution over all beliefs in that each member in the set enters equally. We could 

certainly define a non-uniform distribution and have another way of approaching ignorance. The 

real difficulty in the present context is that use of these convex sets diverts us from the question 

of what formal property should replace A. Addition if our calculus is to allow representations of 

ignorance directly. Indeed, as noted in Section 2.2 above, since the device employs additive 

measures to simulate a new surface logic, we may even end up overlooking that A. Addition, or 

some analog of it, must be violated in this surface logic. 

5. Bayes Property 

5.1 The Property 

The characteristic of the Bayesian approach to induction is that the import of new evidence is 

incorporated into the probability distributions by conditionalization and that the dynamics of this 

incorporation is governed by Bayes’ theorem. In developing what is called the ‘Bayes property’ 

here, we shall see here that these dynamics can be inferred from a simple model of how 

hypotheses are confirmed by their true deductive consequences. 

Underlying intuition of Bayes’ property. An hypothesis accrues inductive support from 

evidence just if it has a disjunctive part that entails the evidence. 

(narrowness) The presence of other disjunctive parts logically incompatible with the 

evidence does not affect the level of support. 

(‘refute and rescale’) Evidence bears on hypotheses that entail it by refuting those logically 

incompatible with it and uniformly redistributing support over those that remain; this 

uniform redistribution is carried out everywhere in the same way and preserves the relative 

ranking of hypotheses that entail the evidence.18 

                                                
18 That Bayesian inference depends on such a simple model is well recognized. See, for 

example, Hawthorne ([1993]). 
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We will re-express this intuition in more formal terms as two properties. To arrive at the first, 

note that an hypothesis H that is logically compatible with evidence E can be divided into two 

disjunctive parts, H&E and H&∼E. The first entails the evidence E. So we have: 

N. Narrowness. For any proposition A and any admissible B, 

[A|B] = [A&B|B] 

To develop the intuition of ‘refute and rescale’ dynamics, consider three propositions A, B and 

C, where 

A ⇒ B ⇒ C 

Proposition A begins with support [A|C], where this degree may vary from a minimum of [∅|C] 

to a maximum of [B|C], set by conformity to F4. Monotonicity. After conditionalizing on B, it 

has support [A|B&C] = [A|B], where this degree may now vary from a minimum of [∅|B] to a 

maximum of [B|B] = [Ω|Ω]. So the effect of conditionalizing on B is represented by a map f[B|C] 

that rescales the support accorded to A from the old to the new range: 

[A|B] = f[B|C]([A|C]) 

where neither B nor C may be ∅. (See Figure 1.) The subscript on f is needed since the function 

must map the extremal values as [∅|B] = f([∅|C]) and [B|B] = f(B|C]), so that a different map is 

needed for each distinct value of [B|C]. That does not fix the action of f[B|C] on intermediate 

values. In a more general context, one might posit different functions f[B|C],C that are specific to 

the environment of each proposition C. That would amount to supposing that the rescaling 

differs according to the content of the proposition C. The requirement above that the 

redistribution of support ‘is carried out everywhere in the same way’ is intended to preclude this. 

That is, there is a unique family of rescaling maps f[B|C] for the whole set of propositions, 

sensitive only to the degrees [B|C] and [A|C] and not to anything further in the content of the 

propositions A, B and C.19 

                                                
19 That is, if we have propositions A ⇒ B ⇒ C and A’ ⇒ B’ ⇒ C’, where, for admissible B, B’, 

C and C’, [A|C] = [A’|C’] and  [B|C] = [B’|C’], then [A|B] = f[B|C],C([A|C]) = [A’|B’] = 

f[B’|C’],C’([A’|C’]).  
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Figure 1. Conditionalization as rescaling degrees of confirmation 

 

 The maps f[B|C] must also ‘preserve the relative ranking of hypotheses that entail the 

evidence.’ So if [A’|C] > [A|C], then [A’|B] > [A|B]. It follows that f[B|C] ([A|C]) is strictly 

increasing in [A|C]. Therefore f[B|C] ([A|C]) is invertible in [A|C]. The inverse of this function, 

[A|C] = f[B|C]-1([A|B]) 

can be written in a more familiar way as a product operator 

[A|C] = [A|B] ⊗ [B|C] 

which must be strictly increasing in [A|B] since f[B|C] ([A|C]) is strictly increasing in [A|C]. 

 That the operator should also be strictly increasing in [B|C] for all values of [A|B] 

excepting [∅|B] is the import of the requirement above that the redistribution be ‘uniform.’ An 

increase in [B|C], when [A|B] has the maximal value [B|B], is reflected by an exactly equal 

increase in [A|C], since [B|C] = [B|B] ⊗ [B|C]. An increase in [B|C], when [A|B] has the 

minimal value [∅|B], is reflected by no change in [A|C], since then [∅|C] = [∅|B] ⊗ [B|C]. The 

requirement of uniformity amounts to asking that the increase in [A|C] for intermediate values of 

[A|B] should be uniformly interpolated between these two extreme values. Or it would amount to 

this if there were a way to represent ‘uniformly interpolated’ with the structures defined so far. 

But there is not. However, whatever it may amount to, minimally, it must require some increase 

in [A|C] for all intermediate values of [A|B]. That is sufficient to support the strict increase of ⊗ 

in [B|C] unless [A|B] is [∅|B]. 

 Collecting these properties, we have: 

M. Multiplication. For any proposition A and admissible propositions B and C such that A 

⇒ B ⇒ C, there exists a multiplication operator ⊗ such that 
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[A|C] = [A|B] ⊗ [B|C] 

 where ⊗ is strictly increasing and thus invertible in both arguments (excepting [B|C], 

when [A|B]=[∅|B]). 

This operator is the analog of the normal product operator of the probability calculus, where, for 

these A, B and C, P(A|C) = P(A|B)⋅P(B|C). 

 The two properties combined form: 

B. Bayes Property. 

N. Narrowness and M. Multiplication 

We can readily deduce the expected rules from this combined property. The analog of the 

product rule of probability theory is 

[A&B|C] = [A&B|B] ⊗ [B|C] = [A|B] ⊗ [B|C]                                  (1) 

Combined with A. Addition we have the analog of the rule of total probability 

[A|C] = [A&B|C] ⊕ [A&∼B|C] = ([A|B] ⊗ [B|C]) ⊕ ([A|∼B] ⊗ [∼B|C])        (2) 

5.2 Bayes’ Theorem 

The analog of Bayes’ theorem is derived in the usual way from the product rule. For an 

hypothesis H and evidence E: 

[H&E|Ω] = [H|E] ⊗ [E|Ω] = [E|H] ⊗ [H|Ω]                                   (3) 

The terms can be labeled in the obvious way in analogy with the usual, probabilistic form of 

Bayes’ theorem as: ‘posterior’ ([H|E]), ‘expectedness’ ([E|Ω]), ‘likelihood’ ([E|H]) and ‘prior’ 

([H|Ω]). Since the operator ⊗ is strictly increasing and invertible in both arguments (excepting 

one case), the posterior [H|E] can be recovered by inverting ⊗ and the theorem can be used in the 

usual way to recover familiar intuitions. Other terms equal, the posterior [H|E] will have a 

maximum value when H⇒E, for then the likelihood [E|H] = [Ω|Ω], which is the maximum 

value.20 Similarly, other factors equal, an increase in the prior [H|Ω] will lead to a corresponding 

increase in the posterior [H|E]. And an hypothesis that successfully entails evidence of lower 

expectedness [E|Ω] will have a higher posterior. This much, and many more familiar results like 

                                                
20 The likelihood  [E|H] = [E&H|H] by N. and, since H=E&H when H⇒E, we have [E|H] = 

[H|H], which is the maximal [Ω|Ω] by F2b. 
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them, are recoverable without assuming A. Addition. If it is assumed then a further form of 

Bayes’ theorem can be recovered by substituting for the expectedness using the rule (2): 

[E|Ω] = ([E|H] ⊗ [H|Ω]) ⊕ ([E|∼H] ⊗ [∼H|Ω]). 

5.3 Boundaries 

While we may find the simplicity of the ‘refute and rescale’ dynamics appealing, that simplicity 

proves to be its fundamental limitation. The dynamics are sensitive only to entailment relations. 

As we shall see below, that forces the inductive character of the inferences to be inserted by our 

selection of priors. That burden overtaxes the priors since they will also be called upon to 

represent initial states of ignorance at the same time as they must supply essential inductive 

content. And worse, that inductive content is decided in significant measure as a matter of 

stipulation. For these reasons, prior probabilities have inevitably become the traditional locus of 

problems in probabilistic analysis; they are called upon to make up for the deficiencies of the 

‘refute and rescale’ dynamics.  

5.3.1 Dogmatism of the Priors 

It is well known in probabilistic analysis that once zero or unit probability has been assigned to 

an hypothesis’ prior probability, conditionalization on new evidence compatible with it cannot 

alter those probabilities. The same problem arises in a system with B. Bayes property. Learning 

from experience will never lead it inductively to alter judgments of maximum or minimum 

belief, unlike humans. 

 For any hypothesis H and evidence E, we have from Bayes’ theorem (3) the paired 

relations 

[H|E] ⊗ [E|Ω] = [E|H] ⊗ [H|Ω] 

[E|E] ⊗ [E|Ω] = [E|Ω] ⊗ [Ω|Ω] 

where the second relation arises from setting H=Ω and noting that [Ω|E] = [E|E] = [Ω|Ω] from N. 

and F2c. Even if H is not Ω, once we set the prior [H|Ω] to [Ω|Ω], compatibility of the paired 

relations forces the posterior [H|E] = [E|E] = [Ω|Ω]. A prior set to certainty is immovable 

inductively. 

 For any hypothesis H and any admissible evidence E, from the product rule (1), we have 

the paired relations 
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[H&E|Ω] = [H|E] ⊗ [E|Ω] 

[∅|Ω] = [∅|E] ⊗ [E|Ω] 

where the second relation arises from setting H=∅. If H is not ∅, if we set the prior [H|Ω] = 

[∅|Ω], it follows from F4. that [H&E|Ω] = [∅|Ω]. Compatibility of the paired relations forces 

the posterior to [H|E] = [∅|E] = [∅|Ω]. A prior set to maximum disbelief is immovable 

inductively. 

 We can see how this last example arises directly from the excessive simplicity of the 

‘refute and rescale’ dynamics. Those dynamics are sensitive only to the fact that both H&E and 

∅ are each able to entail the evidence E. So, if they are given the same priors, they must then 

have the same posteriors. Since ∅ must remain at the minimal level of confirmation on any 

evidence, H&E is condemned to the same fate. A more sophisticated dynamics would be able to 

recognize and exploit the difference between ∅ vacuously entailing E and H&E entailing E.21 

5.3.2 Impossibility of Prior Ignorance 

We have seen that A. Addition precludes lower degrees of confirmation from representing 

ignorance as opposed to disbelief. It also turns out that B. Bayes property precludes priors that 

truly represent ignorance and does so independently of A. Addition. To see this, note that the 

property entails that, for any propositions H and E, where [E|Ω] is not [∅|Ω]: 

[H&E|Ω]  =  [H|E] ⊗ [E|Ω] 

This relation is invertible in [H|E]. That is: 

[H|E] is fixed by the priors [H&E|Ω] and [E|Ω], 

(unless [E|Ω] is [∅|Ω]). What this means is that the degree [H|E]—whether it is high or low and 

in which precise measure—is already encoded in the prior [⋅|Ω]. The prior [⋅|Ω] amounts to a 

massive catalog of all possible relations of inductive support between all pairs of propositions. It 

must decide in advance just how we will redistribute support once we learn E, no matter what E 

may be (as long as [E|Ω] is not [∅|Ω]). 

                                                
21 Analogously, the fixity of maximum support arises since the dynamics does not distinguish 

the trivial entailment E ⇒ E from the non-trivial H ⇒ E, where H is strictly stronger, logically, 

than E (that is, for some X, E = H∨X, where H&X is ∅). 
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 There is a large literature devoted to ‘ignorance priors,’ ‘uninformative priors’ or 

‘informationless priors’ in probability theory. (See, for example, Jaynes, 2003, Ch. 12.) It is 

generally recognized that these terms are misnomers; the priors are really only as uninformative 

as the probability calculus allows and are typically tailored to being that uninformative about one 

particular fact, such as a parameter value. Were they really to achieve ignorance in the sense of a 

complete null state, the result would be a catastrophe for any system whose dynamics conforms 

to B. Bayes property. For all the system can do is to take a prior already rich in inductive 

information and refine it by the dynamic of ‘refute and rescale.’ 

5.3.3 Accommodation of Virtues 

An important limitation of the ‘refute and rescale’ dynamics is that it cannot differentially reward 

two hypotheses for their success in entailing the same true evidence. If hypotheses H1 and H2 

entail the evidence E and we conditionalize on E, the resulting changes in degrees of 

confirmation will be the same for each. For, in this case, M. Multiplication becomes 

[Hi|E] ⊗ [E|Ω] = [Hi|Ω] 

If the two priors [H1|Ω] and [H2|Ω] agree, then so must the posteriors  [H1|E] and [H2|E], 

because of the invertibility of the operator ⊗. 

 There is strong indication that this outcome renders systems with the B. Bayes property 

too insensitive to differences in the way hypotheses may entail evidence. The dogmatism of the 

priors above arose because the system is unable to distinguish the non-vacuous entailment of 

evidence E by some hypothesis from the vacuous entailment of E by the contradiction ∅. Some 

logics of induction, such as that illustrated in Section 8.3 below, must differentially reward 

hypotheses H1 and H2. 

 Moreover, standard lore does not automatically accord equal confirmatory boosts to the 

two hypotheses H1 and H2. One is often favored over the other because the first entails the 

evidence is some virtuous way: with great simplicity or explanatory power; or because the 

second does it with some deficiency: it is adhoc or grue-ified. Might there be some system of 

inductive inference that could distinguish some entailments as virtuous and others as deficient? 

The principle obstacle is that the virtues—notably simplicity and explanatory power—are so 

poorly understood that even the outlines of such a system are obscure.  
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 The problem of accommodating these virtues and vices into a probabilistic analysis is not 

new. (For a helpful entries into this literature, see Howson and Urbach, 1996, Ch. 7.) While the 

problem has been addressed with many ingenious stratagems, they must all come down to one 

idea only. The only way a system that conforms to B. Bayes property can differentiate H1 and H2 

is to reward virtue with a high prior and punish vice with a low prior. 

 The effect of this need is that any system conforming to B. Bayes property must urge that 

the standard lore is mistaken in distinguishing virtuous entailments. For example, the standard 

lore is that the success of an ad hoc hypothesis in entailing some remarkable evidence gives it no 

boost in confirmatory support, for the success is achieved unvirtuously by cooking the books.22 

Under ‘refute and rescale’ dynamics, this same conclusion must be arrived at in a two-step 

calculation that must itself be cooked to yield the null outcome. It says, contrary to the lore, that 

the ad hoc hypothesis does accrue exactly as large a boost in confirmatory support as enjoyed by 

the hypothesis that virtuously entails the same evidence. However the gains of that boost are 

exactly cancelled by a prior that has been cooked to just the very low value needed. 

 While this stratagem of explicating virtues and vices in terms of high and low priors has 

had some notable successes in the probability literature, it faces a fundamental limitation. The 

assigning of a prior is global; it is done once. Yet, in the lore, the import of virtues and vices is 

local and may differ as hypotheses are subject to evidential scrutiny in different contexts, which 

in turn may call for differing priors. For example, the wave theory of light gives an especially 

simple and elegant explanation of interference. Its account of the rule of stellar aberration, 

however, proves to be quite tortured, once one looks at it closely—so much so, that it was a 

major achievement of late 19th century electrodynamics to be able to show that the wave theory 

could accommodate the totality of the rule satisfactorily. (See Norton [forthcoming].) The 

situation reverses for a corpuscular theory of light. It gives a simple and elegant explanation of 

stellar aberration; but, in so far as Newton’s corpuscular theory was able to give any account of 

the interference effect of ‘Newton’s rings’ using his fits of easy reflection and refraction, it was 
                                                
22 Or at least this is clearly so for the ‘bad’ cases, such as the supposition of a creationist geology 

that the world was created in 4004 BC complete with the fossil record of all geological eras 

intact. See Howson and Urbach ([1996], pp. 154-57) for cases of ‘good’ ad hoc hypotheses that 

do deserve support. 
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certainly not virtuous.23 The one prior must somehow reward virtue in one context and punish 

vice in another. 

 Or we may be in a situation in which we cannot adjust priors to reward a virtue. In 1905, 

Einstein used his light quantum hypothesis to produce remarkably simple explanations of some 

of the observed properties of radiation. We should like to reward the light quantum hypothesis 

for not just entailing the evidence, but for explaining it virtuously. Yet, in 1905, after the 

nineteenth century overthrow of corpuscular theory and the resounding success of the wave 

theory of light, any investigation of the properties of light must begin with a low prior on any 

corpuscular hypothesis. 

 Finally, there is a related problem arising directly from N. Narrowness. That property 

allows evidence E to support an hypothesis H only through support of a disjunctive part H1 that 

entails E. The other disjunctive parts are H2, H3, …, where H = H1 ∨ H2 ∨ H3 ∨ … and 

(H2∨H3∨…)&E=∅. They have no effect on the support accrued to H. The property N. denies 

that there can be a synergy between the disjunctive parts, such that we should assign a different 

boost to the entire hypothesis than to the part, or to different disjunctive hypotheses that share the 

same disjunctive part that entails the evidence. Yet such synergies seem to have a place in the 

lore of confirmation. Kepler’s hypothesis HKep that Mars orbits the sun in a particular ellipse 

gains some support from the evidence E of Tycho's observations of Mars and the sun. N. 

Narrowness requires us to accord just the same support on evidence E to the disjunctive 

hypothesis, Hdisj = HKep v H2 v H3 v ... v Hn, where H2, H3, ... , Hn are hypotheses asserting 

other trajectories. As long as the hypotheses disjoined in Hdisj form an inchoate set, this seems 

                                                
23 To anticipate the rejoinder, I fully expect that this example and most others can be 

accommodated in a Bayesian system by adding in enough distinctions, variables, likelihoods and 

priors, just as Ptolemy’s geocentric system was able to accommodate any celestial motion by 

adding in enough epicycles and equants. That did not mean, however, that he had the right 

theory. 
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reasonable enough. However, at the level of accuracy of Tycho's data,24 HKep is also a 

disjunctive part of another hypothesis. If we restrict Newton's theory of gravitation to two 

masses, one the size of the sun and the other Mars, the resulting hypothesis HNew predicts a large 

number of possible orbits.25 The hypothesis, HNew, is a disjunction of hypotheses asserting 

them. The set disjoined is far from inchoate; its members are uniquely picked out as the set of 

orbits that satisfy Newton's inverse square law of gravity for these masses. In effect the 

hypothesis HNew just asserts that the orbit of Mars conforms to Newton's law.  

 The natural intuition is that HNew somehow expresses a deeper truth than Hdisj, which 

merely disjoined HKep with a haphazard collection of alternatives. So we might expect that the 

synergistic disjunction in HNew deserves more support on the evidence than the inchoate 

disjunction of Hdisj. N. Narrowness prohibits us from rewarding HNew for this synergy among its 

parts; it requires that the evidence E must support Hdisj and HNew equally. The disparity becomes 

more striking the larger we conceive to be the set of haphazardly chosen orbits disjoined in Hdisj. 

The usual strategy, of course, is to attempt to reward HNew in advance by assigning much greater 

priors to the disjunctive sets of hypotheses delimited by simple differential equations, such as 

appear in Newton's theory. However no assignment of priors can serve this end. As long as N. 

Narrowness is preserved, Hdisj and HNew must be accorded the same support on evidence E, 

whatever their priors. 

 Once we discard the idea that any calculus of inductive inference must conform to B. 

Bayes property, we can begin to reflect upon what a replacement rule may bring. It may reward 

synergies; it may differentially reward virtuous and unvirtuous entailment of evidence; it may 

                                                
24 To simplify the example, I adopt the fiction that Tycho’s data picks out just one orbit from 

each disjunctive set and neglect the motion of the sun around the sun-Mars center of mass that is 

entailed by Newton’s theory. 
25 It predicts many more than the countably many disjuncts presumed by the F. Framework. To 

circumvent this difficulty, define HNew–Kep as hypothesizing all the orbits admitted by Newton’s 

theory in this case, excluding HKep. Then HNew retains the disjunctive form HNew = HKep ∨ 

HNew–Kep. 
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not be so dogmatic that assignments of complete certainty and disbelief are immovable; and it 

may be rich enough to admit true null states as priors. 

6. Real Values 
The properties developed so far are necessary properties if degrees of confirmation are to be 

probabilities. They are not sufficient. They do not preclude value sets that cannot be mapped 

one-one onto a closed interval of reals in way that preserves ranking. The traditional counter-

example (Jeffrey, 1961, pp. 19-20) is a family of hypotheses Hx,y, with real valued parameters x 

and y, where [HX,Y|Ω] > [Hx,y|Ω] just in case X>x, or, if X=x, Y>y. While ingenious 

‘Archimedean Axioms’ have been devised to bridge the gap, none seem as illuminating in terms 

of fundamental ideas about inductive inference as the direct statement of the gap itself: 

R. Real Values. For any admissible propositions A, A’, B and B’, the set of values possible 

for degrees of confirmation [A|B] can be mapped one-one onto a closed set of reals 

such that the mapped real values f([A|B]) > f([A’|B’]) just in case [A|B] > [A’|B’]. 

The obvious limitation of a system with this property is that it cannot accommodate inference 

problems that require larger value sets, such as infinitely great or infinitesimally small degrees 

(or at least not without non-standard reals). We can readily contrive problems that require such 

extensions. For example, consider the problem of picking a real number in [0,1] ‘at random.’ 

That the number is in the interval [0,0.5] is finitely more probable than in the interval [0,0.4], 

which is infinitely more probable than in the discrete set {0, 0.1, 0.2}, which is finitely more 

probable than in the set {0, 0.1}. 

7. Sufficiency and Independence 
The properties F. Framework, A. Addition, B. Bayes property and R. Real values are necessary if 

degrees of belief are to be probabilities. That they are sufficient follows from theorems in Aczel 

([1966], pp. 319-24). That is, they are sufficient in the sense that, for each connected region26 of 

                                                
26 A connected region is a set of propositions such that for any two propositions V and W in the 

set, there exist other propositions C1, C2, … , Cn in the set such that all of V&C1, C1&C2, …, 

W&Cn are in the set. 
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the set of propositions, there exists a rescaling of the real values assigned to the degrees by R. 

Real values such that the rescaled values obey the probability calculus. 

 The independence of A. Addition, B. Bayes property and R. Real values from one another 

is obvious. That independence is important here since it is urged that we should implement these 

properties selectively, according to the problem at hand. There is some further independence of 

A. Addition and B. Bayes property from F. Framework. The most interesting is their 

independence from F1c. Transitivity. For that shows that A. and B. may obtain not just when the 

degrees of belief are not reals, but also when they are not even partially ordered. The 

demonstration of the consistency of A. and B. with a non-transitive value set is achieved by 

displaying an example that has all three.27 

8. Illustrations 
It is urged here that we should not seek the one, true combination of properties that yields the 

universally true logic of induction. Rather, in accord with the material theory of induction  

(Norton [2003], [2005]), we should invoke just those properties in each domain warranted by the 

material facts prevailing in each domain. So each domain will prove to have its own 

characteristic logic of induction. Some illustrations follow. 

                                                
27 Values are pairs (r,θ) of reals, where 0≤r≤1 and 0≤θ<360. The quantity θ will behave like an 

angle variable whose value always remains in [0,360), so two θ’s are added or subtracted modulo 

360 (written ‘-m’ and ‘+m’). The ranking is defined by (r’,θ’)> (r,θ) when r’>r or, if r’=r and 

neither are 0 or 1, 0<θ’-mθ<180. Also for any 0<r<1, (r’,θ’)= (r,θ) if θ’-mθ = 180. This ranking 

is intransitive: (0.5, 0) > (0.5, 240) > (0.5, 120) > (0.5, 0). The maximum and minimum values 

are (1,θ) and (0,θ), where, for these two cases, all (1,θ) are taken to be same and all (0,θ) are 

taken to be same, for all θ values. The addition operator ⊕ is implemented as (r’,θ’) ⊕ (r,θ) = 

(r’+r, θ’+mθ). The multiplication operator ⊗ is (r’,θ’) ⊗ (r,θ) = (r’.r, θ’+mθ), when neither r’ nor 

r is 1; as (r’,θ’) ⊗ (1,θ) = (r’, θ’); or as (1,θ’) ⊗ (r,θ) = (r, θ). The operator ⊕ is strictly 

increasing in both arguments, as is ⊗, excepting in the latter case when either argument is (0,θ). 
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8.1 All Properties Retained 

If the circumstances are governed completely enough by stochastic, physical laws, we will have 

sufficient material facts to warrant all the properties that comprise the probability calculus. 

Imagine, for example, that we randomly sample an atom of naturally occurring Uranium and 

seek evidence for its half-life. The evidence is that it does not undergo radioactive decay over the 

period of a week. To what degree does that evidence confirm each of the three half-lives possible 

for this atom? The known distribution of isotopes in naturally occurring Uranium fixes the 

physical chances for our sampling each of them. They are, by atoms in natural uranium: U-234 is 

0.0054%, U-235 is 0.72% and U-238 is 99.275%. These chances fix our prior probabilities that 

the atom is the corresponding isotope with the characteristic half-life. Those half-lives are: U-

234, 244,500 years; U-235, 703,800,000 years and U-238, 4,468,000,000 years. These half-lives, 

in conjunction with the rule of radioactive decay, give the physical chances for each isotope 

persisting for a week without decay. These physical chances provide the likelihoods that figure 

in the obvious, fully probabilistic analysis. 

 The scenarios imagined in Dutch book arguments give us another case in which we 

would use the full probability calculus. If we are in a casino, gambling, such that all the 

conditions in those scenarios obtain, then we ought to reason on the outcomes of the various 

games by means of the probability calculus. 

 These two examples illustrate how the notorious problem of selecting the right 

interpretation of the probability calculus28 is greatly ameliorated in a material theory of 

induction. The appropriate interpretation will vary from domain to domain; we are absolved from 

the impossible burden of finding the one, universally correct interpretation that fits every case. In 

the case of sampling Uranium, all the propositions over which we reason are related by physical 

chances governed by the probability calculus, so we are able to set our degrees of confirmation 

by those chances. An objective interpretation will fit these probabilistic degrees best. They 

represent something like the relative frequency of truth among many physical systems relevantly 

similar to the present one. In the case of the casino, however, the degrees have a very different 
                                                
28 For recent discussion, see Gillies ([2000]), Galavotti ([2005]) and Mellor ([2005]). Gillies 

([2000], Ch 8, 9) describes and advocates a pluralism over interpretations of the probability 

calculus. 
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meaning. They are now internal accounting factors that, if employed in the appropriate way, 

have the pragmatic value of protecting us from a harm. 

8.2 Bayes Property Only Retained 

A slight adjustment of the Uranium sampling problem above produces a problem in which we 

will dispense with A. Addition and R. Real Values. Instead of sampling atoms, imagine that we 

are given N atoms of some radioactive element of unknown half-life that we wish to determine. 

Our evidence is that over time t, n of the N atoms decay. By presumption, we have no idea of the 

half-life of the element. That is, we have no idea of the size of the time constant τ in the rule of 

radioactive decay, which tells us that the physical chance of decay of one atom over time t is 

c(t) = (1-exp(-t/τ)).                                                               (4) 

and τ relates to the half-life t1/2 as t1/2=τ ln 2. If we were to attempt a probabilistic analysis, our 

prior probability would be the uniform prior over all values of τ, from 0 to infinity. That is, the 

probability density 

p(τ) = constant > 0                                                              (5) 

This is an ‘improper prior,’ since it cannot be normalized to unit total probability. Many 

statisticians have been tempted to use such priors, since they can yield useful results. Yet they 

have been tormented by them, since they violate the probability calculus and only sometimes 

yield normalizable posterior probabilities. (Rosenkrantz [1981], §4*.2) 

 We are inclined to employ an improper prior precisely because the material facts of the 

inference problem do not call for its additivity. So the material theory of induction allows us to 

dispense with additivity. Compare this with the case of sampling Uranium above. Our 

uncertainty over the half-lives resulted from a sampling process, governed by physical chances. 

So, in conforming our degrees of confirmation to the chances, these degree had to be additive. In 

the new problem, our uncertainty does not result from any physical process governed by chances. 

It is just plain ignorance. Therefore, as we saw in the discussion of A. Addition above, we should 

not require our prior beliefs to be additive probabilities and, therefore, need not be troubled by 

the impropriety of the prior (5). Since the principal properties of A. Addition and B. Bayes 

property are independent, all other aspects can remain essentially the same. We will still learn 

about the half-lives from observed decay times, governed by the physical chances of (4). So as 
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before, we will still expect the dynamics of confirmation to be governed by B. Bayes property, 

with the likelihoods provided by physical chances. 

 To conform with the countable set of propositions supposed in F. Framework, we will 

replace the continuous range of τ values with a countable set of intervals. The propositions τi 

assert that the time constant τ for the element lies in the small interval iΔτ to (i+1)Δτ for small 

Δτ and i=0, 1, 2, …  Let E be the evidence than n of the N atoms decay in some fixed time t. 

Bayes’ theorem (3) asserts 

[τi|E] ⊗ [E|Ω] = [E|τi] ⊗ [τi|Ω]                                                (6) 

For the remaining analysis, we will also dispense with R. Real values, since it is not needed for 

the outcome. To express our ignorance over the value of τ, we will assume the prior [τi|Ω] has 

some fixed value greater than [∅|Ω], independent of τi. Similarly we will assume only that the 

expectedness has some value [E|Ω]>[∅|Ω].29 The physical chances of n decays among N atoms 

over time t when the time constant τ is within in the interval τi are approximated arbitrarily well 

for small enough Δτ by: 

c(E|τi) = [N!/(n! (N-n)!)]  (exp (-t/τ))N-n  (1-exp (-t/τ))n Δτ                         (7) 

The likelihood [E|τi] will be set by these physical chances in the sense that [E|τi] will be a strictly 

increasing function of c(E|τi). It is a familiar result for the binomial expression of (7) that, for t, n 

and N fixed, c(E|τi) has a maximum value when exp (-t/τmax) = (N-n)/N. That is, 

τmax = t/ln (N/(N-n))                                                         (8) 

So the likelihood [E|τi] has a maximum at τmax. Finally, since the expression [τi|E] ⊗ [E|Ω] in 

Bayes’ theorem (6) is invertible in the posterior [τi|E], it follows that the posterior [τi|E] has a 

maximum at τmax. 

 That is, on the evidence E, the time constant with the highest degree of confirmation is 

τmax. This is the result we would expect. For example, if N/2 atoms decay in time t, then we 

would expect t to be a good estimator of the half-life t1/2=τ ln 2. In this case, (8) becomes 

t=τmax ln 2. It is also evident from its derivation that (8) is a maximum likelihood estimator of τ. 

Finally, the analysis can be repeated, replacing τ with a function of τ. For example, we can re-
                                                
29 We choose values other than [∅|Ω] for these two quantities to preserve the invertibility of ⊗. 
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express the law of radioactive decay (4) using λ=1/τ and adopt a prior indifferent to values of λ. 

We arrive at the same estimator τmax of (8). 

8.3 Induction without Additivity and Bayes Property 

The last example gave a principled reason for dispensing with the additivity of the prior. 

Otherwise the analysis was not so different from the familiar probabilistic one. That is so, since 

we were inferring inductively about propositions governed by physical chances. We recover an 

analysis that is very different from the familiar ones if we consider systems whose uncertainties 

are not governed by physical chances. 

 Many of our physical theories, including Newtonian physics, allow indeterministic 

systems. These are systems whose present states do not fix their future states and—the key fact 

of importance here—our physical theories provide no physical chances for the different futures. 

They tell us only that they are possible. (See, for example, Alper et al. [2000]; Norton [1999].) 

One of the simplest Newtonian examples is ‘the dome,’ described more fully in Norton ([2003a], 

§3). A point mass sits motionless at the apex of a dome with circular symmetry and is able to 

slide frictionlessly over it. See Figure 2. If the shape of the surface is chosen appropriately, 

Newton’s equations admit solutions in which the mass remains at rest indefinitely at the apex, or 

for which the mass remains at rest for some arbitrary time T and then spontaneously accelerates 

in any radial direction.30 

                                                
30 An appropriate shape is h = (2/3g)r3/2, where r is the radial distance in the surface of the dome 

and h the vertical distance below the apex; g is the acceleration due to gravity. For a unit mass on 

the surface, Newton’s laws entail an outwardly directed acceleration field, F = d2r/dt2 = r1/2. 

This equation is solved by r(t)=0, for all t; and by a spontaneous excitation at T: r(t) = 0, for t≤T 

and r(t) = (1/144)(t–T)4, for t≥T. 
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Figure 2. The dome: an indeterministic system31 

 How are we to represent our uncertainty over the time T of spontaneous acceleration? 

The natural answer is to treat the problem as analogous to radioactive decay and assume that the 

timing of spontaneous acceleration is governed by the law of radioactive decay (4). The 

difficulty is that this law requires a time constant τ. A τ of a millisecond has a very different 

meaning physically for whether the excitation is likely to happen soon than does a τ of a 

millennium. Nothing in the physics supplies such a time constant. Indeed any proper probability 

distribution must employ some sort of parameter to govern the rate at which the integrated 

distribution approaches unity for large times. Yet no parameters are provided by the physics. Or 

one may try an improper distribution that merely sets the probability of spontaneous acceleration 

proportional to the size of the time interval in question. That still goes beyond the physics, since 

it asserts that spontaneous motion is twice as probable in a time interval that is twice as large. 

The physics knows nothing of this. It merely asserts that spontaneous motion in both time 

intervals is possible. There is no notion of ‘twice as possible.’ 

 The attempt to represent our uncertainty with a probability measure imposes structure on 

the problem that is not present in the physics. Therefore, according to a material theory of 

induction, we cannot use probabilities to represent our uncertainty. What should we use? The 

physics gives us the structure. It assigns three values to propositions concerning the system: 

impossible, possible and necessary. Just as we conform our degrees of confirmation to physical 

chances when they are present, we should take these three as the values possible for our degrees 

of confirmations. We shall abbreviate them as ‘imp,’ ‘poss’ and ‘nec.’ They are assigned to the 

propositions E(T1,T2), with T1<T2, which assert that the time T of spontaneous acceleration lies 

in T1≤T<T2; and to Eno, which just asserts that there is no spontaneous acceleration at any time. 

                                                
31 Figure from Norton ([2003a], §3). 
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We can then read the general logic from the physics in the obvious way for pairs of the 

propositions just defined:32 

[A|B]  =  nec           if B ⇒ A 

=  imp           if B ⇒ ∼A 

=  poss          otherwise 

For example: 

[E(T1,T2)|Ω] = poss 

[Eno| Ω] = poss 

[E(T1,T2)| E(T3,T4)] = imp, if [T1,T2) and [T3,T4) do not intersect; 

= poss, if [T3,T4) partially intersects [T1,T2); 

= nec, if [T3,T4) is contained in [T1,T2). 

 Reflecting on results such as these, it becomes apparent that the system conforms to F. 

Framework33 and N. Narrowness. However both A. Addition and M. Multiplication fail, so that 

the B. Bayes property fails as well. 

 To see the failure of A. Addition, consider the operator ⊕’ that comes closest to the 

operator ⊕ of A. Addition. It satisfies [Eno∨∼Εno|Ω] = [∼Εno|Ω] ⊕’ [Eno |Ω], which means that 

nec = poss  ⊕’ poss                                                         (9) 

It also satisfies [E(0,1)∨ Ε(1,2)|Ω] = [E(0,1)|Ω] ⊕’ [Ε(1,2) |Ω], which means that 

poss = poss  ⊕’ poss                                                       (9’) 

Comparing (9) and (9’) shows that ⊕’ cannot represent a function on the degrees and therefore 

cannot realize the operator ⊕ of A. Addition. 

 To see the failure of M. Multiplication, consider the operator ⊗’ that comes closest to the 

operator ⊗ of M. Multiplication. For E(0,1)⇒E(0,1)⇒Ω, we have [E(0,1)|Ω] = [E(0,1)|E(0,1)] 

⊗’ [E(0,1)|Ω], so that 

                                                
32 It is sometimes said that a uniform prior over all natural numbers is a contrived fiction, since 

no physical mechanism could produce it. The dome provides that mechanism. 
33 To ensure that the set of propositions remains countable, consider only integer values of T1 

and T2 in E(T1,T2). 
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poss = nec ⊗’ poss                                                         (10) 

However, for E(0,1)⇒E(0,2)⇒Ω, we have [E(0,1)|Ω] = [E(0,1)|E(0,2)] ⊗’ [E(0,2)|Ω], so that 

poss = poss ⊗’ poss                                                      (10’) 

Comparing (10) and (10’) shows that ⊗’ cannot be the operator ⊗ of M. Multiplication, since it 

is not strictly increasing in its first argument, even though the second is not [∅|Ω]. This failure 

eliminates an essential part of Bayes’ theorem. For we can no longer invert the operator ⊗’ in the 

analog of of Bayes’ theorem 

[H|E] ⊗’ [E|Ω] = [E|H] ⊗’ [H|Ω] 

to infer to [H|E]. Indeed conditionalizing H on E may yield an [H|E] that is poss or nec, but the 

theorem will not be able to tell us which. 

 More directly, this example shows that, when H⇒Ε,  [H|E] is not a function of [H|Ω] and 

[E|Ω]. Even though H1 = E(0,1) and H2 = E(0,2) have the same priors [H1|Ω] = [H2|Ω] = poss 

and entail the same evidence E = E(0,2), they have different posteriors. For [H1|E] = poss, but 

[H2|E] = nec. That is, the evidence E rewards H1 and H2 differentially, contrary to the dynamics 

governed by B. Bayes property, discussed in Section 5.3.3 above. 

9. Conclusion 
Conceived as a logic of inductive inference, the probability calculus represents the sum of 

several distinct ideas about inductive inference. Most notable are A. Addition, which asserts that 

low probabilities represent disbelief, and B. Bayes property, which requires that new evidence is 

incorporated by a process of ‘refute and rescale.’ The principal contention of this paper is that 

these properties and others like it are not warranted universally and must be invoked 

independently according to the needs of the problem at hand. 
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