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Abstract

This paper argues that, for a prospective philosophical analysis of mod-
els and simulations to be successful, it must accommodate an account of
mathematically rigorous results. Such rigorous results are best thought of
as genuinely model-specific contributions, which can neither be deduced
from fundamental theory nor inferred from empirical data. Rigorous re-
sults often provide new indirect ways of assessing the success of computer
simulations of individual models. This is most obvious in cases where rig-
orous results map different models on to one another. Not only does this
allow for the transfer of warrant across different models, it also puts con-
straints on the extent to which performance in specific empirical contexts
may be regarded as the main touchstone of success in scientific modelling.
Rigorous results and relations can thus come to be seen as giving cohesion
and stability to actual practices of scientific modelling.
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1 Introduction

This paper argues that the philosophical analysis of models and simulations
can be advanced by reconsidering the role of mathematics in the process of
modelling. It focuses on a class of models intended to describe the physical
behaviour of systems that consist of a large number of interacting particles.
Such many-body models are typically employed in order to account for a range
of complex phenomena such as magnetism, superconductivity, and other phase
transitions. Because of the dual role of many-body models as models of physical
systems (with specific empirical phenomena as their explananda) and as mathe-
matical structures, they form a sub-class of scientific models, from which one can
hope to draw general conclusions about the role of mathematical relationships
in constructing and assessing models. Since many-body models lend themselves
to computational evaluation via a range of techniques (e.g., Monte Carlo simu-
lations, Green’s function techniques, etc.), they are of special significance when
it comes to analysing the relation between mathematical rigour and computer
simulations.

The structure of the paper is as follows: First, an attempt is made to clarify
the relation between models and simulations by drawing on recent work in the
philosophy of models. While models have rightly earned their place in philosoph-
ical analyses of science, philosophical work on simulations is still in its infancy.
It is argued (section 2) that a proper appreciation of simulations in science re-
quires a shift in focus from questions of representation to analyses of how science
generates results. The question of how models can be used to generate specific
results has sometimes been overlooked; in the case of mathematical models, it
has often been regarded as unproblematic. This calls for an analysis of the
relation between mathematics and computation (section 3). Section 4 argues
that, in addition to numerical results, there also exist mathematically rigorous
results and relations, which may play an important role as benchmarks, even
when they lack an empirical interpretation. Section 5 argues that it is via the
existence of rigorous results and relations that seemingly unrelated models may
mutually support each other; it is this phenomenon of cross-model justification
which, I suggest in the Conclusion, is essential to the cohesion of the practice
of modelling and simulation in science.

2 Simulating Models: From Representation to
Results

While scientific models have enjoyed a long history as objects of philosophical
inquiry, simulations have only recently begun to garner serious interest from
philosophers of science. (See, for example, refs. (22), (12) and works quoted
therein.) As a result, when it comes to distinguishing different kinds of simu-
lations, or different philosophical perspectives on simulations, the philosophical
terminology is much less stable than in the case of different views of models.
Not that anyone is to blame for this: on the one hand, it is an expression



of the liveliness and comparative novelty of the debate, on the other hand it
reflects the fact that scientist themselves — those who routinely implement sim-
ulations, often by using computing power of various kinds — tend to employ
the term quite loosely. This also applies to the relation between models and
simulations. Scientists frequently speak of ‘simulating a model’ (in the sense
of running a computer simulation of the dynamic behaviour of a model given
a certain input, e.g. consisting in parameter values and boundary conditions),
but they also profess to engage in ‘modelling a simulation’: that is, using nu-
merical techniques to construct a computational model whose only raison d’étre
is its ability to generate sets of simulated data. Whether a ‘model’ is being
‘simulated’, or a ‘simulation’ is being ‘modelled’, is — at least in actual scientific
usage — often not so much a question of logical order as of temporal order: new
simulation techniques may be applied to well-established models, in which case
an old model (say, the Ising model, first proposed in 1925, see ref. (13)) may
be simulated in new ways, whereas new computational models may be devel-
oped simply because they are particularly suitable for the evaluation by means
of certain easy-to-implement, reliable numerical techniques. The situation is
not made any easier by a certain ambiguity of the term ‘simulation’, which can
be understood as referring either to the process of applying a set of (usually
numerical) techniques, or to the output generated by such a procedure. Given
that actual scientific usage offers no clear verdict on the matter, a first task of
any prospective philosophical analysis of simulation will be to clarify the logical
order and the conceptual relationship between models and simulations; this is
the task of the present section.

Recent philosophical interest in the use of models in science is in large part
due to an approach, pioneered by Margaret Morrison and Mary Morgan, which
views models as ‘mediating instruments’ (17, p. 10). As I shall argue later, the
‘models as mediators’ view, while by no means the only well-developed view of
scientific models, has special affinities with the topic of simulation. Therefore,
in the present context, it will be used to set the agenda for the discussion
of scientific models. According to the mediator approach, models are to be
regarded as more than mere unavoidable intermediary steps in applying our
best scientific theories to specific situations. Rather, as ‘mediators’ between our
theories and the world, models inform the interpretation of our theories just as
much as they allow for the application of these theories to empirical phenomena.
Models, it is claimed, ‘are not situated in the middle of an hierarchical structure
between theory and the world’, but operate outside the hierarchical ‘theory-
world axis’. (17, p. 17f.) Traditionally, unless their role was seen as merely
heuristic, models were to be judged by how well they fit with the fundamental
theory and the empirical data, or, more specifically, how well they explain the
data by the standards of the fundamental theory: ideally, a model should display
a tight fit both with theory and with empirical data. Indeed, on certain accounts
of the formal relation between theory and data, any application of theory to
empirical phenomena — that is, any use of a theory that goes beyond the mere
deduction of further theoretical statements — must necessarily happen via models
embedded in the semantic structure of a theory. Without taking a stance on



this issue, it seems obvious that such a view places a rather heavy theoretical
load on the concept of ‘model’ — more, perhaps, than the notion of a scientific
model (as derived from scientific practice) can bear.

The ‘models as mediators’ approach, by contrast, insists that any scientific
account of specific processes and phenomena necessarily depends on factors
that are extraneous to fundamental theory. Generalising from a number of
case studies across the natural and social sciences (see ref. (16)), Morrison and
Morgan argue that models ‘are made up from a mizture of elements, including
those from outside the domain of investigation’ (17, p. 23); it is this partial
independence from both original theory and empirical data that allows models
to play an autonomous role in scientific inquiry. In this respect, Morrison and
Morgan argue, the role of scientific models is similar to that of tools and scientific
instruments; indeed, it is part and parcel of the mediator view that model
building involves an element of creativity and skill — it is ‘not only a craft
but also an art, and thus not susceptible to rules’ (17, p. 12). By focusing
more on the process of model construction than on the logical relations into
which models can enter with other abstract structures, such as theories, one
might argue that the mediator view already displays a natural affinity towards
questions of simulation. However, differences and divergencies remain, and the
rest of this section will spell out some of these.

Before turning to differences between models and simulations, I want to com-
ment briefly on one possible way one might try to reconcile the two debates,
namely by regarding both models and simulations as equal constituents of the
same scientific activity, ‘scientific modelling’. As mentioned earlier, scientists
often view models and simulations as, in effect, on a par with one another. How-
ever, while such a focus on the activity of scientists may be a useful perspective,
for example in the context of sociology of science, for the purpose of discussing
the epistemic status and justificatory role of models and simulations, it is use-
ful to not conflate the two. Even if it is not easy to always draw a clear line
between them, there appears to be sufficient continuity in order to distinguish
at least paradigm cases where the difference between models and simulations
is clear. As mentioned earlier, in abstract model theory different definitions of
models exist, and in science, in addition to the straightforward use of mechani-
cal or analogical models, certain much-discussed mathematical models, such as
the Ising model, pre-date the computational means required for simulating the
corresponding physical systems. In this regard, one can successfully distinguish
models from simulations.

The mediator view, too, while not predominantly concerned with contrasting
models and simulations, holds on to several of these distinctions, though it gives
them a slightly different twist. One of its fundamental tenets, quoted above,
is the thesis that models constitute a ‘mizture of elements’, some derived from
theory, other originating from extra-theoretical considerations: ‘model construc-
tion involves a complex activity of integration’ (15, p. 44). More often than
not, this integration is neither perfect nor complete. When certain elements of a
model are incompatible, the integration cannot be perfect. This, for example, is
the case in the Bohr model’s conflicting demands that the electrons in an atom



should be conceived of as orbiting the nucleus on circular paths without losing
energy, while at the same time viewing them as objects of classical electrody-
namics. Integration may also remain incomplete for the simple reason that not
all features of a system are eventually reflected in the model. As Daniela Bailer-
Jones argues, ‘selection of aspects for the purposes of modelling is an accepted
and well-practised creative strategy’ (1, p. 66). Which aspects are deemed rele-
vant may depend on a range of criteria, including such factors as computational
accessibility or explanatory interest, which themselves are determined less by
theoretical first principles than by contingent facts of scientific practice. This
conception of scientific models has sometimes been characterised as being fu-
elled by anti-theoretical sentiments. The most outspoken ‘anti-theory’ theorist
has been Nancy Cartwright, and her conviction that ‘theories in physics do not
generally represent what happens in the world — only models represent in this
way’ (4, p. 180), can be seen as emblematic for this view of models. Morrison
seconds Cartwright’s view when she writes that ‘the proof or legitimacy of the
representation arises as a result of the model’s performance in experimental,
engineering and other kinds of interventionist contexts’ — not by reference to
theory. (14, p. 81) It is noteworthy, though, that neither Cartwright nor Morri-
son call into question the overall epistemic goal of all modelling and theorising:
namely, to represent. Indeed, their claim is not that representation itself is
unattainable, but rather that it can only be attained by means of models not
theories.

However, there remains a gap between, on the one hand, the aspirations of
the mediator view to solve the problem of scientific representation and, on the
other hand, the way it assesses the success of scientific models. Merely asserting
that models are instruments for intervening in the world, and that their rep-
resentational success is to be assessed by their performance in ‘interventionist
contexts’ leaves open how we derive knowledge from their application. Bailer-
Jones recognises this: ‘If one chooses to interpret “representation” in the way
Morrison does, then there still remains a gap between good performance “in ex-
perimental, engineering and other kinds of interventionist contexts” and “giving
useful information”.” (1, p. 67) The gap is not made any smaller by insisting
that models are ‘inherently intended for specific phenomena’ (19, p. 75), and
that models are superior to theories because ‘they provide the kinds of details
about specific mechanisms that allow us to intervene in the world’ (14, p. 83).

If it is indeed the case that models derive their justification exclusively from
instrumental success in specific empirical phenomena, then what is needed is
a measure for empirical success, which typically will hinge on comparison of
measurements with the model’s predictions, both at the quantitative level of
numerical results and at the qualitative level of system behaviour. An unin-
terpreted model does not in and of itself, without numerical evaluation, deliver
quantitative or qualitative predictions about specific empirical phenomena. This
is why it has been said that, at least across much of the so-called ‘hard’ sciences,
‘the proper object of epistemic evaluation is a model in conjunction with a nu-
merical method’ (7, p. 743). Scientifically important questions of accuracy and
prediction are not exhausted by a philosophical analysis of whether or not a



model stands in a representational relationship to certain aspects of reality. In
addition to an epistemology focused on representation, which has long been
at the heart of the philosophical debate about models, what is needed is an
‘epistemology of results’; as it were. It is at this level that simulation gains
significance: often, especially in the case of complex models, it is via the use of
simulation techniques that specific numerical results and predictions are being
derived from models. Somewhat similar to the way observation and measure-
ment techniques furnish empirical data, simulation techniques generate specific
instances of simulated data. Lest it be blind to this analogy, the philosophy of
models, with its emphasis on representation, needs to be complemented by a
philosophy of simulation, which takes due account of the non-trivial nature of
generating results from models. As Eric Winsberg puts it, ‘we need an episte-
mology of simulation because simulation modeling is a set of scientific techniques
that produces results.” (21, p. 275)

3 Mathematical and Computational Models

Mathematical models can take different forms and fulfill different purposes.
They may be limiting cases of a more fundamental, analytically intractable
theory, for example in the case of modelling planetary orbits as if planets were
independent mass-points revolving around an infinitely massive sun. Sometimes,
models connect different theoretical domains, as is the case in hydrodynamics,
where Prandtl’s boundary layer model interpolates between the frictionless ‘clas-
sical’ domain and the Navier-Stokes domain of viscous flows. (See ref. (15).)
In both cases, models allow for good quantitative predictions despite the in-
tractability of the full theory. Even where a fundamental theory is lacking,
mathematical models may be constructed, for example by fitting certain dy-
namical equations to empirically observed causal regularities (as in population
cycles of predator-prey systems in ecology) or by analysing statistical correla-
tions (as in models of stock-market behaviour).

It is in comparison with this diversity of examples of scientific models, I want
to suggest, that several characteristic features of mathematical models can be
singled out. The first such feature concerns the medium of expression, which
for mathematical models is, naturally, the formulaic language of mathematics.
It would, however, be misguided to simply regard a model as a set of (uninter-
preted) mathematical equations, theorems and definitions, as this would deprive
models of their representational potential: a set of equations cannot properly
be said to ‘model’ anything, neither a specific phenomenon nor a class of phe-
nomena, unless one gives some of the variables an interpretation that connects
them with (some aspects of) observable phenomena. After all, one of the key
motivations for constructing a model, at least in cases where a ‘full’ theory
is presumed to hold ‘in principle’, is the recognition that theories are about
abstract objects (e.g., ‘mass points’) rather than real objects (e.g., planets).!

1Cf. Ronald Giere, who argues that there are good reasons to regard ‘Newton’s laws as
defining idealized abstract objects rather than as describing real objects’ (8, p. 52)



Irrespective of one’s stance towards the dispute over the primacy of fundamental
theory, it is important to acknowledge that mathematical models cannot merely
be uninterpreted mathematical equations if they are to function as mediators of
any sort; that is, if they are to model a case that, for whatever reason, cannot
be calculated or described in terms of theoretical first principles.

The fact that mathematical models, like other kinds of models, require back-
ground assumptions for their interpretation, of course, does not rule out that in
each case there may be a core set of mathematical relationships that model users
regard as definitive of the mathematical model in question. In fact, where these
mathematical features are not merely ‘inherited’ from an underlying fundamen-
tal theory, they may provide a mathematical model with precisely the autonomy
and independence (from theory and data) that its role as mediator requires. An
extreme example of independence from theory and data, though perhaps not
one that is representative of the majority of mathematical models used in the
natural and social sciences, can be found in numerical modelling, where this
involves fitting a set of — sometimes quite arbitrary — equations to empirical
data. In cases with considerable uncertainty about the causal processes and
dynamics laws governing a system (e.g., in analyses of the stock market), such
mathematically informed ‘curve-fitting’ may be the theoretician’s last resort. It
does, however, lie at the extreme end of possible ways of constructing math-
ematical models and, importantly, differs radically from simulation. Whereas
‘curve-fitting’ typically accommodates existing (past) data to an, often crude,
mathematical model, simulation is essentially about the generation of new ‘data-
like’ material — that is, of simulated data that were not antecedently available,
neither via empirical observation nor via theoretical derivation.

While it may be true that, as Giere puts it, ‘{m]Juch mathematical modeling
proceeds in the absence of general principles to be used in constructing models’
(8, p. 52), there are good terminological reasons to speak of a mathematical
model of a phenomenon (or a class of phenomena) only if the mathematics
employed (i.e., the kind of mathematical techniques and concepts) is in some
way sensitive to the kind of phenomenon in question. For example, while it may
be possible, if only retrospectively, to approximate the stochastic trajectory of
a Brownian particle by a highly complex deterministic function, for example a
Fourier series of perfectly periodic functions, this would hardly count as a good
mathematical model: There is something about the phenomenon, namely its
stochasticity, that would not be adequately reflected by a set of deterministic
equations; such a set of equations would quite simply not be a mathematical
model of Brownian motion.

In addition to the requirement that the core mathematical techniques and
concepts be sensitive to the kind of phenomenon that is being modelled, a fur-
ther condition can be imposed on what should count as a mathematical model.
Loosely speaking, the mathematics of the model should do some work in in-
tegrating the model’s various other elements; after all, it follows from the dis-
cussion in the previous section that, for a mathematical construct to count as
a model of a phenomenon or process, it must extend beyond its formal, the-
oretical, or mathematical representation as a set of uninterpreted equations.



Extra-theoretical considerations as well as background assumptions that do not
lend themselves to formalisation must all be in place for a model to be a tool
of scientific inquiry. A bare mathematical structure alone does not lend itself
to application to individual cases. The perhaps vague demand that the math-
ematical aspects of a model should contribute to the integration of all, or at
least a wide range, of the model’s elements, can be given a concrete interpre-
tation by way of example. If, say, a mathematical model employs the calculus
of partial differential equations, then it should also indicate which (classes of)
initial and boundary conditions need to be distinguished. Through specify-
ing dynamic equations and their initial and boundary conditions, mathematical
models can efficiently subsume different domains under the same basic struc-
ture. As an example consider Prandtl’s boundary-layer model of fluid dynamics,
which in this way succeeds in integrating not only different spatial domains (the
boundary layer surrounding an object, and the infinite flow into which it is
immersed), but also different domains of dynamic behaviour (laminar versus
turbulent flow), as well as various background assumptions (Bernoulli’s ‘no-slip’
condition, Helmholtz’s principles etc.). Michael Heidelberger, in his detailed
study of the development of Prandtl’s model, attributes the model’s success to
precisely this capacity of mathematical models to integrate different elements:
‘[I)f unification is taken to mean a close relationship among the elements used —
which one could call structural coherence — then “unification” would indeed be
the right expression to characterize Prandtl’s advance over the rational math-
ematicians and especially over his predecessor Helmholtz.” (10, p. 58) Other
authors have referred to this capacity of mathematical models to successfully
integrate different elements, or different aspects of the same phenomenon, as
‘mathematical moulding’:

Mathematical moulding is shaping the ingredients in such a mathe-
matical form that integration is possible, and contains two dominant
elements. The first element is moulding the ingredient of mathemat-
ical formalism in such a way that it allows the other elements to be
integrated. The second element is calibration, the choice of the para-
meter values, again for the purpose of integrating all the ingredients.
(3, p. 90)

Calibration is essential to the function and functioning of models. However,
as will be argued in the next section, it need not be understood narrowly as
fixing the parameter values of a given model; rather, calibration may also take
place across different models, by inquiring into their quantitative and qualitative
behaviour as well as into the non-empirical relationships that hold between
them.

Before moving on to a concrete class of mathematical models — models of
physical systems that consist of many interacting particles — which illustrate the
complex interplay between modelling and simulation, as well as certain general
features of mathematical models, it is useful to consider an intermediary stage
between mathematical models (in our sense) and simulations, namely compu-
tational models. In discussions of artificial intelligence, network design and



the theory of computation, where the term ‘computational model’ appears to
originate, it appears to have a rather more specialised meaning than in most
scientific contexts. It would be wrong, however, to assimilate its meaning in sci-
ence entirely to that of the term ‘computer simulation’, as indeed other authors
have pointed out in various contexts. (5), (21), (10) Computational models are
typically implemented in the form of an algorithm, either on a computer or
on a network of computers. Their main structural and computational features
are determined by such factors as network topology, numerical methods and
algorithms used, computing power etc. In this regard, they differ from mathe-
matical models, which are typically represented in an analytically closed form
by a set of equations and whose structural characteristics are determined by
mathematical constraints, not by constraints of realising a technological imple-
mentation. While computational models are often a crucial step in the actual
implementation of computer simulations, it makes sense not to conflate them
with simulations either. As R.I.G. Hughes has urged, one ought to distinguish
between ‘the use of computer techniques to perform calculations, on the one
hand, and computer simulation, on the other’. (11, p. 128) Since computa-
tional models may be used both for mere ‘number-crunching’ and for ‘genuine’
simulation, it would be unwise to attempt to assimilate them to the latter.

4 Rigorous Results as Benchmarks for Simula-
tions

The present section aims to apply the general framework outlined above to a
particular class of mathematical models intended to describe and explain the
physical behaviour of systems that consist of a large number of interacting parti-
cles. Such models, usually characterised by a specific Hamiltonian (energy oper-
ator), are frequently employed in condensed matter physics in order to account
for phenomena such as magnetism, superconductivity, and phase transitions.
Many-body models are particularly suitable as an example in the present con-
text, since they form a class of models that, on the one hand, picks out a wide,
yet well-defined range of physical phenomena as their explananda and, on the
other hand, can be characterised mathematically by a narrow range of repre-
sentational techniques (e.g., the formalism of second quantization). Many-body
systems are also among the systems most widely studied using computer simu-
lation, and it is the use of certain mathematical features of many-body models
as benchmarks for the simulation of many-body systems, which will serve as a
tool by which to analyse the interplay between models and simulations for the
case of mathematical models more generally.

Recall the idea of ‘mathematical moulding’ mentioned in the previous sec-
tion: namely, the capacity of mathematical models to integrate, through the
use of certain mathematical techniques, diverse elements — some deriving from
fundamental theory, others of non-theoretical origin — and subsume them under
one mathematical structure. While this capacity is essential for the applica-



bility of mathematical models to specific scientific problems, it would be quite
misleading to regard the mathematical features of a model as merely auxiliary.
The mathematics of a model does not merely serve the ‘sanitary’ purpose of
integrating already existing elements into a coherent formal structure; it also
contributes new elements. By virtue of their mathematical structure, mathe-
matical models possess features and characteristics that extend beyond their
function as representations of physical systems. Importantly, they can stand in
a formal relation with other mathematical models, even when these are mod-
els of different physical systems. Thus, a mathematical model may contribute
new elements to the theoretical description of the physical system, or class of
systems, under consideration — elements which are not themselves part of the
fundamental theory (or, as it were, cannot be ‘read off” from it) but which may,
in turn, take on an interpretative or otherwise explanatorily valuable role.

One important class of examples of such newly contributed elements are
rigorous results and relations in statistical physics and many-body physics. Over
the years, these have attracted considerable attention and have even given rise to
a special branch of theoretical physics which concerns itself with rigorous results.
(For a summary of some groundbreaking earlier developments, see Baxter 1982
and Griffiths 1972; for a philosophical case study see Gelfert 2005.) The term
‘rigorous result’ calls for some clarification. What makes a result ‘rigorous’ is
not the qualitative or numerical accuracy of a theory or model. In fact, the
kind of ‘result’ in question will often have no immediate connection with the
empirical phenomenon (or class of phenomena) the model or theory is supposed
to explain. (In this regard, the derivation of rigorous results is unlike, say,
the simulation-aided generation of [data-like| results, philosophical analysis of
which I urged towards the end of section 2.) Rather, it concerns an exact
mathematical relationship between certain mathematical variables, or certain
structural components, of the mathematical model, which may or may not reflect
an empirical feature of the system that is being modelled. Examples of rigorous
results include, but are not limited to, conditions on the asymptotic behaviour in
certain limiting cases (some of which may be ‘unphysical’ in the sense that they
do not correspond to actual physical scenarios — such as the limit of ‘infinitely
strong’ interaction among particles in a system), symmetry requirements for
certain mathematical elements of a model, ‘impossibility theorems’ that rule out
certain kinds of macroscopic or dynamic behaviour of a model, and so forth.

The ‘active’ contribution of the model — that is, its contributing new ele-
ments rather than merely integrating theoretical and experimental (as well as
further, external) elements — is not only relevant to interpretative issues, but
also has direct consequences for assessing the techniques used to evaluate the
model in specific circumstances, either by computing observable quantities or
by simulating possible scenarios using a range of techniques. This is particularly
salient in the case of the rigorous results mentioned in the preceding paragraph.
Rigorous results are exact results that are true of a model (or a class of mod-
els) rather than of a theory. They often take the form either of exact relations
holding between two or more quantities, or of lower and upper bounds to cer-
tain observables. If, for example in a model of a magnetic phase transition, the
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order parameter in question is the magnetization, then rigorous results — within
a given model — may obtain, dictating the maximum (or minimum) value of
the magnetization or the magnetic susceptibility. Quite often, rigorous results
and relations provide a partial mapping of a model’s mathematical structure
onto relationships between observables. By checking the results of computer
simulations against those relationships, one can then hope to find out whether
a given simulation technique respects the model’s fundamental features.

The partial independence of rigorous results from fundamental theory, and
the fact that they are model-specific, makes them interesting ‘benchmarks’ for
the numerical and analytical techniques of calculating observable quantities from
the model. R.I.G. Hughes notes this, albeit only in passing, in his case study
of one of the first computer simulations of the Ising model: ‘In this way the
verisimilitude of the simulation could be checked by comparing the performance
of the machine against the exactly known behaviour of the Ising model.” (11, p.
123) The significance of ‘benchmarks’ for the purposes of simulations can hardly
be overestimated. As Winsberg emphasises, simulations are often performed to
investigate systems for which data are sparse; hence, ‘comparison with real
data can never be the autonomous criterion by which simulation results can be
judged’ (21, p. 287). If empirical data are not available, other reliable means of
calibration must be found as a substitute. This is where rigorous results play an
important role, and indeed may be crucial to the assessment of a simulation’s
success, given that ‘[tJhe first criterion that a simulation must meet is to be
able to reproduce known analytical results’ (21, p. 288). Rigorous results thus
can be seen to play an essential role in the verification of a simulation, where
verification ‘is taken to mean the testing of the model in relation to existing
analytical solutions [...] as a benchmark’ (as opposed to a simulation’s validation
against empirical data). (10, p. 59)

5 Cross-Model Justification and the Coherence
of Simulational Practice

Practices of modelling and simulating physical systems raise a number of jus-
tificational questions. Are the methods that are being used reliable? Does the
outcome successfully describe reality? Do models and simulations enhance our
understanding of the phenomena that are being studied? As discussed above,
such questions have typically been discussed in terms of whether or not the
model in question is a faithful representation of the physical system. However,
it is by no means obvious how, in practice, the representational relationship
between a model and reality could be assessed globally. At best, one can hope
to probe this relationship locally and test the model’s performance in specific
circumstances. The mediator view of models argues that it is a model’s per-
formance in specific ‘interventionist contexts’, in connection with ‘specific phe-
nomena’, which is the main source of justification and determines the model’s
validity. On this account, the specific outcomes in different instances of em-
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ploying a model determine its instrumental value which, in turn, is considered
a measure of the model’s justification. However, in the present section I want
to suggest that such a purely ‘outcome-based’ perspective does not exhaust the
range of actual sources of justification in our modelling and simulation practices.

Before turning to an entirely different source of justification, it should be
noted that the outcome-based approach is not limited to comparison with em-
pirical data. As the more and more widespread use of simulation techniques
suggests, the data-like results of computer simulations can take on a similar
role for the purposes of validation. From a purely descriptive perspective, it is
by no means clear that the main activity of researchers is to assess the model’s
performance in experimental or other empirical contexts. An at least equal
amount of work goes into comparing and calibrating different methods of nu-
merical evaluation against each other. That is, the calibration often takes place
not between models and empirical data, but amongst different methods of eval-
uation, irrespective of their empirical accuracy. This can be made particularly
salient in the case of the many-body systems referred to earlier. Even in cases
where quasi-exact numerical results are obtainable for physical observables (for
example by Quantum Monte Carlo simulations), these will often be compared
not to empirical data but instead to other relations derived at by other numeri-
cal methods. When it comes to the use of many-body models in solid-state and
condensed matter physics, it is not uncommon to come across whole papers on,
say, the problem of ‘magnetism in the Hubbard model’, which do not make a
single reference to empirical data. (As an example, see Tusch, Szczech, Logan
1996.) Rather than adjust the parameters of the model to see whether the be-
haviour of a specific physical system can be modelled with empirical accuracy,
the parameters will be held fixed to allow for better comparison of the differ-
ent evaluative techniques with one another, often singling out one set of results
(e.g., those calculated by Monte Carlo simulations) as authoritative.

However, beyond the narrow focus on empirical or simulated outcomes, there
is a quite different source of justification, based on the rigorous results and re-
lations discussed in the previous section. The results of models, as well as the
application of simulation techniques, may be vindicated not only by referring to
empirical performance, but also by exploiting certain rigorous relations between
different mathematical models, especially where these take the form of (math-
ematically exact) mappings of one model on to another. Such mappings may
connect different mathematical models in quite unexpected ways, thereby also
allowing for cross-checks between evaluative methods and simulation techniques
that were originally intended for very different domains. Such connections can
neither be readily deduced from fundamental theory, since the rigorous results
do not hold generally but only for certain mathematical models, which them-
selves are, as it were, permitted but not entailed by theory; nor can rigorous
results be justifiably inferred from empirical data, as they may concern features
of the model that lack an empirical interpretation. As an example consider
again the theory of magnetic phase transitions, which aims to explain mag-
netism both in systems with fixed spins and in systems with itinerant electrons.
The physical interpretations of the two cases are very different: In the former
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case, spins — the ‘elementary magnets’, so to speak — are spatially located at
atoms in a crystal lattice, whereas in the latter case they are associated with
freely moving, delocalized electrons. Yet mathematically, the two models are
intimately related. For example, it can been shown rigorously (e.g., ref. (6))
that, under certain conditions (at half filling — i.e., when half of the quantum
states in the conduction band are occupied — and in the strong-coupling limit,
when the parameter representing the relative strength of the electron-electron
interaction goes to infinity) the Hubbard model can be mapped on to one ver-
sion (namely, the spin-1/2 antiferromagnetic) Heisenberg model. Under the
specified conditions, the two models, despite their different physical interpreta-
tions, are de facto isomorphic and display the same mathematical behaviour.
Of course, the Hubbard model with infinitely strong electron-electron interac-
tion cannot claim to describe an actual physical system, where the interaction
is necessarily finite, but to the extent that various mathematical und numerical
techniques can nonetheless be applied in the strong-coupling limit, it provides
a test for the adequacy of the Hubbard model by comparing it with the numer-
ically and analytically more accessible antiferromagnetic Heisenberg model. In
light of the fact that the conditions under which the mapping holds are empir-
ically unattainable, it would be quite meaningless to ask for an experimental
validation of these results, or for their instrumental usefulness in intervening in
actual physical systems.

It is important to realise that the mechanism by which rigorous results and
relations confer justification is quite different from that of outcome-based nu-
merical comparison. The reasoning behind using rigorous relations as bench-
marks is not that numerical conformity is a sign of a model’s being a faithful
representation of the physical system in question; rather, the fact that a model
or simulation, in conjunction with a method of numerical evaluation, respects
rigorous results and relations is regarded as an indication that our models and
simulations are employed in a consistent and mutually supportive way. Rather
than conferring justification for isolated predictions of a given model in a spe-
cific empirical context, this provides an internal vindication of our practices of
modelling, numerical evaluation, and simulation across a range of contexts. It
also allows for the application of well-established techniques to new domains
of inquiry. For example, in those parameter regions where one model can be
mapped on to another, as in the case of the Hubbard and Heisenberg models,
techniques that have proved useful for one model may also be employed for the
other model. An increase in reliability in the case of one model (as, for example,
indicated by a greater overall numerical stability of the methods used to eval-
uate the model), may well be interpreted as conferring additional justification
also to results derived for the other model. Unlike comparisons with empirical
data, rigorous results and relations may thus confer cross-model justification.

One might object that, while a good deal of preliminary testing and cross-
checking of one’s numerical and simulation techniques has to happen before
the model’s predictions can be compared with empirical data, nonetheless the
latter is the ultimate goal. While this may be a consistent, if somewhat nar-
row interpretation of scientific practice, it should be noted that in many cases
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this activity of cross-checking and ‘bench-marking’ is what drives research and
makes up the better part of it. At the very least, it must be acknowledged that
some of the most heavily researched models typically are not being assessed
by their performance in specific empirical contexts. In part, this is because
many models never were intended for specific phenomena in the first place, but
for a qualitative understanding of a range of physical systems. This is true
of the Hubbard model, which has been studied in connection with an array of
quite diverse physical phenomena, including spontaneous magnetism, electronic
properties, high-temperature superconductivity, metal-insulator transitions and
many others, and it is particularly obvious in the case of the Ising model, which,
even though it has been discredited as an accurate model of magnetism, con-
tinues to be applied to problems ranging from soft condensed-matter physics
to theoretical biology. In many areas of research, as R.I.G. Hughes points with
respect to the physics of critical phenomena, ‘a good model acts as an exemplar
of a universality class, rather than as a faithful representation of any one of its
members’ (11, p. 115).

6 Conclusion

In this paper, I have argued for the relevance of mathematically rigorous results
and relations to the actual scientific practice of simulating models. Rigorous
results are genuinely new contributions of a model; they are neither entailed by
theoretical ‘first principles’, nor can they be inferred from empirical data. To
the extent that they help to coordinate and calibrate one’s tool box of numeri-
cal techniques and approximations, rigorous results are internal to a model, or
class of models, and quite independent of both fundamental theory and empirical
data. Assuch, they illustrate the capacity of models to take on roles beyond both
fundamental theory and performance in empirical and interventionist contexts.
It is such rigorous results, I claim, which guide much of research by providing
fixed points for modelling strategies and attempted refinements of evaluative
techniques, whether by numerical means, analytical evaluation, or computer
simulation. The example of the mapping of models on to each other, for exam-
ple of the strongly-coupled Hubbard model at half-filling on to the Heisenberg
model, is but one example of how rigorous relations can set the agenda for further
research. Characteristically, rigorous results provide non-empirical constraints,
which may serve as general ‘benchmarks’ for model construction and computer
simulation; it is such constraints and benchmarks which guide the process of
model refinement. The existence of rigorous results and relations makes salient
that a model’s justification need not derive exclusively from empirical considera-
tions: since rigorous results generally are validated by a model’s formal features
as a mathematical object, they can relate different models in quite unexpected
ways. This allows for the transfer of warrant from one model to another, even in
cases where both represent different classes of physical systems. The resulting
phenomenon of cross-model justification, so I want to suggest, is not merely an-
other form of ‘moulding’ a mathematical model to concrete empirical situations;

14



rather, cross-model justification fulfills a normative function by giving cohesion
and stability to actual practices of modelling and simulation.
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