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Abstract: The Likelihood Theory of Evidence (LTE) says, roughly, that all the 
information relevant to the bearing of data on hypotheses (or models) is contained in the 
likelihoods.  There exist counterexamples in which one can tell which of two hypotheses 
is true from the full data, but not from the likelihoods alone. These examples suggest that 
some forms of scientific reasoning, such as the consilience of inductions (Whewell, 
1858), cannot be represented within Bayesian and Likelihoodist philosophies of science. 
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1. Introduction 
Consider two simple hypotheses, h1 and h2, with likelihoods denoted by 1( | )P E h  and 

2( | )P E h  respectively, where E is the total observed data—the actual evidence.  By 
definition, a simple statistical or probabilistic hypothesis has a precisely specified 
likelihood (as opposed to composite hypotheses, or models, which do not—see below).  
If a hypothesis contains a free, or adjustable, parameter, such that different values would 
change its likelihood, then it is not a simple hypothesis.  The term “simple” is standardly 
used in the classical statistics literature in this way—it does not mean that the hypothesis 
is simple in any intuitive sense, and it does not imply that the evidence is simple or that 
the relationship with the hypothesis, or that its evidence is simple. 

A Likelihood Theory of Evidence (LTE) is presupposed by the standard Bayesian 
method of comparing hypotheses, according to which two simple hypotheses are 
compared by their posterior probabilities, 1( | )P h E  and 2( | )P h E .  Bayes theorem tells us 
that 

1 1 1

2 2 2

( | ) ( ) ( | )
( | ) ( ) ( | )

P h E P h P E h
P h E P h P E h

= × . 

Thus, the evidence, E, affects the comparison of hypotheses only via their likelihoods.  
Once the likelihoods are given, the detailed information contained in the data is no longer 
relevant.  That is roughly the thesis stated by Barnard (1947, p. 659):   

The connection between a simple statistical hypothesis H and observed 
results R is entirely given by the likelihood, or probability function 
L(R|H). If we make a comparison between two hypotheses, H and H′, on 
the basis of observed results R, this can be done only by comparing the 
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chances of, getting R, if H were true, with those of getting R, if H′were 
true. 

If the likelihood of a hypothesis is viewed as a measure of fit with the data, then LTE 
says that the impact of evidence on hypothesis comparison depends only on how well the 
hypotheses fit the total observed data.   It is a surprising thesis, because it implies that the 
evidence relation between a simple hypothesis and the observed data, no matter how rich, 
can be captured by a single number—the likelihood of the hypothesis relative to the data. 

The LTE extends to the problem of comparing composite hypotheses, which are 
also called models in the statistics literature.2  In a trivial case, a model M might consist 
of a family of two simple hypotheses 1 2{ , }h h , while a rival model, M′, is the 
family 3 4{ , }h h .  For a Bayesian,  

( | ) ( ) ( | )
( | ) ( ) ( | )

P M E P M P E M
P M E P M P E M

= ×
′ ′ ′

, 

where the likelihoods ( | )P E M  and ( | )P E M ′ , are calculated as averages over the 
likelihoods of the simple hypotheses in the respective families.  Specifically,  

1 1 2 2( | ) ( | ) ( | ) ( | ) ( | )P E M P E h P h M P E h P h M= + . 

So, if models are compared by their posterior probabilities, ( | )P M E  and ( | )P M E′ , 
then the bearing of the evidence, E, is still exhausted by the likelihoods of the simple 
hypotheses in each model.  Note that the likelihood of a model is not well defined, except 
by specifying the prior probabilities, 1( | )P h M  and 2( | )P h M , which are usually not 
given by the model itself.  Non-Bayesians statisticians, who want to avoid the use of prior 
probabilities, may use likelihoods differently while still subscribing to the LTE (see 
below).  As a final remark about terminology, note that the set of likelihoods defines a 
mapping from the simple hypotheses in the model to likelihoods.  This mapping is 
standardly referred to as the likelihood function of the model.  Whenever the word 
‘likelihood’ occurs in the sequel, it refers to the probability of the total observed data 
given the hypothesis under consideration.3 

It is now possible to formulate the LTE in a way that applies equally well to the 
comparison of simple hypotheses or models (composite hypotheses): 

The Likelihood Theory of Evidence (LTE):  The observed data are relevant to the 
comparison of simple hypotheses (or models) only via the likelihoods of the 
simple hypotheses being compared (or the likelihood functions of the models 
under comparison).  In other words, all the information about the total data that 
bears on the comparison of a hypothesis with others under consideration, reduces 
to a single number, namely its likelihood. 

LTE says nothing about how likelihoods are used in the comparison of hypotheses or 
models.   Bayesians compare models by comparing average likelihoods.  Non-Bayesians 
may compare maximum likelihoods adjusted by a penalty for complexity, as in Akaike’s 
AIC statistics.4   Again, the data enters the comparison only via the likelihoods, so AIC 
conforms to LTE as well.5  The majority of model selection methods in the statistics 
literature, such as BIC (Schwarz 1978), Bayes factors (see Wasserman 2000) or posterior 
Bayes factors (Aitkin 1991), also conform to LTE.  Standard model selection criteria are 
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being lumped together for the purposes of this paper because they differ only in the way 
likelihoods are used.6 

Even though LTE is vague about how likelihoods are used, it is very precise about 
what shouldn’t be used…namely, everything else!  You can’t use likelihood defined 
relative to only part of the data, and you can’t consider likelihoods of component parts of 
the hypothesis with respect to any part of the data.  You can’t include judgments about 
the simplicity and unification of hypotheses, or models, or their prior plausibility. 

Other principles that fall under LTE, such as the Law of Likelihood (LL), are 
more specific about how likelihoods are used.  LL says, roughly, that that evidence E 
supports 1h  or than it supports 2h , or that E favors 1h  over 2h  if and only if the likelihood 
of 1h  greater than the likelihood of 2h (i.e., 1 2( | ) ( | )P E h P E h> ).  The terms ‘support’ 
and ‘favors’ are not defined.  Challenges to LL, or to LTE, depend on some kind of 
intuitive grasp of their meanings, at least within the context of particular examples.  It is 
because of this looseness in LL and LTE, that they gradually acquire the status of 
definitions in the minds of their adherents.  Challenging entrenched ways of thinking, in 
any field, is never easy. 

Contemporary statistics is divided into three camps; classical Neyman-Pearson 
statistics (see Mayo 1996 for a recent defense), Bayesianism (e.g., Jefferys 1961, Savage 
1976, Berger 1985, Berger and Wolpert 1988), and third, but not last, Likelihoodism 
(e.g., Hacking 1965, Edwards 1987, and Royall 1997).  Likelihoodism is, roughly 
speaking, “Bayesianism without priors”, where I am classifying the Akaike “predictive” 
paradigm as a kind of Likelihoodism.  Bayesianism and Likelihoodism, as they are 
understood here, are founded on the Likelihood Principle, which may be viewed as the 
thesis that LTE applies to the problem of comparing simple hypotheses under the 
assumption that a background model is true.  If what can count as a “background model” 
is left vague, then the counterexamples to LTE are also counterexamples to the 
Likelihood Principle. 

The Likelihood Principle has been vigorously upheld (e.g,. Birnbaum 1962, 
Royall 1991) in reference to its most important consequence, called Actualism by Sober 
(1993)—the reasonable doctrine that the evidential support of hypotheses and models 
should be judged only with respect to data that is actually observed.  As Royall (1991) 
emphasizes in terms of dramatic examples, classical statistical practice has sometimes 
violated Actualism, and sometimes in the face of very serious ethical issues.  But the 
likelihood principle has other consequences besides Actualism, and these might be false.  
Or, put another way, a theory of evidence may deny the Likelihood Principle, without 
denying Actualism.  Actualism is strictly adhered to in all the examples discussed in this 
paper. 

 Section 2 describes what a fit function is, and introduces the idea of a fit-function 
principle.  Likelihood is described as a measure of fit in Section 3, and relationship 
between the Likelihood Principle and LTE is discussed there. The two sections after that 
present counterexamples to LTE, first in terms of an example with binary (yes-no) 
variables, and then in terms of continuous variables (a simple curve fitting problem).  
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2. Fit Functions 

 Consider a simple beam balance device (Fig. 1) on which an object a of unknown 
mass, θ, is hung at a unit distance from the fulcrum. Then the position of the unit mass on 
the right is adjusted until the beam balances. The experiment can be repeated by taking a 
off the beam and beginning again.  Each repetition is called a trial of the experiment.  
One can even change the “unit distance” between trials, provided that x is always 
recorded as a proportion of that distance.  In order to experimentally measure the values 
of postulated quantities, like θ, they must be related to observed quantities, in this case, 
the distance, x, at which the unit mass is hung to balance the beam.   

 In accordance with standard statistical notation, let X denote the distance variable 
while x refers to its observed value.  The outcome of the first trial might be X = 18.  The 
outcome of the next trial might be X = 19.  It is implausible that the outcomes of a 
continuous quantity turn out to have integer values (or it be could that the device has a 
kind of ratchet system that disallows in-between values).  X is variable because its value 
can vary from one trial to the next.  θ  is not variable in this sense because its value does 
not change between trials, even though its estimated value may change as the data 
accumulate.  To mark this distinction, θ  is referred to as an adjustable parameter.   

 The standard Newtonian equation relating θ and X turns out to be very simple: 
X θ= , where θ  is an adjustable parameter constrained to have non-negative values 
( 0θ ≥ ).  A model is a set of equations with at least one adjustable parameter.  The model 
in this case is an infinite set of equations, each one assigning different numerical values 
to θ.  A simple hypothesis in 
the model has the form 25θ = , 
for instance, and the model is 
the family of all simple 
hypotheses.  

Now do the 
experiment!  We might find 
that the recorded data in four 
trials is a sequence of measured 
X values (18,19,21,22) , so the 
model yields four equations:  

18, 19, 21, 22θ θ θ θ= = = = . 
Sadly, the data is logically inconsistent with the model; that is, the data falsifies every 
hypothesis in the model.  Should we all go home?  Not yet, because here are two other 
options.  We could weaken the hypothesis by adding an error term, or we could lower our 
sights from truth to predictive accuracy.  In the next section, we consider the first option; 
here we consider the second option.  In many ways, the two options are entirely related. 

Some hypotheses in the model definitely do a better job at predicting the data than 
others. 20θ =  does a better job than 537θ = .   Maximizing predictive accuracy (in this 
un-explicated sense) is worthwhile, and who knows, some deeper truth-related virtues 
will also emerge out of the morass. 

Definitions of degrees of fit are found everywhere in statistics. For example, the 
Sum of Squares (SOS) Fit Function in this example is: 

a

xunit distance

unit mass

Figure 1:  A simple beam balance. 
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2 2 2
1 2( ) ( ) ( ) ( )NF x x xθ θ θ θ= − + − + + −" , 

where the data is 1 2( , , , )Nx x x… .  It assigns a degree of fit to every simple hypothesis in 
the model.  Or we could introduce the 0-1 Fit Function that assigns 1 to a hypothesis if it 
fits perfectly, and 0 otherwise.  The SOS function measures badness-of-fit because higher 
values indicate worse fit, whereas the 0-1 function measures goodness-of-fit.  But this is 
an irrelevant different because we can always multiply the SOS function by −1. 

The SOS function addresses the problem of prediction when data are “noisy” or 
when the model is misspecified (i.e., false) .  For example, the toy data tell us that the 
hypothesis 20.0θ =  best fits the observations according to the SOS definition of fit.  The 
minimization the SOS fit function provides a method for estimating the value of 
theoretical parameters known as the method of least squares.  Once the best fitting 
hypothesis is picked out of the model, it can be used to predict unseen data, and the 
predictive accuracy of the model can be judged by how well it does.7 

3. The Likelihood Principle 

Likelihood is usefully understood as providing some kind of fit function.   

Definition: The likelihood of a hypothesis (relative to observed data x) is 
equal to the probability of x given the hypothesis (not to be confused with 
the Bayesian notion of the probability of a hypothesis given the data). 

Clearly, the likelihood is defined only for hypotheses that are probabilistic.  As an 
illustration, the beam balance model can be turned into a family of probabilistic 
hypotheses by associating each hypothesis with an error distribution: 

X Uθ= + , 
where U has a normal, or Gaussian, distribution with mean zero and unit variance 
(according to the model).  If we replace the adjustable parameter by a particular number, 
then we obtain a simple hypothesis in the model, which defines a precise probability 
density for x (in this example, it implies that the distribution is Gaussian with mean θ and 
variance 1; note that the model also assumes that different trials of the experiment are 
probabilistically independent).  

Given that the measured value of X is a point value, the likelihood of a datum is 
zero, strictly speaking, because a beam balance hypothesis assigns only a probability 
density to a point value.  This technical problem is finessed by defining likelihood as 
proportional to the probability that the datum is in the interval from x to x+k, where k is 
sufficiently small.  This probability is equal to the probability density at x times k.  If 
likelihoods of different hypotheses are compared to the same data, then the value of k, 
although arbitrary, will be the same for both hypotheses.  So in the context of hypothesis 
comparison, where the likelihoods are always relative to the same set of data, it is not 
arbitrary to claim that two hypotheses have the same likelihood or that two models have 
the same likelihood functions. 

Berger (1985, p. 28.) states the Likelihood Principle in the following way:  “In 
making inferences or decisions about θ  after x is observed, all relevant experimental 
information is contained in the likelihood function for the observed x.”  The first point is 
that making decisions about θ  is the same as making decisions about simple hypotheses 



 6

in the model because there is a one-to-one correspondence between simple hypotheses 
and point values of θ. 

Berger continues:  “Furthermore, two likelihood functions contain the same 
information about θ  if they are proportional to each other (as functions of θ ).”  This 
claim can be understood in terms of the beam balance example, or a slight modification 
of it.  Suppose that in addition to the beam balance data, (18,19,21,22)x = , we also 
recorded the outcome of a coin toss, which lands heads.  We might record the expanded 
data as ((18,19,21,22), )H .  Further suppose that there are two beam balance models, 
both agreeing on the stochastic equation X Uθ= + , and agreeing that the coin toss is 
probabilistically independent of other events, but disagreeing about the probability of the 
outcome H.  Then each of the models will assign different probabilities to the total data, 
but there respective likelihood functions will differ only by a constant.  Both models 
should therefore make the same inferences about θ  because they contain the same 
information about θ.  In more technical jargon, x is a sufficient statistic for θ , and the two 
models have exactly the same likelihood functions with respect to x. 

Berger and Wolpert (1988, pp. 19-21) add the following caveat to their version of 
the Likelihood Principle:  That “…it only applies for a fully specified model… If there is 
uncertainty in the model, and if one desires to gain information about which model is 
correct, that uncertainty must be incorporated into the definition of θ.”  In the previous 
example, suppose that we are unsure about the probability of the event H, so we are 
uncertain about which of the two models is true.  Berger and Wolpert might be saying 
something like this:8  Let 1h  be the hypothesis that says that the probability of H is ½, 
while 2h  says that the probability of H is almost 0, say .0000001.  Let 1M  be the beam 
balance model conjoined with 1h , while 2M  is the beam balance model conjoined with 

2h .  The simple hypotheses, 1 & ( 17)h θ =  and 2 & ( 21)h θ = , for example, can be coded 
in the parameters by writing 1 17θ =  and 2 21θ = , respectively.  It is now clear that the 
likelihood functions for 1M and 2M  are different despite the fact that the likelihood 
functions for θ  are equivalent for the purpose of estimating values of θ.   This helps 
block a simple-minded argument against the Likelihood Principle, which goes something 
like this:  We can tell from the total evidence that 2M  is false because all simple 
hypotheses in 2M  assign a probability of almost 0 to the outcome H.  But the two models 
are likelihood equivalent because their likelihood functions differ only by a constant.  
Agreed!  This argument is wrong. 

This much seems clear:  Most Bayesians, if not all, think that in order to gain 
information about which of two models is correct, it is at least necessary for there be 
some difference in the likelihood functions of the models.  For if the likelihoods functions 
of two models were exactly the same, the only way for the posterior probabilities to be 
different would be for the priors to be different, but a difference in priors does not count 
as evidential discrimination.  This is the assumption that I have referred to as the 
Likelihood Theory of Evidence (LTE). 
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4. Preliminary Examples 

When a mass is hung on a spring, it oscillates for a period of time and comes to rest.  
After the system reaches an equilibrium state, the spring is stretched by a certain amount; 
let’s denote this variable by Y.  To simplify the example, suppose that Y takes on a 
discrete value 0 151 2 14

2 2 2 2 2, , , , ,… , because in-between positions are not stable.  Maybe this 
is because the motion of the device is constrained by a ball moving inside a lubricated 
cylinder with a serrated surface (see Fig. 2, right).  The mass hung on the spring consists 
of a number of identical pellets (e.g., coins).  This number is also an observed quantity—
denoted by X = 1, 2, 3,…  

 Conduct 2 trials of the experiment, and record the observations of (X, Y): Suppose 
they are (4,3.5) and (4,4.5).  The data are represented by the solid dots in Fig. 2.  Now 
consider the hypothesis A:  Y = X + U, where U is a random error term that takes on 
values −½ , or ½, each with probability ½.  Strictly speaking, it’s a contradiction to say 
that 3.5Y =  and then 4.5Y = .  We should introduce a different set of variables for each 
trial of the experiment: i i iY X U= + , for 
i = 1, 2, where the random variables iU  
are mutually independent and 
identically distributed (i.i.d.).  This 
detail will become important later; in 
the meantime we shall use Y = X + U  as 
a way of referring to an arbitrary trial of 
the experiment. 

 To understand what follows, it 
is important to understand the meaning 
of a stochastic equation like Y = X + U.  
The fundamental assertion is that U is a 
random variable, which means that 
possible events U = u are assigned a 
probability value by the hypothesis.  
Always remember that being a random 
variable is not a god-given property of a 
variable—it is a status attributed to it by 
the hypothesis under consideration.  
Since U is a random variable, so is Y − X (since U = Y − X).  But does it follow that X and 
Y are random variables?  There are three cases to consider.   

Case (1):  X is variable quantity with no probability distribution associated with it.   
As a variable, it can a particular value, say x.  Since x is a just a number, it follows that 
x + U is a random variable.  So X + U maps possible values of X to random variables.  In 
a sense, we might think of Y as a random function rather than a random variable, written 

( )Y X .  So, a conditional probability like ( | )P Y y X x= =  would be unambiguous 
because a unique random variable, Y(x), is picked out.   But this may be misleading, for 
this conditional probability cannot be obtained from the Kolmogorov definition of 
conditional probabilities, because ( )P X x=  has no value.  It is better to 
write ( )X xP Y y= = .   

1 2 3 4 5 6

1

2

3

4

5

6

7

0

Y

X

Figure 2:  Discrete data, Section 4.  The solid dots 
are points at which data is observed, while the 
open circles are points at which no data is 
observed. 
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Case (2):  We could write the equation as X = Y − U and treat Y as an ordinary 
variable, in which case, X is a random function, and the hypothesis provides 
“conditional” probabilities ( )Y yP X x= = .  This not the correct interpretation of hypothesis 
A, and it is worth saying why.  When writing Y = X + U, it is assumed that X is the 
independent (or exogenous) variable, while Y is the dependent (or endogenous variable).  
This has real consequences in the context of stochastic equations, for it implies that if a 
variable is not random, then it is the exogenous variable (X in this example).  This 
convention implies that case (2) does not apply to hypothesis A—this how the hypothesis 
represents an asymmetric between X and Y, as is appropriate in causal modeling.   

Case (3):  X is a random variable. that is, the probabilities ( )P X x= are specified 
by the hypothesis.  This is not sufficient to make Y a random variable—one needs a joint 
probability distribution ( , )P X x U u= =  as well.  Once that is specified, then 

( , )P X x Y y= =  is well defined, and the distribution of U is derivable from its defining 
equation U = Y − X.  In causal modeling, it is standardly assumed that U is 
probabilistically independent of the exogenous variable X:   Given this assumption, it is 
sufficient to specify the probabilities ( )P X x=  to obtain the joint distribution 

( , )P X x Y y= = .  Another way of doing this would be to add ( )P X x=  to the 
probabilities ( )X xP Y y= =  in Case (1), and define a joint distribution: 
 ( , ) ( ) ( )X xP X x Y y P X x P Y y== = = =�  (*) 
It is interesting to ask whether these two methods are equivalent.  The answer is yes, by 
the following argument.  First note that 

( ) ( ) ( )X x X xP Y y P U y x P U y x= == = = − = = − . 
By (*),  ( , ) ( ) ( )P X x Y y P X x P U y x= = = = = − . 
But ( , ) ( , )P X x Y y P X x U y x= = = = = − . 
Therefore, ( , ) ( ) ( )P X x U y x P X x P U y x= = − = = = − , for all y.  This proves, for all u, 

( , ) ( ) ( )P X x U u P X x P U u= = = = = , 
which is what we wanted to show.  This is conceptually revealing—the mysterious 
independence between exogenous variables and the error term is derived by first 
interpreting the hypothesis as in Case (1), and then assuming that  

( | ) ( )X xP Y y X x P Y y== = = = . 
 Returning to our example, Y is a function of U, and U is a random variable.  But 

what is the status of X?  In Case (1), the number of pellets making up the mass is not 
thought of as having a probability.  The problem is that if X has no probability 
distribution associated with it, then hypothesis A has no likelihood relative to the total 
evidence, and so the likelihood theory of evidence (LTE) does not apply. 

What happens if we use the conditional likelihoods, which are defined?  In our 
example, the conditional likelihood of hypothesis A is equal to 

1 2

1
4 1 4 2 4( ) ( 3.5) ( 4.5)X XL A P Y P Y= == = = = . 

Now compare this with an alternative hypothesis B (for Backwards) with equations 
1 1 1X Y U= +  and 2 2 2X Y U= + , where 1U  and 2U  are error terms that are identically 

distributed to those postulated by A.  In this case, B assigns no probabilities to the Y 
variables.  It is easy to see that the conditional likelihood of B is also equal to ¼, and 
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( ) ( )L A L B= .  So, there is no way of distinguishing between A and B the hypotheses in 
terms of conditional likelihoods. 

While A and B cannot be distinguished by their conditional likelihoods, the two 
hypotheses can be distinguished on the basis of the data.  First note that no matter how 
many times we duplicate the observed data, the conditional likelihoods will still be equal.  
Concretely, suppose that the data points (4,3.5) and (4,4.5) are observed 10 times each, as 
would be expected if A were true.  But it tells us immediately that B is false.  Why?  Let 
me explain the point in a way that generalizes to other examples.  Hypothesis B entails a 
constraint: 
Constraint:  3.5 4.5( 4) ( 5)Y YP X P X= == = = .   
(Both probabilities are equal to 1

2( )P U = .)  But the data show that 3.5 ( 4)YP X= =  is close 
to 1 while 4.5 ( 5)YP X= =  is close to 0.   In other words, the two independent 
measurements of 1

2( )P U =  not only disagree with the hypothesized value (½), but also 
disagree with each other. 

The example is already a counterexample to LTE in the following sense:  We are 
told that either A or B is true, and we can tell from the data that A is true and B is false.  
But there is nothing in the likelihoods that distinguishes between them. 

  A subscriber to LTE can deny that LTE applies to hypotheses that are 
incomplete in this sense.9  They might insist that the example violates the principle of 
total evidence because the likelihoods are not relative to the full data, even though there 
are no data “hidden from view”, or withheld in any way.  

In any case, it is not difficult to modify the example so that the full likelihoods are 
well defined.  We must first recognize that each trial of the experiment is modeled in 
terms of its own set of variables, so the equation for trial i is i i iX Y U= + , where these 
variables do not appear in other equation.  The only constraint that B postulates between 
different trials is that error terms, iU , are independent and identically distributed (i.i.d.).  
If we add probability distributions for the exogenous variables iY , then there is no rule 
that they must be identically distributed.  They might be constrained in other ways, or 
they might be entirely unconnected.  So, consider the augmented hypothesis, call it B′ , 
that says that ( ) 1i iP Y y= = , for all i, where iy  happens to be the observed value of the 
variable in trial i.   Likewise, consider the hypothesis A′  that adds the assumption that 

( 4) 1iP X = = , for all i.  These are real hypotheses that are 100% consistent with 
probability theory.   Now we are told that either A′  or B′  is true.  Can we tell which one 
from the data?  Yes, in the same way as before— B′  is false because it logically entails B, 
and B is false.  But does this now show up in the likelihoods?  No!  Because the 
likelihoods of the two hypotheses still equal. 

A more direct way of presenting the counterexample would be to construct 
hypotheses from A and B by adding an auxiliary hypothesis about the values of the 
exogenous variable in each case.  Let X = x be statement about the sequence of observed 
values of the variables, 1 2 20, , ,X X X… , and define hypothesis A* as the conjunction of A 
and X = x.  Similarly B* is the conjunction of B and Y = y.  Then it is easy to the that A* 
and B* have well defined likelihoods relative to the full data, and that the likelihoods are 
equal, that is, ( *) ( *)L A L B= .  These are not conditional likelihoods.  LTE implies that if 
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you can tell which one is true from the data, then you can tell from the likelihoods.  But, 
in this example, you can tell which is true from the data, by the same method as before.  
A is true, and X = x is true, therefore A* is true.  Similarly, B is true, and Y = y is true, 
therefore B* is false.  Therefore, LTE is false. 

One might object that the hypotheses have been constructed with full knowledge 
of the data.  This won’t save LTE because it denies the relevance of non-empirical, 
historical, or psychological considerations.  And rightly so, in this example, for we can 
tell which hypothesis is false from the data alone! 

Why are likelihood theories of evidence so popular?   Success can always be 
backwards-engineered by restricting one’s attention to the right class of hypotheses.  This 
is common practice in the field of Bayes nets (see for example Pearl 2000), and our 
running example provides a nice illustration of how it works.  A sufficient condition for 
success is to first augment A and B with probability distributions that are identically 
distributed.  Of course, it is still possible to add distributions so the B beats A, but now 
it’s possible to blame the poor fit of the added distributions.   To demonstrate the effect, 
let’s add the best i.i.d. marginal distributions possible—namely, that ones that fit the 
marginal data the best.  Then poorness of fit cannot be blamed.  In our example, we need 
to add to A, ( 4) 1iP X = = , for all i, resulting in hypothesis A′′ .  Clearly this makes not 
difference to the likelihood: ( ) ( )L A L A′′ = .  To B, we add 1

2( 3.5) ( 4.5)i iP Y P Y= = = = .  
Now 201

2( ) ( ) ( )L B L A′′ ′′= .  So, B′′  is less likely than A′′ , which is the right answer.  The 
mystery is:  Why are we adding things to A and B instead of comparing them against the 
data directly when we know that it works?  In order to get the right likelihoods?  In order 
to make the LTE work? 

In the examples just considered, two hypotheses are compared against a single 
data set.  Philosophers of science also consider questions about the comparative impact of 
two hypothetical data sets on a single hypothesis.  Is likelihood the right measure of 
comparison in this case?  Label the previous data set E, and consider B′′ .  B′′ is just an 
everyday hypothesis that assigns each of four data points (in Fig. 2) a probability of ¼.  
We have already seen that B′′  is clearly refuted by E, since all the data are concentrated 
on two of the four points (the solid dots in Fig. 2).10  Compare this to an equally large set 
of data E′′  that is evenly spread amongst all four points (still with 20 data points in total).  
My intuition says that E′′  confirms B′′  better than E confirms B′′ .  After all, E is 
inconsistent with B′′ , whereas E′′conforms to the B′′  as well as any data set imaginable 
(of that size).  Right?!  Not according the theory of confirmation advocated by Bayesian 
philosophers of science!  For the probability of E′′  given B′′  is the same as the 
probability of  E given B′′ ; both are equal to 201

4( ) .  
Let’s back up a little.  Bayesian philosophers of science say that E confirms 

hypothesis H if and only if ( | ) ( )P H E P H> .  They also say that E′would confirm H 
better than E confirms H if and only if ( | ) ( ) ( | ) ( )P H E P H P H E P H′ − > − .11  So, if the 
Bayesian theory is to match our intuitions in this example, then ( | ) ( | )P B E P B E′′ ′′ ′′> .  
But, since ( | ) ( | )P E B P E B′′ ′′ ′′= , that can only happen if ( ) ( )P E P E′′> .  It is strange to 
me that objective facts about confirmation should ever depend on how surprising or how 
improbable the evidence is, but let’s leave that to one side.  It is certainly possible to 
place the example in a historical context in which ( ) ( )P E P E′′≤ , or one in which ( )P E is 
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much less than ( )P E′′ .  In the latter case, Bayesians are forced to say that B′′ is much 
better confirmed by E than by E′′ .  But that conclusion is absurd in this example!  

This issue is well known to Bayesian statisticians, and to many philosophers of 
science:  For example, the hypothesis that a coin is fair assigns the same probability to a 
string of 100 heads as it does to any particular sequence of 50 heads and 50 tails.  In 
isolation, this is not a counterexample to LTE, because it concerns a single hypotheses 
and two data sets.   But there is a connection.  In the coin tossing example, a string of all 
heads is strong evidence that that the coin is not fair because there is a relevant statistic, 
the observed relative frequency of heads, which has a probability distribution sharply 
peaked around the value ½ (according to the null hypothesis that the coin is fair).  But the 
observed value is very far from that value, so a classical hypothesis test will reject the 
hypothesis.  If the alternative hypotheses are ones that make the same background 
assumptions, but change the parameter value (the coin bias), then this classical test does 
not conflict with LTE because the statistic is sufficient.  Then, by definition, the problem 
involves the comparison of hypotheses in a restricted set (a model) such that the 
likelihood function (relative to full data) is equal to a constant times the likelihood 
function relative to the sufficient statistic.  That is what it means for a statistic to be 
sufficient. The problem is that in general scientific reasoning, we are interested in 
comparing hypotheses in different models.  There the standard notion of statistical 
sufficiency breaks down, and the relevant statistics may not be sufficient in the sense 
required by the LTE.  

5. The Asymmetry of Regression 

The same challenge to LTE extends to the linear regression problem (‘regression’ is 
the statistician’s name for curve fitting).  
In these examples, you are also told that 
one of the two hypotheses or models is 
true, and you are invited to say which 
one is true on the basis of the data.  They 
are examples in which anyone can tell 
from the full data (with moral certainty) 
which is true, but nobody can tell from a 
knowledge solely of the likelihoods.  It 
is not because Bayesians, or anyone else, 
are using likelihoods in the wrong way.  
It’s because the relevant information is 
not there! 

 Suppose that data are generated 
by the ‘structural’ or ‘causal’ equation Y 
= X + U, where X and Y are observed 
variables, and U is a normal, or 
Gaussian, random variable with mean 
zero and unit variance, where U is 
probabilistically independent of X.12  To 
use this to generate pairs of values 

Y = 2 X

Y = X
 

Figure 3:  There are two ways of generating the 
same data:  The Forward method and the 
Backward method (see text). It is impossible to 
tell which method was used from the data alone.  
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( , )x y , we must also provide a generating distribution for X, represented by the equation 
X = µ + W, where µ is the mean value of X, and W is another standard Gaussian random 
variable, probabilistically independent of U, also with zero mean and unit variance.  Two 
hundred data points are shown in Fig. 3.  The vertical bar centered on the line Y = X  
represents the probability density of y given a particular value of x. 

Example 1:  Consider two hypotheses about how the data are generated.  The 
Forward method randomly chooses an x value, and then determines the y value by adding 
a Gaussian error above or below the Forward line (Y = X).  This is the method described 
in the previous paragraph.  The Backward method randomly chooses a y value according 
to the equation Y = µ + 2 Z, where Z is a Gaussian variable with zero mean and unit 
variance.  Then the x value is determined by adding a Gaussian error (with half the 
variance) above or below the Backward line Y = 2X (slope = 2).  This probability density 
represented by the horizontal bar centered on the line Y = 2X (see Fig. 3).  In this case, the 
‘structural’ equation is X = 1

2 µ + 1
2 Y + 1

2
V, where V is standard Gaussian (mean zero 

and unit variance) such that V is probabilistically independent of Y.  It is impossible to 
tell from the data alone method which was used.   

Example 1 is not a counterexample to the likelihood theory of evidence (LTE).  
As it applies to this example, LTE says that if two simple hypotheses cannot be 
distinguished on the basis of their likelihoods (let’s say that they are likelihood 
equivalent) then they cannot be distinguished on the basis of the full data.  Why are the 
two hypotheses likelihood equivalent?  The Forward hypothesis specifies a  
probability distribution for an x value, which we write as ( )Fp x , and then specifies the 
probability density y given x; in symbols, ( | )Fp y x .  This determines the joint distribution 

( , ) ( ) ( | )F F Fp x y p x p y x= .  Similarly, the Backward hypothesis determines a joint 
distribution for x and y of the form ( , ) ( ) ( | )B B Bp x y p y p x y= .  Under the stated 
conditions, it is possible to prove that for all x and for all y, ( , ) ( , )F Bp x y p x y= .  So, they 
cannot be distinguished in terms of likelihoods.  In this case, they also cannot be 
distinguished by the full data, which is why Example 1 is not a counterexample to LTE.  

Example 2:  The hypotheses considered in Example 1 are the standard in 
textbooks, but they are not the only ones possible.  Consider the comparison of two 
simple hypotheses that are not likelihood equivalent with respect to the data in Fig. 3.  
This will not be a counterexample to LTE either, but it does raise some important 
worries, which will be exploited in subsequent examples.  Let us specify the two 
hypotheses more concretely by assuming that µ = 0, so that the data are centered around 
the point (0,0).  We are told that one of two hypotheses is true: 

2F : Y X U= + , and X is standard Gaussian.  

2B : X Y V= + , and Y is Gaussian with mean 0 and variance 2, 
where again U is independent of X, and V is independent of Y.  2F  is the same hypothesis 
as in Example 1.  The difference is in the Backwards hypothesis.  The marginal y values 
are generated in the same way as before, but now 2B  says that the x values are generated 
from the line Y = X (rather than Y = 2X) using a Gaussian error of mean zero and unit 
variance (as opposed to a variance of  ½).  It is intuitively clear that 2B will fit the data 
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worse (have lower likelihood) than the previous hypothesis, 1B .  What’s remarkable in 
the present case is that, when compared to 2F , the lower likelihood of 2B  arises not from 
its generation of x values, but from the fact that there is larger variation in y values than 
in the x values.  This is strange because we intuitively regard the generation of the 
independent or exogenous variable to be an inessential part of the causal hypothesis. 

To demonstrate this phenomenon, consider an arbitrary data point ( , )x y .  From 
the fact that 2F  and 2B  generate the y and x values, respectively, from the line Y = X, and 
the fact that an arbitrary point is equidistant from this line in both the vertical and the 
horizontal directions, it follows that ( | ) ( | )F Bp y x p x y= .  For the benefit of the 

technocrats amongst us, both are equal to ( )21 1
2 2(2 ) x yeπ − − − . 

For each hypothesis, the likelihood is obtained by multiplying the probabilities of 
the data points together, where each probability has the form:  

( , ) ( , )F FP x X x dx y Y y dy k p x y< < + < < + = , 
 ( , ) ( , )B BP x X x dx y Y y dy k p x y< < + < < + = ,  
where k dx dy= .  Furthermore,  

( , ) ( ) ( | )F F Fp x y p x p y x= , and ( , ) ( ) ( | )B B Bp x y p y p x y= . 
Since 2B has a lower likelihood than 2F , it must be because ( )Bp y  is smaller than ( )Fp x , 
on average. 

This is odd because the 
specification of marginal 
distributions, ( )Bp y  and ( )Fp x  is not 
what we think of as the essential 
content of a ‘causal’ hypothesis.  The 
falsity of 2B  is already apparent from 
the pattern that forms when x values 
generated from y values, even we look 
at a narrow range of  y values.  The x 
values do not vary randomly to the left 
and to the right of the line Y = X, as 

2B claims.  Instead, they vary randomly 
to the left and the right of the line Y = 
2X with half the variance, just as we 
would expect if 1B  were true.  This is 
easily seen by plotting residuals (x − y) 
against y  (see Fig. 4).  The residual variance is equal to 1 because it is sum of two 
terms— one due to the deviation of the line Y = 2X from the line Y = X (the ‘explainable’ 
variation) and the other due to the smaller random variation about the line Y = 2X.  In 
contrast, if we were to plot the y residuals against x, then there would be no discernible 
correlation between the y residuals and x. 

Example 3:  We will have a counterexample to LTE if the competing hypotheses 
can be constructed so that the marginal components of their likelihoods are the same.  
Suppose that we are told an alternative story about how the marginal values are 

x − y

-2

2

y

Figure 4:  The x residuals (x − y) plotted as a 
function of y.  The residual has an average 
variation of 1, but the variation varies in a 
systematic way for different values of y. 
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generated. According to this version of Forward hypothesis, the x values are read from a 
predetermined list of values, and then a slight stochastic element imposed on the final  
value by randomly generating a small error from a uniform distribution of (small) width δ 
around the listed value.  That is, X has a uniform distribution between the listed value 
minus 2δ  and the listed value plus 2δ .  If we define 1ε δ= , then for all observed x, 

( )FP x dxε= .  Similarly, B asserts that y values are first drawn from a list and then 
randomized in the same way, so that ( )BP y dyε= .  The story about how the other 
variable is generated is the same as before, in each case.  Now, we are told that one of 
these hypotheses is true.  Can we tell which one?  Yes, by looking at the behavior of the 
residuals (as explained in Example 2).  Can we tell if we are just given the likelihoods?  
No, because the likelihoods are the same.  So, this is a counterexample to LTE. 

In this example, the Backward hypothesis is derived from 2B by changing the story 
about how the exogenous variable is generated.  If we were to replace this hypothesis 
instead with a variant of 1B , with the new story about how the exogenous values are 
generated, then the Backward and 
Forward hypotheses would be 
genuinely indistinguishable on the basis 
of the full data—either one could have 
generated the data, and we couldn’t 
know from the data which is true.  Yet, 
in this case, the Backward hypothesis 
would have the higher likelihood!  This 
does not contradict LTE because I have 
formulated it in a way that is 
completely neutral about how 
likelihoods are used.  Nevertheless, it is 
a counterexample to the Law of 
Likelihood (Hacking 1965, Royall 
1997), which claims that evidence E 
supports A better than B or is stronger 
evidence for A than for B if and only if 
the likelihood of A is greater than the 
likelihood of B. 

Example 4:  An interesting 
variation of Example 3 makes only one 
change.  Instead of a list of x values that 
are distributed in a Gaussian way around a central value (x = 0), suppose that list 
comprising of two clusters—200 values distributed around x = −10 with an apparently 
Gaussian distribution, and a list of 200 x values centered around x = +10 with a similar 
distribution.  The y values are generated in the same way as before.  This is hypothesis F.  
The data, which are actually generated according to F, are shown in Fig. 5.  B is the false 
hypothesis that is analogous to that in Example 3, with the only difference being the 
obvious one, that the list of y values now form two clusters, one centered at y = −10 and 
the other at y = +10.  If we are given the full data, then we can tell that B is false by 

-15 -10 -5 5 10 15

-15
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5

10

15

y

x

 
Figure 5:  The asymmetry of regression. If a 
regression analysis is performed on the two 
clusters of data separately, then the Forward 
regression lines will coincide.  But the Backward 
regression lines are very distinct. 
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looking at the residuals, as before.  So this is also a counterexample to the Likelihood 
Theory of Evidence (LTE). 

Example 5:  Example 4 is easily turned into an example model comparison.  
Construct the models F and B by the ‘causal’ equations Y X Uα β σ= + +  and 
X a bY sZ= + + , respectively, where U and Z are standard Gaussian, U is 
probabilistically independent of X, and Z is independent of Y.  F and B are models 
because the equations contain adjustable parameters.  The marginal distributions for each 
trial are added in the same way as in Example 4—they don’t introduce any adjustable 
parameters, even though the distributions vary from one trial to the next (they are not 
identically distributed).  F is true because one of the simple hypotheses in F is true:  
Suppose that the data are generated by 10

101
Y X U= + .  This choice of coefficients 

ensures that the variances of X and Y in the data are the same when the data are clustered 
around X = −10 and X = +10, as shown in Fig. 5.  With respect to the single-clustered 
data (Fig. 3), the likelihood functions of models F and B are not equal.  But, with respect 
to the data in Fig. 5, the maximum likelihoods of each model are now the same, which 
means that the likelihood of any hypothesis in one model can be matched by the 
likelihood of a hypothesis in the other model (see the Appendix for the proof).  In other 
words, the two models are equally good at accommodating the total data.  But they are 
predictively very different, as we are about to show. 

To complete the argument, we need only explain how the data (in Fig. 4) tell us 
which model is true.  One way would be to show that every hypothesis in B is false by 
plotting the residuals, as explained in Example 2.  But there is an easier way… 

The idea is to fit each model to the two clusters of data separately and compare 
the independent estimates of the parameters obtained from the best fitting curves.  I will 
describe this in a way that is reminiscent of the “test of hypotheses” that William 
Whewell called the consilience of inductions (Whewell 1858, 1989).  Let 1X  and 1Y  refer 
to the cluster of data on the lower left of Fig. 5, while 2X  and 2Y  refer to the cluster on 
the upper right.  Then F can be rewritten in terms of two stochastic equations, 

1 1 1 1 1Y X Uα β σ= + + , and 2 2 2 2 2Y X Uα β σ= + + , plus two constraints 1 2α α= and 

1 2β β= .13  The two stochastic equations are not rival models; they are parts of the same 
model (let’s call them submodels).  This way of writing the model makes no essential 
changes—it is just a different way of describing the same family of probability 
distributions.  If we fit the submodels to their respective clusters of data, we obtain 
independent estimates of the parameters from the best fitting lines, which we can then use 
to test the constraints. 

The results will be as follows.  Using the data in Fig. 5, the independent 
measurements of the F parameters will agree closely (by any statistical criterion).  But 
the B model will fail the same test.  To see this, rewrite B as 1 1 1 1 1X a bY sV= + + , and 

2 2 2 2 2X a b Y sV= + + , plus the constraints 1 2a a= and 1 2b b= .  The constraint 1 2b b= will be 
verified, but the constraint 1 2a a=  is not close to being true.  As shown in Fig. 5, the 
estimated values are approximately 1 10a = −  and 2 10a = + .  No statistical analysis can 
conclude that these are independent measurements of a single quantity.  The data shows 
plainly that B is the false model, and therefore LTE is false. 
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To put the point another way, B is false because it fails to predict features of one 
cluster of data from the rest of the data.  When we fit B to the lower data cluster, we get a 
backwards regression curve that approximates the line Y = − 10 + 2X (the steep line on 
the left in Fig. 5).  Recall from Example 1, and Fig. 3, that this is the line from which B 
could have generated the lower data without us being able to tell.  But we can tell that it 
did not generate the upper cluster of data—because the line does not pass anywhere near 
the points in the upper right quadrant.  B fails at this kind of cross-situational prediction, 
even though it is able to accommodate the full data perfectly well.  The Likelihood 
Theory of Evidence fails because likelihood functions merely determine degrees of 
accommodation, not prediction.  

6. Conclusion 

There are exceptions to the rule that all the empirical information relevant to the 
comparison of hypotheses or models is contained in the likelihoods.  Likelihood 
measures how well a hypothesis is able to accommodate the data, but it leaves out 
important information about how well it can predict one part of the data from another.  
Very often, these predictive achievements are conveniently summarized in terms of the 
agreement of independent measurements of the theoretical quantities posited by the 
models.   

The empirical overdetermination of parameters, or coefficients (Whewell 1958, 
Forster 1988), or constants (Norton 2000), played a pivotal role in Newton’s argument 
for universal gravitation (Whewell 1958, Forster 1988, Harper 2002), and in Perrin’s 
argument for the existence of atomic constituents of matter (see Norton 2000).  That is 
why the Likelihood Theory of Evidence and the Bayesian philosophies of science 
founded on it, will always fail to provide a complete theory of scientific reasoning. 

Statisticians have traditionally restricted their application of the Likelihood 
Theory of Evidence to a narrower set of inferential problems—mainly, those involving 
the estimation of parameter values under the assumption that the model that defines them 
is true.  But how does science establish the correctness of a model in the first place?  That 
question calls for a deeper understanding of scientific reasoning than any version of the 
likelihood theory can provide.  

In recent years, statisticians have turned their attention to the problem of model 
comparison, or model selection.  Unfortunately, most of the proposed model selection 
criteria are based on the comparison of single numbers derived from the likelihood 
function, and are therefore prone to the limitation described here.14  Criteria such as AIC 
(Akaike 1973) and BIC (Schwarz 1989) are examples because they are based on the 
maximum likelihood, which is a feature of the likelihood function.  Bayes Factors 
compare average likelihoods derived directly from the likelihood function.15   

Nevertheless, there is no reason why statistical methods cannot be used in 
evaluating the predictions of models, such as the predicted agreement of independent 
measurements; and this has always been a standard part of statistical practice.  The 
problem is that theory lags practice.  Future theories of statistical inference should pay 
more attention to well discussed ideas in philosophy of science, such as William 
Whewell’s concept of scientific induction (which he calls the Colligation of Facts) and 
the consilience of inductions (Whewell 1958, 1989).  Glymour taps into many of the 
same ideas in his early writings (e.g., Glymour 1980) and Forster (1988) uses 
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Whewellian ideas in replying to arguments against the existence of forces.16  A more 
general theory of scientific reasoning may also connect with an old argument for 
scientific realism described by Earman (1978), and independently by Friedman (1981), 
both of which are discussed in Forster (1986).  At the present time, these ideas have not 
been fully explored. 

Appendix 

Theorem:  If the maximum likelihood hypothesis in F is 10
101

Y X U= +  and the 
observed variance of X is 101, then the observed variance of Y is also 101.  Thus, the 
maximum likelihood hypothesis in B is 10

101
X Y Z= + , and they have the same 

likelihood.  Moreover, for any α, β, and σ, there exist values of a, b, and s such that 
Y X Uα β σ= + +  and X a bY sZ= + +  have the same likelihood. 

Partial Proof:  The observed X variance of data distributed in two Gaussian clusters 
with unit variance centered at X = −10 and X = +10, where the observed means of X and 
Y are 0, is equal to 

2 21 1 1 1
2 2 2 2i jN NVarX x x= +∑ ∑ , 

where ix denotes X values in the lower cluster and jx denotes X values in the upper cluster.  
If all the ix where equal to −10, and all the jx were equal to +10, then VarX  would be 
equal to 100.  To that, one must add the effect of the local variances.  More exactly,  

2 21 1 1 1
2 2 2 2(( 10) 10) (( 10) 10) 101i jN NVarX x x= + − + − + =∑ ∑ . 

From the equation 10
101

Y X U= + , it follows that 100
101101 1 101VarY = + = .  Standard 

formulae for regression curves now prove that 10
101

X Y= is the backwards regression line, 
where the observed residual variance is also equal to 1.  Therefore, the two hypotheses 
have the same conditional likelihoods, and the same total likelihoods.  It follows that the 
hypotheses 10

101
Y X Uσ= +  and 10

101
X Y Zσ= +  have the same likelihoods for any 

value of σ.  It is also clear that for any α, β, and σ, there exist values of a, b, and s such 
that Y X Uα β σ= + +  and X a bY sZ= + +  have the same likelihoods. 
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Notes: 

                                                 
1 Thanks go to all those who responded well to the first version of this paper presented at the University of 
Pittsburgh Center for Philosophy of Science on January 31, 2006, and especially to Clark Glymour.  A 
revised version was presented at Carnegie-Mellon University on April 6, 2006.  I also wish to thank Jason 
Grossman, John Norton, Teddy Seidenfeld, Elliott Sober, Peter Vranas, and three anonymous referees for 
valuable feedback on different parts of the manuscript. 
    This paper is part of the ongoing development of a half-baked idea about cross-situational invariance in 
causal modeling introduced in Forster (1984).  I appreciated the encouragement at that time from Jeff Bub, 
Bill Demopoulos, Michael Friedman, Bill Harper, Cliff Hooker, John Nicholas, and Jim Woodward. Cliff 
Hooker discussed the idea in his (1987), and Jim Woodward suggested a connection with statistics, which 
has taken me 20 years to figure out.  
2 Terminology varies.  In the computer science literature especially, a simple hypothesis is called a model 
and what I am calling a model is referred to as a model class. 
3 A peculiar thing about the quote from Barnard (above) is that he refers to the likelihood of a simple 
hypothesis as a probability function.  It is not a function except in the very trivial sense of mapping a single 
hypothesis to a single number. 
4 Akaike 1973, Sakamoto et al. 1986, Forster and Sober 1994, Burnham and Anderson 2002. 
5 In contrast, the Law of Likelihood (LL) is very specific about how likelihoods are used in the comparison 
of simple hypotheses.  Forster and Sober (2004) argue that AIC is a counterexample to LL.  Unfortunately, 
Forster and Sober (2004) mistakenly describe LL as the likelihood principle, which was pointed out by 
Boik (2004) in the same volume.  For the record, Forster and Sober (2004) did not intend to say anything 
about the likelihood principle—the present paper is the first publication in which I have discussed LP. 
6 See Forster (2000) for a description of the best known model selection criteria, and for an argument that 
the Akaike framework is the conceptually clearest framework for understanding the problem of model 
selection because it clearly distinguishes criteria from goals.  
7 The term ‘predictive accuracy’ was coined by Forster and Sober (1994), where it is given a precise 
definition in terms of SOS and likelihood fit functions. 
8 I owe this suggestion to Jason Grossman. 
9 The problem is the same one discussed in Forster 1988b. 
10 While the refutation is not refutation in the strict logical sense, the number of data in the example can be 
increased to whatever number you like, so it becomes arbitrarily close to that ideal. 
11 Fitelson (1999) shows that choice of the difference measure does matter in some applications.  But that 
issue does not arise here. 
12 Causal modeling of this kind has received a great deal of attention in recent years.  See Pearl (2000) for a 
comprehensive survey of recent results, as well as Woodward (2003) for an introduction that is more 
accessible to philosophers. 
13 The word ‘constraint’ is borrowed from Sneed (1971), who introduced it as a way of constraining 
submodels.  Although the sense of ‘model’ assumed here is different from Sneed’s, the idea is the same. 
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14 Myrvold and Harper (2002) criticize the Akaike criterion of model selection (Forster and Sober 1994) 
because it underrates the importance of the agreement of independent measurements in Newton’s argument 
for universal gravitation (see Harper 2002 for an intriguing discussion of Newton’s argument).  While this 
paper supports their conclusion, it does so in a more precise and general way.  The important advance in 
this paper is (1) to point out that the limitation applies to all model selection criteria based on the 
Likelihood Principle and (2) to pinpoint exactly where the limitation lies.  Nor is it my conclusion that 
statistics does not have the resources to address the problem.  
15 Wasserman (2000) provides a nice survey. 
16 Hooker (1987) and Norton (1993, 2000) discuss relevant issues and examples; in fact, there is a wealth of 
good literature in the philosophy of and history of science that deserves serious attention from outsiders. 


