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or 

why Category theory does not support mathematical structuralism 
 

1. Mathematical Interpretation  

a) Hermeneutics of the Pythagorean theorem 

In his (1883) and a number of later writings W. Dilthey urges the autonomy of humanities 

(Geisteswissenschaften)1 from natural sciences (Naturswissenschaften). Dilthey’s principle 

argument is methodological: objecting against attempts of Compte and Mill to extend 

scientific methods to moral, political and other humanities issues Dilthey purports to 

constitute the autonomy of humanities by providing them with a proper methodology 

independent from that of natural sciences.  An important role in the Dilthey’s methodology of 

humanities plays his notion of hermeneutic understanding, viz. an understanding achieved 

through an interpretation, which Dilthey distinguishes from understanding achieved through a 

scientific explanation. As it has been noticed already by Husserl (1954) and recently stressed 

by Brown (1991), Crease (1997) and Salanskis (1991) hermeneutic issues are in fact not less 

important in natural sciences and mathematics than in humanities. A straightforward evidence 

of the relevance of understanding through interpretation in mathematics comes from the usual 

school practice: what counts as a genuine understanding (as opposed to mechanical 

memorising ) of a given mathematical fact by a pupil is his or her capacity to formulate and 

prove it in his or her “own words” and apply it in a new unexpected situation. Obviously in a  

research environment the variability of forms of expressions of mathematical contents is even 

higher.  

How this variability allows for a stable translatable mathematical content (meaning)  and how 

precisely this phenomenon can be described?  I think that this question has been so far very 

little studied. The question is not really specific for mathematics and can be easily 

reformulated as a problem of general theory of meaning. However the case of mathematical 

meaning is particularly interesting because in this case we have a better chance to solve the 

                                                
1 The term “Geisteswissenschaften” has been earlier suggested by Gernon, the first German translator of Mill’s 
System of Logic (1843), as translation of Mill’s “Moral Sciences”. 
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problem by rigor mathematical methods. As far as the problem is solved inside mathematics 

one can think about application of the obtained mathematical solution elsewhere2.  

It might be argued that a mathematical content shouldn’t be confused neither with cognitive 

and social activities through which this content is “proceeded”, nor with various symbolic and 

linguistic forms in which this content is expressed and communicated. It might be further 

argued that once a mathematical content is considered on its own rights the hermeneutic 

issues become irrelevant. In the next paragraph I shall show that the latter claim is false since 

there are important issues, which can be described both as “purely mathematical” and 

hermeneutic. In the present paragraph I shall show that the former claim is problematic even 

if not plainly false since a mathematical content cannot, generally speaking, be easily 

separated from its form of expression in a way making the form of expression mathematically 

irrelevant.   

Think about the Pythagorean theorem.   As formulated in (Lang&Murrow 1997, p.95) the 

theorem says this:  

 

(LM) Let  XYZ  be a right triangle with legs of lengths x and y, and hypotenuse of length z. 

Then x2 + y2 =z2.   

 

(Doneddu 1965, p.209) under the title Pythagorean theorem states the following (my 

translation from French): 

 

(D) Two non-zero vectors x and y are orthogonal if and only if  (y- x)2 = y2 + x2. 

 

Finally the famous proposition 47 of Book 1 of Euclid’s Elements states this (hereafter I quote 

Euclid by Heath’s translation (1926):  

 

                                                
2 Brown certainly goes too far when he says: 
“Any notion of a correct universal meaning does not arise within hermeneutic understanding. The way in which 
an expression is seen and used is always in a state of flux, being modified as the life experience of the individual 
affects the contexts in which it is seen as being appropriate.”  
Perhaps some reservations about the idea of “universal meaning” should be indeed made  (as also suggested by 
my analysis of the Pythagorean theorem below in the main text) however the very fact that the “flux” that Brown 
talks about involves amazingly stable structures is just too obvious. This fact is not incompatible with Brown’s 
dynamic approach (which I think is basically correct) but shows a non-trivial character of the mathematical  
conceptual dynamics.  I would like also to notice that even if this dynamic approach is not metaphysically 
neutral it doesn’t imply the radical social constructivism, to which Brown adheres in his (1994), but squares 
equally well with broadly empiricist views on mathematics.  



 3 

(E) In right-angled triangles the square on the side subtending the right angle is equal to the 

squares on the sides containing the right angle.  

 

Are (LM), (D) and (E) different forms of the same theorem? An attentive reader will 

immediately answer in negative pointing to the fact that (D) comprises the proposition usually 

called the converse of the Pythagorean theorem. This Donnedu’s terminological decision I 

leave without commenting but ask the same question exchanging (D) for its only if part 

(which I denote (D’) for further references). Now a plausible answer is Yes, of course! 

However obvious might be the answer, particularly in a mathematician’s eyes, let’s make 

some basic hermeneutics about (LM), (D’), (E) and read these propositions carefully before 

making any decision. Obviously each of the three propositions can be correctly interpreted 

only within a larger theory. Fortunately all the three books, from which I took the quotations, 

are elementary textbooks and so require no or very little previous mathematical knowledge. 

So in each of the three cases it is clear what is the corresponding larger theory. To simplify 

my task I shall skip almost everything concerning proofs of the theorems and discuss only 

their statements.  

Lang&Murrow in their book for beginners provide a fairly minimalist conceptual basis for 

their version of the Pythagorean theorem: before learning the theorem a student is supposed 

only to habituate him- or herself to basic geometrical constructions like triangles and learn the 

notion of length of a given straight segment. The latter notion reduces in the Lang&Murrow’s 

book to the notion of distance between two given points. Lang&Murrow introduce the notion 

of distance through informally stated axioms of metric space and occasionally mention that 

distances are numbers one reads off from a graduated ruler. What a smart kid should think 

given two different rulers one of which is graduated in inches and the other in centimetres? 

The unwillingness of the authors to elaborate on this point is understandable since they 

commit themselves to keeping the Pythagorean Secret (not to be confused with the 

Pythagorean theorem) out of the reach of their students. I mean the incommensurability 

problem. Following the teaching strategy, which the legend attributes to Pythagoras himself, 

Lang&Murrow like most of authors of today’s elementary mathematical textbooks reserve the 

truth about incommensurability for those of older students who choose to study mathematics 

at an advanced level and are capable not only to see the problem but also treat it by a modern 

remedy.  

(Doneddu 1965) shows how the remedy may look like. This textbook applies Bourbaki’s 

“architectonic” principles: it starts with making up a Boolean set-theoretic framework, then 
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develops on this basis a theory of real numbers, and only after that comes to geometrical 

issues construing the Euclidean space as a vector space over the field of the reals.  Formula   

(y- x)2 = y2 + x2  

requires an accurate interpretation: the minus sign on the left denotes the subtraction of 

vectors while the plus sign on the right denotes the sum of real numbers (so the two signs do 

not denote here reciprocal operations as usual); the square on both sides is understood in the 

sense of the scalar product of vectors. We see that the price of the rigor is quite high: the 

Donnedu’s  version of Pythagorean theorem requires from the pupil a much more serious 

preparatory work, and after all the theorem doesn’t explicitly refer to any triangle at all3!  

Euclid’s classical presentation of the Pythagorean theorem depends, of course, on principles 

laid out in the beginning of the first book of the Elements. An extended historical comment on 

this theorem wouldn’t be appropriate here, so I shall stress only one point often presenting a 

difficulty for a modern reader. (E) says  that the bigger square equals to the smaller squares. 

How to understand this? An interpretation that immediately comes to mind is this: the area of 

the bigger square equals the sum of the areas of the smaller squares. But this is certainly not 

what Euclid says. Euclid speaks here about equality of figures, not about equality of  their 

areas. In spite of the significant differences between Euclid’s and Hilbert’s axiomatic methods 

stressed in what follows, it is safe to think about the relevant notion of equality as formally 

introduced through Axioms of the first Book of the Elements. (I follow Heath saying this. I 

shall argue in what follows that the principle difference between Euclid’s and Hilbert’s 

methods concerns Euclid’s Postulates but not the Axioms4). The Axioms give this: (i) equality 

is transitive (Axiom 1; symmetry of this relation is granted by the linguistic form, in which 

the Axioms are expressed); (ii) congruent figures are equal (Axiom 4); (iii) figures, which can 

be composed out of equal figures or complemented to equal figures, are equal (Axioms 2,3). 

Clearly Euclid’s equality is a binary relation, so when he says in 1.47 that one square equals 

two other squares it is puzzling. The solution of the puzzle is this: consider the union of the 

two smaller squares as one relatum, and the bigger square as the other relatum. Remark that 

(iii) applies to the case of topologically disconnected figures like the union of two squares. So 

using Axioms 1-4 and a number of preceding theorems Euclid proves his version of the 

Pythagorean theorem. The equality of areas, of course, implies the Euclidean equality just 

                                                
3 This is a reason why mathematical textbooks like Doneddu’s written in 60-70-ies in order to apply the 
Bourbaki’s standard (or some its mild version) in the school practice are today only rarely in use. See (Kline 
1974).  
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explained. The converse, however, doesn’t always hold. It doesn’t hold, for example, for 

circles: given two smaller circles such that the sum of their areas is equal to the area of a 

bigger circle the bigger circle is obviously not equal in the Euclidean sense to the two smaller 

circles. A less trivial mathematical fact is that polyhedra of the equal volume are, generally 

speaking, not equal in the Euclid’s sense either.  

This short exposition of (LM), (D’) and (E) is by far sufficient for claiming the obvious: 

although there is a sense in which all the three propositions express the “same theorem”, the 

differences between them are quite significant from a mathematical viewpoint. So the claim 

that the three propositions say “essentially the same thing” cannot and shouldn’t be taken as 

obvious. One who seeks to sweep the issue of interpretation out of mathematics might 

probably take now a different strategy and claim that, say, only (D’) represents the 

Pythagorean theorem in its correct form while (E) is hopelessly outdated and (LM) is a 

simplified account for kids. Then it may be argued that the problem of how to translate 

between (LM), (D’) and (E) belongs to the history of mathematics and to the theory of 

mathematical teaching but not to the pure mathematics. Perhaps a sufficient purification of the 

meaning of “mathematics” can make this view tenable. But I don’t think that such purification 

would be reasonable. The fact that certain mathematical facts like the Pythagorean theorem 

survive during millennia through very different conceptual settings and reappear in new forms 

seems me very significant. A formal analysis fails to account for this long-term stability of 

mathematical concepts just like it fails to account for the fast conceptual dynamics of a 

mathematical classroom. (LM), (D’) and (E) are called by the same name of the Pythagorean 

theorem not only for historical reason. There is a genuine mathematical reason for this. 

However it would lead me too far if I elaborate here further on mathematical contents of 

different versions of the Pythagorean theorem. Instead I shall try to answer this general 

hermeneutic question: How the claim that given mathematical propositions A, B “say the 

same thing” can be possibly justified?  

Consider the notion of logical equivalence first. May one generally look at logically 

equivalent mathematical propositions A,B (i.e. propositions which imply each other) as  

different expressions of the same mathematical fact? Obviously not. Equivalent mathematical 

propositions may “mean” very different things, so the equivalence of two given mathematical 

propositions may be quite non-obvious. For example in the traditional Euclidean setting the 

                                                                                                                                                   
4 Euclid calls these propositions not “axioms” but “common notions”. The term “axiom” is used by Aristotle; in 
particular Aristotle qualifies Euclid’s “common notions” as axioms. So this identification is apparently 
unproblematic.  
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theorem saying that the sum of internal angles of any triangle is equal to two right angles is 

equivalent to the to the Fifth Postulate (“Axiom of Parallels”).  But this cannot be seen 

immediately without a proof: the two propositions  mean different things. So the logical 

equivalence is not sufficient for the purpose. But is it necessary? Given that A, B are  

“different forms of the same theorem” does it follow that A,B are logically equivalent (in 

symbols A!B)? This might sound like a reasonable requirement but looking at our example 

of the Pythagorean theorem one would wish to relax it. For given A, B one cannot assert and 

moreover prove A!B unless A,B belong to the same theory. But our (LM), (D’), (E) all 

belong to different theories! Let’s see whether such a common background theory C can be 

acquired. Recall that (LM), (D’), (E) as they stand cannot be separated from their mother 

theories without changing their meanings. So the wanted background theory C should 

incorporate not only the three propositions but also the three corresponding theories or at least 

relevant parts of these theories. Some bricolage of this sort can be certainly made up (usual 

school geometry textbooks provide many such examples) but one cannot seriously believe 

that a combination of a Bourbaki-style set-theoretic framework with Euclid’s Elements could 

give a viable  mathematical theory. Instead of combining theories treating differently the 

“same subject”  (in a sense that we are still looking to define) it is much more reasonable to 

try to interpret theories in each other’s term. So let’s leave the notion of logical equivalence 

aside and consider instead how mathematical propositions belonging to different independent 

theories may translate to each other.  

Remark that a bare claim that, say, (LM) translates to (E) and/or vice versa doesn’t explain 

anything and can provide no additional support for the idea that (LM) and (E) express the 

same theorem. But how the claim that A translates to B (in symbols A!B) can be justified at 

all? Let’s consider a linguistic analogy. What kind of justification except an appeal to 

authority can be provided for the claim that the Latin phrase cogito ergo sum translates into 

the English phrase I think therefore I am? In order to apply this linguistic example to our 

mathematical problem we need to imagine a person who has a good command both in Latin 

and English but doesn’t know how exactly to translate between the two languages. This 

situation is less unusual than it might seem: to have a good command in languages is 

necessary but certainly not sufficient for being a good translator. Similarly one may well 

understand both Euclid and Doneddu and have a strong feeling that sometimes the two 

authors touch upon the same subject matter but be nevertheless unable to make any 

reasonable translation between the two accounts. In order to avoid such schizophrenic 

situations let’s think of two persons instead of one: an Englishman who doesn’t understand 
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Latin and a Roman who doesn’t understand English. The Englishman is trying to translate the 

Roman’s saying cogito ergo sum. The Roman’s role is this: when he hears a meaningful 

response from the Englishman he continues the dialog, else he remains silent. The question of 

what exactly the Roman counts as meaningful is, of course, crucial for this language game: let 

the Roman be liberal about this but asking for something more than merely syntactic 

correctness. The Englishman is aware about the basic linguistic convention just mentioned, so 

he can always check with the Roman whether Latin expressions he’s trying to construct are 

meaningful or not.  

Now suppose that by a miracle (or memory of his university courses) the Englishman guesses 

correctly the English translation of cogito ergo sum. Moreover he guesses correctly the 

following detailed translation:  

cogito!I think 

ergo! therefore 

sum!I am. 

At this point an experimental check of the guess becomes possible. The Englishman observes 

that the phrase I think therefore I am allows for an rearrangement of its elements bringing 

another meaningful English phrase: I am therefore I think. The reason why this transformation 

is possible is in fact quite profound: both English phrases have the same logico-grammatical 

structure, which allows for transformation of X therefore Y into Y therefore Y (this 

transformation is obviously not truth-preserving and not meaning-preserving but it preserves 

meaningfulness). The Englishman hypothesises that Latin has the same structural property 

and tries sum ergo cogito. It works and so the Englishman gets from the Roman a new 

linguistic material for continuing the game. If the Englishman makes enough correct 

hypotheses the game may turn into a genuine conversation in Latin. Remark however that the 

following erroneous tentative translation 

cogito ergo sum !  I am therefore I think 

specified as  

 cogito!I am 

ergo! therefore 

sum!I think 

passes through the same check. The error may be revealed if an Englishman’s attempt to 

construct another Latin phrase using sum for I think or cogito for I am produces a sheer 

nonsense.   
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The moral of this example is this. To construct (not just stipulate) a translation between two 

mathematical propositions A,B belonging to corresponding theories TA and TB one has to 

look both inside and outside the given propositions. Looking inside A and B one distinguishes 

elements of both and specifies which translates to which. This, generally speaking, can be 

done in many different ways. Outside A and B one looks for other propositions A’,B’ built 

out of the same elements and translates A’, B’ elementwise. This may rule out certain 

hypothetical translations like in the above linguistic example. Remark that meaningfulness in 

any given language can be defined differently (more or less liberally). In mathematics too one 

may make different requirements concerning what a correct translation is supposed to 

“preserve”. Obviously any translation of mathematical propositions should preserve truth-

values or at least it should always translate true propositions into true propositions. (This 

requirement doesn’t allow for replacement of translation by logical implication.) Extending in 

this way the domain of translation one might ultimately get one or few global translations 

TA!TB. One may also encounter a situation when no extension of the domain of translation 

is possible. In this latter case there is no other solution but consider the translation A!B as 

primitive. Generally, a given translation A!B  is extendable up to translation TA’!TB’ 

between certain fragments of theories TA and TB. The reader can easily see that this is the 

case for any reasonable translation between (LM), (D’) and (E). The replacement of Euclidean 

squares by squares of real numbers generalises upon the case of rectangles in the obvious 

way. This allows for a uniform translation of Euclidean propositions of the type of theorems 

of the Book 2 of Elements but hardly for more than that. Although this extension of the 

domain of translation is very limited it justifies the claim that the translation rule in question 

is meaningful.  

Unless one figures out a space of possible translations  between (LM), (D’) and (E) and their 

corresponding theories (which can be called a hermeneutic space) the question whether these 

propositions tell us the same thing or different things can be hardly reasonably answered. In 

fact to describe such a space seems to be more important than to give a yes-no answer to the 

above question, which in any event is a matter of convention. (Obviously the mere existence 

of translations between propositions A,B is not sufficient for considering these propositions as 

identical: one should rather require the existence of reversible translations of a certain kind.)  

I hope that I have shown that even in elementary cases like that of the Pythagorean theorem 

the issue of translation between different mathematical setting is not quite trivial. For a more 

involved example of the same type think about Bourbaki’s seminal work (1939 -). Today one 

can hardly seriously claim that Bourbaki revealed to the rest of mathematical community the 
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way in which one must do mathematics. He rather showed a way of doing mathematics, 

which is good for certain purposes and not good for certain other purposes. It seems that we 

still lack is a precise mathematical account of what the “bourbakization” of mathematics 

exactly amounts to: how a given mathematical theory translates from its original form to its 

bourbakized form. The same applies to categorification of mathematics discussed in what 

follows, and to any other past or future project of reconstruction of the whole of mathematics 

on a new conceptual basis. Although the categorification can be rightly viewed as one project 

of the kind among many others I shall show in what follows that it also provides a natural 

framework for treating the meta-problem just posed.  

To conclude this paragraph let me stress what I see as the principle epistemological impact of 

the hermeneutic approach. A theory (mathematical or not) can be thought of  as an umbrella 

embracing a plurality of concepts, facts, etc. and making these things into one structured 

whole – and built accordingly. Alternatively a theory can be thought of and built as a network 

of coherent translations between different viewpoints5, individual experiences, cognitive and 

linguistic activities, etc. (recall the mathematical classroom). The hermeneutic approach 

corresponds to the latter option. We shall see that the hermeneutic approach to theory-

building squares well with the ongoing project of categorification of mathematics.   

 

b) Imaginary geometry of a hilly terrain 

Hermeneutic issues about mathematics discussed in the previous paragraph involved a 

historical and educational dimension.  Now I shall show how the notion of interpretation gets 

involved in mathematics in a more abstract manner and becomes “purely mathematical”.   The 

term “interpretation” appears in the title of Beltrami’s paper of 1869 Saggio di interpetrazione 

della geometria non-euclidea which in eyes of many people first showed that the non-

Euclidean geometry was something “real”. However the history of interpretation as a 

mathematical concept starts not with this paper but sometime in 1820-ies (if one makes a 

reasonable distinction between the history and the corresponding prehistory). Interestingly 

(but perhaps not so surprisingly) interpretation became a genuine mathematical issue during 

the same period of time (and mostly in the same part of the Europe) when Schleiermacher, 

Dilthey and their followers stressed the role of interpretation in humanities. This emergence 

of the “interpretative mathematics” in 19-th century is, in my view, crucially important for an 

                                                
5 Think about relativistic theories in physics beginning with Classical Mechanics.  
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adequate understanding of history of mathematics of 20-th century and of the present situation 

in this discipline. So let me shortly recall the history.  

As it is well known Lobachevsky discovered the non-Euclidean geometry presently called by 

his name through “playing with axioms”, namely through the replacement of Euclid’s Fifth 

Postulate (“Axiom of Parallels”) by its negation. Like his Ancient and Modern predecessors 

Lobachevsky hoped to get a contradiction and hence a proof of the Postulate. However like 

Bolyai and few other people working on the problem around the same time Lobachevsky at 

certain point changed his attitude and came to the conviction that he explored a new vast 

territory rather than approached the desired dead end. He called this new geometry Imaginary 

(Lobachevsky 1837) because of the speculative character of his enterprise and probably as a 

precaution: if his theory would turn after all to be contradictory he would win anyway getting 

the wanted proof. Nevertheless Lobachevsky seriously considered a possibility of using 

astronomical observations for checking whether the physical space is Euclidean or not. 

Moreover he rightly noticed that the Euclidean hypothesis can be possibly falsified but not 

definitely verified through observations because of limited accuracy of astronomical 

measurements. Lobachevsky’s epistemological stance with respect to this question fits very 

well a broadly positivist view on relationships between science and mathematics according to 

which mathematics is a domain of a pure speculation while application of mathematics in 

sciences and technology is an empirical matter.  

While Lobachevsky made his discoveries following a traditional line of research Gauss got a 

totally different insight on the problem. Although Gauss’ name hardly needs an additional 

promotion in the history of mathematics, I claim that his role in the discovery of non-

Euclidean geometries is often misinterpreted and underestimated (like in Bonola 1908). After 

reading Bolyai’s paper (1832) Gauss claimed that he found for himself nothing new in it, and 

this claim is at least partly confirmed by existing evidences. He made then a controversial 

remark that “to prise it (the Bolyai’s paper – AR) would mean to prise himself” (Bonola 

1908). Historians often explain this Gauss’ reluctance by personal and sociological reasons or 

by his alleged epistemological conservatism. I think that Gauss’ cautious attitude to Bolyai’s 

and Lobachevsky’s results was quite justified and so it doesn’t need any non-mathematical 

explanation. Gauss didn’t share Lobachevsky’s notion of geometry as a speculation but 

considered it as an empirical science6. For this reason he was very sceptical about the whole 

                                                
6 “…wenn die Zahl bloss unsers Geistes Product ist, der Raum auch ausser unsern Geiste eine Realitaet hat, der 
wir a priori ihre Gesetze nicht vollstaendig verschreiben koennen.” Gauss’ letter to Bessel 9 April 1830; Werke, 
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line of research that  led to Lobachevsky’s discoveries (known at the time as the “theory of 

parallels”). This Gauss’ attitude had nothing to do with conservatism: on the contrary, in 

Gauss’ eyes the theory of parallels was too traditional and missed really new ideas7. From the 

today’s historical distance it is easy to argue that Gauss was perfectly right, and that his 

insights clearly spelled out by Riemann in 1854 played more important role in the change of 

views on space it time occurred in the 19-20-th century than the whole story about the Fifth 

Postulate. However one had to be a mathematician of the rang of H. Weyl to see this clearly 

already in 1918: 

 

“The question of the validity of the “fifth postulate”, on which historical development started 

its attack on Euclid, seems to us nowadays to be a somewhat accidental point of departure. 

The knowledge that was necessary to take us beyond the Euclidean view was, in our opinion, 

revealed by Riemann.”8 

 

Given that Riemann’s concept of manifold provides the mathematical basis of the today’s best 

theory (or theories) of space and time, and so replaces in this role Euclidean space of Classical 

mechanics, Weyl’s point is hardly disputable. That Riemann’s geometrical works are directly 

based on Gauss’ is not disputable either. What makes it difficult for a part of historians to 

appreciate Gauss’ and Riemann’s contribution is apparently the fact that the mathematical 

work of these people doesn’t fit the popular story about liberalisation of mathematical thought 

from its alleged stickiness to everyday spatial experience by Lobachevsky9. Riemanean 

geometry just like Euclidean geometry about two and a half millennia earlier has been first 

sketched on the ground by Gauss and only after that worked out in a more abstract form by 

Riemann and correctly applied by Einstein to Heavens. What triggered this development was 

a new attentive look at the space we live in rather than a mere play of imagination or an 

abstract mathematical speculation.  

In 1818-1832 Gauss was busy with what geometry used to be in its early age and later got a 

different name of geodesy. He started with the obvious observation that the hilly terrain of 

Hanover was not an Euclidean plane. He also saw that that the current physical hypothesis 

                                                                                                                                                   
v. 8, p. 201. The context makes it clear that Gauss makes here no difference between geometrical and physical 
space.   
7 “In der Theorie der Parallellinien sind wir jetzt noch nicht weiter als Euklid war. Diess ist die partie honteuse 
de Mathematik die frueh oder spaet eine ganz andere Gestalt becommen muss.” Werke v.8, p. 166. This is 
written in 1813, that is, before Bolyai’s and Lobachevsky’s works were published. But I believe that Gauss 
didn’t find the new Gestalt he was looking for neither in Bolyai nor in Lobachevsky.  
8 Weyl 1952,  pp. 92 
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according to which the Kingdom of Hanover together with its mother planet float in the 

infinite Euclidean space was not particularly helpful for geodesic purposes. So he looked for 

different geometrical models. This led him to the theory of curved surfaces that he presented 

in his Disquitiones generales circa superficies curva published in 1827. One may speculate 

that if Gauss like today’s cartographers would have a properly equipped satellite in his 

disposal he wouldn’t make his geometrical discoveries. There are firm evidences that Gauss 

saw connections between non-Euclidean (or anti-Euclidean as he himself called it) geometry 

obtained through playing with axioms and the geometry of curved surfaces he was working 

on. I believe that Gauss rightly guessed that the latter leads to a more fundamental 

generalisation of the notion of space than the former.  

The key Gauss’ idea that allowed for this generalisation was the idea of intrinsic geometry of 

a given surface. Abbott’s popular Flatland (first edition 1884) explains the idea but 

oversimplifies the general situation: really interesting things happen when one consider living 

on a curved surface rather than in the Flatland. (For a better example consider living on a 

sphere like our golobe.) Abbott seems to suggest to the reader the following moral: just like 

3D creatures like ourselves are in a position to observe things going on a plane from a “higher 

viewpoint” and perform tasks impossible on the plane (like escaping from a plane prison) a 

creature living in a space of 4 or more dimensions would find herself in a similar position 

with respect to us ordinary humans. Abbott might believe that this higher viewpoint could be 

achieved through doing mathematics. But this moral is not justified mathematically. However 

fascinating the idea of 4D space might be the intuition that rising of dimension allows for 

solving problems in lower dimensions is quite misleading. Given a geometrical problem on a 

plane switching to 3D space is rarely helpful10. The idea of “intrinsic viewpoint” obtained 

through lowering the dimension is much more profound, and as a matter of fact it played a far 

more important role in mathematics of late 19-th and the whole of 20-th century.  

However naive might sound the story about life on a surface it is indeed profound both 

philosophically and mathematically. Philosophically because it amounts to a non-trivial 

relativisation of the notion of space. One may conceive of space either as a container of 

spatial (geometrical) objects or as a network of relations between such objects. These two 

possibilities reflect the Modern dilemma between the “absolute” and the “relational” theories 

of space. The two possibilities seem to be mutually exclusive but they are not:  a space in the 

                                                                                                                                                   
9 Bonola 1955, Toepell 1986 
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sense of  container can be identified with an object standing in a particular relation to other 

objects. Given, say, a sphere S in space E one may think of S as a space containing certain 

other objects: points, circles, spirals, spherical triangles, etc. This gives a relational theory of 

space compatible with the idea of space as container. Remark that this theory makes relational 

the very distinction between a space and an object in a space. Aristotle made a similar move 

when he defined a place P of a given body A as the internal surface of another body B, 

namely of the “smallest container” of A.   

Let me now show that this move is mathematically non-trivial. What is life on a sphere from 

an intrinsic mathematical viewpoint? First of all, we don’t have the usual notion of sphere, in 

particular, its centre doesn’t belong to our space and so “doesn’t exist” for us. However some 

basic features of the sphere can be detected without leaving the surface: for example, the fact 

that moving “straight ahead” (this latter notion also needs to be specially defined) one returns 

to the starting point. Gauss’ principle achievement in his theory of surfaces was the distinction 

between these two kinds of properties, viz. intrinsic and extrinsic: the latter depend on the 

ambient 3D space, the former do not. The possibility of purely intrinsic description of a 

surface leads to a generalisation of the Euclidean notion of space, that is, to non-Euclidean 

geometries: only in the special case when the given surface is flat its intrinsic geometry is 

Euclidean. Riemann in (1854) sketched this new notion of space and called the new concept 

by the term manifold occasionally used before by Gauss. A Riemanean manifold is a n-

dimensional analogue of a curved surface seen intrinsically. The talk of a curved space, which 

became colloquial after Einstein, refers to the concept of Riemanean manifold.  

Let’s now return to Beltrami. This man like Gauss started his research in geometry with 

geodesy. He knew Gauss’ results in this domain and tried to elaborate on them. Beltrami’s  

geometrical discoveries originated from the classical cartographic problem: How to make a 

plane map of a curved surface? More specifically Beltrami asked the following question:  

How to map a curved surface onto a plane in such a way that the mapping is one-to-one on 

points and geodesic lines on the surface go to straight lines on the plane? (A geodesic is a line 

that marks the shortest path between its close points; geodesics on a plane are straight lines. 

So the notion of geodesic generalises upon that of a straight line for the case of curved 

surfaces. The notion of geodesic is intrinsic: distances of paths between points of a surface 

don’t depend on how the surface is embedded into a space.)  Here is first important result 

                                                                                                                                                   
10 An interesting example is given by conic sections. This issue has been first treated in Antiquity as 3-
dimensional. But a more satisfactory theory of conics found in any standard textbook is 2-dimensional. The issue 
becomes clearer through lowering but not rising of dimension.   
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obtained by Beltrami: such a mapping is not possible unless the curvature of the surface in 

question is constant. (The curvature is a basic local intrinsic property of a given surface, 

which shows how much the surface is curved around a given point; the concept is due to 

Gauss.) Hence Beltrami’s interest to surfaces of constant curvature (a sphere is an obvious 

non-trivial example) – the issue which had been already studied before Beltrami by another 

Gauss’ follower Minding11. In 1866 Beltrami read (Lobachevsky 1840) in French translation 

recently published by Beltrami’s long term collaborator Houel. This led Beltrami to his main 

discovery presented in his Saggio of 1868: mapping geodesics of a surface of constant 

negative curvature (which Beltrami called a pseudo-sphere) to straight lines of a plane one 

gets the Lobachevskian “imaginary” but not the “real” Euclidean geometry. Beltrami’s 

immediate interpretation of this result was this: Lobachevsky’s “imaginary plane” is in fact a 

pseudo-sphere!  

From an epistemological viewpoint the situation looked curious. Consider this analogy.  

John studies ants and makes some unusual hypothesis about these animals. This hypothesis 

has consequences, which are even more unusual but cannot be definitely ruled out by 

available observations. Given the lack of a decisive evidence John’s hypothesis is commonly 

viewed as a clever speculation and doesn’t attract much attention. But then a unexpected 

event happens. John’s colleague Peter discovers that John’s theory perfectly describes the life 

of cockroaches. So Peter publishes a paper where he claims that John’s theory is fine but the 

author mistook the animals.   

Remark that the cartographic problem of mapping curved surfaces onto a plane already 

involves a mathematical notion of interpretation: figures on a surface are interpreted  as some 

other figures on a plane and the other way round. In a more general way this issue is treated in 

the  projective geometry, which is another important source of  interpretative or hermeneutic 

mathematics emerged in 19-th century. However Beltrami’s Saggio put the problem of 

interpretation in mathematics onto a new level: the issue was no longer only about 

interpretation of particular geometrical objects in terms of their images but about 

interpretation of a theory, viz. of Lobachevsky’s imaginary geometry, in terms of another 

theory, viz. Euclidean geometry supplemented by Gauss’ theory of curved surfaces. The 

                                                
11 A thorough historical account of Beltrami’s research and all needed references can be found in 
Boi&Gacardi&Tazzioli (1998). I follow it in the present paper. Noticeably Beltrami in his published worked and 
particularly in his correspondence is very explicit about his sources and motivations, so I don’t think that there is 
any room for historical controversies here.  
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closest historical analogy of this new situations mentioned by Beltrami himself12 is the 

interpretation of arithmetic of complex numbers in terms of the Euclidean planimetry.  

Beltrami’s Saggio was impressive but had two serious flaws. An attentive reader might detect 

the first one through my informal description of Beltrami’s work. What does it mean that 

through mapping geodesics of a pseudosphere to straight lines of a plane one gets 

Lobachevskian geometry? If the plane is Euclidean this is a sheer contradiction. If it is 

Lobachevskian this begs the question (I mean the question of interpretation of the 

Lobachevskian geometry as Beltrami poses it in Saggio). The only remaining possibility is to 

consider the given plane as absolute in Bolyai’s sense (that is, as a plane such that all the 

axioms of Euclidean geometry except the Fifth Postulate hold for it), and then look what 

additional constraints are imposed by the chosen mapping. For the obvious reason the 

absolute geometry doesn’t allow one to work with infinite straight lines but it allows for doing 

certain things with their finite segments. So Beltrami could map only a finite piece of a 

pseudosphere onto a finite piece of the absolute plane and observe that this mapping made the 

piece of the absolute plane into a piece of the Lobachevskian plane. Thus the Beltrami’s claim 

that the Lobachevsky’s plane geometry was “in fact” the intrinsic geometry of a pseudosphere 

was not wholly justified. This fact has been first stressed by Helmholz in 1870 and then by 

Klein in 1871. I can hardly believe that Beltrami didn’t see the flaw earlier. I guess he rather 

hoped that the problem was minor and solvable. Hilbert in (1901) showed that it was not.  

The other flaw of the Saggio is stressed by Beltrami’s himself in the end of this work: the 

suggested model of Lobachevskian planimetry doesn’t generalise to the 3D case. For that 

reason Beltrami at certain point called the Lobachevskian stereometry a “geometrical 

hallucination”13 . The need of very different treatment of 2D and 3D cases made Beltrami to 

suspect that something went wrong. He changed his views completely during the same year 

1868 after reading Riemann’s Habilitaetsvortrag, which became accessible to him thanks to 

its publication by Dedekind. Soon after the publication of the Saggio Beltrami published 

another paper (1868-69) where he treated the Lobachevskian plane and the Lobachevskian 

space on equal footing using Riemann’s notion of manifold: the plane and the space are both 

manifolds of constant negative curvature that differ only by the number of dimensions.  

Remark that the notion of manifold allowed Beltrami for playing down the issue of 

mathematical interpretation. For given this notion one may argue that the “correct” 

description of a geometrical space is the intrinsic one (on the contrary to what Abbott 

                                                
12 letter to Houel of 18 Nov. 1868 
13 Letter to Houel of 18 Nov. 1868 
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apparently believed). This view remains today standard, particularly among physicists. In 

what follows I shall challenge this standard view arguing that the issue of interpretation 

cannot be reduced in geometry through taking a “purely intrinsic viewpoint”.  

After Beltrami’s Saggio the idea that objects of a given theory can be modelled by some other 

objects of another theory became a common place in mathematics. Klein and Poincaré soon 

came up with new models of Lobachevskian plane: both are found in (Klein 1893)14. Unlike 

the Beltrami’s model these new models represented the whole of Lobachevskian plane and 

didn’t use the notions of intrinsic geometry and of Riemanean manifold: they are built as 

Euclidean constructions with certain additional analytic devices.  

The development of non-Euclidean geometries was not the only factor, which made this new 

freedom of mathematical interpretation possible. Another source of this freedom was the 

projective geometry. The history of this latter geometrical discipline is closely connected to 

the history of non-Euclidean geometry outlined above. I shall only briefly mention the history 

of the duality principle. As it has been noticed by Poncelet in 1822 given a theorem of 

projective geometry one may get another theorem formally exchanging words “points” for 

“straight lines” and “straight lines” for “points”. Gergonne called this phenomenon duality 

and Steiner made the duality into foundations of projective geometry (Kline 1972, pp. 845-

46). A moral that Hilbert later drew from the duality principle was this: intuitive pictures one 

associates with terms “line” and “point” are not essential; what counts is only abstract 

relations between these things determined by the given theory as a whole.  

The freedom of mathematical interpretation achieved in geometry to the end of the 19-th 

century is quite remarkable. Earlier people believed that mathematics in general and geometry 

in particular had its specific subject matter as any other science. Traditionally the subject 

matter of geometry was defined as magnitude or figure. This helped to distinguish geometry 

from arithmetics studied the subject of number. The figure and the number were thought of as 

two specific kinds of quantity. Euclid in his Elements develops an arithmetical theory of 

proportions and a geometrical theory of proportions as two independent theories in spite of 

their striking similarity. Proclus in his Commentarium explicitely rejects the opinion of 

Eratosthenes according to which this similarity should be taken seriously. Applications of 

algebraic methods in geometry by Fermat, Descrates and their followers, which pathed the 

way to Analytic Geometry and Calculus, put this traditional understanding of the subject 

                                                
14 In fact the core of Klein’s model representing Lobachevskian straight lines by segments of Euclidean straight 
lines has been already used by Beltrami in Saggio as an auxiliary construction: Klein added the needed metrical 
function. 
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matter of mathematics into question. Descartes developed a radically new philosophy of 

mathematics, which wholly justified the aforementioned Eratospthenes’ view. However the 

new Cartesian understanding of mathematics also relied on the notion of primitive spatial 

intuition, which was supposed to provide a “material” for further mathematical constructions. 

So the Modern mathematics remained compatible with the traditional epistemic scheme in 

which certain primitive objects and basic truths about these objects are taken for granted 

while more complex objects and propositions are treated in terms of the primitive ones. That 

is why the discovered possibility of exchanging in a geometrical theory points for straight 

lines or straight lines for curve lines looked anyway striking – certainly more striking than the 

possibility of representation of points by tuples of numbers. Notice that the possibility of 

representation of numbers by figures had been well known already in Antiquity.  (In 

arithemtical books of the Elements Euclid represents numbers by straight segments.) Platonic 

metaphysics (as it is reconstructed by Proclus in the Commentarium) explains the possibility 

of representation of numbers by figures through a backward ontological reduction of figures 

to numbers. But this reduction leaves the difference between the two kinds of mathematical 

objects epistemologically fundamental – just like the difference between mathematical objects 

and their material “images”.    

The above remarks show that in spite of its striking new features revealed in the geometry of 

the 19-th century the notion of mathematical interpretation was not completely new. One may 

even argue that it was known in mathematics since its early history. For centuries 

mathematicians used to substitute some mathematical objects for some other objects and some 

symbols for some other symbols looking for structures invariant through such substitutions. 

This is what the whole discipline of algebra is about: algebraic variables take different  

values leaving the form of a given algebraic expression invariant. In physics this leads to the 

fundamental distinction between physical laws represented by algebraic equations and initial 

conditions, which provide numerical inputs to these equations. It may be further argued that 

the same idea of invariance through substitution is fundamental for the very notion of 

mathematical object: for example, a circle (a mathematical object) may be thought of as an 

invariant of any series of exchanges of material objects (drawings and the like), which are told 

to represent the mathematical circle. This view has been thoroughly spelled out by Plato who 

in fact suggested a more elaborated theory according to which mathematical objects in their 

turn represent (are images of) things of yet another sort he called ideas.  

Let me now stress the principle point I’m trying to make in this paper: although the older 

notion of substitution (and the related notion of invariance through substitution), on the one 
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hand, and the notion of interpretation as it emerged in the geometry of the late 19-th century, 

on the other hand, have indeed much in common the latter does not reduce to the former 

(albeit the former indeed reduces to the later). This fact has not been fully recognised in the 

end of 19-th – the beginning of 20-th century, and the new issues about interpretation were 

treated along the traditional pattern of substitution. My task it to explore possibilities left out 

by this development.  

 

2. Foundations 

2.1 Elements and Grundlagen 

We have seen that the non-Euclidean geometry emerged in 19-th century had two well 

distinguishable sources. The first is the traditional line of research aiming at proving the Fifth 

Postulate through drawing a contradiction from its negation. This line of research started in 

Antiquity and resulted into Bolyai and Lobachevsky’s works. The second line starts with 

Gauss’ geodesic work and leads to the notions of intrinsic geometry and Riemanean manifold. 

Beltrami brought the two lines together showing that Lobachevskian spaces are Riemanean 

manifolds of a particular sort. However the question of foundations of the new geometry 

remained open. Obviously neither Euclid’s Elements in its original version nor the generalised 

version of Euclid’s system proposed by Bolyai (his absolute geometry) could serve this 

purpose. Taken seriously the problem of foundations of geometry in the end of 19-th century 

would have to account not only for the Riemanean geometry in its full generality but also (at 

least) for projective geometry and topology. Klein  (1893) made a substantial progress toward 

a  theoretical unification of geometry developing various links between these disciplines but 

he didn’t produce anything like a replacement of Euclid’s Elements . Hilbert’s Grundlagen 

first published in 1899 partly meets this challenge.  

I say “partly” because in this work Hilbert accounts only for a very limited part of his 

contemporary geometry. Basically the Grundlagen shows how the Euclidean geometry looks 

like from a new viewpoint and how it connects to the Lobachevskian geometry and some 

other geometries based on the Euclidean geometry. The Grundlagen continues the traditional 

Euclidean-Lobachevskian line and doesn’t touch upon the Riemanean viewpoint15. This work 

became highly influential because of its method, viz. Hilbert’s axiomatic method, not because 

of its content. Hilbert believed that using this method one might build appropriate foundations 

                                                
15 For a historical account of origins of Hilbert’s Grundlagen see (Toepell  1986). Hilbert certainly understood 
himself that his Grundlagen was rather a demonstration of a method rather than a working foundations of 
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of the whole of mathematics and of other sciences. As it is usually happens with projects 

aiming at reform of the whole system of human knowledge Hilbert’s project of axiomatisation 

of mathematics and sciences brought controversial results. On the one hand, nothing like an 

effective global axiomatisation of mathematics, and moreover of natural sciences, has been 

ever achieved. On the other hand, Hilbert’s Grundlagen remains a paradigm of a “reasonably 

formal” (against later “more formal” approaches) axiomatic system in eyes of the majority of 

working mathematicians. A today’s student of mathematics may easily think – and read in 

many textbooks - that the axiomatic method as it is presented in the Grundlagen is just a more 

rigor version of the method first used by Euclid in his Elements. In this paragraph I shall try to 

show that this view is wrong, and that in fact Hilbert’s axiomatic method is a specific 

response to the specific situation in geometry of the end of 19-th century described in the 

previous section of this paper. After that I shall argue that this response can be no longer seen 

as adequate and needs a replacement. But let me first to compare few first pages of the 

Elements and the Grundlagen in order to show that the latter work is not just an elaborated 

version of the former.  

Euclid starts with giving basic definitions while Hilbert assumes primitive notions of point,  

straight line and plane without trying to define them. According to Hilbert the only reasonable 

answer to the questions “What is point?”, “What is straight line?” and “What is plane?” can 

be given by pointing to places of these concepts in a conceptual network (conceptual 

structure) determined by an appropriate system of axioms. The same in Hilbert’s view applies 

to primitive geometrical relations like that of congruence. The latter feature might be more 

difficult to grasp for one unfamiliar with the formal method; I’ll give some more details 

shortly. 

Another obvious difference between the Elements and the Grundlagen is this: after giving 

basic definitions and before coming to axioms16 Euclid list five Postulates while in Hilbert’s 

work there is no such things at all. Certainly the Grundlagen is not the first introductory text 

in geometry written after Elements without making use of postulates (as principles of a 

different sort than axioms). Nevertheless this is an essential feature of the Grundlagen, which 

certainly needs to be taken into account. Consider the first three Postulates of the Elements: 

 

1. to draw a straight line from any point to any point 

                                                                                                                                                   
geometry. In his (1902), included as an Appendix in later editions of the Grundlagen he made an attempt to 
apply his axiomatic method for building a geometrical framework in Klein’s “Erlangen” style.   
16 See footnote 4. 
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2. to produce a finite straight line continuously in a straight line 

3. to describe a circle with any centre and distance  

Remark that the Postulates 1-3 are not propositions about geometrical objects but descriptions 

of certain operations performed with geometrical objects. But obviously the Postulates say 

that these operations are feasible. So one may tentatively paraphrase the Postulates by the 

following existential propositions: 

 

1’. For any two (different) points there exist a (finite) straight line joining them. 

2’. For any finite straight line there exists an infinite straight line to which the finite straight 

line belongs. 

3’. For any point and a finite straight line with one end at this point there exists a circle such 

that the given point is its centre and the given finite straight line is its radius.  

 

Reformulated in this way the Postulates turn into propositions and may be called  axioms. 

This move seems to be innocent but it is not. For this move allows one to think of the 

Elements as a system of propositions derived from a set of basic propositions called axioms. 

The Grundlagen is indeed (or at least supposed to be) such a system but the Elements is not. 

The Elements is a system of constructions generated by a set of elementary constructions 

described by the Postulates 1-317 (that is, constructions by the ruler and the compasses) and a 

system of propositions associated with these constructions. Proclus in his Commentarium 

analyses the distinction between the two aspects of the theory of the Elements in terms of the 

Platonic ontological distinction between Becoming and Being: geometrical objects are treated 

by Euclid both qua constructed (generated) and qua pre-existing entities. But one doesn’t  

need to buy the Platonic metaphysics to recognise the distinction. Whether the theory of the 

Elements can be interpreted as a system of propositions is a different question. The 

Grundlagen shows how this can be reasonably done. Whether such modification allows for a 

higher standard of rigor is again a different question. In any event it is clear that the 

Grundlagen is not just a more rigor version of the Elements but a different mathematical 

theory based on different ideas about geometry and mathematics in general.  

                                                
17 The Postulates 4-5 unlike Postulates 1-3 are propositions. The fact that Postulates 4-5 are essentially different 

from the Postulates 1-3 has been noticed by many commentators. Heath suggests that the Postulates 4-5 might be 

a later addition. In any event it is quite clear why Postulates 4-5 are not listed among the Axioms: unlike the 

Axioms they are not universally valid but involve specific geometric constructions. Euclid or a later editor of the 

Elements could invent for the Postulates 4-5 a special rubric of “additional hypotheses” or the like. 
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Hilbert’s ideas behind his Grundlagen can be hardly correctly understood outside the 

historical context sketched in the previous section. The plurality of models of Lobachevskian 

geometry (which in 1890-ies already included Klein’s and Poincaré’s models), the 

phenomenon duality in projective geometry and similar hermeneutic mathematical 

phenomena known to the date, discredited in Hilbert’s eyes the traditional view according to 

which primitive geometrical objects like points and straight lines and basic truths about these 

objects should be taken for granted18. In the Grundlagen Hilbert suggested a new 

understanding of the subject matter of geometry (and mathematics in general), which I am 

now going to explain.  

The subject matter of the traditional mathematics can be defined through distinguishing 

specific properties of material objects (called mathematical) like the shape and ruling out non-

mathematical properties like the colour. A mathematician is allowed to use material objects in 

his or her work, and even make some mathematical use of non-mathematical properties  

(think about the problem of four colours) but he or she should never confuse these material 

objects with the proper subject matter of a mathematical study. The new kind of mathematics 

invented by Hilbert makes a further step in the same direction: it rules out all non-relational 

properties as irrelevant and allows into its proper subject-matter only bare things and bare 

relations between these things. In practice a mathematician may think about these new 

mathematical things in the usual way, call them by usual names and use usual helpful 

drawings. But one is also free to use some unusual names and images for it. This is a matter of 

personal taste or, perhaps, of a research skill. In any event names and images don’t count in 

the final result: a ready-made mathematical theory must not depend on traditional 

mathematical notions and on the intuitions associated with these notions (to let alone names 

and pictures) just like it must not depend on the colour of inks used for writing it down. So 

Hilbert assumes that the same mathematical theory can be interpreted through traditional 

constructions in different ways just like it can be written down by different inks.  

The Grundlagen provide a tentative theory (in fact few different theories) with desired 

unusual properties. Such theories are commonly called formal. Let me shortly recall how the 

formal theory of the Grundlagen works. Hilbert assumes tree types of primitive things and 

tree types of primitive relations between these things. These things and relations are thought 

of as variables (or empty places), which can be differently interpreted (filled up) with certain 

                                                
18 Frege defended this traditional view in his polemics with Hilbert following the first publication of the 
Grundlagen in 1899. But since Frege argued on  general philosophical and logical grounds and didn’t touch 
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traditional content and so get a meaning. The intended interpretation (one which is 

particularly helpful for grasping the theory) is this: the three types of things are points,  

straight lines and planes while relations are incidence (the relation which holds, say, between 

a line and a point on this line), congruence and  betweenness (for points incident to the same 

line). Then Hilbert stipulates certain propositions about these relations between these things as 

axioms. These axioms are formal in the sense that they don’t assume any fixed interpretation. 

But under the intended interpretation they turn inot axioms of Euclidean geometry (or rather 

of a version of Euclidean geometry). The formal axioms imply some other formal 

propositions, which Hilbert calls theorems. Under the intended interpretation these formal 

theorems turn into theorems of Euclidean geometry. Hilbert assumes that since the inferences 

don’t depend on any particular interpretation of the axioms they are valid in any appropriate 

interpretation.  

To proceed in this way carefully one needs, of course, to specify logical means and rules 

about interpretation and check that everything works properly. Hilbert didn’t make this in the 

Grundlagen but did make such attempts in his later works (Hilbert&Bernays 1934); other 

people in different occasions made significant contributions into this project. I cannot and 

don’t need for my present purpose revise here this later part of the story, which is rather well 

known19.  

As a matter of fact interpretations of formal theories play in the Grundlagen a more important 

role than that of helpful intuitive images. As far as a particular interpretation is taken as 

unproblematic it may provide an important information about its corresponding formal theory. 

Consider a formal system of axioms corresponding to Euclidean plane geometry (i.e. having 

the usual Euclidean plane among its models) and then exchange the counterpart of Euclid’s 

Fifth Postulate for its negation. Before Bolyai and Lobachevsky people believed that the 

obtained system is contradictory, Bolyai and Lobachevsky decided differently. (These people 

worked, of course, not with the formal axiomatic system itself but with one of its models.) 

How one can definitely decide whether the new set of axioms is consistent or not? The notion 

of formal system allows this. The fact that there exists an Euclidean construction, which is a 

model of Lobachevskian geometry, implies that if Euclidean geometry is consistent then 

Lobachevskian geometry is consistent too. This in its turn implies that the Fifth Postulate is 

independent from the rest of Euclidean axioms, that is, it cannot be neither proved nor refuted 

                                                                                                                                                   
upon new hermeneutic mathematical matters Frege’s arguments were not convincing for Hilbert. See (Frege 
1971). 
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on the basis of the other axioms. So the Grundlagen gave a precise solution (or at least  

spelled out more clearly an earlier obtained solution) of the old problem.   

There remained however the following important issue to be sorted out. Suppose a formal 

system S of (uninterpreted) axioms has two different models A, B. The formalist viewpoint 

outlined above suggests that differences between A and B are superficial and mathematically 

irrelevant like the difference of colour of two drawn circles. But suppose that now the system 

S is extended by some additional axioms, and that A is a model of the extended system S’ but 

B is not. Since the difference between A and B is now grasped by the formal method a 

formalist must recognise the difference between A and B as essential. So in order to be 

consistent a formalist needs a criterion of the “essential sameness” of models independent of 

their corresponding theories. Using such a criterion one may distinguish the case when all 

possible interpretations of a given formal theory are “essentially the same” from the case 

when models are essentially different. In the former case a given theory is called 

categorical20. The criterion of “essential identity” of models adopted by Hilbert is 

isomorphism. Here is how he explains his axiomatic method to Frege (cit. by Frege 1971, 

p.13) 

 

“You say that my concepts, e.g. “point”, “between”, are not unequivocally fixed. … But 

surely it is self-evident that every theory is merely a framework or schema of concepts 

together with their necessary relations to one another, and that basic elements can be 

construed as one pleases. If I think of my points as some system or other of things, e.g. the 

system of love, of law, or of chimney sweeps … and then conceive of all my axioms as 

relations between these things, then my theorems, e.g. the Pythagorean one, will hold of these 

things as well. In other words, each and every theory can always be applied to infinitely many 

systems of basic elements. For one merely has to apply a univocal and reversible one-to-one 

transformation and stipulate that the axioms for the transformed things be correspondingly 

similar. Indeed, this is frequently applied, for example in the principle of duality, etc. ..”  

 

Hilbert’s doesn’t say in this passage explicitly that all models of a given theory should be 

always transformable into each other by reversible transformations, i.e. be isomorphic, but 

most certainly he has this in mind. Indeed in the context of formal mathematics the 

                                                                                                                                                   
19 See Henkin&Suppes&Tarski (1959). By the later standard the Grundlagen look as a rather informal work. The 
historical relativity of the term formal is obvious and hardly requires any special explanation.  
20 The term is not Hilbert’s; it is introduced by O. Veblen in 1904.   
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categoricity looks like a desired property. In the next paragraph I shall analyse and then 

challenge this view. Now let’s see how the categoricity of a formal axiomatic system can be 

secured (if it can).     

Consider a finite plane geometry FG with n points p1, …, pn , m straight lines l1, ... , lm  and k 

basic relations R1, …, Rk (possibly of different aries) between them (for real examples of this 

sort see (Dembowski 1968). Axioms of FG can be formulated in such a way that all p1, …, pn 

, l1, ... , lm , R1, …, Rk are mentioned explicitly. The system is obviously categorical. For let 

variables p1, …, pn , l1, ... , lm , R1, …, Rk
  in a model M of FG take values p1, …, pn , l1, ... , lm 

, R1, …, Rk, and in model M’ values p’1, …, p’n , l’1, ... , l’m , R’1, …, R’k. There is the 

obvious isomorphism between the two models. M’ can be obtained directly from M through 

the substitution of p’1, …, p’n , l’1, ... , l’m , R’1, …, R’k for p1, …, pn , l1, ... , lm , R1, …, Rk 

correspondingly. M can be obtained from M’ by the reverse substitution: this substitution like 

any other is reversible. If a theory is supposed to allow for an infinite number of primitive 

objects (and/or types of primitive objects and/or primitive relations) as Euclidean geometry 

(where however the number of primitive types and primitive relations is finite) then one 

cannot proceed as just described (at least if one wants to get a finite list of axioms). This  

doesn’t rule out the possibility to get a categorical formal system but makes it obviously more 

problematic.  

In the first edition of the Grundlagen Hilbert didn’t see the problem and took the categoricity 

of his proposed formal theory for granted. In later editions he used an additional 

Completeness Axiom granting this property. The axioms says that the “system of things” 

described by the rest of the axioms is maximal in the sense that any extension of this system 

by some additional things of any type is impossible (such an extended system will be not a 

model of the theory). Hilbert relies here on the intuition that, say, any given straight line can 

be “filled in” with its points “completely” without leaving any “free space”. In fact the 

Completeness Axiom as stated above can be derived as a theorem from the latter particular 

case, so in the third and later editions of the Grundlagen this later particular statement is given 

the title of the Completeness Axiom. Obviously this last axiom of the Grundlagen is of very 

particular character because unlike others it refers to possible models. (In today’s terms the 

Completeness Axiom of the Grundlagen  can be characterised as a proposition of second 

order.) This axiom stipulating the categoricity of the Grundlagen by a fiat is hardly 

compatible with the idea of purely formal “uninterpreted” mathematics since it brings the 

issue of interpretation into the formal theory itself.  



 25 

The difficulty appeared to be typical. The finite substitutional pattern of theory FG doesn’t 

apply universally. Popular formal theories like Zermelo-Fraenkel Set theory (ZF) and Peano 

Arithmetic (PA) are not categorical. Categoricity of these theories can be forced by second-

order axioms. Some people like Shapiro (1991) take this option seriously. The majority look 

at non-categoricity as an inevitable evil one should learn to live with. Non-standard models of 

ZF and PA are usually viewed as mathematical curiosities in a way similar to which non-

Euclidean geometries used to be viewed in 19-th century. Some philosophers try to be helpful 

and suggest how to rule out non-standard models on epistemological and ontological grounds.  

Few people would be ready to give up the formal axiomatic method because of the non-

categoricity problem. Let me however approach the question from a different end and ask this 

question: What is so particularly good about categorical theories?  

 

2.2 Categorical theories and functorial models 

Remind where the requirement of categoricity comes from. The best precision with which a 

formal theory can possibly describe its models is up to isomorphism. A theory, which meets 

this standard, is called categorical. People who oppose the formal method often argue that this 

precision is insufficient, and that in mathematics one needs “concrete” intuitive objects and 

constructions of the kind provided by Postulates of the Elements. A formalist needs such 

concrete intuitive objects as well - for otherwise he looses the very distinction between a 

formal theory and its interpretations (models). A radical version of formalism which 

consistently sweeps the issue of interpretation outside mathematics dialectically turns to its 

opposite: a mathematical work reduces to a “play of symbols”, that is, to a kind of drawing. 

According to a more moderate version of formalism one should distinguish between the 

intuitive mathematics, which remains indispensable in mathematical discovery (including 

concept-building and theorem-proving), and the formal mathematics, which is equally 

indispensable for making mathematical concepts and theorems into consistent systematic 

theories, checking proofs, and communicating mathematical results to public. Even if the 

formal method is imprecise in the sense that it fails to distinguish between “individual 

constructions” (isomorphic models) it arguably prevents any uncontrolled wild behaviour of 

these individual construction in the public domain, and so provides mathematics with best 

stable patterns available in this discipline. Let me however consider the question of 

“precision” of the formal method from a different viewpoint.     

In my view, the fact that the formal method fails to distinguish between isomorphic models of 

a given theory is indeed problematic. However the problem as I see it is not that this method 
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doesn’t distinguish between individual constructions (whatever this might mean) but that it 

doesn’t distinguish between isomorphic constructions of different types. From a formal point 

of view a two-dimensional Riemanean manifold of constant negative curvature and the 

peculiar Euclidean construction known as Klein’s model of Lobachevskian geometry are 

treated on equal footing. However it is clear that the two models are essentially different: the 

Riemanean manifold is “natural” (or “canonical”) while Klein’s model is “artificial”. The 

difference is not psychological or pragmatic. It concerns the fact that Riemann’s notion of 

manifold is a generalised notion of space embracing the notion of Lobachevskian plane as a 

special case while the Klein’s model of this plane doesn’t involve any such generalisation. 

The formal method fails to recognise this essential difference.  

My other objection to the formal method goes in the opposite direction: there is a sense in 

which this method is too restrictive to complete the task it has been designed for. I’m not 

going now to defend the freedom of mathematical imagination and mathematicians’ right to 

communicate their intuitions to public. The argument is purely mathematical. Hilbert’s 

problem, which led him to the formal method was this: How to formulate a mathematical 

theory leaving its interpretation free (“up to interpretation”)? Hilbert’s response: such a theory 

T must be formal, which means that its primitive terms (objects and relations) are variables 

taking their semantic values (“meanings”) through interpretations; given such interpretation 

(model) M one obtains another model M’ of the same theory through a one-to-one 

substitution (exchange) of primitive terms. If T is categorical then the substitution of terms 

allows one to obtain all models of this theory from any given model.  

Designing the notion of formal theory Hilbert apparently aimed at a categorical theory and so 

considered reversible transformations between models (one-to-one substitutions of terms) as 

the only kind of interpretation he had to cope with. But the notion of interpretation as it has 

emerged in geometry of the 19-th century does not  reduce to such reversible interpretations 

(isomorphisms). Interpretations are, generally speaking, non-reversible. So Hilbert’s formal 

method didn’t completely meet the challenge. The lack of a categoricity of workable formal 

systems is, in my view, a clear symptom of the problem. Let me now spell out this crucial 

argument more precisely.  

Consider Beltrami’s model of Lobachevskian geometry. In modern terms the principle claim 

of Beltrami’s Saggio is formulated as follows: a 2-dimensional Riemanean manifold of 

constant negative curvature (Lobachevskian plane) is embeddable into 3-dimensional 

Euclidean space (which is another Riemanean manifold). As it stands the claim is false: in 

order to get a true statement one needs to replace “embeddable” by “locally embeddable”. But 
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let’s now ignore this detail and consider the notion of embedding. Certainly Beltrami’s 

embedding is an interpretation (remind the full title of his paper): the notion of Lobachevskian 

plane is interpreted through this embedding in terms of the “usual” Euclidean space. But the 

embedding is not reversible: one cannot embed the Euclidean space into the Lobachevskian 

plane. An embedding is a sort of transformation called monomorphism. Carving a 

pseudosphere out of its ambient space one may show indeed that the pseudosphere is 

isomorphic (in fact only locally isomorphic) to the Lobachevskian plane. On this basis one 

may think about other isomorphic models like Klein’s model. However this reasoning is 

misleading: in the given context a pseudosphere cannot be carved out from the Euclidean 

space and considered as a self-standing object. For if the pseudosphere is indeed carved out 

from its ambient space and considered as a self-standing space (manifold) it ceases to be 

Euclidean. This brings indeed a better presentation of Lobachevskian plane (suggested by 

Beltrami in his Teoria) but the whole point about interpretation of Lobachevskian geometry in 

Euclidean terms gets lost. This example shows that the issue of interpretation in mathematics 

as it has emerged in geometry of the 19-th century doesn’t reduce to the old idea of 

substitution of different values for a variable, which apparently has led Hilbert to his formal 

axiomatic method. For such substitutions are always reversible21 while geometrical 

interpretations, as we have just seen, are not. So Hilbert’s formal method didn’t meet indeed 

the hermeneutic challenge of his contemporary mathematics in its full generality. Let us now 

see how this challenge can be met.  

When Beltrami read the Habilitaetsvortrag he identified (in his Teoria) the Lobachevskian 

plane with 2-dimensional Riemanean manifold of constant negative curvature and the 

Lobachevskian space with 3-dimensional manifold of the same type. He repeated in the 

Teoria the point made in the Saggio: the former notion is interpretable in Euclidean terms 

while the latter is not. However in the new context this remark lost the significance it had in 

the Saggio. For as far as the notion of Riemanean manifold is taken seriously one doesn’t 

need any longer to look for an Euclidean model of Lobachevskian plane in order to claim that 

this plane is “real”. Does this make unimportant the whole issue of geometrical interpretation? 

I don’t think so. The notion of Riemanean manifold doesn’t work by a magic. One cannot do 

                                                
21 I shall not provide here a detailed analysis of the notion of substitution but it is obvious that the reversibility is 

a basic feature of this transformation: the substitution of A at the place of B implies the possibility to substitute B 

at the place of A.  
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anything with Riemanean manifolds without considering interpretations commonly known 

under the name of maps. A basic fact about Riemanean manifolds making part of the usual 

definition of the concept is that any such manifold is locally embeddable into the Euclidean 

space of the same dimension (differentiability). So the notion of Euclidean space remains 

fundamental for the notion of Riemanean manifold and is certainly more than just a particular 

case of the latter notion. Remark that interpretations (maps, transformations) of Riemanean 

manifolds are indispensable when these things are thought of as geometrical objects. One 

might object that manifolds are spaces but not objects. But recall that Gauss’ idea of intrinsic 

geometry allows for a relativisation of this distinction: a manifold A is called an object with 

respect to manifold B and manifold B is called a space with respect of manifold  A iff A 

embeds into B. So in order to look at a given manifold either as a space or as an object one 

needs embeddings anyway. In fact there is a “natural” notion of map between Riemanean 

manifolds which is more general than embedding and isomorphism. It is a straightforward 

generalisation of the notion of isomorphism of the manifolds obtained through giving up the 

reversibility condition. Maps between Riemanean manifolds are differentiable 

transformations22.  Considering all Riemanean manifolds together with all maps (“mutual 

interpretations”) between them we get a kind of “super-space” in which the manifolds live23. 

Let us denote this super-space RM and see how it looks like. Is it something like a usual 

(Euclidean) space? Not really. While the Euclidean space may be viewed as a container of all 

its points, straight lines, circles and other figures RM is a network of manifolds. (Remind that 

things like points and straight lines are manifolds on their own rights.) In spite of this 

difference the analogy can be carried out in more precisely. I mean the fact that the notion of 

Euclidean space can be accounted for in terms of transformations of Euclidean objects (Klein 

1872). This works for other geometrical spaces like the Lobachevskian space. The principle 

difference between the notion of geometrical space so construed and RM is this: in the former 

case all the transformations in question are reversible (think about motions, affine 

transformations, homeomorphisms, etc.) and so form groups, while in the latter case they are 

not. So giving up the reversibility of geometrical transformations causes indeed a fundamental 

change of the usual concept of space.    

                                                
22 Like in the case of isomorphisms of Riemanean manifolds (often called diffeomorphisms) the condition of 
differentiability of these maps can be specified in different ways: one may demand either that the maps are 
differentiable only once, twice, or an infinite number of times.  
23 I use the word “super-space” not as a technical term here. A mathematical reader shouldn’t think about super-
symmetries and super-strings.  
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A network of mutually transformable objects like RM is called a category. The notion of 

category introduced by Eilenberg and MacLane in (1945) is very weak: one requires only an 

operation of composition of transformations between the objects, the associativity of this 

composition and the existence of an identity transformation for each object. Transformations 

of objects are called in the Category theory morphisms. The aforementioned requirements are 

met not only by Riemanean manifolds but by any mathematical concept coming with  

appropriate notions of object and transformation (between different objects falling under the 

same concept). For standard examples think about sets and functions, groups and group 

homomorphism, topological spaces and continuous transformations, etc. RM is the category 

of Riemanean manifolds, which has such manifolds as objects and differentiable maps as 

morphisms.  

The notion of category can be thought of as a very general form of mathematical concepts. 

This seems to be correct but in fact is quite misleading. It is misleading because the notion of 

category is more general than the notion of form. Objects are told to have the same form 

when they are isomorphic, that is, when they are mutually transformable by reversible 

transformations. For example all circles (say, on Euclidean plane) are isomorphic – they 

transform into each other by motions and scale transformation, which are all reversible. So in 

the category of circles all morphisms are isomorphisms: such categories are called groupoids. 

Given a groupoid of circles one may identify all its objects and call the obtained unique object 

Circle. The groupoid then reduces to a group. The Circle can be then thought of as the 

common form of all circles. But in a more general situation when objects of a category 

transform into each other irreversibly such reduction is impossible. So the notion of category 

allows one to explain how the notion of form comes about. The converse is not the case. So it 

is misleading to call consider a category as a kind of form. I shall develop this fundamental 

point in the next section. Now let’s see how the notion of category allows for generalisation of 

Hilbert’s formal axiomatic method.  

Instead of looking for a formal categorical theory bringing about a group of isomorphic 

models we shall now look for a theory bringing about a category of models. I warn the reader 

that this older usage of the term categorical has nothing to do with the Category theory. In 

what follows I shall use the expression categorical theory in a different sense meaning a 

theory built by category-theoretic means unless it will be specified otherwise. Unfortunately I 

cannot avoid using in this paper the term categorical in the two different senses. 

Think about our category RM or Riemanean manifolds. How it can be possibly specified? It 

may be argued that whatever might be the specification it cannot possibly provide any better 
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precision than up to isomorphism. However this is not correct. For there is a sense in which 

RM is  unique and cannot have isomorphic copies. This follows from its description as the 

category of all Riemanean manifolds. Whatever all might exactly mean here if taken seriously 

this term doesn’t allow for acquiring additional “copies” of objects and morphisms of RM: all 

the copies are already there! The only category isomorphic to RM is RM itself. Identity is the 

only isomorphism available in this situation24. Concerning the meaning of all I don’t think 

that one should think about large proper classes and be afraid of set-theoretic paradoxes here. 

I guess that the notion of class could be avoided in this context although this is not allowed by 

the official definition of the notion of category. For RM is nothing but the concept of 

Riemanean manifold construed in a particular way. One doesn’t need to have “all manifolds” 

as full-fledged individuals in order to conceive of RM (Rodin 2005). The concept of 

Riemanean manifold like many other important mathematical concepts (set, group, 

topological space, finally the concept of category itself) is determined “up to an arbitrary 

morphism” but not up to isomorphism. This is another way of saying that manifolds, sets, 

groups, topological spaces and categories themselves form categories. Only in simplest cases 

all morphisms reduce to isomorphisms and corresponding categories reduce to groupoids and 

groups. This latter pattern, which underlies the whole idea of formal method, cannot and 

shouldn’t be applied everywhere in mathematics, and moreover everywhere in science.  

It should be stressed that in a different sense RM is not unique (so the expression “the 

category of Riemanean manifolds” needs a careful interpretation). For the concept of 

Riemanean manifold like any other mathematical concept can be specified in many different 

ways. This terminological problem has nothing to do with the point just made concerning the 

impossibility of “isomorphic copying” of RM. Perhaps the following convention is 

reasonable: the isomorphic copying is impossible when “all” is mentioned in the title of a 

given category. So one might speak about a category of all Riemanean manifolds pointing to 

a specific version of the general concept. Otherwise isomorphic categories can be, of course, 

easily constructed, although this doesn’t make much mathematical sense25. For this later 

reason a different convention might be equally reasonable: isomorphic copies of categories 

are not allowed but by a special permission.  

                                                
24 In order to make a historical justice it must be noted that the notion of category I use here goes beyond one 
introduced in (Eilenberg&MacLane 1945). For the authors explicitely say that “Such examples as the category of 
all sets or the category of all groups are illegitimate” for the usual set-theoretic reason. So the authors assume 
that objects of a category form a set. Nowadays such categories are called small while categories such that their 
objects form proper classes are called large. The idea of categorical reconstruction of mathematical concepts 
presented below in the main text has been first put forward by Lawvere in his thesis of 1963. 
25 Gelfand&Manin (2003, p. 70) call the isomorphism of categories “a useless notion”. 
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The easiest way to conceive RM is to take its objects and morphisms, i.e. manifolds and 

differentiable transformations, as ready-made, i.e. defined by traditional methods, and attach 

the latter to the former. Categories so construed are sometime called concrete; when people 

speak about the category of Riemanean manifolds, the category of groups, etc. they usually 

mean concrete categories. Let’s denote the concrete category of Riemanean manifolds RMC.  

Although RMC is not a self-standing conceptual construction it has specific categorical 

properties that may be studied. Such properties are expressed in the form of equations saying 

that compositions of certain morphisms equal to compositions of certain other morphisms and 

that all the morphisms needed to satisfy these equations exist. Graphically these equations are 

represented as diagrams. When specific categorical properties of RMC are identified one may 

try to define RM in terms of these categorical properties just like in the Grundlagen Euclidean 

space is defined in terms of its formal properties. This goes as follows: one takes an abstract 

category RMA, stipulate that RMA has the same categorical properties as RMC, and 

tentatively identifies RMA with RMC. Since all the categorical properties in question just 

like all the formal properties of Euclidean space cannot be simply listed (because they are too 

many) one needs a theoretical structure. So one may tentatively stipulate certain properties of 

RMA as axioms and try to infere from them others. This looks quite like the standard 

axiomatic method but it works more like in the Elements rather than in the Grundlagen given 

a number of basic categorical constructions one makes new constructions respecting certain 

rules. A version of RMA construed in this way can be found in McLarty (1992), where the 

reader can also find further references.  

Before continuing to explicate the idea of categorical reconstruction let me briefly touch upon 

this general question: What does it mean that a given mathematical concept is adequately 

reconstructed? In a fixed mathematical framework it may be shown that certain properties P 

and Q of a given object O of certain type T are equivalent in the sense that O has the property 

P if and only if it has the property Q. For example all sides of a given triangle are equal if and 

only if all its angles are equal. This allows for two obvious alternative definitions of the 

notion of regular triangle. However when people talk about “formal reconstruction”, “set-

theoretic reconstruction”, “categorical reconstruction” the situation is quite different. In such 

cases there is no indisputable criterion of whether a given reconstruction is correct or not. The 

situation is similar to that with different version of the Pythagorean theorem: one may talk 

about translation of mathematical content through different general frameworks but not 

logical equivalence. When Hilbert claimed that his axioms characterise completely the 

Euclidean geometry he, of course, went far beyond what people at the time normally assumed. 
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That his formal method was incapable to distinguish between a point and a beer mug (to use 

Hilbert’s famous saying) was not a problem for Hilbert himself but his drinking companion 

might have a different opinion. Hilbert could provide very serious arguments in favour of his 

view but he couldn’t provide anything like a mathematical proof for it. In the case of a 

categorical reconstruction the situation is similar: in order to justify the claim that RMA is 

RM one needs to show that abstract objects and morphisms of RMA have all basic properties 

of Riemanean manifolds and differentiable transformations construed by traditional methods 

(today this means: by set-theoretic methods). However there is a space for different decisions 

concerning questions like this: Which properties of traditional constructions are basic and so 

should be preserved within the new framework? What this preservation exactly amounts to? 

etc.  

Although the question What is a good conceptual reconstruction? has no simple answer it is 

easy to see where the categorical method works better than the formal method.  First, as I 

have already argued, the categorical method allows one to avoid the problem of isomorphic 

copying. Second, unlike the formal method the categorical method allows for distinguishing 

between “canonical models” and different kinds of “external models” of a given theory. The 

former are objects of a category “targeted” by the given theory (like RMA) while the latter 

are further constructions involving non-identity morphisms of the target category and 

components of functors from the target category to different categories. (Functor is a 

morphism between different categories. In the abstract Category theory objects of any 

category are treated as categories just like in the abstract Set theory elements of sets are 

treated as sets. So the distinction between morphisms and functors, which seems to be very 

palpable in the context of concrete categories, becomes redundant as far as the categorical 

approach is used consistently. I retain the distinction following the common usage.) In a 

categorical framework one is not obliged to treat a Riemanean 2-manifold of constant 

negative curvature and Klein’s model of the Lobachevskian geometry on equal footing. For 

this 2-manifold is a particular object O of RM while the Klein’s model is a rather specific 

construction in RM, which involves different objects of this category: bounded and 

unbounded lines (1-manifolds), the Euclidean plane and the Euclidean disk. Although the two 

models have the same formal properties they have different categorical properties. So in order 

to justify the claim that points, pairs of real numbers and beer mugs are quite different things 

after all one doesn’t need to refer to a primordial intuition: one may instead consider a 

categorical framework, which is large enough to see that these things behave differently. The 

principle epistemological argument in favour of the categorical viewpoint against the formal 
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one is this: the isomorphic constructions in question cannot be “carved out” from their 

conceptual environments and made into self-standing formal theories. We have seen that a 

similar holistic epistemological argument underlies the formal method itself. However in a 

larger context the argument turns against the formal method.  

From a formal viewpoint the first of the aforementioned features of the categorical approach – 

that it allegedly allows to capture a category precisely but not just up to isomorphism – looks 

perhaps the most suspicious. The explanation of this apparent mystery is simple: the notion of 

category provides a constructive framework for doing mathematics (as opposed to a formal 

framework). In this sense categorical mathematics better fits the model of the Elements than 

that of the Grundlagen. For example, this basic principle of Category theory can be better, in 

my view, spelled out as a postulate rather than as an axiom: 

for morphisms f:A!B and g:B!C to construct morphism fg:A!C . 

The associativity law of the composition in its usual form is an axiom (a proposition) 

(fg)h = f(gh)  

but in a higher category theory it is replaced by this postulate: 

for morphisms (fg)h and f(gh) to construct morphism a: (fg)h!  f(gh). 

(This morphism a is called associator and it is normally required to be reversible. Remark 

that a is a morphism between morphisms. Such morphisms are called 2-morphisms.) 

Thus doing mathematics categorically one works with particular constructions but not general 

forms of constructions. Mutual interpretations between given categorical constructions are 

further categorical constructions: morphisms, functors or some more involved constructions 

made out of them. So the hermeneutic challenge of geometry of the end of 19-th century is 

met by the Category theory in a far more radical way than by the Hilbert’s formal method: 

morphisms, which are elementary interpretations, are made into building blocks of 

mathematical constructions. Remark that the notion of object of a category is in fact 

redundant: identity morphisms are sufficient to make the categorical machinery work 

properly.  

Another important difference between the formal and the categorical approaches concerns the 

place and role of logic in resulting theories. I shall touch upon this question only briefly here. 

The formal approach fits well the traditional view on logic (dating back to Aristotle) as the 

most general form of reasoning, or more precisely, of the correct reasoning (in particular the 

correct mathematical reasoning). Moreover this traditional view on logic seems to be essential 

for the very idea of formal axiomatic method for epistemological reason: if the whole of 

mathematics is rewritten in the form of formal theories the then the logic is necessary for 
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making these theories into a whole. (One may argue that a pure logic is not sufficient for 

unification of mathematics but this argument is not important in the present discussion.) 

Ironically the formal approach made a genuine revolution in logic, which brought about a vast 

plurality of alternative logical systems (some of which are combinable while some other are 

not) and so made untenable the traditional view on logic as the most general form of 

reasoning (which one?). Philosophers argued in 20-th century a lot in order to distinguish on 

metaphysical, epistemological, pragmatic or different grounds a particular system of 

formalised logic, which might be viewed as the core logic replacing the traditional 

Aristotelian logic. Many including Russell and Quine argued that the Classical predicate 

calculus should be viewed in this way. Other philosophers (Beall 2000) defended pluralist 

views on logic without suggesting any alternative mechanism of unification of knowledge 

(apparently assuming that such unification is not really needed). I shall not go into this debate  

but remark that the hermeneutic approach, which I advocate here, allows for unification (or 

perhaps better to say integration) of mathematics without a notion of universal logic. The 

hermeneutic integration works through mutual interpretations of mathematical theories but 

not through a logical conceptual umbrella. Category theory makes the notion of mathematical 

interpretation effective and precise.    

A categorical reconstruction of mathematical concepts unlike a formal reconstruction doesn’t 

start with logic. It starts with the general notion of category, which is much weaker than any 

reasonable system of logic. A logicist may object that the notion of category found in standard 

textbooks is informal, so in order to define this notion rigorously one should start with a 

logical calculus anyway, and then make up a formal category theory. Axioms for such formal 

theory can be written down indeed (Lawvere 1966).  I shall not object this logicist assumption 

directly but show how things look like if one assumes the notion of category as primitively 

given. In this case a notion of logic can be recaptured through a further construction: there is a 

way to associate a formal logical calculus with an abstract category with appropriate 

properties (Bunge 1984, Makkai& Reyes 1977). This gives the notion of internal logic of a 

category. Not surprisingly the internal logic of the category S of sets is Classical logic. Only 

slightly relaxing requirements making an abstract category into S one obtains the notion of 

topos and Intuitionistic logic associated with type of categories. So instead of taking logic for 

granted and developing on this basis a mathematical theory one proceeds the other way round: 

takes for granted a certain category, say, RM (which may be viewed either as RMC or RMA) 

and then ask what kind of logic if any is internal for this category.   
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The logicist may again object that even if the general notion of category is taken for granted 

one needs a certain mechanism allowing for different specifications of this general notion 

bringing about RMA, S or any other particular category. As far as such specifications are 

made through informal axioms (or postulates as suggested above) natural language gets 

essentially involved, and it becomes quite unclear what kind of conceptual resources are in the 

play. This logicist challenge is easier to meet. Let me describe the categorical device of 

functorial semantic providing a reasonable solution of the problem (it has been first 

introduced in Lawvere (1963)). We shall see that this device allows for making a closer 

analogy between the formal and the categorical methods, and that at the same time the 

different technique changes the formalist pattern profoundly.  

The idea of functorial semantic looks much like a formalist idea: one starts with a theory 

made up on the basis of a logical system and then makes up its models. The logical system in 

question is a “logical” category, which can be viewed as just another symbolic convention 

concerning the internal logic of this category. Then this logical category is strengthened up to 

a certain theory T, which for a similar reason can be viewed as a formal theory. So far there is 

no essential difference between the categorical and the standard formal settings. The 

difference appears when one considers models of T. Functorial models are functors from T to 

another “base” category, which is usually is taken to be S but may be something else. I skip 

reasons by which one may distinguish between functors T!S, which are models of T, and 

functors of the same form, which are not. Not surprisingly models so construed, generally, are  

not isomorphic.  However the categorical setting doesn’t make it reasonable to try to force the 

isomorphism (i.e. categoricity of T in the old sense). For the wanted “precision” of T can be 

obtained differently. The categorical setting straightforwardly allows for considering the 

category M of models of T (having functors of the form T!S as its objects and 

transformations between these functors called natural transformations as morphisms). So 

instead of getting a group of isomorphic models one gets a category of models. Although the 

functorial models are defined “only up to morphism” but not not up to isomorphism M 

comprises all of them at once. Although the word “all” should be obviously taken with a 

pinch of salt M is a perfectly manageable construction. In addition the theory T itself 

becomes to look differently: T may be treated as its own model and (as identity functor) be 

included into the category M. So one gets a category of models where one particular model 

generates all the others (i.e. generates the whole category). A theory becomes a generic 

model. This again brings one back to the pattern of the Elements where few basic 

constructions generate the rest.  
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3. Formalisation and Categorification 

We have seen that taking into consideration non-reversible transformations between 

mathematical objects and treating these transformations on equal footing with isomorphisms 

has quite dramatic consequences for mathematics. Category theory is the general theory of 

non-reversible transformations (morphisms). Starting with very weak general assumptions 

about morphisms this theory develops into a reach mathematical discipline, which allows to 

think seriously about the possibility of categorical reconstruction of the whole of 

mathematics. In this section I shall try to outline the new notion of mathematics brought about 

by this development.  

By a network of interpretations I shall understand any instant of collective cognitive and 

symbolic human activity. Such a network has spatial and temporal characteristic, as well as 

more specific characteristic, which I shall discuss shortly. Now I consider two epistemic 

procedure with such a network, namely formalisation and categorification.  

A formalisation of a given network of interpretations amounts to extraction of its reversible 

fragments (if any). Such fragments are told to have invariant forms, which one may treat then 

as self-standing abstract entities. So one may forget about mathematical classrooms, the 

history and the geography of mathematics, mathematical models in physics and other 

sciences, and do “pure mathematics”. Remark that the result of this procedure depends on the 

choice of isomorphisms: there are could be different available options.   

Categorification suggests itself in the same situation as a more general and more flexible 

epistemic procedure. It amounts to accounting for interpretations of a given network as 

categorical morphisms and looking for categorical properties making this network  

manageable. A basic property of this kind is coherence, which can be specified in many 

different ways. The most basic notion of coherence is given by the usual categorical notion of 

functor.  

The assumption according to which all collective human cognitive activities turn around the 

same conceptual forms implies a kind of coherency. Whether this assumption describes 

adequately how people actually think is less important: as far as foundational epistemic issues 

are concerned one looks for a definition of reasonable thinking rather than tries to describe 

how people actually think. I guess that many opt for the formal method because they believe 

that it provides the only way of making a collective cognitive activity coherent and  

reasonable. However this assumption is wrong as I have already shown. 
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Cutting a given network of interpretations into isomorphism classes and identifying each such 

class with a particular form one gets the following two problems. The first problem is how to 

bring the obtained different forms back together. As far as I can see the only way to make this 

without using other means is to organise the network as a hierarchy of forms. This can be 

done through considering isomorphisms of different kinds (different equivalence relations) 

some of which are more general and some more specific than some others. Then one may get 

a single universal form on the top of the hierarchy and a number of more specific forms 

making its body. This is the traditional model of organisation of knowledge (and of society). 

It might work but generally it doesn’t: the epistemic requirement according to which any 

reasonable network of interpretations must allow for such hierarchical organisation is 

unreasonable itself. Instead of implementing this traditional hierarchical structure modern 

adepts of the formal method try to persuade themselves and others that the very idea of 

unification of knowledge at higher scales is misleading (and politically dangerous), so one 

should learn to live in the world of small disconnected formal patterns. Remark that treating 

the given network of interpretations as a category one may grasp its global structure without 

stipulating anything like a “universal form” of the whole thing.  

The second problems related to the first is that things of quite different types appear to be 

isomorphic, that is, to have the same form. The problem can by partly treated by the above 

recommendation of keeping isomorphisms specific and isomorphism classes small. However 

this doesn’t work when the formal method is applied to mathematical theories. Doing 

geometry formally after Hilbert one cannot avoid the confusion of points with beer mugs. This 

is a joke but the identification of points with tuples of numbers is not. In this sense an 

isomorphism is a very imprecise map. As I have already argued from a categorical viewpoint 

the obvious difference between points and numbers is not the matter of a primordial intuition. 

The shortest way to spell out the difference is to say that points and numbers belong to 

different categories. The difference between these categories can be made clear even if 

following Hilbert’s advice one forgets how an individual point and an individual number look 

like and observes how these things behave with respect to their likes. In a limited domain 

these things indeed may behave similarly but looking at their larger conceptual environments 

one may also see the difference. The formal method doesn’t allow for such a wider look 

except the whole of mathematics is organised hierarchically (which is not a realistic 

assumption).  

Although Hilbert’s formal approach to geometry looked like a radical proposal it perfectly fits 

the traditional Platonic notion of mathematics as a science of form. Let’s see more precisely 
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what was new and what was traditional in Hilbert’s proposal. A wider historical look shows 

that a really new feature in the Grundlagen was the notion of mathematical interpretation 

(although it was not a Hilbert’s own invention) but not his notion of formal theory itself. The 

traditional geometry (and mathematics in general) can be also said to be formal albeit not 

exactly in the same sense. For example, a circle conceived traditionally is a form of shared by 

many material objects. By the analogy with Hilbert’s formal method one might call such 

material objects interpretations of the mathematical circle (Plato would call them images). 

What makes the principle difference between interpretations of a formal theory in the 

Hilbert’s sense and material images of usual geometrical objects  is the fact that in the former 

case the interpretation is an internal mathematical matter while in the latter case it is not. The 

issue of mathematical interpretation entered mathematics before the Grundlagen had been 

published (with the publication of the Saggio the latest). Hilbert applied the traditional 

Platonic schema in the new situation and got a result, which looked very unusual. Thinking 

about interpretations of formal theories Hilbert had in mind reversible substitutions of 

primitive terms and relations in one model by their counterparts from another model. So he 

got the notion of formal theory. However, as we have already seen, this doesn’t work in fact: 

mutual interpretations of models don’t reduce to substitutions except simple cases.  

To see how basic is the assumption of reversibility of mathematical transformations 

(operations) consider this question: Is the operation of addition 7+5=12 reversible or not? The 

question can be understood in different senses and, correspondingly, given different answers. 

The operation (+5) can be cancelled (reversed) by this subtraction: 12-5=7. But given that 12 

is as a sum of two natural numbers it is not possible to specify these numbers uniquely: 

7+5=10+2. In this latter sense the operation (in fact a different operation) is irreversible. But 

yet in a different (perhaps not “properly mathematical”) sense the latter operation is 

nevertheless reversible: when 7 and 5  are summed up and bring 12 about the summands don’t 

perish but survive on the left side of the equality: 7+5=12. In this latter sense any 

mathematical operation and any categorical morphism A!B is reversible. This fact suggests 

to think of the notions of mathematical operation and transformation as mere metaphors 

describing particular relations between mathematical objects. In this latter view when 7 and 5 

are summed up “nothing happens” indeed: the story of emergence of 12 out of 7 and 5 is just 

a way to say that the three numbers stand in a particular ternary relation. I shall not discuss 

this Platonic view systematically but remark that it ceases to be plausible as far as 

mathematics is considered as human activity going on in space and time. A machine 

performing the operation 7+5=12 may keep or not keep the summands in its memory after the 
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operation is done. The same is true for humans. One may argue after Plato that these facts 

have nothing do with numbers in themselves but I think that a more challenging task is to 

reconstruct the number in themselves from the relevant conceptual dynamics empirically 

observed in mathematical classrooms and elsewhere. If during a mathematical reasoning one 

forgets where he or she has started from this certainly disqualifies the reasoning. So the 

reversibility is certainly required in this case. This basic feature of mathematical reasoning is 

made explicit in the Elements where each  proposition is repeated twice: immediately before 

and immediately after its proof (but before Q.E.D.)  

Granting this basic reversibility of mathematical reasoning one might argue that mathematics 

is ultimately formal while non-reversible mathematical transformations are superfluous 

structures construed on this formal basis. However the argument doesn’t go through as far as 

a larger-scale conceptual dynamics is taken into the consideration. The larger-scale dynamics 

shows that the reversibility of mathematical reasoning is not in fact so fundamental as it 

seems. For at larger temporal (and perhaps also spatial) scales mathematics is obviously non-

reversible. When the Pythagorean is taught in school a teacher may reasonably look for 

reversibility of interpretations of this theorem given by different pupils, which shows that all 

the pupils learnt indeed the same thing. (Remarkably not any kind of isomorphism is desired 

in this situation. The mere phonetic isomorphism will not do: when all the pupils in a class 

utter the statement of the theorem and its proof in exactly the same words the teacher would 

suspect that none of them in fact understands it.) But one cannot reasonably apply the same 

standard thinking about historical development of mathematics. Greek mathematics and the 

contemporary mathematics are not isomorphic. One might extract a common form of the 

Pythagorean theorem invariantly preserved throughout the history by considering certain local 

isomorphisms between ancient and modern  theories. However impressive and important such 

long-preserved mathematical identities might be they don’t tell us much about how 

mathematics subsists and develops. Non-reversible interpretations of ancient theories in 

modern terms (and perhaps some backward interpretations as well) tell us much more. Quasi-

eternal formal concepts like the Pythagorean theorem (or, say, natural number) can be best 

understood as epiphenomena of continuous non-reversible conceptual mathematical 

dynamics. As the example of the Pythagorean theorem clearly shows transformations 

involved into this dynamics don’t reduce neither to isomorphisms (which is obvious for 

otherwise mathematics couldn’t develop) nor to monomorphisms (embeddings) of older 

contents into new contents. For mathematics like any other science not only acquires new 

contents but also constantly revises its older contents and throws some of them away. The 
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cumulative model of development of science and mathematics is oversimplified even if it 

allows for occasional “revolutions” (Kuhn 1962). In a categorical framework such 

oversimplified assumptions no longer look as “natural”. A categorical analysis makes it clear 

that to keep a certain branch of science (mathematical or not) at the same fixed point of its 

development is not a trivial task, as anybody involved into the educational business certainly 

knows. In fact this task is hardly realisable at all since conceptual change is a very basic 

feature of science and mathematics. Without new research science and mathematics quite 

rapidly corrupt but not just cease to develop.   

Thus the conceptual dynamics of mathematics is, generally, non-reversible. The reversibility 

is an important but strictly local feature of this dynamics. So the view that non-reversible 

transformations and the Category theory studying such transformations (morphisms) are  

construed on the top of a reversible formal basis is ungrounded. This implies that the usual 

view on mathematics as  formal science is very limited and should be given up. This equally 

applies to logic as a part of mathematics. Instead mathematics (and in particular logic) should 

be thought as a science of interpretation, that is, as a categorical hermeneutics.  

This new vision of mathematics brings a new notion of meaning. Meaning is usually though 

of as an invariant of paraphrasing within a given language and of translations between 

different languages. However this notion makes sense only when the paraphrases and 

translations are reversible. Otherwise there is no invariant, or at least not in the usual sense. 

That paraphrases in and translations between natural languages are, generally, not reversible 

can be demonstrated by simple linguistic examples. So the usual notion of meaning doesn’t go 

through. Hence the notion of meaning as a kind of substance transferred from a speaker to 

another speaker should be given up. What makes a linguistic communication meaningful is its 

coherence, which doesn’t require reversibility and can be specified by category-theoretic 

means. I leave this issue for another study.  

 

4. Conclusion: Mathematical Structuralism.  

In the philosophy of mathematics of the 20-th century structuralism has been first associated 

with Bourbaki’s fundamental Les Eléments des mathématiques aiming at reconstruction of 

mathematics in set-theoretic terms. Les Eléments starts with a version of Set theory, and then 

purports to represent further mathematical concepts as “sets equipped with structures”. I shall 

not analyse here the general definition of structure given in (Bourbaki 1939 - , v.1, ch.4)  but 

give only this simple example. Take a set G and associate with any ordered pair of its 

elements a third element of the same set. This is how Bourbaki defines a binary operation on 
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G. Then given the needed properties of the operation G turns into a group. G can be called in 

the given context a “set equipped with a group structure”. The idea is that a “structure” is put 

on the top of a “bare set”. Bourbaki’s definition of structure is general enough to allow for 

similar constructions of topological spaces, rings, modules and a wide spectrum of other 

mathematical concepts. Crucially concepts so construed are workable, that is, allow for 

carrying out proofs. A large part of mathematical research in the second part of the 20-th 

century has been made in this general framework.  

A reader  familiar with the Category theory can easily recognise basic categorical 

constructions among Bourbaki’s generic “structures” like the terminal and the initial 

structure. This suggests to question the informal metaphysics of Les Eléments according to 

which all mathematical constructions are made of the same set-theoretical “matter” and 

distinguished by their specific structures. The reason for the questioning is that the Category 

theory seems to be capable to account for structures without making any use of the “matter”. 

Moreover it allows for treating the set-theoretic  “matter” as a particular kind of structure. So 

the dualistic metaphysics of structure and matter becomes redundant: the Category theory 

allows one to dispense with the “matter” in favour of pure structures. Hence the thesis that the 

Category theory supports the mathematical structuralism (Awodey 2004). Structuralism says, 

roughly, that only structures count. Here is an official definition (Hellman, forthcoming): 

 

“Structuralism is a view about the subject matter of mathematics according to which what 

matters are structural relationships in abstraction from the intrinsic nature of related objects.” 

 

Hellman quite rightly, in my view, traces the history of mathematical structuralism back to 

Hilbert. In the new language the basic idea of the Grundlagen can be spelled out in this way: 

only structures described by formal theories are essential while “instantiations” of these 

structures (models of the formal theories) are less important and at least in some contexts can 

be dispensed with.     

This short explanation of the mathematical structuralism (see also Awodey 1996, MacLane 

1996) is sufficient for showing that the Category theory in fact does not support this view. 

Here is the core argument. The notion of structure is defined by Bourbaki up to isomorphism. 

This basic property of the notion of structure survives in any of its versions. So the notion of 

structure is a version of the more general notion of form (which I define as an invariant 

through an isomorphism). Category theory makes it clear that the old Platonic notion of 

mathematics as a study of forms (and in particular of structures) is limited and suggests a 
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more general notion of mathematics as a study of categories. Categories are, generally, not 

forms (structures) but forms (structures) are indeed simple categories, which, generally, are 

not sustainable outside their wider categorical environments. Traditional formal mathematics, 

and in particular structuralist mathematics, is nothing but a very specific case of categorical 

mathematics. So Category theory does not support mathematical structuralism.  

To clarify the argument let me distinguish between two different features of mathematical 

structuralism: epistemological and ontological holism about mathematical matters, on the one 

hand, and the “exchangism” about models (the idea that one model of a given formal theory 

can be exchanged for another one), on the other hand. In most discussions about structuralism 

the two issues are tingtly interwined although they are very different. The Grundlagen is an 

explicitly holistic theory: Hilbert stresses the fact that geometrical notions including primitive 

ones have no relevant meaning outside their corresponding theories. According to Hilbert the 

relevant meaning of these notions is their formal meaning, so points, etc. have to be thought 

of as “places in a structure” which can be either “filled in” with one’s favourite intuitive 

content or perhaps just left “free”. The two claims are very closely interrelated in Hilbert’s 

account.  But remark that the former doesn’t imply the latter. While holism can be reasonably 

argued for in the traditional Euclidean setting (the Euclidean notion of point arguably has no 

meaning outside its corresponding theory just like the Hilbert’s) the exchangism about models 

is a new specific feature of the Grundlagen. The holism and the exchangism together imply a 

broadly structuralist view: the “intrinsic nature” of mathematical objects (if any) doesn’t 

matter; only structures of relations between the objects are mathematically relevant. I assume 

that the mathematical holism alone does not imply structuralism. Let’s now see what happens 

with holism and “exchangism” in the categorical approach. 

Categorical approach certainly pushes mathematical holism further forward. While the formal 

approach suggests to work with a chosen favourite model of a given formal theory (keeping in 

mind that this model can be exchanged for another isomorphic model) the categorical 

approach suggests to work with a category of models instead of picking up just one. What 

happens with the exchangism then? As far as one works with all models of a given theory at 

once the exchange is no longer required. Moreover as far as the exchange of models is 

thought of as an isomorphism (substitution of terms) this notion cannot account for a non-

trivial category of models. A given category A can be often interpreted in another category B. 

I mean that given categories A, B one may consider a functor F:A!B or a category of such 

functors. In this sense the talk of “all models” shouldn’t be understood too straightforwardly: 

any “category of all models” in principle allows for further constructions, which in some 
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different sense could be counted as new models. But anyway since F is, generally, non-

reversible (not an isomorphism) it cannot be seen as providing an “instantiation” of a given 

abstract structure. Moreover, as I have already explained, the case when F is an isomorphism 

can be reasonably ignored by a special convention: although the notion of isomorphism of 

categories is not contradictory it is “useless” as Gelfand &Manin put this.  

It might be nevertheless argued that the categorical approach pushes holism and exchangism 

further forward accordingly. While the formal approach allows one to dispense with the 

“intrinsic nature” of points, straight lines, etc. the categorical approach seemingly allows to 

dispense with the “intrinsic nature” of geometrical spaces themselves considering them as 

“abstract objects” of a properly specified category. So one may argue in Hilbert’s vein that in 

a categorical context it becomes irrelevant what is “taken” as geometrical space as far as 

things called spaces form a category with required properties. This view is misleading for the 

following principle reason: the idea that one is in a position to “take something for” a 

geometrical space, and then exchange this something for something else, doesn’t apply when 

the categorical approach is taken seriously. For “taking something for” is a reversible 

substitution. What one can do in a categorical mathematics is this: construct various 

categories of “spaces” and interpret them in each other and in different categories. Such 

interpretations are generally  irreversible.   

What makes people to look for different “instantiations” of categories and think about “non-

instantiated” categories as “abstract structures” is apparently this residual form of 

substantialism: even if “individual substances” do not matter in mathematics they are 

supposed to be around ready to “take” suitable “places” in a structure; the structure itself is on 

this account a kind of second-order substance allowing for exchange of its contents. The 

spatial intuition of “place” involved in this metaphor is not innocent since it supports the 

assumption of the possibility of the reversible exchange of the occupants of the abstract 

“places”. However in a categorical context this residual substantialism and the associated 

spatial intuition of reversible motion (behind the notion of place) are, generally, irrelevant. 

Taking the notion of morphism seriously one should in fact reconsider the colloquial 

distinction between abstract and concrete categories explained above. In this colloquial 

distinction “abstract” means “formal”. If I am right that categorification and formalisation are 

quite different things this distinction is misleading. A distinction between abstract and 

concrete mathematical concepts can be reasonably made in a categorical context in a different 
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way26. I shall not consider this issue here but remark that doing mathematics categorically it is 

hardly helpful to consider “abstract morphisms” as abstract. It is more appropriate to develop 

a new intuition supporting this primitive categorical notion. Notice that a common intuition 

about irreversible transformation involves the notion of time; this shows that in a categorical 

mathematics usual spatial intuitions can be reinforced by spatio-temporal intuitions.  

As far as one takes the categorical approach seriously the notion of “internal nature” of a 

mathematical object should be equally reconsidered. It is natural in a categorical context to 

call “internal properties” of a given object properties of morphisms into this object. Given a 

category C and a chosen object O of this category such morphisms form another category 

called slice category C/O. So the notion of category provides a perfect instrument of “looking 

inside” its objects.  

As far as the mathematical structuralism is seen against the traditional mathematical 

essentialism according to which mathematics studies particular things like numbers and 

figures (given to us through an intellectual intuition or abstraction from experience or in a 

different way) then Category theory indeed supports the structuralist side. However Category 

theory doesn’t support the residual essentialism inherent in mathematical structuralism. The 

categorical approach indeed pushes mathematical structuralism further forward. It broadens 

the structuralist “exchangism” allowing for non-reversible interpretations. At this point the 

structuralism ceases to be itself. One might argue instead that the Category theory suggests a 

new generalised notion of structuralism. I don’t agree. I think that to call the new framework 

“structuralist” would be inappropriate and misleading. For unless a given morphism (functor) 

F:A!B is reversible there is no way to stipulate anything like “structure” with respect to 

which A, B can be thought of as its “instantiations” or “models”. A categorical mathematics is 

not about structures invariant through exchanges of contents but about translations between 

different contents.  

 

 

 

 

 

 

 

                                                
26 As proposed by Lawvere in his lectures during the conference “Ramifications of Category theory”, Florence 
2003.  
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