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Abstract

Various processes are often classified as bothrrdetestic and random or chaotic. The main
difficulty in analysing the randomness of such ps®es is the apparent tension between the
notions of randomness and determinism: what typeamfomness could exist in a deterministic
process? Ergodic theory seems to offer a partigumomising theoretical tool for tackling this
problem by positing a hierarchy, the so-called oeig hierarchy’ (EH), which is commonly
assumed to provide a hierarchy of increasing degoéaandomness. However, that notion of
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randomness requires qualification. The mathematiedihition of EH does not make explicit
appeal to randomness; nor does the usual way septiag EH involve a specification of the
notion of randomness that is supposed to undédienierarchy. In this paper we argue that EH is
best understood as a hierarchy of random behaviowndomness is explicated in terms of
unpredictability. We then show that, contrary tonocoon wisdom, EH is useful in characterising

the behaviour of Hamiltonian dynamical systems.

Keywords: Randomness, ergodic hierarchy, chaosdjgiadbility, dynamical system, correlation.

1. Introduction

Various deterministic processes are frequentlysdias as random. The main difficulty in
analysing random behaviour in such processes igpiparent tension between the notions of
randomness and determinism. Intuitively, in deterstic processes the past determines the
future, and the question is then: what type of camgess could exist in such processes? One
influential suggestion has it that the so-callechdelic hierarchy’ can elucidate the nature of

randomness in dynamical processes that are (byngsisun) deterministic.

The ergodic hierarchy (EH henceforth) is a hiermalhclassification of dynamical systems, and

it is typically presented as consisting of fivedés:

Ergodicd Weak Mixing Strong Mixingl Kolmogorov(l Bernoulli.

The diagram above indicates that all B-systemsn@dl systems) are K-systems (Kolmogorov

systems), all K-systems are SM-systems (strong ngidystems), all SM-systems are WM-

systems (weak mixing systems), and all WM-systera€asystems (ergodic systems). A system



that is an E-system but not a WM-system will beemefd to below as ‘merely ergodic’, and

similarly for the next three levefs.

This hierarchy is often presented as a hierarchyaotlom behaviour: the higher up in this
hierarchy a system is placed the more random is\beur? But in what sense is it random?
With the exception of B-systems, the mathematicsindions of the different levels of the
hierarchy do not make explicit appeal to randommesany notion that can readily be connected
to randomness. Nor does the usual way of presektthgivolve a specification of the notion of
randomness that is supposed to underlie the higraBo what is the notion of randomness that
underlies EH and in what sense exactly is EH aahtly of random behaviour? The aim in this
paper is to answer these questions and to showBkbean be used to characterise the behaviour
of Hamiltonian dynamical systems.

The primary contention of our analysis is that Edth oaturally be understood as a hierarchy of
randomness if different degrees of randomness xgpkcated in terms of different degrees of

unpredictability, where unpredictability is accoemtfor in terms of epistemic probabilistic

% Sometimes EH is presented as having yet anotkie, leamely C-systems (also referred to as Anogstesns or
completely hyperbolic systems). Although intereggtin their own right, C-systems are beyond the scopthis
paper. They do not have a unique place in EH aeid thlation to other levels of EH depends on digetarhich we
cannot discuss here. Paradigm examples of C-sysaeenkocated between K- and B-systems; that igj; Hne K-
systems but not necessarily B-systems. The cat foamstance, is a C-system that is also a K-sygteichtenberg
& Libermann, 1992, p. 307); but there are K-systesush as the stadium billiard which are not C-systgOtt,
1993, p. 262). Some C-systems preserve a smootsumedwhere ‘smooth’ in this context means absbiute
continuous with respect to the Lebesgue measurayhich case they are Bernoulli systems. But nlo€Cadystems
have smooth measures. Nevertheless, it is alwagsilge to find other measures such as SRB (Sinagll&®
Bowen) measures. However, matters are more congdiéa such cases, as such C-systems need noxbegrand
a fortiori they need not be K- or B-systems (Orims& Weiss, 1991, pp. 75-82).

* This claim is common in the literature on chaasotly where EH is presented as a hierarchy of rarigeimaviour
(see for instance Lichtenberg & Libermann, 1992; ©293; Tabor, 1989). Recently Belot and Earm&9T) have

used EH to define chaos in dynamical systems.



relevance. Different degrees of probabilistic ralese, in turn, are spelled out in terms of

different types of decay of correlation betweelystem’s states at different times.

The structure of the paper is as follows. Afterri@fdntroduction to dynamical systems and EH
in Section 2, we show in Section 3 that EH can (shduld) be interpreted as a hierarchy of
degrees of unpredictability. To this end, we fimsbtivate the idea that dynamical randomness
can be explicated in terms of unpredictability #mat different degrees of unpredictability can be
cashed out in terms of different types of decagmfelation. Then we show that each level of
EH exhibits a different type of decay of correlatidn Section 4 we address the question of the
applicability of EH to Hamiltonian systems. It ieefjluently argued that EH is useless because
almost all Hamiltonian systems of interest are eogedic. We reply that, contrary to common
wisdom, these arguments do not undermine the umefsilof the ergodic hierarchy. Finally, in
Section 5 we draw some conclusions from our amalgéiEH for the definition of chaos. In

particular, we suggest that chaos comes in dega¢iesr than being an all or nothing matter.

2. Classical dynamical systems and the ergodic hierar chy

In this section we provide a brief introductiondgnamical systems and the ergodic hierarchy.
Intuitive and accessible introductions can be foumd.ichtenberg & Liebermann (1992) and
Tabor (1989); for detailed discussions the readay consult Arnold and Avez (1968), Marfé
(1983), Nadkarni (1998), Parry (1981), Peterse®3),9Sinai (1980), and Walters (1982), as well

as many other monographs on the subject.

® Within the literature on EH and chaos, the terorrelation’ is often used to denote the integrathef product of
two functions, where the argument of one of thefioms is shifted by a constant. As we explaindoti®n 3, we use

‘correlation’ in a different sense, which is cldsehow the term is used in probability theory.
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2.1 Classical dynamical systems

The fundamental object in ergodic theory is a dyicamsystem[ X, 2,4, 7]. It consists of a
dynamical lawt on a probability spacgX,z,u]. X is a set of elements, which is sometimes
called the phase spaceis ac-algebra of measurable subsetsxafmeaning thaf

(1) X0z,

(2) A\BOX forall A BOX, and

3 U, BOzifBOzforisi<nsw.
This implies that2 also containsd as well as all (finite or countably infinite) imgections
ﬂin:la , where{ B}/, 0 X for 1<n<o. Furthermore there is a probability meaguren X :

Q) % - [0 with (X) =1, and

(2) If{B}, 0 andB nB =0 fori<j<ksns<o, thenu( ) B)=D. uB).

An automorphisnT is a transformation that maps the probability sgac B,u] onto itself; it is
measure-preserving iff for aB 1> :

(1) T7'BOZ and,

(2) (T 7'B) = u(B), whereT *B={x0OX:TxOB}.

A dynamical lawr:={T},, is a group of measure-preserving automorphi§m¥ - X of the
probability spacé X, B, u], wherel is eitherR (the real numbers) o (... -1, 0, 1, ...J.In the
discrete casél = Z), 1 is often generated by the iterative applicatiomhef same automorphism

Tand accordingly we havé = T'.

® In what follows, (' denotes the set-theoretical membershifo) B’ denotes the set-theoretical subtractionfof
from B, ‘U’ is the set-theoretical union. In the text thatdws, ‘(' is the set-theoretical intersectior,]* is the
empty set, and ‘iff’ is a shorthand for ‘if and grif".

" Ergodic theory is not limited to the study mapsdmhonR and Z. In particular, a considerable body of
mathematics has been collected on amenable greupsspatial translations). Furthermore, substaptigs of EH
have been extended to the quantum realm. Howelvesgtdevelopments, interesting and important iir then

right, fall outside the scope of this paper, whictly deals with classical dynamical systems.
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The seta ={a, :i=1,...,n} is a partition ofX iff

(1) ana; =0 foralli# |

@ #x\Ua)=0.
The a; are called ‘atoms of the partition’. It is impartao observe that the image of a partition
under any elemenk of 7 is still a partition. Given two partitions ={a; :i =1,...,n} and
B={B:1=1...n}, their least common refinemefsometimes also referred to as their sum)

al B is defined as followsa U g ={a;n B,:i=1..n;j=1..n}.

In what follows we will, by and large, confine oattention to discrete dynamical systems
involving a measure-preserving automorphism in White dynamics is induced by an iterative
application of this automorphism. Some of thesérict®ns are more significant than others.
Nothing of what we have to say about randomnesisisnpaper hinges in any way on the choice
of discrete time and a dynamic that is based onténative application of the same map. We
focus on these systems just for the sake of simglial our results readily generalise to the case
of continuous flows. Other systems we omit from analysis are ones whose dynamics is based
on endomorphisms (non-invertible maps) or non-aregerving mappings, or ones that have a
phase space whose measure is not normalisableh&/fetnot our results can be carried over to

these cases is an interesting question, which &mtwf space we cannot discuss here.

2.2 The ergodic hierarchy

The lowest level of the ergodic hierarchy is ergagli Let f be any complex-valued Lebesgue-

integrable function on a probability space. Itsquomeanf is defined asf:= IX f(x)du, and its
time meanf* (x) is defined asf* (x)::ll(im-&z::;f[T"(x)]. The Birkhoff-Khinchin theorem

assures that* (x) exists almost everywhere (i.e. except, possiblya@et of measure zero). A
dynamical systen| X,Z,u,7] is ergodic iff for every complex-valued, Lebesguegrable
function f the time mean equals the space mean, f.e(x) = f, almost everywhere.

Furthermore, one can prove that a system is ergfdine following holds for all set\, B[1X:



©) lim 3 U8 A)= (BUA

A system is strongly mixing iff for ala, B0 X :
(SM) limu(T"Bn A) = (A u(B).

One can relax this requirement a bit by allowingffoctuations while requiring that the system
is ‘strongly mixing on average’. This gives weakxmg. A system is weakly mixing iff for all
A BOZX:

. 1 n-1
(WM) Im=> s

UT“Bn A)- 1(B)(A)]=0.

Strong mixing implies weak mixing, and weak mixingplies ergodicity. The converse relations
do not hold. Hence, strong mixing is a strongerdéiion than weak mixing, and weak mixing is

stronger condition than ergodicity.

K-systems mark the next higher level in the ergddérarchy after strong mixing. A dynamical

system[ X, Z, 4, 7] is a K-system iff there is a subalgel®a 1% such that the following three
conditions hold: (1), O0TZ,, ) V._.T"%,=2, (3) A\.-...T"Z, =N. In this definition,
T"%, is the c-algebra containing the sef§'B (BZ,), N is the c-algebra consisting uniquely
of sets of measure one and measure 2¢fa, . T"%, denotes the sum or the ‘refinement’ of all
the T"Z, (as introduced in section 2), gAd_ . T", denotes the largest subalgebr&ofvhich
belongs to eacA"Z ;. There is an important theorem due to Cornéldl. (1982, p. 283) which

states that a dynamical systgX 2, i, 7] is a K-system iff it is K-mixing (KM). A system KM

iff for any setA,, for any positive integer and for any set of measurable subggts. A U

(KM) lim sup | 4(Bn A) - u(B)u(A)| =0,

where g is the minimalo-algebra generated b{ﬂ"‘A: k=n;i= 1,...,r}. The algebrag,  is

r

obtained as follows: AdX to the above set, add all differencEsy \T'A , Wherek,l 2n and

i,j =1,...,r, and finally also add all (finite and infinite) ioms of these. The set we get isra



algebra by construction; it is minimal because aftam theTkA no other set has been used to

construct it.

Bernoulli systems mark the highest level of EH. Titeitive idea is that a Bernoulli system is

one whose behaviour is as random as a coin tosgaulette wheel. We first introduce so-called

Bernoulli schemes, which then give rise to therdedéin of a Bernoulli system. LeY be a finite

set of eIementsY={f1,...,fn} (sometimes also called the ‘alphabet’ of the syjtand let

v(f) = p be a probability measure oft 0< g <1foralll<i<n,and) p =1. Furthermore,
i=1

+0o

let X be the direct product of infinitely many copiesYaf X = |_| Y;, whereY =Y foralli. The

j=—o0
+00

elements ofX are doubly-infinite sequences= {)g }i wherex OY for eachi OZ. As thec-

=—c0 !

algebra C of X we choose thec-algebra generated by all sets of the form

{x OX| % =k,m<i<m+ n} for all mOzZ, for all nON, and for allk Y (the so-called

+o00

‘cylinder sets’). As a measure orX we take the product measur(ﬂ v,, that is

X} = VGV X)X )V(X,)... The triple [X,C, 4] is commonly referred to as a
‘stochastic process’. This process is stationatigefchance element is constant in time, thaft is if
for all cylinder setsi(y:y,,, =w,,m<i<m+n) = (y:y, =w,, m<i <m+n) holds. An invertible
measure-preserving transformatidnX — X, the so-called shift map, is naturally associated
with every stationary stochastic proceskx :{3/i}i+:°_oo where y. =x,,, for all i0Z. It is
straightforward to see that the measuis invariant undefT (i.e. thatT is measure preserving)

and thatT is invertible. This construction is commonly reéat to as a ‘Bernoulli Scheme’ and

denoted by B(p,,....p,)’. From this it follows that the quadrupleX,C, 4, T] is a dynamical

system.

Naturally the question arises of how all this retato automorphisms of continuous spaces we
have been discussing in connection with all thesiotbvels of the hierarchy. In order to relate

these two frameworks to one another we chose &ipartr={a,,...a,} of the phase spack

of the continuous system and say that the systeBersoulli if the coarse grained dynamics



behaves like a random process. More specificaltya@omorphismrl: X — Xof a probability

space[X, Z,,u] is a Bernoulli automorphism if there exists a ipiart a = {a ,...,an} such that all

T'a, —» < i<, are independent of each otfevhere two partitiongr and 8 are independent

of each other iffu(a; n B)) = u(a,)u(B;) for all atomsa; Oa and B 0. Finally, a dynamical

system X, %, 4, T] is a Bernoulli system iT is a Bernoulli automorophism.

We would like to mention that there are other type8ernoulli conditions: Weak Bernoulli and
Very Weak Bernoulli processes. These conditions rmathematically complicated and the
discussion of their nature and their intimate retahips to B-systems is beyond the scope of this
paper (the interested reader may consult Ornste874) or Shields (1973)). Yet, what is
important to mention here is that these conditenmesof special interest in practice. It is oftenyve
difficult to demonstrate that a dynamical systexaz, i, T] is a B-system by way of showing that
the automorphisnT is a Bernoulli automorphism. It is easier to shtbat a dynamical system is
Very Weak Bernoulli, and satisfaction of this cdmath is sufficient for the system to be Bernoulli.
Ornstein demonstrated this sufficiency conditiond eshowed that many dynamical systems

satisfy are Very Weak Bernoulli.

3. Decay of correlations, unpredictability and randomness
3.1. Introducing the central notions

The term ‘randomness’ may refer to many differémds. Among them are the absence of order
or pattern, the occurrence of events or acciderchance, the lack of structure, being brought
about without method, purpose, plan or principking computationally complex, the absence of

dynamical stability, having positive Kolmogorov-8inentopy (KS entropy) the probabilistic

8 A second condition needs to be satisfiet:must beT -generating:UVi";nTia generate . However, what

matters for our considerations is the independenaoédition.
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independence of future from past events, and umgteddity.’ Some of these have been given

detailed treatment within well worked-out theonsile others have attracted less attention.

Which of these notions of randomness can be usemderstand EH as a hierarchy of random
behaviour? The sought after notion of randomnesstdallow for a uniform characterisation of
the ergodic hierarchy. That is, it must be posstbleinderstand each level of the hierarchy as
manifesting some degree of tesamenotion of randomness and the higher the levehishe

hierarchy the greater is its degree of this kindamidomness.

Several of the above-mentioned conceptions of naméss do not seem to square with EH at all
and can be dismissed as inapplicable (e.g. chammes$s or pattern breaking). Some seemingly
obvious candidates such as the KS entropy, algoigticomplexity and exponential divergence of
nearby trajectories are ruled out by the aboveerioibh of adequacy. The problem with these
notions is that while they can be used to distislglbetween the kind of randomness that we find
within the higher and the lower levels of EH, threynain silent about how the random properties
of different levels at the high or the low end diffrom one another. It is a theorem that a system
is a K-system iff it has positive KS entropy (Caldfet al, 1982, p. 283). From this it follows
that merely E, merely WM and merely SM systems lmare KS entropy while K and B systems
have positive KS entropy. For this reason the K&opy fails to distinguish between merely E,
merely WM and merely SM systems. In fact, it alasfto distinguish between merely K and B
systems, as there are B systems whose entropy aflesnthan the one of certain merely K
systems. So the KS entropy is blind towards bothdifferences within the lower and the higher
regions of the hierarchy. Other notions ‘inherftist problem from the KS entropy. Algorithmic
complexity is linked to the presence of positive &8ropy by Brudno’s theorem, which roughly
says that the KS-entropy of a system is equal éalgorithmic complexity of almost all its
trajectories (Brudno, 1978; for details see Aleks&eYakobson, 1981). And similarly for the
divergence of nearby trajectories, which can omguo in K or B systemd$?esin’s theorenstates

that a dynamical system is dynamically unstableéh@ sense of having positive Lyapounov

° There is subtlety here: what we really mean isbability equal to one, which is not the same asagefy.
However, the difference between the two does ndteméor our purposes so we keep using the twotions

interchangeably.
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exponents (i.e. that it has exponential divergasfceearby trajectories) iff it has a positive KS-

entropy (Lichtenberg & Liebermann 1992, p. 304 esfdrences therein).

It is the main contention of this paper that unpredbility may be used to characterise the nature
of increasing degrees of randomness involved in Bdt before arguing the case for
unpredictability in detail, we first have to brigfteview the basic notions of unpredictability and
randomness we have in mind. At the most basic |arekevent is said to be unpredictable if the
probability of its occurrence is independent oftpagents; and a process is unpredictable if the
probability of its present and future stages ipehdent of its past history. This basic notion of
unpredictability can be refined by relaxing theuegment of total probabilistic independence and
only demanding that past states are of limitedveaiee for present and future states (we give a
precise definition of relevance below). Furthermaree can discuss the relevance of different
parts of the past for our predictions: do our prgdns get better when we know more about the
past of the system? Does such knowledge make fimdianore reliable than they would be in
light of total ignorance about what happened earie in the process? Intuitively, the less
relevance the information of the past history haisthe quality of our predictions, the more
random the process is. For instance, tossing alasra high degree of randomness as we are not
able to predict whether the coin lands on headsits; and things do not improve in the light of

better knowledge of the outcomes of past tosses.

We reach an interpretation of EH as a hierarchyumgbredictability in three steps. First, we
introduce the notion of correlation between twossib of the phase space and then show that
different levels of EH exhibit different patternsdecay of correlations. At this stage, our analysi
is purely mathematical and does not rely on anylopbphical views about randomness,
predictability, or probability. Second, we introduthe notions of event and predictability. Third,
we introduce an interpretative principle that carteethe notions of decay of correlation and
predictability, and on its basis demonstrate hogvdtferent patterns of decay of correlation we

find in the different levels of EH correspond téfelient types of unpredictability.
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3.2 EH and decay of correlation

The correlation between two sedsBY is defined as
(3) C(B A):= u(An B)— (A)u(B).

If the numerical value ofZ(B,A) is positive (negative) there is positive (negatizerrelation
betweenA and B; if it is zero thenA and B are uncorrelated. Using this notion of correlatiomn

now turn to analyse the pattern of decay of cotigla involved in the different levels of EH.

3.2.1. Ergodicity

From (E), (C) and the fact thdt is area-preserving — i.e. th#{B) = ,u(TiB) — it follows that a

system is ergodic iff:

k-1 .
(C-E) klim%ZC(T'B,A):O forall ABOS.
-*Kizx

. 1S : : i
Notice thatE ZC(T' B, A) is the average of the correlations betweenTH# and A. So (C-E)
i=1

says that, ask tends towards infinity, the average of &li(T'BA) approaches zero. The

gualification ‘the average’ is essential since eigity is compatible with there being high

correlations during the entire process. In fagtrelneed not be any decay of correlations; that is,
there need not be a singldor which C(Ti BA) equals zero. (C-E) is compatible, for instance,
with positive and negative correlations trading affainst each other in such a way that the

average of aItZ:(Ti B, A) is washed out whektends towards infinity.

3.2.2 Mixing

From (SM) and the fact thal is area-preserving, it follows that a system is 8Mthe

correlations betwee andT*B tend to zero ak approaches infinity:

12



(C-SM) klimC(T"B, A)=0 forall A BOZ.

Unlike in a merely ergodic system, where none efCﬂ(TkB, A) has to tend towards zero ks

tends towards infinity, in SM all correlations tetoavards zero astends towards infinity.

Weak mixing also involves some decay of correlajalbeit of a weaker sort. Again, using the

fact thatT is area preserving the condition for weak mixiegdimes:
1 k-1 ]
(C-WM) fim >|c(T'B,A) =0 forall ABOS.
-*®Ki=

This implies that in the course of its evolutiorhet correlations betweerA and T'B

asymptotically approach zero.

The important difference between weak mixing angodicity is that since we sum over the
modulo of the correlations it is no longer possithlat positive and negative correlations between
states cancel each other out without themselvasapproaching zero. Thus, WM is stronger than
E. On the other hand, WM is weaker SM. In a WM eygtsome correlations may remain (even
ask approaches infinity). Weak mixing is compatibleghwihe presence of correlations from time
to time as long as they are infrequent enough t@ m® significance influence on the weighted

average of the correlations betwearand T'B.

3.2.3 K-systems

It is a theorem that a dynamical system is a Kesysiff it is KM (Section 2.2). This equivalence
allows us to focus on the study of the KM propawdsher than the abstract definition of a K-

system, which is not very telling for the analysisthe nature of dynamical randomness in K-

systems.
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In order to discuss the KM conditions along thedirof our discussion of E, WM and SM, it is

convenient to use the standardefinition of the limit. For any sequenda,|n=012...},

lim a, =0 iff for any £ >0 there exists a, >0, such that, for alh>n,, |a, |<&. Then the

n- o

KM condition becomeg?

(C-KM) A system is KM iff for any integer and any setsA, A,....A 0%, and for any

£>0 there exists @, >0, such that, for alln>n, and all BOo,, (A,...A),
lc(BA,) <e.

To clarify the kind of decay of correlation invotvén K-systems, we first have to spell out the

nature of the sigma algebrqyr(A&,...,A). From what has been said about sigma algebras in
Section 2 it follows thaUn,r(AL,...,A) contains, among others, the following sets: a $@aving
the form T*A (for all k=n andi =1,...r); all finite and infinite sequences having thentfer
T'A, OT'A, OT"'A, O... and T"A, OT™A, OT"?A, O... (where them are indices
ranging over 1...r); and all finite and infinite intersections havinghe forms

T'A, nT'A, nT'A, n...andT"A, n T™A, nT"?A, n....

The elementsA,...,A in the expressiow, (A,,....A) are measurable sets ¥. For the purposes

of our current discussion it is it is convenienttwoseA,,...,A. such that they form a partition of
X. This can be done without any loss of generabigcause the sigma algebcqr(ﬁi,...,A)
always contains a partition based @éq...,A . This can be seen as follows. First, assume that
A,...A are disjoint. By definitiorg, (A,...,A) containsA,:= X-|JA and trivially {A} is

i=1
a partition. Second, ifA,...,A. overlap, then the sigma algebra contains (by defir) all
intersections and all set-theoretic differencesvben A,...,A , which together withX —UA
i=1

generate a partition. For example, let2 and suppose tha® and A, are measurable

overlapping subsets ok (See Fig. 1a). A partition oK may then be generated as follows. Let

10 Thanks to David Lavis for suggesting this formidatof (C-KM) to us and for his help with clearing a
confusion in an earlier version.
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R=A\(AnA), R=(AnA) R=A\(AnA) PR=X\(AOA); then
P={R.P, R, R} forms a partition ofX (see Fig. 1b).

\
1 1 a :
1 1 s 1
..__’:‘.J :/n._-;’.a
/ 4 ? 4 _;"
A; A; X P P, P, P,
(@ (b)

Fig. 1. Generating a partition from overlappingsset

Based on the above analysis of the sigma aIgepréA,...,A), we can now turn to discuss the

nature of the decay of correlation in K-systemsr fasons that will be become clear as we

proceed, we only focus on two types of elementh@kigma algebra and disregard the others.

Type |: ‘Basic’ setsB ranges over all sefﬁ"A, i =1,...r andk =n (which are, by definition,

elements ofan’r(Al, ...,A\) for everyn). Substituting these sets into (C-KM) we obtain:

(C-KM-1)  Given any¢ > Othere exists a, >0, such that, for alh > n, |C(T"A,Aoj <&

forallk=n andi =1,....r

This implies that given any > Othere exists an, >0, such that, for alln>n, and all
|C(T”A,Ab1 <g,i=1..,r. This, by definition, is equivalent to Iim(T“A,AO} =0,i=1...r.1t
is a theorem that for any sequefag|n=0,12,...}: |im|an| =0 iff limg, = 0. Hence the above is

equivalent tolim C(T”A,A)): 0, i =1,...,r, which is just the strong mixing condition (C-SM)

15



since there are no restrictions on the choic& a@ind A,. So KM implies SM; and accordingly

everything that has been said about SM abovedsvalgd in the present case.

Type II: Intersections of different seWhat marks the difference between SM- and K-systes

that in the case of K-system the s8tin C(B,A,) also ranges over all finite and infinite
intersections okaA, i =1,...r (as opposed to only basic sets). Substituting ohe¢hese

intersections into (C-KM) we obtain:

(C-KM-2) Given any &>0there exists an,>0, such that, for all n>n,
|C(TkAni NTA, N T?AL N ...,Ao)<£ for all k=n and m ranging over

{1,..r}.

This condition is equivalent to Ii@l(T”Anl NT™A, n T™?A, n ...,A))= 0, where them, range

over {1,...r}. Since we are free to chose theas we like, this is true for any refinement offsuc

infinitely remote (coarse-grained) past historyo{pded that it is still a coarse-grained history).

3.2.4. Bernoulli systems

Recall that[X,Z,4,T] is a Bernoulli system if there is a partitian of X such thatT'a,
- < <oo, are independent; that is if(T"a; n T"a;) = u(T"a,) (T a;) for any co <m,n <oo
and wherei,j range over the number of atoms in the partiton Let m=0. Then we get
UT a n a;)= ,u(T“ai),u(aj). Denoting (for the sake of consistency with thewabnotation) the

relevant sets byA’ and ‘B’ we have:

(C-B) C(T“B, A): 0 for all integersh and for allA,BOX.
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Since, trivially, (C-B) holds fom =1, a Bernoulli process reaches strong mixing afist pne

step. Furthermore, sinedl T'a are independent, we also hdve:

(C-B¥) c(TA, n ™A, n T™?A, ... A))=0,
for all m,, which range ovefl,...,r} .

(Again, an intuitive account of what it means fosystem to satisfy this condition will be given

below in section 3.5.)

3.3 States, events and unpredictability

The aim of this subsection is to present the nadfounpredictability that underlies our analysis of
the kind of randomness involved in EH. To this end,first introduce the notions of event and

probability we are working with.

It is a common to associate with every sub&ebf the sigma algebra of the phase spca
property P,. This property obtains if and only if the stateof the system lies within the sét.

For instance, given the phase space{(q,p): q,p OR} of a classical particle moving along a

straight line, one may associate with the Aet{(q, p):qUOR pDR+} the property of ‘having
positive momentum.” This property obtains iff thgstem’s state lies withirA. In caseA is a
point in the phase space, we c&ll an ‘atomic property.’ It is important to mentiohat in
general A may be arbitrary and the property corresponding s&tA will be rather contrived.
But this is not a problem for our analysis sincéhim in what follows hinges o, being a

‘natural’ or ‘intuitive’ property.

Let us define an ‘eventA' as the obtaining of the properB; at some time (or, equivalently, as
the system’s state being in subgett timet). For instance, assuming thatis defined as above,

A' is the event of the particle having positive motaem at timet. This definition of event,

Y This is intuitively clear. We refer those who desa rigorous proof of this to Mafié (1983, p. 8hp formulates

the independence condition such that (C-B*) follomsnediately from it.
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which is somewhat similar to Kim’s (1973), is noicontroversial. However, the typical problems
with this notion of event, e.g. problems associatgth event causation, are irrelevant to our
analysis of the nature of randomness underlying EH.

Now, although at each time the system is assumbd &xactly in one state[1X and thus posses
all propertiesP, for which x JA, we may not know this state. For this reason @oisvenient to
introduce a measure that reflects our uncertaimtygnorance about the system’s states and
properties. A natural choice for such a measungradability. Let p(A‘) denote the epistemic
probability of the eventd'; i.e., a probability that reflects a degree ofiéfehat the state of the

system lies withinAat timet. Hence,p(At) reflects a degree of belief i3 ’s obtaining at time .

We can similarly introduce conditional probabilitieLet A' and B*denote the events of the

system’s state being iA att and inB att, wheret >t,. The expressiorp)(At| Bti) denotes the

probability that eventA' takes place given that eveBt takes place. By the common definition

of conditional probability, p(A‘| B‘l) can be expressed in terms of unconditional ones:
p(At| Btl): p(At & Btl)/ p(B‘l). This conditional, epistemic probability refledise degree of

belief in the future evend' on the basis of knowledge of, or in the past ent

This conditional probability can easily be genesdi to the case of more than two events. Let

B......B, (wherer is any natural number) be measurable but otheravisiérary subsets oK and

considerr +1 instants of time;,,....t,,t such that >t, >...>t,. Then, p(A‘| B'&...& 3‘) is the

degree of belief in the system’s state beind\iat timet given that it was irB, att, and inB, at

t, and ... inB att,.

We can now make the notion of unpredictability veednin mind more precise. The basic idea is
that unpredictability is to be measured in termb@k relevant the information about states of the
system at a certain time is to its states at dihegs. In particular, it is a measure of the extent
which the information that the state of the systenin the subseB at t, is relevant to the

probability that the state of the system will behe subsefA att (where A,BZX). It is common
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to measure uncertainty about the evéhgiven the information about past evesit in terms of
the relevance thaB" has for the degree of belief i'. A natural measure of an agent’s inability
to predictA' on the basis of the information abdglt is theprobabilistic relevancef B* for A,

which is abbreviated aEP(Btl,At), where
R,(B*.A):=p(A|B*)-p(A)  provided thap(B")#0."

No probabilistic relevance, i.eRp(Atl, Bt2):0, means that the information that the system B in

att, has no bearing on the agent’s prediction of tretesy being inA att. In other words, the
information that the system is iB att, has no bearing on the agent’s degree of beliefttieat
system is inA att. More generally, the weaker the probabilistic valece of past events fax'

is, the more unpredictable & for the agent.

For purely technical reasons, which will becomeasppt soon, it turns out to be more convenient

to work with a slightly different notion of relevea in what follows, which is obtained from the

above by multiplying both sides of the equationhw;iI(Btl). We call this new quantity simply

relevanceand denote it by the symbE(Bl,At):
(R) R(B, A):=R,(B*,A)p(B)= p(A & B")- p(A)p(E")

As, by assumptiorp(B“) is a real number greater than zero, we (trivigtigye: R(Bl,At)DO iff
R,(B",A")00 and R(B*, A')OR(B",C') iff R,(B",A")CR,(B",C'), where L' is a placeholder
that has to be substituted by either ‘<’, or ‘=] 6¢¥. In what follows we are only interested in

comparing two correlations and in the question bétler the correlation between two events is

positive, negative or zero. Because of the bicaomid relations just mentioned, these issues are

2By ‘prediction’, we typically refer to future eventwe predict future events on the basis of infaionaof past
events. In other words, in predictions we typicaiyan cases in which, is earlier thant For the sake of

convenience, we shall follow this common terminglog is noteworthy, however, that in deterministitamiltonian

systems, the direction of time has no particulgnificance.
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insensitive to whether we ude rather thaan. It will turn out that R is more useful when it

comes to connecting the above notion of unpredidtato dynamical systems and for this reason

we choose to work withR rather than witer.

This basic notion of unpredictability can be refinén various ways. First, the type of
unpredictability we obtain depends on the typeevkents’ to which (R) is applied. For example,
the degree of the unpredictability &f increases if its probability is independent notyaf B"

or other ‘isolated’ past events, but the entiret.asr another example, the unpredictabilityAjf
increases if its probability is independent notyaril the actual past, but also of any possible.past
Second, unpredictability of a future eveAt increases if the probabilistic dependence of that
event on past event8" decreases rapidly with the increase of the tenpdisiancet-t,
between the events. Third, as we shall see belwsve tcould be various types of probabilistic
independence, which may indicate different degreésunpredictability. For example, the
probability of A' may be independent of past evesitapliciter, or it may be independent of such

events only ‘on average’.

In sum, our suggestion is to explicate the notibdegrees of randomness in terms of degrees of
unpredictability and to explicate unpredictability terms of probabilistic dependence between
states of systems at different times (‘events’)tha next section we show how, given plausible
assumptions, epistemic probabilities used so faulsh be constrained by the dynamical

properties of the system.

3.4 Epistemic probabilities and dynamical systems

How can we determine the values of the probalslitrethe above formulae? If the probabilities
are to be useful to understanding randomness iardyial systems, the probability assignment
has to reflect the properties of the system. Thain order for unpredictability as introduced
above to reflect the random behaviour of a dynansigstem, the relevant probabilities cannot be
merely subjective degrees of belief. In order fabjsctive probabilities to reflect objective

dynamical randomness, the probabilities have tectetlynamical properties of systems.
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Given that we are working with a dynamical systdmattis by assumption endowed with a
probability measureu, it is natural to suggest that the relevant prdtigls should be associated
with the measureu. Indeed, 4 per seneed not reflect ignorance about the system’s.skat
measure on a phase space can have a purely gemahietierpretation and need not necessarily be
interpreted as reflecting our ignorance. But, we fage at the outset to interpret our dynamical
system[ X,B,u,7] as we like. In particular, we may regagd as reflecting our ignorance.
Alternatively, if x4 is already based on facts about the dynamicalvi@naof the system (or

systems of the same type), we can fix our ignoraccerding to it.

While this general idea is straightforward, thegjioa of the exact relation between the measure
M and the probabilityp is non-trivial. The problem is the following: theeasureu takes
subsetsA of the phase space as arguments, while the priigapittakes event#\'as arguments.
As the notation indicates, the main difference leetwthe two is that the events are time-indexed

whereas sets are not. The main idea of how toerglao p is to postulate that the probability of
an eventA' is the measure oA. Formally:

(u-Stat) For all instants of timeand for allA 0% : p(A') = u(A).

This principle assumes that the probability meapusestationary and that thptis determined by

4. For this reason we refer to this principle as$tat)™

(u-Stat) can be generalised to joint simultaneoustsve

131t is worth pointing out that we assume statiolyabecause it is the common way to justify assuomgtiof the
kind we are making here. From a logical point awi however, the following weaker condition would fdr our

purposes:
For some particular instant of time (DADZ)[p(At) = ,u(A)].

Basically, this condition states that thésesome particular instant of time the reference point, if you like — at

which it is true for all setd O that p(A') = (A). Our analysis can then also be based on this wéike

regardless of whether the measyreand the probability distributiop coincide at other points of time. This weaker

condition is implied by stationarity, but it doestiitself imply stationarity.
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(u-Stat*)  For all instants of time and for allA,BOX: p(A'& B') = u(An B).

We can further generalisg:(Stat) to joint non-simultaneous events:

(u-Dyn) For all instants of timg for all timest, <t, and for allA,BOX:
p(A'& B*) =u(An @, B).

where ¢ B is the evolution of the subsé& forward in time fromt, to t. The LHS of this

equation denotes the probability that system iBirat t; and then inA at some later time
whereas the RHS denotes the measure of the intierset the setA and the set of points in

¢, ..B, which is the evolution of the subsBt forward in time fromt, to t. The validity of this

formula becomes clearer in Fig. 2.

% +E

Ang, B

1t

Fig. 2. An illustration of {/-Dyn).

It is worth pointing out that the rule-Dyn) is not an independent assumption becausdatfs
from (u-Stat), the law for joint probabilities, and thejugéement that our degrees of belief are
updated according to the dynamical law of the sggighich, recall, is deterministic). This can be
seen as follows. From the fact that the time evatug is deterministic it follows that every point

x of Xwhich lies withing B lies on a trajectory that pass&ht timet,, and no other point
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does. Therefore the points which lie withdn ¢, B are exactly those who lie on trajectories
that passA at timet and went througtB at timet, <t. In other words,An ¢ B contains all
points for whichA' & B"is true. Now we can use the rule for joint proki&ibg along with (-
Stat) and gep(A' & B") = u(An ¢, ,B), which obviously holds for alA,BOZ since we have

not made any assumptions about eitAeor B and for allt, <t .**

The condition {z-Dyn) readily generalises to more than two eve@w@nsiderr +1 instants of
time:t>t >..>t andr +1 setsA B,....B of Z (where agair is any natural number). Then

we have:

For all instants of timg, for all timest, <...<t, <t, and for allA,B,..B UX:

P(A'& B &..B" )= u(Ang,_Bn..ng B).

So far we have been dealing with continuous tinrehfeuristic purposes. However, the above
results easily carry over to the case of disciigte.tin this case the time evolution is inducedaby

mapping, in which case we haye B = T¢YB, wherei =1,...,r. Now let n:=t -t be the time

difference between (‘now’) and the past instarit. Then we obtain:

(u-DynT) For all instants of timet, for all natural numbersn, =...2n, and for all

AB.BOZ: p(A'&B!&..B" )=u(An T"B n..n T"B).

It is important to note that it follows from(-DynT) that correlation and relevance are related a

follows:
(RC) R(E:, A')=C(T" "B, A).

On the basis of (RC) we will formulate below thesioarelations between correlation,

unpredictability, and dynamical randomness.

“ Trivially, ( &-Dyn) implies (1 -Stat). Yet, for conceptual clarity it is worth pesiting them separately.
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Summing up, we suggest that the notion of degréesndomness is to be explicated in terms of
degrees of unpredictability and that unpredictgbiis to be explicated in terms of epistemic
dependence, which is to be informed by objectiauiees of the system through (RC). In the
next section, these basic connections betweeneepsunpredictability, lack of correlation, and

randomness will be used to explicate the degreedypnamical randomness involved in the

different levels of EH.

Before we use (RC) to understand EH as a hierastihgndomness, let us briefly deal with the
issue of how to interpret the ignorance probabsitwe are dealing with. So far we have
considered the measuge as given. This is in line with the fact thata part of the definition of

a dynamical system (see Sec. 2). However, one nedlywant to ask wherg: comes from and
‘what it means’. A question very similar to thisshiaeen extensively discussed in the context of
the foundation of statistical mechanics and weettoee only briefly want to hint at the two most
prominent answers, the ensemble interpretatiorntlamtime-average interpretation pf. We can

be brief on this, as our analysis remains validbotlhh understandings g .

Imagine that we start only with a triple consistofga phase spack, a sigma algebra , and an
automorphismr, and then proceed to construct a meagurdccording to the so-called
ensemble interpretationy is a measure over tokens with the same phase spasgma algebra
2, and groupr of automorphisms, but different initial conditionthe measure of a certain set
A X at timet then is defined as the fraction of these itemssghsiate is in seh att; if this

fraction is independent df the measure is stationary.

On the time-average interpretation, the meaguie a setA [1Z of the phase space is defined as
the long-run average of the fraction of time tia system’s state spendsAn™ This measure
can then naturally be regarded as the probabiiaythe system’s state is in $&t In the absence

of knowledge of the system'’s state, it is natuoabase one’s beliefs on thus construed. Thus,

5 The exact definition of ‘long-term time averageles not matter for our purposes. However, it isdrtgmt that the

average converges towards a value that remainsgactins
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the relation between unpredictability, lack of edations and randomness are exactly the same as

in the ensemble interpretation.

On both interpretations, the formal relations bemveinpredictability, lack of correlations and
randomness are the same. Degrees of unpredictabii@ explicated in terms of decay of
correlations, where the basic relation between ediptability and decay of correlation is
expressed by (RC), and degrees of dynamical ranessnare explicated in terms of degrees of
unpredictability. But the meaning of randomnessnad the same. Under the time average
interpretation, it is natural to think of the degref randomness of a system as reflecting an
intrinsic property of the system, whereas underethgemble interpretation of randomness, it is

natural to think of randomness as reflecting a ertypof an ensemble.

3.5 The ergodic hierarchy as a hierarchy of degoéespredictability

We now turn to explicate how the ergodic hierar¢Bifd) can be interpreted as a hierarchy of
increasing degrees of randomness. The basic idg@an@e: given (RC) the pattern of decay of
correlations characteristic of a particular dynahgystem is translated into the relevance of past

states to the prediction of the future states.
3.5.1. Ergodicity

To understand the kind of randomness we find irodigsystems, we ‘translate’ (C-E) into

epistemic probabilities in the following way. Wet f@ithout loss of generality) =0, i.e. we
k-1

choset to be ‘now’ and then apply (RC). (C-E) then becsrLiEn%ZR(B“ ,A’) =0, where
-2 K=

t =-i. This can readily be interpreted as the averagkeeofum of the relevance of beingBnat
t = -1 to the probability of being imA att =0, the relevance of being iB att=-2 to the
probability being inA att =0 etc. approaching zero as time tends towards mirfunsty. This
does not mean, however, that any individual relegasf B" to the probability ofA° has to be

zero. The infinite average being zero is compatibitn R(B",A%)# 0 for all t.. Since we can
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chooseA and B as we like, this is true for any current st#teand any past statB. Hence,
ergodicity allows for the past to be highly relevém prediction of the probabilities of future

events. That is why ergodiciper seneed not involve any randomness.
3.5.2. Mixing

By contrast with ergodicity, mixing involves somegiee of randomness. Applying (RC) to (C-

SM) and again setting=0 we obtain:klirrR(B‘k,AO)=O, wheret, = -k. Then SM can be

interpreted as saying that for any two s&f81Z, having been inB at timet, = -k becomes
irrelevant to the probability of being iA now (t = 0) ask tends towards infinity. In other words,
the past evenB'is irrelevant to our ability to predict the probiégiof the present evert’, as

the past becomes infinitely remote. More generatly\§M the relevance of the system’s states in
the remote past for the prediction of the probgbiif the system’s current state decreases as the
temporal distance between these states grows; tamanishes completely in the limit of the
temporal distance tending towards infinity. Thusorsg mixing involves a substantial degree of

dynamical randomness.

Weak mixing also involves some degree of randomng&gain applying (RC), (C-WM) readily

o 1a .

implies kI|mEZ| R(Bi,AO)l =0, wheret andt have been chosen as above. That is, the average
L

of the sum of the modulo of the relevance of bém@ att = -1 to the probability being irA at
t = 0 and the modulo of the relevance of beingBiratt = -2 to the probability of being irA at
t = 0 etc. approaches zero as time tends towards mifingy. Since we can choos& and B as
we like, this intuitively means that almost all pasents that have or could have occurred are
irrelevant to predicting the probability of presewvents. Since it is the average of the modulo of
the relevances that has to approach zero, WM imgoby weaker degree of unpredictability than

SM, but a stronger degree than E.
3.5.3. K-systems and correlations
In K-systems both (C-KM-1) and (C-KM-2) obtain. Abserved in subsection 4.2.3, (C-KM-1)

equivalent to strong mixing. The crucial noveltaggsne into play with (C-KM-2). Applying (RC),
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(C-KM-2) implies lim R(A; & Ay & Ay...,A°)=0, with t =—i. This means that as tends

towards infinity the fact that the system’s stateswn A att=-n,in A att=—(n+1), and so
on becomes irrelevant to our ability to predict gnebability of the present state. By assumption
A,...,A form a partition and therefor&"A, n T™ A, n T"?A_ n ... may be chosen so that it

represents thentire infinitely remote past coarse-grained higtof the system. Thus (C-KM-2)

implies that the probability of the present st#gebecomes independent of thatire infinitely
remote past coarse-grained histasf/the system. Moreover, since we are free toelthe A as

we like, this will be true for any refinement ofcsuinfinitely remote (coarse-grained) past history
(provided that it is still a coarse-grained hisjory

Rangtof B Event: Even A,
[ ——
===============.JI Ir ———————————— .>
t, t

Fig. 3. The remote past of the system

There may be some correlations between a systemiste past history, i.e. between its remote
past and present states, but they asymptoticafiyoagh zero: the more remote the past history is

the weaker the correlations are.

This is the significant difference between K and.SWhile SM only requires probabilistic
independence of the system’s present state fromstdfes at particular instants of time in the

remote past, K requires probabilistic independdraa the system’s entire remote past history.

Since we are free to choose mﬁj as we wish, we can ‘patch together’ whatever secgieve

like, including any sequences that denote othersiples infinitely remote past histories.
Accordingly, in K-systems the system’s presentestaiindependent not only of thetual remote
past history of the system but alsoaofy of its possible infinitely remote past histories (iany

infinitely remote (coarse-grained) past historyt tauld evolve to the present stafg.
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3.5.4. Bernoulli systems

While in SM and KM, the decay of correlation occordy in the infinite limit, in B systems the
decay of the correlations is immediate: the prestage of a B-system is uncorrelated with any of
its past (and future) stages. For example, in s@f coin tosses the current outcome does not

depend on previous outcomes.

Applying (RC) vyields, (C-B) impIieR(A‘",AjO)=O for all integersn, where t,=-n; and

similarly for (C-B*). Hence, the probabilities ohd& present state are totally independent of
whatever happened in the past, even if we havegekhowledge of the entire (coarse-grained)
history of the system. Thus, B-systems involvetighest degree of randomness in ¥H.

4. Using EH: Characterising randomnessin physical systems

In the previous sections we have introduced EH @oglided a uniform characterisation of the
underlying concept of randomness. In the remaind¢he paper we shall discuss the relevance
of EH for characterising randomness and chaosassatal physics.

4.1. The ‘no-application’ charge

A popular objection to ergodic theory is that itngt more than a sophisticated but eventually

useless piece of mathematics since Hamiltoniaresystare typically non-ergodic. This bit of

%In a sense, B systems are ‘anomaly’ in EH; fds ithe only level of the hierarchy in which cortedas decay
‘immediately’ rather than asymptotically. There astems who lie ‘in-between’ B and K in this sensamely
Markov systems of order. In these systems the current state correlatdsthvit previous states. Space constraints

prevent us from further discussing these systems.
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conventional wisdom is backed-up by a theorem bykMg & Mayer (1974) which is based on

KAM theory and basically says that generic Hamidondynamical systems are not ergodic.

There are two strategies to counter this objecfitr first is to mitigate its force by emphasising
that it is not the ‘sheer number’ of the applicaicdhat makes a physical concept important.
Rather, the question is whether the systems thaar@anterested in are ergodic. And at least
some of them are. Most importantly, hard sphere etsodf the ideal gas, which after all are
paradigm systems of statistical mechanics, aredesys and hence ergodic. We discuss this case
in detail in section 4.2 below.

The second strategy is to shift the focus from iooious to discrete transformations. To this end
notice that the aforementioned theorem applies tmlgontinuous Hamiltonian systems of the
kind we find in classical mechanics; but it hasfoce in the case of mappings of the sort we
have been dealing with in this paper. Moreover giteat number of ergodic mappings we find in
the literature suggests that in this case (unhkéihé case of continuous systems) ergodicity is the
standard rather than the exception, or at leadtaleenough to justify serious consideration. This
shifts the focus of our attention. What we neednsargument that maps of this sort are relevant

to physical problems. In Sections 4.3 through 4e5angue that they are indeed.

4.2 The relevance of ergodic theory in light of KM theory

The relevance of ergodic theory (and consequeligy drgodic hierarchy) for the effective
modelling of actual physical systems has come $etious question due to KAM theory (named
after Kolmogorov, Arnold, and Moser). The discussielow shows that the KAM theory does

not, as is often alleged, undermine the statusgufdéc theory in the manner indicated above.

The term “KAM theory” is used here to refer to sedhem of Kolmogorov and its many

consequences. Kolmogorov (1954) formulated therrepwhich concerns Hamiltonian systems
and perturbation theory, and provided an outlin@ pfoof. The theorem basically says that if a
small perturbation is added to an integrable systatim two physical degrees of freedom, then

the tori with a sufficiently irrational winding nuser survive the perturbation. Arnold (1963) and
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Moser (1962) independently provided rigorous praifi; so, it is now usually referred to as the
“KAM theorem”. Markus and Meyer (1974) developedmnsoimportant consequences of the
KAM theorem, and one of these is a theorem thateidinent to the relevancy issue. For the
purposes of this essay, we shall refer it as tharkMs-Meyer theorent.” We turn now to

discuss this theorem.

The Markus-Meyer theorem is often informally chaeszed as the claim that generic
Hamiltonian dynamical systems are not ergodic. This striking claim and its effect appears to
undermine the relevancy of ergodic theory is imratdiBut this effect is mitigated as soon as
the theorem is stated in full: The set of Hamiltoniflows that are ergodic on the energy
hypersurfaces associated with each element of sedsst of energy values is of first category in
the set of infinitely differentiable Hamiltoniamoflvs. In short, the class of ergodic Hamiltonians
is of first category in the set of generic Hamileors. A setP is of first category in sep, if P

can be represented as a countable union of novdesmige sets i?. All other sets are of second
category. Loosely speaking, a set of first categerthe ‘topological counterpart’ to a set of
measure zero in measure theory, and it is sometiefiesed to as “meager”. The contrast class is
“second category”, which is sometimes referred $o0“@on-meager” and is the ‘topological
analogue’ of a set of non-zero measure (see Kel@ys, p. 201). It is worth noting, however,
that these two notions can (though need not) baetiacally opposed. For example, the real line
can be decomposed into two complementary sets Baguth that A is of first category and B is

of measure zero — see theorem 1.6 in Oxtoby (1971).

The key phrase that has the mitigating effectnfinitely differentiable’® This restriction is
substantial. It actually rules out a large clas$lamiltonian systems that are of physical interest
particularly for classical statistical mechanics, vaill be shown below. Before doing so, it is
worth contrasting the Markus-Meyer theorem withhaorem (the first) of Oxtoby & Ulam

(1941): In the set of measure-preserving genechliygnamical flows? the set of dynamical

7t is the second of two important theorems tharkda and Meyer prove in their memoir. The first salyat
generic Hamiltonian systems are not integrabléh@gnsense of Liouville).

18 Markus & Meyer (1974) introduce this restrictiom page 4.

19 They are “generalized” in the sense that they raoe necessarily differentiable or derivable fromset of

differential equations.
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flows that arenot ergodic is of first category. The class of Hanmlem flows of physical interest
is substantially broader than the class consider¢ige Markus-Meyer theorem, but substantially

narrower than that considered in the Oxtoby-Ulagotem.

Among the Hamiltonian flows that are excluded frmonsideration in the Markus-Meyer

theorem are those for systems that involve partadéisions. They are excluded because
collisions, which are typically modeled using ariremely steep repulsive hard-core potential,
result in singularities in the dynamical flow; thdise flow will be continuous everywhere but not
differentiable everywhere. Such models are nowrrefeto as “hard ball systems”. They may be
conceptualized concretely as collections of harlis daaving a finite radius but no rotational

motion that interact by elastic collision, and tHeyd more sophisticated variants of them) are

effective idealizations of the dynamics of gas rooles.

There are other models aside from hard ball systaatsinvolve singularities such as billiards
and the Lorentz gas, and they are just as impodantard ball systems for the purposes of
characterizing real physical systefiBut, it will suffice for the purposes at hand tonsider
hard ball systems. Boltzmann (1871) studied haitl dystems in developing a mathematical
foundation for statistical mechanics. He conjedutkat such systems are ergodic when the
numberN of hard balls is sufficiently larg&. Whether this is the case is still an open question
However, it turns out that hard ball systems ageeic for some smalN. Sinai (1970) provided
the first rigorous demonstration that a hard bgdtam is ergodic. He did so for a pair of colliding
two-dimensional disks moving oR’ (the unit two-torus) seven years after he put &sdwvhat

is now called the “Boltzmann-Sinai ergodic hypotee$1963). This hypothesis says that a
system ofN hard balls onT? or T° is ergodic for anyN = 2, and it was inspired by Krylov’s
observation, made in 1942 that hard ball systerhghé&xan instability that is similar to geodesic

flows on hyperbolic surfaces, known at the timéecergodic (Krylov 1979).

20 A billiard systemis commonly taken to be a system having a finite-tlimensional planar phase space with a
piecewise smooth boundary in which a point partioleves with constant velocity and bounces off tlal wm an
optical manner (i.e. the angle of incidence is asxlito be equal to the angle of reflection). A lnrgyas is a
dynamical system of one point particle moving ia tomplement of regular lattice of rounded scatters

L The discussion of hard ball systems below is iespby a brief historical survey by Szasz (1996printed in
Széasz (2000), and a survey by Simanyi (2000).
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Since Sinai's groundbreaking work, there have be&®mme notable advances in
understanding hard ball systems. The ergodic hubyaplays a central role in characterizing
many of them as it does in the ones considered Bamanyi (1992) demonstrated that a system
of N hard balls is K-mixing (and hence ergodic) ®fifor N> 2 andm > N. This result falls
short of what is desired since the minimal sizevofs restricted by the size dfl, but it is still
significant. Chernov & Haskell (1996) showed thay aystem of hard balls or disks on a torus or
in any container is Bernoulli, provided that itdsmixing and completely hyperbolfé.Recently,
Simanyi and Szasz (1999) demonstrated that a sysfeh hard balls onT" is completely
hyperbolic forN>=2 andm=2. Combining the above one can derive that a systeid hard
balls onT" is Bernoulli forN =2 andm > N. Of course, a rectangular box is more realistimth
a torus. It is also more difficult to treZtNevertheless, Simanyi (1999) demonstrated that the
dynamics of N hard spheres in am-dimensional box is ergodic fo =2 and m=2.?* The

same result is expected but has not yet been deratatsfor anyN >2.

4.3 The surface of section approach

Our second line of defence against the claim thati€useless because most systems are not
ergodic is that EH may be used to characteriseorandss in systems that are not strictly
speaking ergodic. The main idea is that systentsatt@ganot ergodic with respect to the relevant

phase space may well display ergodic behaviouoaresubspace of it.

The reasoning is as follows. So far we have beatirdgwith abstract dynamical systems whose
dynamics is defined on an abstract state spécdn order to bring to bear this notion of a
dynamical system on a ‘real’ physical system astée within the context of classical

Hamiltonian mechanics, certain contextualisatiorsreeeded. The full state space of a classical

22 Complete hyperbolicity means that all Lyapunovangnts are nonzero almost everywhere.

% Conceptually speaking, one obtains a torus byaoipd) the boundary conditions corresponding towh#s of a
rectangular box with periodic boundary conditioneéning that parallel sides of the box are idesdtjfi which are
much easier to utilise mathematically than the frm

24 The ratio of the length of the sides to the radifishe balls must be less than 1/6. There areegairements

concerning the equality of the sides of the comtigithe masses of the balls, or the radii of tHisba
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system is the so-called phase space, basicallystmgsof a position and momentum dimension
for every of then physical degree of freedom, denoted d¥ (q,,....q,) and p=(p,....p,)

respectively. For instance, the phase space ofrd pass moving on plane is four dimensional,
having two position and two momentum dimensionse Totion of the system’s state in this

space is governed by Hamilton’s equation of motiodg / dt=dH(q,p)/dp and
dp /dt=-dH(q,p)/dg, whereH(q, p) is the so-called Hamilton function (or Hamiltonjdar

short) of the system. Under most circumstances ifi.the system’s motion is not subject to
explicitly time-dependent geometrical constraints its motion) H(q, p) is the energy of the
system. The solutions of Hamilton’s equation armemnly referred to as ‘Hamiltonian flow'.

For details we refer the reader to Goldstein’s (98assical book on mechanics.

Due to geometrical constraints on the motion antseovation laws not the entire phase space is
accessible. The most important of these restristiarthe context of Hamiltonian systems is the
conservation of energyH(q, p) = E. This restricts the motion on a hypersurface, Wwhis

commonly referred to as the ‘energy shell’. It mwnnatural (and common) to associate the

energy shell of a Hamiltonian system wi¥hof an abstract dynamical system.

It is customary to take the energy shell as theveeit portion of the phase space; and when a
system is claimed not to be ergodic it is usuadlgitty assumed that this it is not ergodic with
respect to this hypersurface. It is important tmdpithis hidden assumption to the fore because
the fact that the dynamics of a system is not eogadth respect to the energy shell doest
preclude it from being ergodic with respect to aeot(more restricted) portion of the phase
space. This is what Lichtenberg & Lieberman haveind when they observe that ‘[ijn a sense,
ergodicity is universal, and the central questi®no define the subspace over which it exists’
(Lichtenberg & Lieberman 1992, p. 295). So EH canused to characterise randomness in
dynamical systems that are not ergodic with resigettte entire energy shell, the main idea being

to consider the system’s behaviour on a subspattéso$hell where it may well be ergodit.

% One might even conjecture that this method caexended beyond Hamiltonian systems to dissipatystems.
In this vein Ornstein (1989) writes: “The main exdenthat | used to illustrate our results was &illls. These
results, however, apply to a large class of dissipaystems [...] | conjecture that long-termistatal averages exist

for dissipative as well as conservative systems.”
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The crucial question for the success of this lihedefence obviously is whether such subspaces
exist. The aim of this subsection is to show thaytdo; and the strategy is to study what happens

in a surface of section rather than to focus orfulidledged continuous dynamics.

Consider a continuous Hamiltonian system with tploy§ical) degrees of freedom. (For the sake
of simplicity and convenience, in what follows wmnit our attention to such systems. But, the
techniques described below equally apply to systents a greater number of degrees of
freedom.) The phase space of such a system (asguthat it is autonomous) is four-
dimensionaf® Now, observe that since by assumption the energpmserved, the motion takes
place on a three—dimensional hypersurface in thasg@hspace defined by the condition
H(qg, p) = E, where E is some constant. We now choose a two-dimensisumdhces within
this hypersurface and label its two sides and 2;; L and R denote left and right. We then
study the successive points of intersection astridgectory passes through in a particular
direction, say from L and to R. The points of isemtion are labelled in succession

Xy Xou1s Xnagreo- (SE€E FiQ. 4).

Fig. 4. A particle trajectory intersecting a sudat three points.

% A Hamiltonian system is autonomous, if the systeiamiltonian does not explicitly depend on timesaming

thatoH/ot = 0.
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What we get in the surface of section is successiegsections and these can be described by a
mapping. That is, in the surface of section theadyics of the system is represented by a

mapping T that takes a phase poirt to x,,: X,, = Tx. Furthermore, one can prove that the

discrete dynamics in the surface of section is preaerving (or, to be more specific, symplectic)
as well (Tabor 1989, pp. 123-6). Hence, the cowtisuHamiltonian flow generates an area-
preserving mapping that describes a trajectorytessive crossings of the surface of section.
This shows that there is a close connection betweatinuous Hamiltonian systems with two

degrees of freedom and area preserving mappings$ved dimensional surface onto its&lf.

Also, from the construction o it is obvious that there is a close connectiorwbeh the
dynamics of the continuous system and the mappmdact, such mappings may display all
typical properties of continuous systems such asbtieaking up of tori and the occurrence of
island chains (we will discuss an example belovay. this reason we can use two-dimensional
mappings to discuss the behaviour of continuousesys This has great advantages since
mappings are analytically and numerically much exagd handle than continuous flows and,
owing to their relative simplicity, many theoremboat dynamical systems are more easily
proven for mappings than for general Hamiltoniarng.(ehe Poincaré Birkhoff fixed-point

theorem and the KAM theorem as proven by Moser3197

Yet, although the connection between the continutayg and the mapping in the surface of
section is close, it is still loose enough to alléev mappings to have properties that the
continuous flow as a whole does not posses. Motbhg even if the system is not ergodic,
some of its trajectories can give rise to ergodappings in the surface of section. This insight
(which will be illustrated in due course) paves Wey to use mappings to discuss the behaviour

of a system in some region of the phase space. Moeeifically, the study of ergodic maps,

#Two remarks: (1) It is noteworthy that the conveissalso true for a broad class of mappings. Asteioberg &

Lieberman (1992, p. 171) show, radial twist maps ba converted into a continuous Hamiltonian system
expansion of the transformation in a Fourier sei(@sIn passing we would like to mention that blesi the surface
of section, there is another technique by whiclortinuous system (i.e. a system that is definea lmpntinuous
transformation) can be converted into a mapping ¢hscretisation of time (sometimes also referredas

‘stroboscopic projection’). The method basicallysists in taking ‘snapshots’ of the system at disctimes (Tabor,
1989, p. 125; Argyrigt al., 1994, p. 57).
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mixing maps, etc. can help to understand the bebawf Hamiltonian systems in various
distinct regions of the phase space because thegazae as models of the flow when studied in
the surface of section. Hence, ergodic maps cansbd to ‘characterise’ random behaviour in

certain regions of a continuos flow even if thenflibself is notergodic.

To see how all this works we will now discuss KAWbe systems (i.e., ‘nearly integrable’

systems, meaning integrable systems plus a smdlirpation). This class of systems is the
touchstone for our claim that EH can be used tdystiie behaviour of dynamical systems even if
they are not ergodic. The key feature of a KAM-tgystem is the presence of both regular and
stochastic regions, each closed (so that the syateenwhole is not ergodic with respect to the

energy shell) but intermeshed with the other.

Consider an integrable Hamiltonian (for the deteflsvhat follows see for instance Tabor, 1989,
pp. 126ff.; Lichtenberg & Lieberman, 1992, pp. ¥66Dtt, 1993, pp. 229ff.). In this case the

phase space is foliated into tori; that is, eveajettory is confined to one particular torus. When
we now focus on one particular trajectory, it isiBaseen that in the surface of section all points
lie on a smooth curve, which corresponds to thersetction of the torus (on which the trajectory

moves) with the surface of section.

Fig. 5. A particle trajectory on the surface obeus corresponding to constant enekgy

The motion of the particle on the surface of sectizay be represented by the so-called ‘twist

map.’ Using polar co-ordinates, the mapping cawhten as:

_ {6’0+1):6’(i)+2/m)1/a)2
i +1)=r()
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where &, and «,are the angular velocities aloéigand 8,respectively, and, /., is the so-called
‘winding number.” The elements & of the twist map may be respectively associated wij6,
in Fig. 5 above. From Section 3 we know that if thdo of the two frequenciex, /«,, is
irrational the sequence,X..,, X..,... fills up the curve ergodically, whereas if theioais

rational only a finite sequence of iterates, cqroesling to a closed orbit, appears.

Now we add a small perturbation to the originatdgrable) Hamiltonian. This perturbation
changes the twist map as follows (Tabor, 198928):1

_ {e(i+1):e(i)+2m/wz+ef(e(i),r(i))
T r+2) =r)+eg(6G)r())

where ¢ is a small perturbation parametdr,andg are periodic in the angle and are chosen such
that the resulting transformation is area-presepvifihe natural question to ask about this

transformation is what happens to the invariantles of the unperturbed mapping when the

perturbation is ‘switched on’. The KAM theorem ams#/this question by stating, roughly, that

for sufficiently small perturbations circles withsafficiently irrational winding numbers., /.,

are preserved.

On the other hand, the Poincaré-Birkhoff fixed-pdimeorem informs us that the tori with a
rational winding number get destroyed under theupeation and are replaced by an even
number of fixed-points. These fixed-points arerali¢ely stable (i.e. elliptical) and unstable (i.e.
hyperbolic). Schematically we can represent thishtesvn in Fig. 6.

Note that it follows immediately from this that KAkpe systems are not ergodic (and a fortiori
do not possess any other property of EH eitheigoéic systems are irreducible (see section 2),
i.e. their phase space is not separable in twen@e) regions that are mapped onto themselves
by the time evolution. But this is exactly what paps in a KAM system. The invariant curves

surviving the perturbation divide the phase spate distinct parts to which a trajectory remains
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confined for all times because no trajectory carvenacross an invariant torus and therefore it
can never get from one part into the other.

Island of
Stability

Hyperbolic
Fixed Point

Zone of
Instability

Stable
Fixed Point

Fig. 6. The diagram on the left exhibits two staptdnts and two hyperbolic points. The
diagram on the right shows in more detail stabietsaorresponding to islands of stability and
hyperbolic points corresponding to zones of inditgbi

As a concrete example of such mapping considerliienow famous) Henon system, which
involves a quadratic twist map (a thorough disausss provided by Argyriet al, 1994, pp.
110-26; brief summaries can be found in Lichtenb&rdiieberman, 1992, pp. 191-195 and
Tabor, 1989, pp. 129-32). The transformation, noWartesian co-ordinates, reads:

x(i +1) = x()cos +(y(i) - (x(i)) pinar
y(i +1) = x(i)cosa + (¥(i) - (x()*Jeosar

where a is a parameter antt X -~ X whereX =[-1,1 x[-1,1].

This is a clear illustration of the above-mentiormikture’ of regions with chaotic and regular
behaviour. There are island chains correspondinigational tori surviving the perturbation. The
circles correspond to elliptical fixed-points; atiné motion in the surrounding of these points is

quite regular. This is not the case for the hypkehfoxed-points. When the scale is enlarged an
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incredibly rich, fine structure interspersed insad of irregularity’ shows up that is analogous to
that exhibited in Fig. 7 having similar zones ddtability and islands of stability.

Fig. 7. A phase plane of the Henon map

But what do we mean by ‘quite regular’ or ‘searoégularity’? It is at this point where ergodic
theory comes into play because it provides nottbas can be used to characterise the system’s
behaviour in different regions of the surface aftem. To begin with, we know from the KAM
theorem that the remaining closed lines are thersattions of irrational tori that survived the
perturbation with the surface of section. From ibhdbllows that the motion on these curves is
ergodic.

Further one can show that near hyperbolic fixedsoit is possible to embed a Bernoulli shift
(with an infinite alphabet) in the phase spacenteomathematical point of view, all this is rather
involved and we cannot go into details here. (Thegirmal source is Moser (1973, Ch. 3). A more
intuitive description of the situation can be foumdReichl (1991, pp. 76-80).) However, the
upshot is that if we choose an arbitrary point nedryperbolic fixed-point its trajectory will
behave like a B-system. For this reason we carttsgtyin the region close to such a fixed-point
the system behaves like a Bernoulli system ancttber exhibits all the random properties these
systems possess.
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Furthermore, there is strong numerical evidencé #a&h connected stochastic region in the
phase space, such as a separatrix layer, hasvpokitimogorov Sinai entropy and thus the
system exhibits the same behaviour as a K-systetheise regions (Lichtenberg & Lieberman
1992, 309).

Since it is possible to characterise the dynamica pnonergodic continuous flow in certain
regions of the phase space can be characterisetms of maps that are (merely) ergodic or
Bernoulli, the fact that the flow as a whole is ®ogjodic does not undercut the usefulness of

ergodic theory as a tool for characterising a syg@andom behaviour.

We should mention, however, that we have not beénta find any cases in the literature where
the dynamics of the system in some region of theselspace has been described in terms of
merely mixing. One may just speculate as to whatdasons for this absence are. Looking at the
enormous mathematical sophistication that is neeedhow that certain regions exhibit
Bernoulli behaviour, one could guess that similamofs for other mixing just may not be
available. Another reason might be that due tol#o& of conceptual clarity in the ergodic
hierarchy as a whole, physicists did not find gfutto characterise dynamic properties using the
notions or strong or week mixing. Be this as it mgiyen the unified treatment of the ergodic
hierarchy we presented in the previous section,thilgk that our analysis could add to the

understanding of the character of randomness gsicdal ergodic and non-ergodic systems.

4.4 Maps as analogues of continuous flows

Ergodic maps are also used as ‘analogue pictufegirdinuous flows. An analysis of EH can be
used to study the degree of randomness involvesuoh maps and accordingly the dynamical
randomness involved in the corresponding continubbows. Systems that are commonly
considered as chaotic have positive Lyapunov exmsnand hence nearby orbits diverge
exponentially. But this cannot be the case fordakctions since this would not be compatible
with the fact that the phase flow is area preservirherefore, while nearby trajectories diverge
in one direction they converge negative-expondwgtial some other direction so that the sum of

all Liapunov exponents is zero. More precisely, phase decomposes at every point into three
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subspaces: The first is simply the trajectory & fystem through that point. The second is a
manifold of trajectories that exponentially diverfgem the trajectory of our reference point, and
the third is a manifold consisting of trajectoribsat exponentially converge towards that same
trajectory. Hence, what we end up with is that g\aite element of the phase space shrinks in
one direction while it spreads in another and a®slt of this bundles of trajectories get
squeezed into something like a thin sheet. Howelexotic motion is characteristically bounded,
i.e. it is confined to a certain region of the phapace. As a consequence, this squeezing of
trajectories cannot continue forever. What happetisat, in order to secure confinement to such
region, a ‘folding back’ of the sheet onto itsedf taking place. Schematically, this can be

visualised as follows shown in Fig. 8.

A B

Fig. 8. The folding back can be envisioned by cptealy identifying edge AB with edge'B'.

It is at this point that ergodic maps enter thenscd ooking at the above picture, what we
identify as the basic pattern is a motion congistrii stretching and folding back. And it is
precisely this stretching and folding that manyhe mappings that are discussed in chaos theory
(e.g. the cat map, the baker's transformation er librseshoe) are supposed to capture. The
horseshoe mapping, for instance, is best intemgprate a schematic picture of precisely this
mechanism of stretching and folding we find in axteuous phase space. Obviously, these
mappings are much simpler than the full-fledgedadyits and their mechanism is not quite the
same as in the continuous case. But they captarkasic structure (that is why we refer to theses
maps as ‘analogue pictures’) and thereby help uciddte what happens in the more intricate
case of a continuous flow. In particular, the bakemap shows that the system involves a high

degree of dynamical randomness.
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4.5 Mappings as tools for analysing physical profde

So far we have used mappings as tools to undergt@nproperties of a continuous phase flow,
with which the ‘real physics’ was associated. Buaips can also be used in a more direct way to
study various physical problems. That is, there pingsical problems whose formalisation
immediately results in a mapping. In these casesrthpping emerges directly from the physical
phenomenon under investigation and no ‘detour’ torginuous formulation is needed. A case in
point is the so-called Fermi accelerator (see kigcherg & Lieberman, 1991, pp. 57-9 and pp.
215-30). The system was proposed by Enrico FerrD#D to model the acceleration of cosmic
rays by momentum transfer from magnetic field dtrres. The model consists of a ball bouncing
between a fixed and a sinusoidally oscillating wakpending on the concrete assumptions about
the behaviour of the components of the model ortaid various mappings, including well-
known mappings such as the twist map and the Gilkaylor map (also referred to as the
‘standard map’). As a consequence, the whole machiof ergodic theory can be directly used

to discuss such physical problems, and in partidchladegrees of randomness that they involve.

In sum, we think that the three uses discussedeabove. the use of mappings in surfaces of
sections, as analogue pictures and as ‘direct’ tisarfephysical phenomena — forcefully counter
the objection that ergodic theory is irrelevant gbysics in general and to characterising

dynamical randomness in physical processes incpiéati

5. Summary and concluding remarks

5.1. Summary of the main arguments

EH is often regarded as relevant for explicating thature of randomness in deterministic
dynamical systems. It is not clear, however, whatom of randomness this claim invokes. The
formal definitions of EH do not make explicit appea randomness and the usual ways of

presenting EH do not involve specifications of tigion (or notions) of randomness that is (or
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are) supposed to underlie EH. After dismissing s@@emingly obvious candidates we have
suggested that EH can be interpreted as a hierafctgndomness if degrees of randomness are
explicated in terms of degrees of unpredictabilitshich in turn are explicated in terms of
conditional degrees of beliefs. In order for thdegrees of belief to be indicative of the system’s
dynamical properties, they have to be updated douprto a system’s dynamical law, i.e.
according to fz-DynT). In technical terms, these degrees of betigfial the corresponding

degrees of decay of correlation which are dictétethe system’s dynamical properties.

Note that on our analysis, degrees of beliefs iaystem’s states at different times reflect
randomness not because their (specific) valuesullyedetermined by objective facts about the
system. Any degree of belief that is updated adogrtb (#-DynT) would reflect the system’s

dynamical properties. Thus, our use of degree®ldfs to explicate randomness in deterministic
systems is not subjected to some standard objsctamainst the application of subjective

probabilities in classical statistical physics.

5.2 Randomness and the Decay of Correlations

In EH, the different degrees of randomness, whiglrespond to the different levels of the

hierarchy, are (generally) defined in asymptotitn® (the exception being Bernoulli processes).
Each of these degrees of randomness expressedeeenlifdegree of unpredictability that

corresponds to a different type of asymptotic demfagorrelations between states of systems at
different times. This might suggest that a simgattern can be found in the rates of decay. That
is, one might be tempted to think that EH can dgubé characterised as a hierarchy of
increasing rates of decay of correlations. Onragling, a K system, for instance, which exhibits
exponential divergence of trajectories would berati@rised by exponential rate of decay of

correlations, while a SM systems would exhibit &pomial rate of decay.

This, unfortunately, does not wofk.Natural as it may seem, EH cannot be interpreted a

hierarchy of increasing rates of decay of correfadi It is a mathematical fact that there is no

2 Thanks to Viviane Baladi and Dan Rudolph for pioigtthis out to us.
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particular rate of decay associated with each IefeEH. For instance, one can construct K
systems in which the decay is as slow as one wishede (e.g. polynomial). So the rate of decay

is a feature of a particular system and not ofvallef EH.

5.3 Chaos is a matter of degree

We mentioned at the beginning that it has becornseouary among physicists and philosophers
alike to characterise the behaviour of chaoticesyistin terms of certain levels of EH, typically
K- and B-systems. More recently, it was suggesieBddot & Earman (1997, p. 155) that being
merely strong mixing (SM) is a necessary conditeomd being a K-system is a sufficient
condition for a system to be chaotic. This vieweatwo difficulties: the first is technical and the

second is conceptual.

Let’'s begin with the technical difficulty. Intuitaly, the claim that SM is a necessary condition
for chaos appears appealing, because SM systerob/ena significant degree of ‘disorder,’
which seems necessary for chaos. However, a dogkrat chaotic systems soon reveals that, if
no further provisos are made, this claim is falake, for a notable example, KAM-type
systems. Clearly, these systems with their integhech regions of irregular and regular motion
exhibit a kind of behaviour that we would like tallcchaotic’ (for a discussion of such systems,
see section 4.3). But according to the proposedrmn KAM-type systems are not chaotic since
it is a straightforward consequence of the KAM tle@o that these systems are not mixing. (In
fact, as we have seen in Section 4.2, KAM system$iat even ergodic.) For this reason it is too
restrictive to make SM a necessary condition f@osh

One may try to rescue the idea that SM is a negessadition for chaos by restricting the scope
to more favourable cases (i.e. ones in which ntubsg KAM-curves are present). This can be
achieved, for instance, by making the perturbasiostrong that all invariant curves vanish, or by
restricting the focus to the ‘right’ regions of thkase space (see Section 4.3). The claim is then:
Given that a system is merely ergodic, SM is a s&mg condition and KM is a sufficient

condition for it to be chaotic. Or similarly, if ¢hsystem is not ergodic, then focusing on the
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regions where the system displays an ergodic bebgVsM is a necessary condition and KM is
a sufficient condition for chaos.

From a technical point of view, this is a workableggestion. However, there is a problem with
the basic mindset behind it. The search for necgsaad sufficient conditions for chaos
presupposes that there is a clear-cut divide betwbaotic and non-chaotic cases. We believe
that our analysis of EH challenges this view. Eldvides a hierarchy of random behaviour and
every attempt to draw a line somewhere to demaugtaetic from non-chaotic systems is bound
to be somewhat arbitrary. Ergodic systems areypregular, mixing systems are less regular and
the higher positions in the hierarchy exhibit stilbre haphazard behaviour. But is there one
particular point where the transition from ‘non-oBato chaos takes place? Based on our
argument that EH is a hierarchy of increasing degygd randomness and degrees of randomness
correspond to different degrees of unpredictabilitg suggest that chaos may well be viewed as
a matter of degree rather than an all-or-nothirfgirafBernoulli systems are very chaotic, K-
systems are slightly less chaotic, SM-systems tidldess chaotic, and ergodic systems are non-
chaotic. This suggestion connects well with theaiddat chaos is closely related to
unpredictability. For if chaos in deterministic ®®s is closely related to unpredictability, there
seems to be no good reason to claim that SM isxassary condition for chaos and that K is a
sufficient condition for it. First, SM already inlves a significant degree of unpredictability.
And, secondly, if there were a clear point whergradictability starts to reflect chaotic
behaviour, why should it be K- rather than SM- es\Btems?

The view that being a K-system is the mark of cherod that any lower degree of randomness is
not chaotic is frequently motivated by two ideabeTiirst is the idea that chaotic behaviour
involves dynamical instability in the form of expartial divergence of nearby (possible)
trajectories. Thus, since a system involves an eapial divergence of nearby trajectories only
if it is a K-system, it is concluded that (merebfgodic and mixing systems are not chaotic
whereas K- and B-systems are. It is noteworthy,éwar, that SM is compatible with there being
polynomial divergence of nearby trajectories andt tluch divergence sometimes exceeds
exponential divergence in the short run. Thushéas is to be closely associated with the rate of
divergence of nearby trajectories, there seemstadogood reason to deny that SM- systems
exhibit chaotic behaviour.
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The second common motivation for the view that ganK-system is the mark of chaos is the
idea that the shift from zero to positive KS-engraparks the transition from a ‘regular’ to

‘chaotic’ behaviour. This may suggest that havimgifive KS-entropy is both necessary and
sufficient condition for chaotic behaviour. Thugce a system has positive KS-entropy if and

only if it is a K-system, it is concluded that Kst¢gms are chaotic whereas SM-systems are not.

Why is KS-entropy a mark of chaos? The answer s tjuestion depends on the exact
interpretation of KS-entropy. Three interpretationigggest themselves. One interpretation is
based on Pesin’s theorem, which states that a dgahsystem has positive KS-entropy if, and
only if, it is dynamically unstable in the sense having exponential divergence of nearby
trajectories (see Lichtenberg & Liebermann 19925 we have just argued above, this
interpretation does not seem to support the suiggesitat having a KS-entropy is a necessary
condition for chaotic behaviour even if we accéyet idea that chaos is closely related to the rate

of divergence of nearby trajectories.

The second interpretation of KS-entropy is basedBamino’s theorem, which connects it to
algorithmic complexity (see again Lichtenberg & héemann 1992). Though elegant in its own
right, this does not seem to get us very far indetext of our investigation because it does not
connect to physical intuitions about randomnessniétédly, ‘randomness’ is a vague notion that
allows for different interpretations, but algorittmcomplexity is just too far off the mark for the
needs of physics. A physical notion of randomnesasstrhave something to say about

unpredictability, which is not the case with alglomic complexity.

Finally, in a recent paper Frigg (2004) relates Kfe-entropy to a generalised version of
Shannon’s information theoretic entropy. Accorditw this approach, positive KS-entropy
implies a certain degree of unpredictability. Thled is that this degree of unpredictability is
sufficiently high to deserve the title chaotic. Bhis takes us back to the original question. Why
draw the line here rather than somewhere else? $dbyld the line between non-chaotic and
chaotic behaviour be drawn between unpredictabitigt implies zero KS-entropy and

unpredictability that implies positive KS-entropgbso, even if we suppose that positive KS-
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entropy is a necessary condition for chaotic behayithe question is why should we draw the

line at K-systems rather B-systems.

All these problems do not arise for our suggesttwat chaotic behaviour of a system/process
should be measured in terms of degrees of unpadulity, which are measured by degrees of
beliefs that are constrained by the relevant dynahtaws and can be characterised precisely by
EH. On this suggestion, no sharp line between ahaoid non-chaotic behaviour is called for:

Chaos is conceived as a matter of degree.
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