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ABSTRACT:  The simple question�What is empirical success?�turns 

out to have a surprisingly intricate answer.  The paper begins with the 

point that empirical success cannot be equated with goodness-of-fit 

without making some kind of distinction between meritorious fit and 

�fudged fit�.  The proposal that empirical success is adequately defined by 

Akaike�s Information Criterion (AIC) is analyzed in this light.  What is 

called cross-validated fit is proposed as a further improvement.  But it still 

leaves something out.  The final proposal is that empirical success has a 

hierarchical structure that commonly emerges from the agreement of 

independent measurements of theoretically postulated quantities. 

 
 
1. Introduction:  It would be a miracle if our best scientific theories were empirically 

successful without any of their postulated entities really existing or without the theories 

being approximately or partially true.  This is commonly known as the miracle argument.  

An equally well known response claims that the mere empirical adequacy of these 

theories is sufficient to explain their empirical success.1  Realists and antirealists have not 

fussed too much about what empirical success is.  It is tacitly assumed to be something 

like the degree to which a theory fits the observed phenomena.  In the ideal case, it 

                                                 
1 A theory is empirically adequate if and only everything it says about the observed phenomena (past, 
present, and future) is true. See van Fraassen 1980, chapter 2, for an introduction to the realist debate, and 
the antirealist position mentioned here is, of course, van Fraassen�s Constructive Empiricism. 
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consists in the truth of the observed consequences of a theory.  In the less ideal case, 

some account of observational error is made; in which empirical success is defined in 

terms of a �least squares� measure of fit, or by some probabilistic measure of fit such as 

likelihood or the log-likelihood.2 

But what is empirical success, exactly?  The problem is surprisingly complicated.  

For instance, empirical success cannot be goodness-of-fit with the data, in any 

unqualified sense, because good fit can be �fudged�, for instance, by introducing 

adjustable parameters.  Yet it is standard practice in science to use adjustable parameters; 

so we need to distinguish between meritorious fit and fudged fit, especially when they 

occur together.   

In section 2, the problem is motivated by simple sounding example�Why are 

Kepler�s laws empirically more successful than Copernicus�s theory of planetary motion?  

Hitchcock and Sober (2004) appeal to Akaike�s information criterion (AIC) as a way of 

distinguishing fudged and meritorious fit, but this proposal has its limitations (Section 3).  

Section 4 improves upon the proposal, in terms of cross-validated fit, while section 5 

explains why this improved answer is incomplete.  The final suggestion is that empirical 

success recurs at successively higher levels of generality as science progresses. 

2.  Why Should Kepler�s Laws Supersede Copernicus�s Theory?  Kepler�s first law 

states that each planet moves around the sun on an ellipse with the sun at one focus.  The 

law introduces a handful adjustable parameters for each planet�the mean radius, R, or 

the semi-major axis, the eccentricity and the orientation of the ellipse.  Kepler�s second 

                                                 
2 Likelihood is a technical term, which refers to the probability of the observations given the hypothesis 
(not to be confused with the probability of the hypothesis given the observations, which is a distinctly 
Bayesian concept). 
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law tells us that the line drawn from the sun to the planet sweeps out equal areas in equal 

times.  In the special case of a circle (an ellipse with zero eccentricity), the area law 

implies that the planet moves around the sun with uniform angular velocity.  For an 

ellipse of non-zero eccentricity, a planet has to move with greater angular velocities when 

it is close to the sun, as Newton would later explain in terms of the inverse square law of 

gravitation.  The second law introduces the period of revolution T as an adjustable 

parameter.  Kepler�s third law, also known as the harmonic law, introduces no additional 

adjustable parameters, but postulates a regularity amongst those already introduced.  It 

says that ratios R3/T2, measured independently for each planet, are equal.  Qualitatively 

speaking, the harmonic law says that the planets closer to the sun revolve around the sun 

with greater angular velocities.  There is a sense in which the area law says the same 

thing about a single planet in different parts of its orbit. 

Call a specific set of Keplerian trajectories, one for each planet, a predictive 

hypothesis (or hypothesis, if no confusion will result).  It is �predictive� in the sense that 

it makes exact predictions about the position of any planet at any given time.  Kepler�s 

laws define a family of such hypotheses, which I shall call a model.  According to this 

terminological convention, Kepler�s laws define a model.  

First of all, how can we define the goodness-of-fit of Kepler�s model?  It doesn�t 

matter exactly how fit is defined, so assume that it is the sum of the squared residues, 

where the residue is the spatial distance between the observed position of a planet and the 

position predicted by the hypothesis at a particular time.  Most of the hypotheses in the 

model will fit the data very badly. So, how do we define the fit of a family of hypotheses?  
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A charitable definition is that model fit is 

the best fit achieved by any hypothesis in 

the model.  

Contrast Kepler�s model with 

Copernicus�s use of a circle on circle 

construction (see the caption of Fig. 1 for 

details).  Copernicus�s theory allows for 

many models, each defined by fixing the 

number of circles assigned to each planet.  

The adjustable parameters include the 

radius of each circle, its period of 

revolution, and the initial position of each circle.  

If empirical success were defined as model fit, then it is simply untrue that 

Kepler�s model is empirically more successful than any Copernican model.  Take any 

Copernican model, C, and consider another Copernican model, C+, that adds one or more 

epicycles to C.  Then C is nested in C+ in the precise sense that all the predictive 

hypotheses in C are also in C+ (Proof:  Consider the special cases in which the added 

epicycles have zero radii).  The nested  property is sufficient to prove that the more 

complex model can only improve the model fit, for any hypothesis in C is also available 

in C+.  Anything that C can do, the more complex model can do better.  At least in terms 

of fit.  The argument rests solely on the nesting relationship between models�not on 

how fit is defined. 

Mars

Sun

deferent

epicycle

Figure 1: A two-circle Coperican model for 
the planet Mars.  The motion of Mars relative 
to the sun is modeled as the sum of two 
vector motions; one represented by the arrow 
from the sun to the circumference of the main 
circle, called the deferent, and one from that 
point to Mars.  Each vector has a fixed length 
and rotates with uniform motion.  (The sun 
could be placed a short distance from the 
center of the deferent circle, although this 
would be mathematically equivalent to adding 
an epicycle.) 
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In fact, there is a theorem in mathematics, called the Fourier theorem, that implies 

that one can, in principle, approximate any planetary trajectory to an arbitrary degree of 

accuracy if we use a sufficient number of circles.  This also proves that there is a 

Copernican model that can approximate any finite set of points sampled from the true 

planetary trajectories to an arbitrary degree of fit.  Kepler�s model fits only approximately 

(as we know from Newton�s theory).  Therefore, there is a Copernican model that 

exceeds the best fit achieved by Kepler�s laws.  

So, we can�t define empirical success in terms of model fit if we want to maintain 

the view that Kepler�s laws are empirically more successful than Copernicus�s theory.  

The intuitive response is that empirical success must, somehow, take account of the fact 

that complex Copernican models �fudge� their fit by using a large number of circles.  It is 

not easy to capture this idea precisely. 

3. AIC as a Measure of Empirical Success:  Hitchcock and Sober (2004) address a 

related problem�that of distinguishing prediction from accommodation.  The idea is that 

mere accommodation is a kind of fudged fit, and what�s left over is a meritorious kind of 

predictive fit.  In what follows, I shall re-describe what they do as providing a definition 

of empirical success.  

Following Forster and Sober (1994), they postulate that the goal of modeling is to 

maximize predictive accuracy of a model.3  To define predictive accuracy, we return to a 

consideration of how well hypotheses fit the true trajectory.  To simplify the exposition, 

let us call the hypothesis that best fits the data the likeliest.  The negative of this quantity 

is called the predictive accuracy of the likeliest hypothesis.  The predictive accuracy of a 

                                                 
3 The term �predictive accuracy� was introduced by Forster and Sober (1994). 
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model is now defined as the average, or the mean, predictive accuracy of the likeliest 

hypotheses over repeated re-samplings of the observed data.  Although these re-

samplings are imaginary, the concept is well defined as soon as the method of re-

sampling is specified.  Models do not wear their predictive accuracies on their sleeves�

predictive accuracy is a truth-related utility that is being held up as a goal of scientific 

modeling.  It is not proposed as a definition of empirical success. 

The predictive accuracy of a model is a property of the whole model because the 

likeliest hypothesis changes from one data set to the next.  It is also a property that 

depends on the number of observed data.  As the number of data points increases, the 

sampling errors in the estimation of parameters decreases; so that in the limit, the 

predictive accuracy of a model is the same as the predictive accuracy of the very best 

hypothesis in the model (called the model bias).4   This means that a sufficiently rich data 

set will increase the predictive accuracy of sufficiently complex Copernican models 

without bound.  Busemeyer and Wang (2000) and Forster (2002) conclude that predictive 

accuracy is not the only goal of scientific modeling.  But there is no argument against 

considering predictive accuracy as one goal, and an important one at that.  So let�s 

consider it. 

The question is:  How does one estimate predictive accuracy from the observed 

data?  Hitchcock and Sober (2004) appeal to Akaike�s theorem, which says that under 

certain conditions (Akaike 1973; see Forster and Sober for an simple exposition), there is 

a way of correcting the observed model fit so that it provides an unbiased estimate of the 

                                                 
4 I am following Kruse (1997) in terming this model bias rather than bias, in the hope of making it harder to 
confuse the bias of a model with the bias of a statistical estimator. 
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model�s predictive accuracy.  The adjusted model fit is referred to as Akaike�s 

Information Criterion (AIC).5 

AIC provides an aesthetically pleasing definition of empirical success because it 

divides the model fit into two parts.  The penalty term represents the �fudged� part of the 

fit because it is directly attributable to the use of adjustable parameters, and what�s left 

over is the meritorious part of the model fit.  As Hitchcock and Sober correctly 

emphasize, �fudging� is a normal part of scientific modeling.  What matters is our ability 

to winnow the wheat from the chaff, to distinguish the part of the fit that provides a good 

estimate of predictive accuracy from the �fudged� part. 

It is now plausible that the AIC score for Kepler�s model is better than the AIC 

score of any Copernican model, which makes AIC score attractive as a definition of 

empirical success.  It is capable of explaining why Kepler�s model should have 

superseded Copernicus�s theory. 

The Hitchcock-Sober proposal has many other virtues as well.  AIC is defined 

only in terms of the observed model fit, the number of data, and the number of adjustable 

parameters in the model.  So it conforms to Sober�s (1993) principle of Actualism, which 

says what counts as evidence should depend only on what is actually observed.   Also, the 

solution does not rely on the existence of observational errors (even though observational 

error is, in fact, ubiquitous).   

                                                 
5 The statistical notion of an �unbiased estimator� is defined in the following way.  Imagine repeated re-
samplings of the same number of data points from the same segment of the planet�s trajectory, where each 
sample is randomly generated by selecting a set of points on the trajectory according to some fixed 
probability distribution.  It could be, for example, a uniform distribution over the time interval under 
consideration.   Then AIC is an unbiased estimator of the model�s predictive accuracy if and only if its 
average value over repeated re-samplings is equal to the true predictive accuracy. 
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There are many competing model comparison criteria in the literature that also 

correct the model fit by adding a penalty term�and they are also defined only in terms of 

the number of adjustable parameters and the number of data; the only difference being in 

the magnitude of the penalty term.  AIC has the special property of being unbiased (if the 

conditions of Akaike�s theorem hold).  But what�s so special about an unbiased 

estimator?  Surely, it is more important is to find an estimate that minimizes the expected 

squared error between the estimator and what�s being estimated.  And there is no general 

proof that unbiased estimators must minimize the estimation error in this sense; in fact 

Stein (1956) describes an example that proves that there is no such proof.  However, 

within the restricted class of estimators that differ from an unbiased estimator by an 

additive constant, there is a proof that the unbiased estimator minimizes the estimation 

error better than any other estimator in the class.6  Since the competing adjusted measures 

of fit, such as the Bayesian Information Criterion (BIC) (Schwarz 1978), differ from AIC 

by a constant term, AIC is provably better in the sense defined (provided that the 

conditions of Akaike�s theorem hold).   

So, what�s the problem?  The problem with the Hitchcock-Sober proposal is 

three-fold: 

(1) Akaike�s theorem itself is technically difficult and fairly opaque, at least 

compared to the alternative definition of empirical success provided in the next 

section.  

(2) The conditions of Akaike�s theorem still may not hold (as Hitchcock and Sober 

are well aware).  In fact, Kieseppä (1997) has questioned whether the conditions 
                                                 
6 Here�s the proof:  Let x be the unbiased estimator, and let x* be the quantity being estimated.  By 
definition of unbiased, E(x) = x*.  Now consider the biased estimator x+b, where b is a constant.  Then 
E[(x+c−x*)2] = E[(x−x*)2] + c2 > E[(x−x*)2]. 
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apply to Copernican models. There is no problem with the definition of predictive 

accuracy in the Copernicus-Kepler example; rather Kieseppä�s claim is that AIC 

is not justifiably taken to be an unbiased estimate of the predictive accuracy.  His 

argument rests on the fact that there is no known proof that the conditions of the 

theorem hold.  Of course, this does not settle the issue conclusively�one way of 

resolving it might be to conduct computer simulations.  But in the absence of such 

studies, Kieseppä�s point stands. 

(3) The theorem does not apply to the extreme case in which there are more 

adjustable parameters than data points.  This is the paradigmatic case of 

overfitting; for example, when an (n−1)-degree polynomial (with n adjustable 

parameters) is fitted to n data points, the fit will be perfect.  We know that the fit 

is fudged.  AIC is not justifiably applied to this extreme case. 

The question is whether it is possible to improve upon AIC. The following section puts 

forward a proposal. 

4.  Cross-Validated Fit as a Measure of Empirical Success:  Let me begin with a 

description of the least squares measure of fit 

to see how it might be modified to provide a 

more adequate definition of empirical 

success.  Consider a generic curve fitting 

example in which the model is y = βx, where 

β is an adjustable parameter.  Now look at 

the two data points in Fig. 2.  The �distance� 

of an arbitrary curve in the model, say C, 

x

y

C
2C

Datum 1

Datum 2
1C

 
Figure 2: Empirical success in a simple 
curve fitting example based on a least 
squares criterion. 
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from the data may be measured by the sum of squared residues (SSR), where the residues 

are defined as the y-distances between the curve and the data points.  The residues are the 

lengths of the vertical lines in Fig. 2.  If the vertical line is below the curve, then the 

residue is negative; otherwise it is positive.  Squaring the residues ensures that the SSR 

score is always greater than or equal to zero, and equal to zero if and only if the curve 

passes through all the data points exactly.  So, the SSR is an intuitively good measure of 

the discrepancy between a curve and the data.   

 Now define the curve that best fits the data as the curve that has the least SSR.  

Recall that any assignment of numbers to the adjustable parameters determines a unique 

curve, and vice versa.  So, in particular, the best fitting curve automatically assigns 

numerical values to all the adjustable parameters.  These values are the least squares 

estimates the parameters, and this method of parameter estimation is called the method of 

least squares.  

By fitting a model to the data, we obtain a unique best fitting curve.7  The values of 

the parameters determined by this curve are often denoted by a hat.  Thus, the best fitting 

hypothesis in the model would be �y xβ= .  The hypotheses represented by the curves 1C  

and 2C  are also in the model, but they have a higher SSR score with respect to the data, 

even though each fits one of the data points perfectly. 

More exactly, the model fit is calculated in the following way: 

Step 1:  Find the hypothesis that best fits the data.  Denote this hypothesis by h.  

Step 2:  Consider a single datum.  Square the residue of this datum determined by h.   

Step 3:  Go back to Step 2 and repeat this procedure for all n data. 

                                                 
7 There are exceptions to this, for example when the model contains more adjustable parameters than data. 
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Step 4:  Sum the SR scores and divide by n. 

This number actually measures the badness-of-fit of the model.  The model fit is defined 

as minus this score.  

The reason that we take the average SSR in step 4 is that we want to use the 

goodness-of-fit score to estimate how well the model will predict a �typical� data point.  

The goal is the same as in simple enumerative induction�to judge how well the 

�induced� hypothesis predicts a �next instance�, where we assume that the seen instances 

are representative of the parent population. 

If the goal is to measure the predictive accuracy of the model, then we can see why 

the SSR score is biased.  For each datum has been used twice; once in the construction of 

the �induced� hypothesis (Step 1), and then to calculate how well the �constructed� 

hypothesis predicts a typical data point (Step 2).  The problem is not the seen data are 

unrepresentative of the parent population.  The problem is that best fitting hypothesis, 

which is used to represent the model, has been selected, in part, to minimize the 

�predictive� error.  That is why the SSR score is adversely affected when a model is good 

at accommodating data.8  The problem has nothing to do with the psychological bias of 

the practitioner; it is a logical problem.  And it has a logical solution. 

The solution is to measure empirical success in terms of its leave-one-out cross 

validation score (CV score), which turns out to be surprising similar to the SSR score.   

Step 1: Choose a data point i, and find the hypothesis that best fits the remaining n−1 

data points.  Denote this hypothesis by ih . 

Step 2:  Square the residue of this datum with respect to ih .    
                                                 
8 This does not undermine the least squares method of parameter estimation.  There is no bone to pick with 
statisticians here. 
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Step 3:  Go to Step 1, and repeat this procedure for all N data (in all experiments). 

Step 4:  Sum the scores and divide by n. 

The difference is the left-out datum i is no longer used to �construct� the hypothesis ih  in 

Step 1.  It is therefore an unbiased measure of prediction, not accommodation.  The 

comparison of CV scores places simple and complex models on an even playing field; 

there is no need to factor in non-empirical virtues such as simplicity or unification.  The 

CV score provides a measure of empirical success that is acceptable to realists and 

antirealists alike.  

(1)  Not only does the CV score more perspicuously measure the predictive 

abilities of a model, but it also gives finer-grained information about the nature of its 

evidence.  To show this, let C be the curve that best fits the total data, and iC the curve 

that best fits the data with datum i left out.  If iSR  is the squared residue of datum i 

relative to C, and iPE  is the squared predictive error of datum 1 relative to iC , then, by 

definition, 1CV in PE= ∑  and 1SSR in SR= ∑ .  Trivially, 1CV SSR ( )i in PE SR= + ∑ − .  So 

CV is equal to the SRR plus a term that corrects the model fit for �fudging�.  What is not 

so trivial is that ( )i iPE SR−  is greater than or equal to zero for each datum.9  What this 

means is that the degree of fudging is estimated for each datum, so that the comparison 

                                                 
9 Proof:  Let F  be the SSR of the remaining data relative to C , while 1F  is the SSR of the remaining data 

relative to 1C .  Both F and 1F  are the sum of n −1 squared residues.  By definition, C fits the total data at 

least as well as 1C .  Moreover, the SSR for C relative to the total data is just 1SR F+ while the SSR of 1C  

relative to the total data is 1 1PE F+ .  Therefore, 1 1 1PE F SR F+ ≥ + .  On the other hand, 1C  fits the n − 1 

data at least as well as C, again by definition of �best fitting�.  This implies that 1F F≥ .  Putting the two 

inequalities together: 1 1 1 1 1PE F SR F SR F+ ≥ + ≥ +  implies that 1 1PE SR≥ , which is what we set out to 
prove. 
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between CV and SSR is heuristically more valuable than the comparison between AIC 

and SSR.  Cross-validated fit can point to the particular data that are not predicted well 

by the model and pose specific questions about the reliability of those data or how the 

model might be modified to improve its predictions. 

(2)  When the conditions of Akaike�s theorem hold, the AIC score is 

approximately equal to the CV score (Stone 1977).  So, the CV score can do everything 

that AIC can do.  And it has broader appeal because it does not depend on the 

assumptions of Akaike�s theorem.  Even if AIC not an unbiased estimate of predictive 

accuracy in the case of planetary models, the CV score is still providing a measure of 

empirical success that it is unbiased by fudging factors.  

(3)  Now consider a generic curve fitting example in which there are just two data 

points as in Fig. 2, except that the model under consideration is LIN:  y = a + b x, where a 

and b are adjustable parameters.  The model achieves perfect fit with the data, which is 

entirely fudged!  But AIC cannot sanction this conclusion because Akaike�s theorem does 

not apply when there are as many adjustable parameters as there are data.  So, what is the 

CV score?  Well, leave one datum out and try fitting a straight line to a single datum.  

There is an infinite number of curves that pass through a single point, and they all have 

different PE scores with respect to the left-out datum.  Do we say that the empirical 

success of the model is undefined, or do we somehow average the PE scores over a set of 

curves that best fit the remaining data?  In either case, it is fair to say that the model has 

no empirical success. 

Theories such as �God willed X� or �God designed X� are in the same boat.  

They fit the facts perfectly, but they do not achieve any kind of empirical success.  There 
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is a sense in which they explain X, but that goes to show that explaining observed 

phenomena is not a defining feature of empirical science.  They �explain� everything, but 

there is no explanation of their empirical success because they have none. 

5.  The Hierarchical Structure of Cross-Validated Fit:  The final task is to argue that 

the CV score is an incomplete characterization of empirical success.  There are two 

arguments for this.  The first is a negative argument against criteria, including CV, AIC 

or BIC, that have certain asymptotic properties in the large data limit.  For it is intuitively 

obvious that in that leaving one datum out will make no difference to the curve that best 

fits the remaining data in that limit; that is, iC  is asymptotically the same as C.  As data 

accumulates, the CV score of a complex Copernican models may increase, even to the 

extent that it surpasses Kepler�s CV score.  The conclusion is not that these indicators are 

a bad indicators of empirical success.  It�s that they are incomplete.   

So, what�s left out?  In the case of the Kepler-Copernicus example, the answer is 

very simple:  Kepler�s third law.  Kepler�s harmonic law does not enter into the 

calculation of the CV score.  Imagine that we leave out a single observation of Mars.  

Then we find the ellipse that fits the remaining data best, and adjust the period of motion 

so as to minimize the SSR.  We have only used the first two laws because they are the 

only ones that introduce adjustable parameters.  But the presence or absence of Kepler�s 

third law�that is, how well the independent measurements of the ratio R3/T2 agree or 

disagree�is surely part of what determines the empirical success or failure of Kepler�s 

model.  Such an agreement is empirical because the parameters R and T are empirically 

determined.  Moreover, Newton put great weight on such evidence in his argument for 
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universal gravitation.10  It is therefore philosophically significant that standard statistical 

indices such as CV, AIC or BIC take no account of higher level regularities  

Myrvold and Harper (2002) make such a similar complaint about AIC, and I have 

attempted to bolster their analysis, for instance, by showing that many standard model 

selection criteria, including cross-validated measures of fit, fall prey to the same 

objection.  Their conclusion is that scientific inference includes something that lies 

beyond the realm of statistical reasoning.  While this issue cannot be resolved here, I 

would like to be more optimistic about the relevance of statistical notions.  For one could 

introduce a �higher-level� CV index by leaving one planet out, and asking how well 

Kepler�s third law predicts the ratio for the left-out planet.  Whether the magnitude of this 

CV score is significantly greater than zero can be answered by standard statistical tests. 

On the view advocated here, cross-validated fit has a distinctly hierarchical structure.  

Interestingly, Copernicus�s advance over Ptolemy�s geocentric theory can be 

viewed in the same way�heliocentric models allow for the overdetermination of the 

relative motion of the earth and the sun from the motions of many planets (as seen from 

earth), and the agreement of these independent measurements could also be subjected to 

standard statistical tests.  This higher-level empirical success, which speaks in favor of 

Copernican theories (including Kepler�s and Newton�s), is quite independent of whether 

Copernican models supersede Ptolemaic models with respect to the kind of �next 

instance� prediction, such as predicting when Easter will fall in coming years.  Most 

historians agree that Copernicus failed to surpass Ptolemy in this regard, but then hastily 

conclude that there was no empirical evidence in favor of Copernicus�s theory. 

                                                 
10 The importance of the agreement of independent measurements has been recognized in Newton�s work, 
most notably by Harper 2002. 
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Witness Kuhn, who claims that the �harmony� of Copernicus� system appeals to 

an �aesthetic sense, and that alone.�  As he puts it:  

The sum of evidence drawn from harmony is nothing if not impressive.  
But it may well be nothing.  �Harmony� seems a strange basis on which to 
argue for the Earth�s motion, particularly since the harmony is so obscured 
by the complex multitude of circles that make up the full Copernican 
system.  Copernicus� arguments are not pragmatic.  They appeal, if at all, 
not to the utilitarian sense of the practicing astronomer but to his aesthetic 
sense and to that alone.  (Kuhn 1957, 181.) 

Contra Kuhn, there is a way of describing the empirical consequences of Copernican 

theory that makes heliocentric harmony an essential component of its empirical success.11 

It was no accident that Kepler referred to this third law as the harmonic law, and 

this play on words was not lost on Newton.  There is at least one historian of science who 

understood this well:  It was William Whewell (1958; Butts (ed.) 1989) who coined a 

word for the aspect of evidence most famously overlooked.  He called it the consilience 

of inductions.12 
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